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Abstract

Large �rms play a pivotal role in international trade, shaping the export patterns of
countries. We propose and quantify a granular multi-sector model of trade, which com-
bines fundamental comparative advantage across sectors with granular comparative ad-
vantage embodied in outstanding individual �rms. We develop an SMM-based estimation
procedure, which takes full account of the general equilibrium of the model, to jointly es-
timate these fundamental and granular forces using French micro-data with information
on �rm domestic and export sales across manufacturing industries. We �nd that granular-
ity accounts for about 20% of the variation in realized export intensity across sectors, and
is more pronounced in the most export-intensive sectors. We then extend the model to a
dynamic environment featuring both granular and fundamental shocks that jointly shape
the time-series evolution of comparative advantage. We �nd a central role of granular
forces in shaping comparative advantage reversals observed in the data.
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1 Introduction

Firms play a pivotal role in international trade. A signi�cant share of exports is done by a
small number of large �rms, which enjoy substantial market power across destination coun-
tries.1 The fates of these large �rms shape, in part, the countries’ trade patterns. For instance,
Nokia in Finland or the Intel plant in Costa Rica have profoundly altered the specialization and
export intensity of these countries.2 The importance of large �rms is also re�ected in trade
and industrial policies that are often so narrow that they appear tailor-made to target individ-
ual �rms rather than industries. In particular, antitrust regulation, antidumping policies, and
international sanctions all target large individual foreign �rms.3

In this paper, we study the role of individual �rms in determining the comparative ad-
vantage of countries. We aim to measure what part of comparative advantage can be traced
to characteristics that are common to all �rms in a given sector — such as the availability
of speci�c human capital, infrastructure, and technology — versus idiosyncratic contribution
of individual �rms, driven by their speci�c know-how and managerial talent. We call the
former Fundamental Comparative Advantage (FCA) and the latter Granular Comparative Ad-
vantage (GCA). We anchor our analysis around a multi-sector model with a �nite number of
�rms operating in each sector, whereby very large �rms have the potential to shape sectoral
outcomes. This approach is in stark contrast to much of the literature that assumes a contin-
uum of in�nitesimal �rms, leaving no room for individual �rms to a�ect sectoral aggregates.

Using this conceptual framework, we set out to measure the contribution of individual
�rms to international trade �ows, as summarized by GCA, thus revisiting the fundamental
questions in international trade: what goods do countries trade and what is the source of
a country’s comparative advantage? The decomposition between FCA and GCA is perhaps
best illustrated in terms of counterfactuals. Suppose, for instance, that a given �rm and its
technological know-how disappear. How does the export stance of the sector change? If

1In their “Export superstars” paper, Freund and Pierola (2015) �nd that a single largest exporting �rm accounts
for 17% of total manufacturing exports, on average across 32 developing and middle-income countries in their
dataset. In the French manufacturing dataset used in this paper, the largest �rm accounts for 7% of all manufac-
turing exports, and within 4-digit industries the largest �rm accounts on average for 28% of the industry exports.

2In Costa Rica, Intel decided to close its microchip plant and move it to Asia in 2014. The electronics sector
represented a steady 27% of Costa-Rican exports until 2013, yet starting 2015 it fell to just 8%. In Finland, Nokia
at its peak in the mid-2000s enjoyed a 25% share of total Finnish exports, a 3.7% share of Finnish GDP, and a
39% share of the global mobile phone market, before collapsing following the smartphone revolution launched
by Apple, and being eventually bought-out by Microsoft in 2013.

3Recent examples of international antitrust regulations are the 2007 case of the European Commission (EC)
against Microsoft Corporation and the 2017 �ne imposed by the EC on Google. A very recent case of a gran-
ular trade war is the 292% tari� imposed by the US on a particular jet produced by the Canadian Bombardier.
“Granular” tactics are particularly widespread in antidumping retaliation (see Blonigen and Prusa 2008) and
international sanctions (as in the recent case of the US against the Chinese ZTE). For a recent theoretical and
empirical analysis of granular international lobbying see Blanga-Gubbay, Conconi, and Parenti (2020).
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comparative advantage is only shaped by sector-level characteristics, it does not change —
other domestic �rms in the sector expand, or enter, to absorb the market share of the exiting
�rm. This is the neoclassical benchmark, which abstracts from individual �rms altogether and
focuses on sectoral technologies and supplies of factors. However, if comparative advantage is
in part driven by the performance of individual �rms, then the export stance of the sector will
change as the �rm disappears with its speci�c strengths. In this world, the �rm’s market share
is taken over by other domestic �rms that contribute di�erently to export patterns, or even
by foreign �rms. More generally, FCA and GCA have di�erent implications for the evolution
of comparative advantage over time. When comparative advantage comes in part from GCA,
standard �rm dynamics — whereby individual �rms gain and lose market shares against other
domestic �rms — result in changing aggregate sectoral exports, even without sectoral shocks.

We begin in Section 2 by formalizing the concept of granular comparative advantage and
discussing possible approaches to its identi�cation in the data. In Section 3 , we then present
suggestive empirical evidence that granularity may be at play in shaping sectoral trade �ows.
To proxy for sectoral granularity, we adopt a measure of concentration of domestic sales
among domestic �rms. This measure identi�es sectors with unusually large home �rms with-
out being directly a�ected by the international competitiveness of the sector. We show that
this measure of within-sector domestic concentration is systematically correlated with aggre-
gate sectoral exports, both in the cross-section and in the time series. Furthermore, it is also
predictive of future changes in sectoral exports, out of sample: granular sectors (with stronger
concentration at the top) have a greater tendency to see their exports mean-revert — an em-
pirical regularity consistent with a granular �rm dynamics model, as we explore below.

To go further and quantify the importance of granular comparative advantage, we adopt
a structural identi�cation approach. In Section 4, we develop and characterize a model of
granular trade, which we later quantify and use for counterfactual analysis. Our model of
granular trade contrasts with the bulk of the international trade literature, which maintains the
assumption that sectors are comprised of a continuum of heterogenous �rms – i.e., that every
�rm is in�nitesimal. Under this continuum assumption, the productivity of any individual �rm
is inconsequential for sectoral trade patterns. Indeed, such continuous models are equivalent
in the aggregate to a neoclassical Ricardian model that focuses on sector-level technologies
and fully abstracts from modeling individual �rms (as demonstrated in Arkolakis, Costinot,
and Rodríguez-Clare 2012, henceforth ACR).

We propose an alternative multi-sector granular model of trade, which acknowledges a �-
nite number of �rms operating in each sector, with the largest �rm often claiming a massive
share of the market. In the model, each �rm draws a productivity realization from a sector-
speci�c distribution. Given that there is a �nite number of �rms in each sector, some of them
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very large, realized sectoral productivities and hence the comparative advantage of a country
are shaped in part by the idiosyncratic productivity draws of individual �rms, which do not
average out at the sectoral level. Formally, our model combines Ricardian comparative advan-
tage across sectors, as in Dornbusch, Fischer, and Samuelson (1977; henceforth DFS), with the
Melitz (2003) model of �rm heterogeneity within sectors, in which we relax the assumption
of a continuum of �rms, following Eaton, Kortum, and Sotelo (2012; henceforth EKS).4 This
allows the model to simultaneously nest fundamental and granular comparative advantage in
a uni�ed framework.

We estimate the model in Section 5, using �rm-level data on domestic and export sales
of French �rms across 119 4-digit manufacturing industries. We use a simulated method of
moments (SMM) estimation procedure which takes full account of the general equilibrium
of our granular model. The extent of �rm concentration — hence the potential for granular-
ity — is disciplined by targeting moments on the number of �rms and the market share of top
�rms across industries. Comparative advantage is revealed using export and import intensity
of sectors. To disentangle the relative roles of fundamental and granular forces in driving
comparative advantage, we use moments of the joint distribution of sectoral trade �ows and
within-sector domestic sales concentration. Intuitively, sectors in which export intensity is
high due to GCA are expected to feature �rms-outliers relative to other domestic �rms, large
enough to drive aggregate sectoral productivity. Despite its parsimony, the estimated granular
model is successful at reproducing the rich cross-sectoral heterogeneity of the data.

We use the estimated model in Section 6 to quantify the importance of granularity in shap-
ing sectoral trade outcomes, using counterfactual analysis. We �nd a signi�cant part of trade
�ows to be of a granular origin (around 20%), and that the contribution of granularity is partic-
ularly pronounced in the most export-intensive sectors — the export champions of the country.
Among the top 10% export-intensive sectors, our results suggest that nearly one third of ex-
ports is of granular origin. We also show that, in a granular world, conventional inference of
fundamental sectoral productivities based on sectoral export shares leads to biased estimates.

Importantly, we establish the robustness of our results to alternative parameterizations
of the model and distributional assumptions. We �nd that parameterizations that still match
our key identifying moments lead to similar quantitative conclusions on the importance of
granularity. Conversely, alternative parameterizations, such as ones with a thinner-tailed �rm
productivity distribution, are unable to match the data. This emphasizes the importance of the
empirical moments, relative to the assumed functional forms, in delivering the identi�cation
in our structural framework.

4Speci�cally, a random integer number of �rms draw productivities from a fat-tailed Pareto distribution, with
a mean productivity parameter that varies by country and sector, capturing fundamental Ricardian forces.
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Having established the contribution of granularity to long-run trade patterns using our
static model, we explore in Section 7 its dynamic implications. In particular, we study the
ability of granular forces to explain and predict the evolution and reversals in comparative
advantage of countries. To this end, we extend our granular model to feature industry dynam-
ics, driven simultaneously by sector-level and �rm-level productivity shocks. We calibrate the
dynamic productivity processes to match the mean-reversion of domestic �rm sales shares
and sectoral exports. We �nd that granular forces account for 25% of the year-to-year changes
in sectoral export shares. Furthermore, the dynamic granular model is consistent both with
the hyper-specialization of countries in a few industries at any given point in time and a rela-
tively fast mean reversion in comparative advantage over time, emphasized in a recent paper
by Hanson, Lind, and Muendler (2016; henceforth HLM). We �nd that idiosyncratic �rm pro-
ductivity dynamics alone accounts for about a half of comparative advantage reversals for the
most export-intensive sectors. Finally, we show that the dynamic model captures accurately
the empirical patterns we documented in Section 3, and in particular that empirical proxies of
sectoral granularity are predictors of future mean reversion in sectoral exports. Thus, we view
these empirical patterns as strongly suggestive of the granular mechanism of the type mod-
eled in this paper. We conclude the paper with a discussion of granular policies in Section 8
and �nal remarks in Section 9.

Related literature The term granularity has been coined in the macroeconomics literature,
which following Gabaix (2011) has focused on the study of aggregate �uctuations driven by
idiosyncratic productivity shocks (see e.g. Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
2012, Carvalho and Gabaix 2013, Carvalho and Grassi 2019, Grassi 2017).5 The aggregate
volatility consequences of granularity in an open economy have been studied by di Giovanni
and Levchenko (2012) and di Giovanni, Levchenko, and Méjean (2014). Instead of aggregate
volatility, we focus here on sectoral trade patterns, where the granular forces must be at least
as prominent, since granularity is particularly pronounced within sectors.

In terms of modeling, we borrow from the recent trade literature, and in particular from EKS.
EKS tackle a very di�erent set of issues in the context of a single-sector model, such as ex-
plaining the prevalence of zeros in aggregate trade �ows, while we develop a multi-sector en-
vironment to explore the implications of granularity for a country’s comparative advantage.6

In terms of the question studied, our paper therefore contributes to the empirical trade litera-
ture on the structure and evolution of comparative advantage, e.g. Chor (2010), Costinot, Don-

5Building on these insights, Gabaix and Koijen (2020) propose a way to construct a granular instrumental
variable, which can be used to isolate the causal e�ects of aggregate economic shocks.

6In the context of import sourcing, Head, Jing, and Ries (2017) study the role of granularity of buyers in
explaining hierarchy violations.
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aldson, and Komunjer (2012), Freund and Pierola (2015), Sutton and Tre�er (2016), Levchenko
and Zhang (2016), and HLM.

For our analysis, we adopt a model of oligopolistic competition with variable markups,
which has been used in a number of papers studying the behavior of markups, prices and
market shares in an open economy (see e.g. Atkeson and Burstein 2008, Amiti, Itskhoki, and
Konings 2014, 2019, Edmond, Midrigan, and Xu 2015, Hottman, Redding, and Weinstein 2015).
Grassi (2017) also studies oligopolistic competition in a granular setting. We follow Neary
(2010, 2016) and Grossman and Rossi-Hansberg (2010) in studying an open economy oligopolis-
tic environment with �rms that are big in the small (at the sectoral level), but small in the big
(at the economy-wide level). More generally, see Bernard, Jensen, Redding, and Schott (2018)
for a recent review of the empirical and theoretical literature on the role of individual �rms in
international trade. Our study is also related to the vast literature on trade policy and market
structure, summarized in Helpman and Krugman (1989) and Bagwell and Staiger (2004).

2 Granular Comparative Advantage: De�nition

In order to quantify fundamental and granular comparative advantage empirically, we intro-
duce a formal de�nition of these concepts, and discuss possible approaches to their identi�cation.

De�nition Consider the export intensity of a sector z, that is the ratio of sectoral exportsXz

to domestic expenditure (absorption) Yz . We denote it by Λz ≡ Xz/Yz . It is an intuitive mea-
sure of comparative advantage that maps into alternative de�nitions across a range of inter-
national trade models.7 Mechanically, it can be decomposed into the sum of the contributions
to exports of all �rms in the sector:

Λz =
∑Nz

i=1
sz,i λz,i = s′zλz,

where Nz is the number of home �rms in the sector, sz,i ≡ dz,i/Yz is the �rm-level domes-
tic market share, λz,i ≡ xz,i/dz,i is the �rm-level export intensity (the ratio of �rm exports
to domestic sales), and (λz, sz) is the corresponding vector notation. We treat the observed
market shares and export intensities in sector z as a realization of a stochastic data-generating

7Throughout the paper, we study cross-sectional variation of Λz , which maps one for one with variation
in comparative advantage (see Section 4.2). Formally, measures of comparative advantage usually take double
ratios of exports across sectors and destinations (see e.g. Costinot, Donaldson, and Komunjer 2012). Here, Λz is a
simple ratio, which delivers the variations in comparative advantage we are interested in given that our analysis
is cross-sectional within a country, hence holds aggregate quantities constant.
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process (DGP): (λz, sz) ∼ Fz(·).8 The distribution function Fz embodies the characteristics
of sector z in a given country that are a priori accessible to any �rm in the sector.

We are interested in decomposing the aggregate outcome Λz , itself a random variable, into
its expected value based on sectoral characteristics and the contribution of idiosyncratic �rm
draws around this expected value:

Λz = Φz + Γz, where Φz ≡ Ez{Λz} =

∫
(s′λ) dFz(λ, s). (1)

Thus, we de�ne fundamental comparative advantage (FCA), denoted Φz , as the population
mean of the export intensity given the sectoral characteristics embodied in Fz . In turn,
granular comparative advantage (GCA), denoted Γz ≡ Λz − Φz , is a granular residual that
captures departures from the population mean for the observed realization of a sector.

Conventional theoretical models assume a continuum of (heterogeneous) �rms and, hence,
feature no granular residual (Γz ≡ 0). Indeed, the law of large numbers applies within sec-
tors, and therefore all �rm-level idiosyncrasies wash away in the aggregate. This knife-edge
result disappears as soon as the model acknowledges that the actual number of �rms Nz is
a �nite integer (in general, a random variable determined by the DGP Fz), so that �rms are
not in�nitesimal. Under these circumstances, idiosyncratic �rm outcomes have the potential
to be detectable after aggregation, and in this sense in�uence sectoral outcomes: sector-level
realizations di�er from their expected values, and this di�erence is captured by the granular
residual.

A few further remarks are in order. First, FCA Φz and GCA Γz are well de�ned, in general,
as the integral in (1) cumulates market shares that are bounded by construction.9 Note that
market shares are well-behaved even when the underlying �rm sales distribution is fat-tailed
and has unbounded mean and/or variance. Second, the population mean Φz is not, in general,
equivalent to the asymptotic value of Λz asNz →∞.10 Consequently, our inference approach
below builds on repeated observations of Λz across sectors with a �nite number of �rms,
rather than on hypothetical sequences of sectors with Nz increasing towards in�nity. Third,
nontrivial di�erences between Λz and Φz , which constitute the granular residual Γz , may arise
both in small sectors with few �rms (e.g.,Nz ≈ 10), as well as in sectors with a large number of

8Note the relationship to the macroeconomics granularity literature, which focuses on the decomposition of
the aggregate growth rate Gt into idiosyncratic growth rates gi,t (in place of the sectoral and �rm-level export
intensities, Λz and λz,i, respectively), and usually treats market shares si,t as exogenously given.

9Note that sz,iλz,i = xz,i/Yz = s∗z,i · (Y ∗z /Yz), where s∗z,i = xz,i/Y
∗
z is the foreign market share of a

domestic exporter, which is bounded between 0 and 1. We make the mild assumption that the relative sectoral
aggregates across countries, Y ∗z /Yz , are bounded and have a �nite expectation.

10Nevertheless, the structural model of Section 4 has the convenient property that Φz not only is the population
mean of Λz with �nite Nz , but also its continuous limit as the number of �rms Nz becomes in�nite, with an
appropriately chosen decreasing sequence of �xed entry costs.
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�rms (Nz>100, or even>1, 000), so long as the distribution of market shares sz,i is su�ciently
skewed. This latter possibility constitutes the empirically relevant case that we focus on.

Lastly, note that the granular residual Γz is mean zero by construction, as a di�erence
between a random variable Λz and its conditional mean Φz . As a consequence, FCA Φz and
GCA Γz are orthogonal in the cross section of sectors z, and the following variance decompo-
sition of export intensity across sectors holds:

var(Λz) = var(Φz) + var(Γz).

One goal of this paper is to quantify this variance decomposition, hence the respective con-
tribution of granular and fundamental forces to comparative advantage, both in levels and in
changes over time.

Identi�cation If one observed many realizations of a sector drawn from a given DGP Fz ,
Φz could be estimated by the average (across realizations) export intensity of the sector, and
then the granular residual Γz could be measured realization-by-realization. Thus, in principle,
one could make inference on sectoral FCA and GCA directly from the data. In practice, how-
ever, such inference is rarely feasible as Fz likely varies both in the cross-section of country-
sectors as well as within country-sector over time (Fz,t in this case). Separating small-sample
deviations from changes in fundamentalsFz across sectors or over time is challenging empiri-
cally, absent a natural experiment that shifts idiosyncratic �rm productivities without a�ecting
fundamental sectoral characteristics.11

To make progress on this issue, we adopt a structural approach. That is, we reduce the
dimensionality of the problem by parameterizing the data generating process Fz and its vari-
ation across sectors. Speci�cally, we use a general equilibrium economic model for market
shares and export intensities, {λz,i, sz,i}, as described in Section 4. Our model is closely re-
lated to workhorse international trade models, with the important di�erence that we relax the
assumption that �rms in each sector form a continuum, thereby allowing individual �rms to
impact sectoral outcomes. We estimate the model using moments from the data that summa-
rize variation across sectors in both sector-level and �rm-level outcomes. Once estimated, the
model can be simulated any number of times with the same DGP, which allows to quantify the
relative importance of granular and fundamental forces as discussed above as well as carry out
static and dynamic counterfactuals. Importantly, we show that this quanti�cation is robust to
a set of alternative parametric assumptions, so long as the model matches the set of identifying
moments in the data.

11Possible empirical strategies along these lines could be for example to take the death of a CEO as a shock to
a �rm (see e.g. Bennedsen, Perez-Gonzalez, and Wolfenzon 2010), but these stategies appear too limited in scope
to conduct the analysis systematically, as we set out to do here.
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3 Empirical Regularities

Before delving into the structural framework in the next section, we look at the data for pat-
terns that are suggestive of the granular mechanism. The empirical regularities documented
here are then used in the structural estimation of Section 5 to help identify the model param-
eters that govern the relative intensity of granular and fundamental comparative advantage,
as well as in the dynamic analysis of Section 7.

If granular forces are at play, one would expect that the presence of a few unusually large
�rms within a sector (relative to other domestic �rms) correlates with the aggregate export
intensity of the sector. To detect such patterns, we regress log sectoral exports on the concen-
tration ratio of domestic sales among the top-3 domestic �rms, controlling for the size of the
domestic market:

logXz = α + β
∑3

i=1
s̃z,(i) + logDz + εz, (2)

where Dz are total domestic sales of all domestic �rms in sector z and s̃z,(i) ≡ dz,(i)/Dz is the
relative domestic sales share of the ith largest �rm in the domestic market. We use the top-3
concentration ratio,

∑3
i=1 s̃z,(i), as our baseline proxy for sectoral granularity.12 Note that

this measure is not mechanically correlated with comparative advantage, as it relies solely
on the relative sales of domestic �rms in the domestic market, in particular relative to other
domestic �rms.

To estimate (2), we use French �rm-level manufacturing data on domestic sales and exports,
{dz,i, xz,i}. We aggregate �rm-level data to obtain sectoral domestic sales Dz and sectoral
exports Xz . The data includes 300 NACE 4-digit sectors with an average of 290 French �rms
per sector.13

We report the results of several speci�cations in Table 1. The �rst two columns use the
2005 cross-section (our benchmark year for estimation), and show that a 10 percentage point
greater top-3 sales share in the domestic market is associated with a 9% (log points) increase
in aggregate sectoral exports. This relationship holds controlling for 2-digit sectoral �xed-
e�ects (column 2). This relationship also holds more generally in the panel between 1997 and
2007, with year �xed e�ects and with and without 2-digit sectoral �xed e�ects (columns 3–4).
The resulting estimates are almost the same as in the 2005 cross-section. In all cases, we control
for the size of the sectors, as sectors with greater total domestic sales tend to have greater total

12In Appendix Table A1, we report all empirical results using top-1 sales share s̃z,(1), instead of
∑3
i=1 s̃z,(i),

resulting in the same quantitative patterns with somewhat less precisely estimated coe�cients.
13These data do not contain information on imports. In our structural estimation, in Section 5, we merge these

data with COMTRADE to ensure that the estimated model matches simultaneously the corresponding patterns
for both exports and imports. Because of di�erent sectoral de�nitions between datasets the matching can only
be done at a higher level of aggregation, leaving us with 119 sectors. The qualitative patterns we focus on here
are robust to this aggregation.
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Table 1: Granularity and exports

Cross-section, 2005 Panel, 1997–2007 Dynamic regressions
logXz (1) (2) (3) (4) (5) (6) (7)∑3

i=1 s̃z,(i) 0.860∗∗∗
(0.297)

0.908∗∗∗
(0.303)

0.903∗∗∗
(0.308)

0.918∗∗∗
(0.309)

0.405∗∗∗
(0.131)

0.495∗∗∗
(0.137)

0.493∗∗∗
(0.138)

logDz 0.897∗∗∗
(0.051)

0.938∗∗∗
(0.053)

0.907∗∗∗
(0.052)

0.952∗∗∗
(0.054)

Sector F.E. 2-digit 2-digit 4-digit 2-digit
Year F.E. X X X

# obs. 300 300 3,300 3,300 3,300 3,000 3,000
R2
adj 0.518 0.620 0.520 0.649 0.950 0.009 0.007

Note: Data and variables described in the text; standard errors in brackets, ∗∗∗ indicates signi�cance at 1%-level.
Speci�cation (5) contains a full set of 300 sectoral �xed e�ects and uses time-series variation over 1997–2007;
speci�cations (6)–(7) are in �rst di�erences, namely regress ∆ logXz,t on ∆

(∑3
i=1 s̃z,(i),t

)
over 1998–2007.

exports with nearly a unitary elasticity.
These cross-sectional results are consistent with granularity shaping, in part, trade pat-

terns, as the relative size of the largest �rms within sectors is predictive of aggregate sectoral
exports. However, they leave room for alternative interpretations. For instance, it could be
that a greater within-sector productivity dispersion is associated with a greater sectoral trade
share due to standard Melitz (2003) selection forces, or that sectors with a high dispersion
in productivity across �rms happen to be those in which France has comparative advantage
(for a microfoundation, see e.g. Bon�glioli, Crinò, and Gancia 2018). We partly address this
concern by controlling for 2-digit �xed e�ects, aimed to group together sectors with similar
technological and skill requirements.

To explore this further, we run three speci�cations that exploit within-sector variation
over time. Column 5 re-runs the �xed-e�ects panel speci�cation from column 4, replacing the
2-digit industry �xed e�ects with a full set of 4-digit industry �xed e�ects, which in particular
absorb sectoral characteristics that are stable over time. Columns 6 and 7 estimate the speci�-
cation in �rst di�erences, regressing the change in log sectoral exports ∆Xz,t ≡ Xz,t−Xz,t−1

on the change in the top-3 share ∆
(∑3

i=1 s̃z,(i),t
)
, year-to-year in our panel. We again �nd

a notable statistical association between the granular proxy and aggregate sectoral exports,
now in the time series dimension. Sectors where top French �rms increase their relative dom-
inance in the domestic market also see an improvement in their aggregate export stance: a 10
percentage point increase in the top-3 concentration ratio is associated with a 5% (log points)
increase in the sectoral exports.

Predictive regressions Finally, we ask whether empirical proxies of granularity can predict
future time-series evolution of sectoral trade patterns. In other words, beyond the time-series
co-movement we documented earlier, we investigate whether micro-level measures of sectoral
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Table 2: Mean reversion in exports

OLS Two-stage
logXz,+10 − logXz (1) (2) (3) (4)

logXz − 0.130∗∗∗
(0.039)

− 0.111∗∗∗
(0.040)

− 0.468∗∗∗
(0.183)∑3

i=1 s̃z,(i) − 0.551∗∗∗
(0.200)

− 0.421∗∗∗
(0.203)

logDz 0.118∗∗
(0.048)

− 0.044
(0.037)

0.067
(0.054)

0.424∗∗
(0.169)

Sector F.E. 2-digit 2-digit 2-digit 2-digit
# obs. 300 300 300 300
R2
adj 0.082 0.070 0.093 —

Note: Data and variables as in Table 1. Column 4 reports the second-stage regression, where in the �rst stage
logXz is projected on

∑3
i=1 s̃z,(i) in the initial year (1997), similar to speci�cation (2) in Table 1.

granularity have predictive power for the evolution (out of sample) of aggregate trade �ows.
Table 2 reports the results. It uses the 1997 cross-section of the French �rm-level data to predict
the evolution of sectoral trade �ows over the next ten years, up to 2007. Column 1 establishes
the presence of (partial) mean reversion in export patterns: a sector with greater exports Xz ,
controlling for its size (domestic sales, Dz), is expected to export less over time. Speci�cally, a
sector that exported 10% (log points) more in 1997 exhibited a 1.3% (log points) decline in its
exports over the next 10 years.

Columns 2 and 3 further show that greater �rm concentration at the top in the initial year
is associated with a stronger mean-reversion of sectoral exports over time. We �nd that a
10 percentage point higher top-3 share in 1997 predicts a 5.5% (log points) decline in sectoral
exports over the next ten years, or a corresponding 4.2% decline after controlling for the initial
export level. These e�ects are large quantitatively.

The results in the �rst 3 columns of Table 2 suggest that it is not just high exports that
predict future reversals in sectoral comparative advantage, but rather exports that are high
for non-fundamental granular reasons. We verify this hypothesis more formally in column 4,
where we consider a two-stage regression, �rst projecting log sectoral exports on top-3 sales
share (as in column 2 of Table 1), and then regressing the change in log exports over the next
10 years on the predicted value for initial sectoral exports. This magni�es the coe�cient on
log exports nearly 4-fold compared to the OLS speci�cation — from –0.13 in column 1 to –0.47
in column 4 — emphasizing a much stronger pattern of mean reversion in exports in sectors
that export for granular reasons. We view these results as strongly suggestive reduced-form
evidence of the granular mechanism, which we explore structurally in the rest of the paper.14

14Our quantitative model reproduces the empirical patterns we document here, albeit with somewhat smaller
point estimates relative to Table 2 (see Appendix Table A2 and the discussion in Section 7).
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4 A Granular Model of Trade

This section sets up the granular trade model, giving rise to the structural DGP discussed in
the previous section. We use this model to explore the quantitative implications of granularity
for trade patterns. It is a two-country multi-sector model, which features Ricardian DFS forces
across sectors and an EKS model of granular �rms within each sector.15 It therefore combines
fundamental comparative advantage of sectors and granular comparative advantage arising
from idiosyncratic productivity draws of individual �rms within sectors. In the limit where
�rms become in�nitesimal, granularity is shut o� and the model converges to a multi-sector
Melitz (2003) model (see Appendix B.1). We start with a static version of the model and make
the model dynamic in Section 7.

4.1 Model setup

Preferences There is a unit continuum of sectors z ∈ [0, 1]. Households in each country
have the same Cobb-Douglas preferences over the consumption of sectoral output {Qz}:

Q = exp

{∫ 1

0

αz logQz dz

}
, (3)

where {αz}z∈[0,1] are non-negative preference parameters, which satisfy
∫ 1

0
αzdz = 1, and

determine the shares of household income spent on consumption across sectors.
Within each sector, there is a �nite number of product varieties i ∈ {1, .., Kz}, which are

combined into aggregate sectoral output using a CES aggregator:

Qz =
[∑Kz

i=1
q
σ−1
σ

z,i

] σ
σ−1

, (4)

where σ > 1 is the within-sector elasticity of substitution, common across sectors. The Kz

product varieties available for consumption in the home market can be of both domestic and
foreign origin. In the foreign market, there areK∗z product varieties available for consumption,
which are in general di�erent from the set of varieties marketed at home. In what follows,
starred variables correspond to the foreign market.

With this demand structure, the home consumer expenditure on variety i in sector z is:

rz,i ≡ pz,i qz,i = sz,i αzY with sz,i ≡
(
pz,i
Pz

)1−σ

, (5)

where pz,i is the price and sz,i is the within-sector market share of the product variety, and
15The EKS model is a granular version of the Melitz (2003) model, in its Chaney (2008) formulation.
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Y is aggregate income (expenditure) in the home market. The expressions in (5) derive from
the fact that with Cobb-Douglas preferences, consumers spend a constant share αz of their
income Y on purchasing varieties in sector z (i.e., PzQz = αzY ), and within sector z the CES
demand for variety i is given by qz,i =

(
pz,i/Pz

)−σ
Qz . The sectoral price index Pz satis�es:

Pz =
[∑Kz

i=1
p1−σ
z,i

] 1
1−σ

. (6)

The home and foreign households supply respectively L and L∗ units of labor inelastically,
with L/L∗ measuring the relative size of the home country.

Production technology Each product variety is supplied by an individual �rm with pro-
ductivity ϕz,i (ϕ∗z,i, respectively, if the �rm is foreign). Products are produced in their mar-
ket of origin, and �rms have access to a CRS production technology, which uses local labor,
yz,i = ϕz,i `z,i. The output of the �rm can be marketed domestically and exported. Exporting
is associated with an iceberg trade cost τ ≥ 1, that is τ units of product need to be shipped for
one unit to arrive at the foreign market. Therefore, the marginal cost of supplying the home
market is constant and equal to:

cz,i =

{
w/ϕz,i, if i is a home variety,

τw∗/ϕ∗z,i, if i is a foreign variety,
(7)

where w and w∗ are respectively the home and foreign wage rates. The marginal cost of
serving the foreign market is de�ned symmetrically, and we denote it with c∗z,i.

Furthermore, there is a �xed market access cost F in local units of labor, which is inde-
pendent of the origin of the �rm, i.e. applies both for local �rms and exporters. As a result, the
di�erential selection of domestic and foreign �rms into the local market is driven by iceberg
trade costs, rather than by a di�erential �xed access cost. In each market, we sort all potential
entrants in the increasing order of marginal cost cz,i (c∗z,i in foreign, respectively). The index i
refers to the marginal cost ranking of a �rm in a given market, so that the same �rm is in
general represented by di�erent indexes in di�erent markets.

Productivity draws We denote withMz a potential (shadow) number of domestic products
in sector z. Mz is the realization of a Poisson random variable with parameter M̄z , so that
E(Mz) = M̄z . Each of the Mz potential entrants takes an iid productivity draw from a Pareto
distribution with a shape parameter θ and lower bound ϕz .16 Lower θ corresponds to a more

16Formally, the realized number of products Mz has the pdf P
{
Mz = m

}
= e−M̄zM̄m

z /m! for m = 0, 1, 2..,
while the cdf of productivity draws ϕ is given by Gz(ϕ) = 1− (ϕz/ϕ)θ .
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dispersed and skewed distribution of productivity draws, which increases the strength of the
granular forces in the model, as we discuss below. We borrow this structure of productivity
draws from the earlier work of Bernard, Eaton, Jensen, and Kortum (2003) and EKS. It results
both in a tractable model environment and in a realistic cross-sectional distribution of �rm
sales. In Section 6, we explore robustness to an alternative log-normal statistical process for
�rm productivity draws.

With the Poisson-Pareto productivity structure, the combined parameter:

Tz ≡ M̄z · ϕθz (8)

is a su�cient statistic that determines the expected productivity of a sector.17 Intuitively, a
sector is more productive either if there are more potential entrants (i.e., productivity draws),
equal to M̄z in expectation, or if the average productivity of a potential entrant is high, which
is given by θ

θ−1
ϕz .

The pool of foreign potential products and the ensuing productivity draws are obtained in
a symmetric way, with country-sector-speci�c parameters M̄∗

z and ϕ∗z , resulting in a su�cient
statistic for the expected sectoral productivity T ∗z = M̄∗

zϕ
∗θ
z . The ratio Tz/T ∗z varies across

sectors z and determines the expected relative productivity of the two countries, and thus is
a measure of the home’s fundamental comparative advantage. Tz/T ∗z is the only source of
comparative advantage in the continuous DFS-Melitz limit of the model (see Appendix B.1).

Market structure For a given set of Kz entrants, the �rms play a Bertrand oligopolistic
price setting game, similar to Atkeson and Burstein (2008). Speci�cally, �rm i ∈ {1, .., Kz}
chooses its prices pz,i, taking as given the prices of its competitors {pz,j}j 6=i, to maximize its
pro�ts from serving the home market:

Πz,i = max
pz,i

{(
pz,i − cz,i

) p1−σ
z,i∑Kz

j=1 p
1−σ
z,j

αzY − wF

}
,

where we used the expressions for the market share of the �rm (5) and the sectoral price
index (6). While �rms are large within their industries, and hence internalize their e�ect on
the sectoral price index (6), they are still in�nitesimal at the level of the whole economy, since
the model features a continuum of sectors, di�erent from EKS. Therefore, �rms take wage

17In particular, EKS show that the number of productivity draws above any given ϕ > ϕz is a Poisson random
variable with a mean parameter Tzϕ−θ , increasing in Tz and decreasing inϕ. As long as the least e�cient product
stays inactive in equilibrium, the model is invariant to various combinations of M̄z and ϕz , which result in the
same Tz . A convenient limiting case with M̄z → ∞ and ϕz → 0 (holding Tz constant) ensures that there is
always a su�cient number of draws and the least productive draw is necessarily inactive.
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rates w and w∗ as given, and hence treat cz,i as exogenous to their decisions.
The solution to this Bertrand-Nash competition game is a markup price setting rule:

pz,i =
εz,i

εz,i − 1
· cz,i, where εz,i ≡ ε(sz,i) = σ(1− sz,i) + sz,i, (9)

with the market share of the �rm sz,i de�ned in (5), and with εz,i ∈ [1, σ] measuring the
e�ective elasticity of residual demand for the product of the �rm. This elasticity decreases,
and hence the markup µz,i ≡ pz,i

cz,i
=

εz,i
εz,i−1

increases, with the market share of the �rm sz,i.
This contrasts with the constant-markup pricing under monopolistic competition in the con-
tinuous DFS-Melitz limit of the model.18

To summarize, given the set of entrants and their marginal costs {cz,i}Kzi=1, the equilibrium
in the Bertrand-Nash price setting game is a vector of prices and market shares {pz,i, sz,i}Kzi=1

and a sectoral price indexPz , which solve the �xed point de�ned by (9), (5) and (6). While there
is no analytical characterization of the resulting prices and market shares, the equilibrium is
unique and has the property that prices pz,i increase with marginal costs cz,i, while markups
µz,i = pz,i/cz,i and market shares sz,i decrease with cz,i. Furthermore, the equilibrium �rm
pro�ts from serving the home market are given by:

Πz,i ≡ Πz(sz,i) =
sz,i
ε(sz,i)

αzY − wF. (10)

Indeed, operating pro�ts are a fraction 1
εz,i

=
pz,i−cz,i
pz,i

of revenues (5), which equal the �rm’s
share of the sectoral expenditure in the market, sz,iαzY . In equilibrium, �rms with higher
market shares command higher pro�ts.

The price setting equilibrium in the foreign market is symmetric, resulting in prices, mar-
ket shares and pro�ts {p∗z,i, s∗z,i,Π∗z,i}

K∗z
i=1, given the set of entrants and their marginal costs {c∗z,i}

K∗z
i=1.

Due to linearity of the production function, each �rm’s pro�t maximization problem is sepa-
rable across markets, and hence can be considered one market at a time.

Entry An equilibrium of the entry game is achieved when for a subset of �rms equilibrium
pro�ts given by (10) are non-negative, while for any additional entrant pro�ts upon entry
would be negative. With a discrete number of potential entrants, there may exist multiple
equilibria in the entry game. We therefore consider a sequential entry game in each market

18Much of the earlier granularity literature (including Carvalho and Grassi 2014, di Giovanni and Levchenko
2012) adopts an ad hoc assumption of constant markups. The quantitative pricing-to-market literature following
Atkeson and Burstein (2008) studies oligopolistic competition with variable markups, but adopts competition
in quantities, which is qualitatively similar but results in greater markup variability (see discussion in Amiti,
Itskhoki, and Konings 2019). We adopt a more natural case of oligopolistic competition in prices, following EKS,
which results in a less pronounced quantitative di�erence from the constant markup case.
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separately. Speci�cally, �rms with lower marginal costs of serving a given market, cz,i, move
�rst. We assign the indexes i such that cz,1 ≤ cz,2 ≤ .., and hence �rms with lower indexes i
choose whether to enter �rst.19 With this equilibrium selection, the entry game has a unique
cuto� equilibrium, so that only �rms with marginal costs below some cuto� enter the market.

Formally, denote by sKzz,i the market share of �rm i ≤ Kz resulting from the price-setting
game when Kz �rms choose to enter. The corresponding pro�ts are given by ΠKz

z,i = Πz(s
Kz
z,i )

de�ned in (10). We already know that, for a given Kz , sKzz,i is decreasing in i. Furthermore,
it is easy to verify that sKzz,i is decreasing in Kz for all i, that is sKzz,i < sKz+1

z,i for all i ≤ Kz .
Intuitively, the entry of any additional �rm reduces market shares (and hence markups) of all
existing �rms. Therefore, since Πz(s

Kz
z,i ) is a monotonically increasing function of sKzz,i , there

exists a unique Kz such that ΠKz
z,i ≥ 0 for all i ≤ Kz and ΠK

z,i < 0 for all i > Kz and K > Kz .
ThisKz is the equilibrium number of entrants, and cz,Kz is the cuto� cost level. Note that, due
to monotonicity, it is su�cient to �nd the unique Kz such that ΠKz

z,Kz
≥ 0 and ΠKz+1

z,Kz+1 < 0.

General equilibrium is a vector of wage rates and incomes (w,w∗, Y, Y ∗), such that la-
bor markets clear in both countries and aggregate incomes equal aggregate expenditures. In
particular, in the home country

Y = wL+ Π, (11)

where Π are aggregate pro�ts of all home �rms distributed to home households:

Π =

∫ 1

0

[∑Kz

i=1
ιz,iΠz(sz,i) +

∑K∗z

i=1
(1− ι∗z,i)Π∗z(s∗z,i)

]
dz, (12)

with pro�t function Πz(sz,i) de�ned in (10) and ιz,i ∈ {0, 1} denoting the indicator for whether
�rm i in sector z in the domestic market is of local origin, and by analogy ι∗z,i for the foreign
market. The equality between expenditure Y and incomewL+Π implies home budget balance
and hence trade balance. We normalize w = 1 as numeraire and omit the foreign budget
constraint by Walras’ law.

Labor market clearing requires that the aggregate labor incomewL equals the total expen-
diture of all �rms on domestic labor:

wL =

∫ 1

0

[
αzY

∑Kz

i=1
ιz,i

sz,i
µ(sz,i)

+ αzY
∗
∑K∗z

i=1
(1− ι∗z,i)

s∗z,i
µ(s∗z,i)

+ wFKz

]
dz. (13)

The three terms on the right-hand side of (13) correspond to expenditure on domestic labor for
(i) production for domestic market, (ii) production for foreign market, and (iii) entry of �rms in

19Note that index i is not a property of a �rm, but rather of a �rm-market pair. A �rm is characterized by its
origin and productivity draw ϕ, and a given �rm in general has di�erent indexes i in the two markets.
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the domestic market, respectively. Note that sz,iαzY/µ(sz,i) is revenues from domestic sales (5)
divided by markup µ(sz,i), and hence equals variable costs, i.e. expenditure on production
labor. Recall that the markup µ(sz,i) =

εz,i
εz,i−1

with εz,i de�ned in (9). Furthermore, Kz is
the total number of entrants, domestic and foreign, which all pay a �xed cost F in terms of
domestic labor. A parallel market clearing condition to (13) holds in the foreign country.

Aggregate equilibrium conditions (11) and (13), together with their foreign counterparts,
and under normalization w = 1, allow to solve for the aggregate equilibrium vector X ≡
(w,w∗, Y, Y ∗), given the sectoral equilibrium vectorZ ≡

{
Kz, {sz,i}Kzi=1, K

∗
z , {s∗z,i}

K∗z
i=1

}
z∈[0,1]

.20

In turn, given the aggregate equilibrium vector X, the solution to the entry and price-setting
game in each country-sector yields the sectoral equilibrium vector Z. The resulting �xed point
(X,Z) is the equilibrium in the granular economy.

We note that in the baseline model, Home and Foreign only di�er ex ante in their relative
population size and in the mean productivity of their sectors, while the sectors only di�er
ex ante in their Cobb-Douglas expenditure shares. The countries and sectors are, otherwise,
characterized by identical structural parameters, for parsimony. We relax these assumptions
and allow for more asymmetry and ex ante heterogeneity when we explore the robustness of
our �ndings in Section 6.2.

4.2 Properties of the granular model

We note the relationship between this model and the conceptual granularity framework laid
out in Section 2. Our structural model maps the statistical process for productivity draws
{ϕz,j}Mz

i=j and {ϕ∗z,j}
M∗z
j=1 into �rm-level and sectoral economic outcomes, such as �rm market

shares sz,i and export shares λz,i.21 Hence, given the productivity distribution and model
parameters, this framework characterizes the structural data generating process denotedFz(·)
in Section 2.

In the following sections, we use this granular model to quantify the role played by in-
dividual �rms in shaping the comparative advantage of a country. To set the stage for this
analysis, we now discuss the properties of the sectoral export share — a measure of the coun-
try’s comparative advantage in a given sector. The sectoral export share is the cumulative

20One of the four aggregate equilibrium conditions is redundant by Walras Law, and is replaced by a nu-
meraire normalization. Also note that in the closed economy conditions (11) and (13) are equivalent, and amount
to Y = µ̄ w [L − FK], where K =

∫ 1

0
Kzdz is the total number of �rms serving the home economy and

µ̄ =
[ ∫ 1

0
αz
∑Kz

i=1 sz,i/µ(sz,i)
]−1 is the (harmonic) average markup.

21Note that �rm-i’s export share is simply the ratio of its sales in the two markets, λz,i = (s∗z,iY
∗)/(sz,iY ).
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market share of all home �rms in the foreign market in a given sector z, and we denote it by:22

Λ∗z ≡
Xz

αzY ∗
=
∑K∗z

i=1
(1− ι∗z,i)s∗z,i, (14)

where Xz is total home exports and αzY ∗ is total foreign absorption in sector z. By analogy,
the foreign export share in sector z is given by Λz = X∗z/(αzY ), whereX∗z denotes total home
imports (foreign exports) in sector z.

In the granular model, the realized foreign share is a random variable, which depends
on the productivity of the home and foreign �rms in sector z. These productivity draws
are shaped, in turn, by the fundamental comparative advantage of the sector, Tz/T ∗z , and
the idiosyncratic realizations of �rm draws from the Poisson-Pareto process described above.
The structure of the model provides a natural decomposition of the foreign share Λz into these
fundamental and granular components. In particular, the expected foreign share, conditional
on fundamental comparative advantage of the sector Tz/T ∗z , is given by:23

Φz ≡ ET Λz = E{Λz |Tz/T ∗z } =
1

1 + (τω)θ · Tz/T ∗z
, (15)

and symmetrically Φ∗z ≡ ET Λ∗z =
[
1 + (τ/ω)θ · T ∗z /Tz

]−1 is the expected export share. The
expected foreign share Φz decreases in all sectors in the trade cost τ and in the relative foreign
wage rate ω ≡ w∗/w. Across sectors, variation in Φz is one-to-one with fundamental com-
parative advantage Tz/T ∗z . Note that this makes clear why it is natural to use Λz as a measure
of comparative advantage in the cross-section of sectors. The expression in (15) is familiar
from the quantitative trade literature, following Eaton and Kortum (2002), and it characterizes
the realized trade shares in the continuous limit of our granular model (see Appendix B.1). In
short, the granular model has, in expectation, the same sectoral trade shares as the continuous
model.

Due to granularity, however, the realized trade shares Λz di�er from their expectation Φz .
22One minus the export (or foreign) share, 1− Λ∗z , is the home share, which features prominently in the gains

from trade literature (see ACR). Note the slight di�erence here with Section 2, where we normalized home exports
by home absorption, rather than foreign absorption. The two measures of export shares di�er by Y/Y ∗, which
is constant across sectors, and hence does not a�ect cross-sectional variance decomposition.

23This result applies despite the fact that market shares sz,i are complex non-linear transformation of �rm pro-
ductivity draws ϕz,i, which in particular depend on the endogenous markups µz,i that do not admit an analytical
characterization. Nonetheless, due to the Poisson-Pareto productivity structure and the common entry cost F ,
the distribution of equilibrium market shares conditional on entry in a given market is the same for foreign and
home �rms. At the same time, the expected number of entrants di�ers for foreign and home �rms, and its ratio
is given by Φz . The formal derivation of (15) is provided in Appendix B.2.
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We de�ne the discrepancy between the realized and expected shares as the granular residual:

Γz ≡ Λz − Φz, such that ET Γz = ET{Λz − Φz} = 0. (16)

De�ned this way, the granular residual Γz is a scalar su�cient statistic for the e�ect of all
idosyncratic productivity draws within a sector, {ϕz,j}Mz

i=j and {ϕ∗z,j}
M∗z
j=1, on the sectoral trade

pattern Λz relative to its expected value Φz . By construction, granular residuals have an ex-
pected value of zero and are uncorrelated with the fundamental comparative advantage Φz ,
o�ering a convenient way to decompose the cross-sectional variation in the realized trade
patterns Λz into the contribution of the fundamental and granular comparative advantage.

By construction, the within-sector granularity does not create extra trade at the aggregate
level, as compared to the continuous benchmark. Indeed, total imports are:24

X∗ =

∫ 1

0

X∗zdz = Y

∫ 1

0

αz
[
Φz + Γz

]
dz = ΦY, (17)

where Φ ≡ E{Φz} =
∫ 1

0
αzΦzdz is the aggregate foreign share. The aggregate amount of trade

in a continuous model is also given byX∗ = ΦY . While granularity does not create extra trade
in the aggregate, it changes the distribution of trade �ows across sectors, contributing to the
patterns of a country’s comparative advantage.

5 Estimation of the Granular Model
In a continuous trade model, the observed trade �ows are assumed to be shaped entirely by
the fundamental forces Φz in (15), making the quanti�cation of the continuous model particu-
larly straightforward (see Eaton and Kortum 2002, and the vast quantitative literature it gave
rise to). In contrast, the observed trade �ows in a granular model confound both fundamental
and idiosyncratic (granular) forces, Λz = Φz + Γz . This poses an interesting identi�cation
challenge, which we address in this section, after describing the data used in estimation.

5.1 Data

Our empirical analysis is based on France as home and the rest of the world (ROW) as foreign.
We use a dataset of French �rms (BRN), which reports information on the balance sheets of

24Similarly, X = Φ∗Y ∗ is the aggregate value of exports. Due to local �xed costs, the trade balance in general
is not X = X∗, but is instead Φ [Y − wFK] = Φ∗ [Y ∗ − w∗F ∗K∗] , where K and K∗ denote the total number
of �rms serving the two markets across all sectors. Indeeed, [Y −wFK] are aggregate sales in the home market
net of �xed entry costs, and a fraction Φ of these net sales is foreign income from exports. See Appendix B.2 for
the derivation of (17) and the resulting simpli�cation of the general equilibrium system (11)–(13).
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�rms declared for tax purposes. All �rms with revenues over 730,000 euros are included. It
reports in particular information on both domestic and export sales, d̃z,j and x̃z,j , as well as
4-digit industry classi�cation, at the �rm level. We use 2005 as our reference year for estima-
tion. We match this data with international trade data from Comtrade, to get the aggregate
imports and exports of France in each industry. This leaves us with Ñ = 119 manufacturing
sectors at the 4-digit level with an average of about 350 French �rms per sector.25

We use tildes to denote the empirical variables that correspond to the theoretical objects
that can be measured in the granular model of Section 4. The merged data allows us to con-
struct French sectoral expenditure Ỹz = α̃zỸ as the sum of sectoral imports X̃∗z (from COM-
TRADE) and domestic sales of all French �rms D̃z =

∑M̃z

j=1 d̃z,j , where j is the rank of French
�rms and M̃z is the observed number of French �rms in each sector z = 1, ..., Ñ . Taking
the ratio of sectoral imports to sectoral expenditure, we obtain the foreign share in the home
market Λ̃z = X̃∗z/Ỹz . We also construct a measure of French export intensity as Λ̃∗′z = X̃z/Ỹz ,
where we normalize exports, X̃z =

∑M̃z

j=1 x̃z,j , by domestic expenditure.26

Lastly, we construct the relative sales share of French �rms in the domestic market:

s̃z,j = d̃z,j
/
D̃z. (18)

Note that the sales share s̃z,j is di�erent from the market share sz,j , as it is calculated only
among the domestic �rms and hence excludes import sales (in particular, s̃z,j = sz,j/(1−Λz)).
This is important for identi�cation, as {s̃z,j} are not directly a�ected by sectoral comparative
advantage. To summarize, the dataset used in estimation is

{
M̃z, {s̃z,j}M̃z

j=1, Λ̃z, Λ̃
∗′
z , D̃z, X̃z, X̃

∗
z

}Ñ
z=1

.

5.2 Estimation procedure

Model parameterization The strength of fundamental versus granular forces depends on
the relative extent of heterogeneity in sectoral productivity levels Tz versus �rm productiv-
ity draws ϕz,i. To capture the empirical properties of the �rm sales distribution, we assume
that ϕz,i are drawn from a Pareto distribution with shape parameter θ, which determines the
potential strength of the granular forces. In turn, we parameterize sectoral heterogeneity as

25The industry classi�cation used in the French data is the French NAF (based on European NACE classi�ca-
tion), whereas the trade data uses ISIC rev3. We convert the French data into the ISIC rev3 classi�cation using
the crosswalk between NACE and ISIC available from UNstats. Although the French data provides a �ner level
of industry aggregation, Ñ = 119 is the �nest level of aggregation at which both the French data and Comtrade
overlap. This precludes estimating the granular model at a �ner level of aggregation. In matching the datasets, we
have to aggregate some of the smaller French sectors, which explains the di�erence with the 300 4-digit sectors
that we use in Tables 1 and 2, where we do not need to match to the Comtrade data.

26In the model, this measure is proportional to the French export share, Λ∗z = Λ∗′z
Y
Y ∗ , but it is easier to measure

in the data since we do not observe sectoral expenditure in the ROW.
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being drawn from a log-normal distribution with parameters µT and σT , that is:

log
(
Tz/T

∗
z

)
∼ N (µT , σ

2
T ). (19)

While µT controls the home’s absolute advantage, σT is the key parameter that determines the
strength of the fundamental comparative advantage. In adopting this log-normal assumption
as our baseline, we follow the evidence in HLM, who show that the distribution of measured
comparative advantage across countries and sectors is well-approximated by a log-normal dis-
tribution. We check that this property is also true in our granular model, quanti�ed under the
above distributional assumption. In section 6, we explore robustness to alternative distribu-
tional assumptions for both ϕz,i and Tz .

Estimation strategy We estimate the model parameters in two steps. In the �rst step, we
calibrate Cobb-Douglas shares from the data as equal to the sectoral expenditure shares.27 In
the second step, we use simulated method of moments (SMM) to estimate the six parameters
of the model, Θ ≡ (σ, θ, τ, F, µT , σT ). Importantly, our approach to statistical inference in
this granular model leverages its multi-sector nature. We view each sector as a draw from the
parametric data generating process (DGP) described in Section 4. The SMM procedure treats
each sector as a (multi-dimensional) observation from the structural DGP, with parameters,
common across sectors, that need to be estimated. That is, we treat the Ñ sectors in the data as
a �nite number of draws from a model with a continuum of sectors. Our statistical inference
considers the asymptotics as Ñ increases unboundedly. We note that our baseline model keeps
cross-sectoral parametric heterogeneity to a minimum, but the estimation procedure can be
readily extended to heterogeneity in other parameters, provided relevant empirical moments
are available for identi�cation. See Section 6 for our robustness analysis, which allows for
heterogeneity in productivity parameters θz across sectors.

The estimation proceeds as follows: for a given parameter vector Θ, we simulate the
model, compute a list of cross-sectoral moments M(Θ), and contrast them with the equiv-
alent moments in the data m̃. We search for the parameter vector Θ̂ that minimizes the dis-
tance between the model and the empirical moments, according to the loss function L(Θ) ≡(
M(Θ) − m̃

)′
W
(
M(Θ) − m̃

)
, where W is a weighting matrix. Speci�cally, we search for

the best-�tting parameters on a series of coarse-to-�ne grids, completed by a local minimum
search starting from a subset of best-�tting points from the grid. The full SMM procedure is
described in Appendix C.

27We report the histogram of the resulting αz in Appendix Figure A1. In the data, the largest Cobb-Douglas
share is 7.5%, the 90th percentile is 1.7%, the median is 0.4% and the 10th percentile is 0.1%. By construction, the
average share is 1/Ñ = 0.8%. In the model, we set αz = Ñ α̃z , so that the average Eαz = 1, as is required by
our model with a continuum of sectors.
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Normalizations In the model, home and foreign di�er in labor endowments L and L∗. The
model scales with L, as long as we keep L/L∗ and L/F constant. In other words, L simply de-
termines the units of labor, and hence we normalizeL = 100, and estimateL∗/L and F/L. We
calibratew/w∗ = 1.13, which corresponds to the ratio of wages in France to the average wage
of its trading partners weighted by trade values. As we discuss below, this imposes a general
equilibrium restriction on the other parameters, in particular the relative labor supplies L/L∗,
which the procedure estimates along with the model parameters. Given the Cobb-Douglas
preference structure, all variables of interest in the model scale with the common level of
productivity, and therefore we normalize T ∗z ≡ 1 for all z without loss of generality.28

Lastly, in our estimation, we �nd that the elasticity of substitution σ and the productivity
parameter θ are weakly separately identi�ed. Indeed, the moments tend to be sensitive to
the ratio κ ≡ θ/(σ − 1), which approximately corresponds to the Pareto tail of the sales
distribution across �rms, but not to the values of θ and σ separately. Therefore, we choose to
�x σ = 5 and estimate the constrained model with �ve parameters Θ′ = (θ, τ, F, µT , σT ).29

This reduces the parameter space and improves the precision of estimation.

5.3 Moments and identi�cation

We target 15 empirical moments, which correspond to averages and standard deviations of
sectoral outcomes, as summarized in Table 4. With 5 parameters, the model is over-identi�ed,
and variation in any of the parameters tends to a�ect all moments simultaneously. Nonethe-
less, some parameters are particularly sensitive to speci�c moments (see Andrews, Gentzkow,
and Shapiro 2017). We provide here a discussion of the main forces ensuring identi�cation.

We choose to target moments that are informative about (a) the prevalence of large �rms
in domestic sectoral sales, (b) the intensity of sectoral exports, and (c) the joint distribution of
these two characteristics. This way, we ensure that the model can replicate the heterogeneity
across sectors in top �rm concentration, in export stance and, importantly, the extent to which
the two are correlated, capturing granular forces at play in shaping sectoral outcomes (recall
the suggestive evidence in Section 2). We discuss these moments in turn.

Domestic sales distribution We target the average and standard deviation across sectors
of two measures of within-industry concentration — the relative sales shares of the largest
and top-3 largest French �rms within-industry relative to other French �rms, that is s̃z,1 and∑3

j=1 s̃z,j , as de�ned in (18). These moments are important to make sure the model replicates
28Note that if productivity in sector z doubles in both countries, the quantity in this sector doubles and the

price halves, without any e�ect on market shares within or across sectors.
29The value of σ = 5 (within 4-digit sectors) is conventional in the trade literature (see Broda and Weinstein

2006). When we estimate the unrestricted model, we �nd σ = 4.927, yet imprecisely estimated.
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the sales size distribution in the right tail, a key prerequisite of granularity. The combined
parameter κ ≡ θ

σ−1
, which determines the shape of the sales distribution, is particularly sensi-

tive to these moments of industry concentration. Given the calibrated value of the elasticity of
substitution σ, these moments are key in identifying the productivity dispersion parameter θ,
as we illustrate in the Appendix Figure A3.b. In addition, we target the average (log) number
of French �rms operating within sectors, as well as its standard deviation. This ensures that
the model captures simultaneously the large number of �rms operating in French sectors with
the high concentration of sales — a re�ection of the thick right tail of the productivity distribu-
tion, rather than high barriers to entry. Intuitively, the �xed cost parameter F is particularly
sensitive to the average number of �rms, as can be seen in Figure A3.a.

Sectoral trade patterns We target a set of �ve moments describing sectoral trade patterns,
a key object of our interest. Speci�cally, we match the average and standard deviation of
foreign shares in the French market Λ̃z , and the French export intensity Λ̃∗′z , as de�ned above.
These trade moments help inform the estimation of the size of the trade cost τ and the average
productivity advantage of France µT . Indeed, from (15), expected foreign shares (Φz and Φ∗z)
are both decreasing in τ , while one is decreasing and the other is increasing in Tz/T ∗z , whose
mean is governed by µT (see illustration in the Appendix Figure A3.c). We also target the
fraction of French sectors in which export sales exceed the overall domestic sales of French
�rms. Due to trade costs, such sectors can emerge only when the ROW is larger than France,
Y ∗ > Y . Therefore, this moment identi�es the relative size of France, Y/Y ∗ and L/L∗, given
the calibrated value of the relative wages ω = w∗/w.

Firm sales shares and sectoral trade shares Finally, we match four moments describing
the correlation between French import and export shares, Λ̃z and Λ̃∗′z , and the sectoral sales
concentration at home, s̃z,1 and

∑3
j=1 s̃z,j . Speci�cally, we target the regression coe�cients

of Λ̃z and Λ̃∗′z separately on s̃z,1 and
∑3

j=1 s̃z,j , controlling in all four regressions for the size
of the sector (log total domestic expenditure, log Ỹz). We denote these regression coe�cients
with b̂` and b̂∗` for ` ∈ {1, 3} respectively. Note that the export regressions are related to the
evidence reported in Section 3, with the di�erence that here we focus on export shares rather
than log exports. These moments are instrumental for identifying the relative importance
of fundamental and granular forces in shaping trade patterns. In the data, we see a clear
correlation pattern — sectors with more concentrated domestic sales at the top have larger
export shares, while there is no relationship with import shares.30 In the model, given the �rm-

30Note that this asymmetry in the import and export coe�cients is at odds with an alternative candidate
explanation based on Melitz (2003) selection forces, discussed in Section 3, whereby greater skewness (and hence
concentration) in sectoral sales shares should be positively associated with both sectoral exports and imports.
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productivity parameter θ, these correlations are particularly sensitive to σT , which governs
the strength of the FCA, as we illustrate in the Appendix Figure A3.d. When comparative
advantage is dominated by fundamental forces (higher σT ), the correlation between sectoral
exports and top-�rm sales share tends to be small, and can even turn negative. The intuition is
as follows: sectors with high fundamental productivity tend to have more domestic �rms that
enter the market, due to their superior productivity draws. More entry leads to lower market
shares at the top, all else equal. Therefore, with strong fundamental forces, higher export
intensity sectors tend to have lower market shares at the top. In contrast, with granular forces,
large market shares at the top are a sign of a strong granular draw — a source of the sector’s
comparative advantage over and above its fundamental characteristics. Granularity ensures
that the correlation we target in our estimation is positive in the model, with its speci�c value
shaped by the interplay of the granular and fundamental forces.

5.4 Estimation results and model �t

Estimated parameters Table 3 reports the SMM estimates of the model parameters and
their standard errors (as described in Appendix C), along with the corresponding auxiliary
variables implied by the general equilibrium of the estimated model. Overall, the parameters
of the model are quite precisely estimated.

We point out a few features of the estimated parameters. First, κ = θ/(σ − 1) that con-
trols the Pareto shape parameter of the sales distribution is estimated to equal 1.096, signif-
icantly above 1, hence exhibiting thinner tails relative to Zipf’s law (see Gabaix 2009). Next,
we estimate µT to be positive, albeit small. A positive µT means that France has slightly bet-
ter productivity draws relative to its average trade partner, in line with the calibrated higher
wage rate w/w∗ = 1.13. The estimated value of σT = 1.39, the standard deviation of funda-
mental comparative advantage, is large. It suggests that in the cross-section of sectors, a one
standard deviation increase in fundamental comparative advantage corresponds to a four-fold
increase in the relative productivity Tz/T ∗z . Below, we discuss the relative role of κ = 1.096

and σT = 1.39 in generating the patterns of trade across sectors.
We �nd that the iceberg trade costs are τ = 1.34, broadly in line with the estimates in the

literature (see Anderson and van Wincoop 2004). Note that the estimated model implies that
France is about two times smaller than the rest of the world in terms of population. This is, of
course, an abstraction of a two-country model with a common iceberg trade cost τ separating
the two regions. The appropriate interpretation of L∗/L in the model is the relative size of the
ROW, in which the individual countries are discounted by their economic distance to France
(i.e., if countries trade little with France, their population weight is heavily discounted). The
model implies an aggregate share of pro�ts in GDP (Π/Y ) equal to 18%, broadly in line with
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Table 3: Estimated parameters

Parameter Estimate Std. error Auxiliary variables

σ 5 —
κ = θ

σ−1 1.096
θ 4.382 0.195
τ 1.342 0.101 w/w∗ 1.130
F (×105) 1.179 0.252 L∗/L 1.932
µT 0.095 0.150 Y ∗/Y 1.710
σT 1.394 0.190 Π/Y 0.180

the national income accounts, without being targeted in the estimation procedure.

Model �t Table 4 reports the model-based values of the 15 moments used in estimation,
and compares them with their empirical counterparts. The table also reports the percentage
contribution of each moment to the overall loss function L(Θ̂), as we describe in Appendix C.
Overall, the model provides a reasonable �t to the data for the 15 moments targeted in esti-
mation, as we now discuss. In addition, the Appendix Figure A4 shows the �t of the model
over the whole distribution of sectoral outcomes, rather than just for the means and standard
deviations reported in Table 4.

The model accurately matches the distribution of the number of �rms across sectors. The
median sector has around 350 French �rms with a large variation across sectors: a sector at the
25th percentile has just over 100 �rms and a sector at the 75th percentile has over 700 �rms.
The model also �ts well the average size of the largest and top-3 largest French �rms, which
are respectively 20% and 35% of the overall domestic sales of all French �rms. The ability of
the model to closely replicate the distribution of the number of �rms and the market shares
of the largest �rms across sectors is important for the quantitative analysis of granularity.
Furthermore, in the model, like in the data, average export and import shares across French
manufacturing sectors are both around 35%.31

The regression coe�cients of the sectoral trade shares on either the top-�rm or top-3 do-
mestic concentration ratios are 0.20–0.25 in the data for exports and around zero for imports.
The model matches these patterns accurately. The table further reports the OLS standard er-
rors for these regression coe�cients, and the model is able to reproduce them as well, even
though they are not targeted in estimation. In particular, the regression coe�cients for the
export share are signi�cant with t-statistics over 2, while the coe�cients for import shares are
well-estimated zeros with t-statistics close to zero.

In contrast, one moment where the �t of the model is not as good is the fraction of sectors
31Note that trade is balanced in the model, which is not far from the small empirical manufacturing trade

de�cit that France ran in 2005.
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Table 4: Moments used in SMM estimation

Moments Data, m̃ Model, M̄(Θ̂) Loss (%)

1. Log number of �rms, mean
log M̃z

5.631 5.429 1.9
2. — st. dev. 1.451 1.230 3.9
3. Top-�rm sales share, mean

s̃z,1
0.197 0.205 3.0

4. — st. dev. 0.178 0.148 4.5
5. Top-3 sales share, mean ∑3

j=1s̃z,j
0.356 0.343 2.0

6. — st. dev. 0.241 0.176 12.2
7. Imports/dom. sales, mean

Λ̃z
0.365 0.354 1.5

8. — st. dev. 0.204 0.266 15.2
9. Exports/dom. sales, mean

Λ̃∗′z
0.328 0.345 3.9

10. — st. dev. 0.286 0.346 7.2

11. Fraction of sectors with P
{
X̃z>D̃z

}
0.185 0.095 39.7exports>dom. sales

Regression coe�cients:†

12. export share on top-�rm share b̂∗1 0.215 0.240 2.2
(0.156) (0.104)

13. export share on top-3 share b̂∗3 0.254 0.222 2.6
(0.108) (0.090)

14. import share on top-�rm share b̂1 −0.016 −0.011 0.1
(0.097) (0.079)

15. import share on top-3 share b̂3 0.002 0.008 0.1
(0.074) (0.069)

Note: Last column reports the contribution of the moment to the loss functionL(Θ̂), as described in Appendix C.
†Moments 12–15 are regression coe�cients of Λ̃∗′z and Λ̃z on s̃z,1 and

∑3
j=1 s̃z,j (pairwise), controlling in all

cases for the size of the sector with the log domestic sectoral expenditure Ỹz ; OLS standard errors in brackets.

with exports exceeding domestic sales: the model predicts 9.5% of such sectors against 18.5%
in the data. Note that the presence of such sectors is only possible in a model with Y ∗ > Y ,
i.e. when France is smaller than the ROW. Our simpli�ed two-country geography is likely the
reason why the model has a hard time matching this moment. This is the only moment for
which the model is o� by a substantial amount, accounting for 38% of the loss function (the
SMM objective), as can be seen in the last column of Table 4.

Moments not targeted in estimation We consider here a series of over-identi�cation
checks by exploring the �t of the model for moments not targeted in estimation. First, we es-
timate the Pareto shape parameter κ̂z of domestic sales of French �rms, industry-by-industry.
Following Gabaix and Ibragimov (2011), we run the following regression on the top 25% of
�rms in each industry (the results are similar for the sample of top 50% of �rms):
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log(j − 0.5) = const − κ̂z · log s̃z,j + εκz,j, (20)

Data: 1.015
[0.817, 1.208]

Model: 1.121
[1.001, 1.201]

where j is the domestic-sales rank of French �rms in industry z and the display reports the
mean and the interquartile range of κ̂z across sectors. This provides an additional measure of
within-sector concentration, with a lower κ̂z corresponding to a more fat-tailed (concentrated)
sales distribution. On average, the distribution of domestic sales exhibits Zipf’s law in the data,
i.e. the estimated Pareto shape parameter is equal to 1.015, close to 1. The model somewhat
overstates the mean of κ̂z , at 1.12.32 With a less fat-tailed sales distribution compared to the
data, the model therefore o�ers a conservative bound for the role of granularity, as we explore
in the following section.

Consider now the joint distribution of the number of French �rms and their concentration
ratio, across sectors. Recall that in the estimation, we match their properties separately. As an
over-id check, we regress the relative size of the largest French �rm s̃z,1 on the log number of
French �rms M̃z , controlling for the log domestic absorption Ỹz in the sector. We report the
OLS-estimated semi-elasticities and their standard errors:

s̃z,1 = const + γM · log M̃z + γY · log Ỹz + εsz

Data: − 0.094 0.018
(0.008) (0.008)

Model: − 0.124 0.079
(0.010) (0.010)

In the data, sectors with more French �rms, tend to have relatively smaller largest �rms, how-
ever this relationship is not very steep. Furthermore, conditional on the number of �rms, the
size of the sector (measured by domestic absorption) correlates positively (albeit very weakly)
with the relative size of the largest �rm. Both of these patterns are in line with the predictions
of the estimated granular model.

From this analysis, we conclude that the model is capable of capturing the salient features
of the cross-sector variation in the number of �rms, top-�rm market shares, trade shares and
measures of concentration, as well as their joint co-variation. This is, perhaps, surprising given
the parsimony of the model’s parameterization, which features only �ve parameters. Granular
forces are instrumental in generating these patterns of variation across sectors, mimicking the
patterns observed in the data.

32Recall that in the model the average shape parameter is closely related to κ = θ
σ−1 = 1.096, and is slightly

higher (less fat-tailed) due to variable markups. Indeed, the markups are higher for larger �rms, and hence the
sales distribution is less concentrated than it would be under constant markups.
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Equilibrium markups We close by brie�y commenting on the equilibrium markup varia-
tion across �rms displayed in the estimated model. The oligopolistic competition in our gran-
ular model results in heterogeneous markups, with larger �rms setting higher markups, as
given by (9). However, under Bertrand competition, the equilibrium variation in markups
is quite limited, as we illustrate in Appendix Figure A2. Indeed, only the largest �rm in a
sector charges a markup considerably above 1.25, which would be the value of the constant
markup in a counterfactual continuous model with monopolistic competition ( σ

σ−1
= 1.25).

The markup of the largest �rm is 1.30 on average across sectors, and it is as high as 1.37 at the
90th percentile across sectors. In contrast, the third largest �rm in a sector charges a markup
just under 1.26 on average across sectors and with little cross-sectoral variation. This is almost
indistinguishable from the monopolistic-competition markup. Therefore, the abstraction with
constant markups used in much of the granularity literature can be a useful simpli�cation in
some applications, yet this is not the case in general. Top �rms are pivotal for a range of sec-
toral outcomes, and their variable markups are at the core of the optimal trade and industrial
policies, as we brie�y discuss in the end of our analysis.

6 Quantifying Granular Trade

6.1 Contribution of Granularity to Comparative Advantage

Armed with the estimated model, we now study the extent to which granularity shapes trade
patterns. Recall from equation (14)–(16) that sectoral trade �ows Xz are determined by three
factors: (i) sectoral expenditure shares αz , (ii) fundamental comparative advantage Φz , and
(iii) granular comparative advantage, driven by outstanding �rms and summarized by the
granular residual Γz . That is, total sectoral exports can be expressed as follows:

Xz = Y ∗αzΛ
∗
z and Λ∗z = Φ∗z + Γ∗z.

Table 5 reports the decomposition of trade �ows into the above three sources of variation,
in the estimated model (column 1). The other columns of the table report robustness results,
which we discuss below.

We �rst report the contribution of the granular residual Γ∗z to the variation in export
shares Λ∗z across sectors, using the following variance decomposition:

var(Λ∗z) = var(Φ∗z) + var(Γ∗z). (21)

By construction, Γ∗z is a mean-zero granular residual, which is uncorrelated with the fun-
damental comparative advantage Φ∗z , and hence this decomposition holds exactly without a
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Table 5: Variance decomposition of trade �ows

Common θ Sector-speci�c θz Robustness
(1) (2) (3) (4) (5) (R1) (R2) (R3)

Granular contribution 17.8% 25.8% 27.1% 31.8% 22.1% 17.8% 1.2% 18.2%

Λ∗z contribution 54.4% 60.6% 59.4% 62.9% 56.2% 48.5% 85.0% 54.8%

Top-�rm sales share, s̃z,1 0.21 0.26 0.27 0.32 0.21 0.21 0.17 0.21
Estimated Pareto shape, κ̂z 1.12 1.02 1.12 1.02 1.24 1.09 1.09 1.12

Note: Granular contribution to sectoral export shares is var(Γ∗z)
var(Λ∗z) ; Λ∗z contribution to sectoral exports is var(log Λ∗z)

var(logXz)

(see decomposition of Xz in the text). The lower panel reports the moments of �rm concentration, with the
targeted moment in bold; κ̂z is estimated as in (20). Speci�cations: (1) baseline estimated model; (2) counterfactual
with σ = 5.5 to match average κ̂z ; (3) θz = (σ − 1)κ̂z , where κ̂z are Pareto shapes estimated in the data sector-
by-sector; (4) like (3), but proportionally scaling all θz down to match the average κ̂z in the data; (5) like (3), but
proportionally scaling θz up to match s̃z,1; (R1) fat-tailed Tz/T ∗z ; (R2) log-normal ϕz,i; (R3) non-granular foreign.
Appendix Table A3 describes the moment �t of alternative robustness speci�cations.

covariance term. In our estimated model, we �nd that granularity shapes 18% of the variation
in export shares across sectors, while the rest corresponds to fundamental comparative ad-
vantage. In turn, export shares Λ∗z account for 54% of the variation in overall trade �ows Xz ,
while the rest is accounted for by the (expenditure) size of the sectors αz .33

Since the granular contribution to trade �ows is zero on average across sectors, granularity
does not create additional trade at the aggregate level. Instead, granularity creates additional
trade �ows in granular sectors, which are compensated by missing trade in non-granular sec-
tors, as we investigate next. To clarify our terminology, by convention, we refer to a sector
as granular if Γ∗z � 0, while if Γ∗z < 0 or Γ∗z ≈ 0 we label such sectors non-granular, even
though ex ante all sectors are symmetric in terms of their expected granularity, as EΓ∗z = 0

for every z.
Figure 1 illustrates that the e�ects of granularity are particularly pronounced in the most

export-intensive sectors, i.e. in the export champions of the country. This can be seen in two
ways. Panel (a) illustrates that the likelihood of a sector being granular tends to increase with
the export intensity of the sector Λ∗z . Panel (b) plots the corresponding export �ows, that is,
it shows the contribution of each group of sectors to the country’s total exports (dashed blue
bars), and highlights with red solid bars the granular contribution. Note that the cumulative
height of all blue bars is 1 (aggregate exports), while the cumulative height of all red bars is
zero, as granularity does not change the aggregate amount of trade. The top three deciles of

33We measure the contribution of export shares to the overall sectoral exports as var(log Λ∗z)/var(logXz). The
exact variance decomposition ofXz also features a covariance term between Λ∗z and αz , which however happens
to be close to zero, and therefore does not a�ect quantitatively the results of the variance decomposition.
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(a) Fraction of granular sectors (b) Granular contribution to trade

Figure 1: Export intensity and granularity

Note: All sectors are split into 10 deciles (bins of equal size in the number of sectors) based on their export share,
Λ∗z = Xz

αzY ∗
. The left panel plots for each decile the fraction of sectors for which Γ∗z ≥ ϑΛ∗z for ϑ ∈ {1/2, 1/3, 1/4}.

For example, the cumulative height of the blue and red bars corresponds to the fraction of sectors with Γ∗z ≥ 1
3Λ∗z ,

or equivalently Γ∗z ≥ 1
2Φ∗z . The right panel plots the contributions of deciles to aggregate trade (dashed blue bars)

and of granular trade (Γ∗zαzY ∗) to aggregate exports X=Φ∗Y ∗ (solid red bars), by deciles of sectors.

export-intensive sectors account for two thirds of the aggregate exports. These are exactly the
sectors where the granular contribution to trade is positive on net, and accounts for a substan-
tial fraction of trade �ows. In all other bins of less-export-intensive sectors, the contribution of
granular trade is negative, that is, these sectors would export slightly more in the continuous
limit of the model.

Overall, granularity shapes trade �ows, and does so in a concentrated way among the
most export-intensive sectors. An outstanding productivity draw in a sector (i.e., a very large
�rm) tends to have a major positive impact for production and exports in this sector, while
the absence of such a draw in a sector (i.e., no outsized �rm) tends to only have a moderate
negative impact. This is balanced out by the fact that the presence of an outstanding draw is a
rare outcome. Taken together, these forces add skewness to the distribution of export intensity
across sectors in a granular economy.

Inference on sectoral comparative advantage We next explore what inference one can
make on the fundamental comparative advantage of a sector given the observed export stance
of a sector Λ∗z . In a conventional continuous model, there is a one-to-one mapping from the ob-
served trade �ows into the fundamental comparative advantage Tz/T ∗z , as in this case Λ∗z=Φ∗z ,
a feature that is used extensively in the quantitative trade literature following Eaton and Ko-
rtum (2002). The presence of granularity complicates this inference, as export shares Λ∗z now
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(a) Distribution of Λ∗z conditional on Φ∗z
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(b) Distribution of Φ∗z conditional on Λ∗z
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Figure 2: Comparative advantage and trade �ows: distribution across realizations

Note: The �gures plot moments and percentiles of the conditional distributions: Λ∗z|Φ∗z in the left panel and
Φ∗z|Λ∗z in the right panel. In both �gures, the red solid 45◦-line corresponds to Λ∗z = Φ∗z , towards which the
distributions degenerate in a continuous model. The vertical dotted lines plot the percentiles of the unconditional
partial distribution of Φ∗z in the left panel and of Λ∗z in the right panel.

re�ect both fundamental and granular sources of comparative advantage. The ability to draw
inference on this split is important if fundamental and granular comparative advantage have
di�erent implications, for example, for the dynamics of trade �ows, as we explore below.

We use the estimated model to plot, in the left panel of Figure 3, the distribution of realized
export intensity Λ∗z conditional on the fundamental comparative advantage of a sector Φ∗z . The
one-to-one deterministic mapping between the two in the continuous model is depicted with
a red diagonal. In the granular model, export shares conditional on the fundamental forces
are now random, re�ecting the granular draws. Their conditional mean is depicted with a
dashed blue line, which coincides with the red diagonal. There is substantial variation in
actual realizations, which is seen from the dotted lines that correspond to the percentiles of
the conditional distribution of Λ∗z|Φ∗z . The vertical departures from the diagonal correspond to
the realizations of the sectoral granular residuals, Γ∗z = Λ∗z−Φ∗z .34 This �gure complements the
decomposition in Table 5 in illustrating the contribution of granularity to sectoral trade shares.

The right panel of Figure 3 describes instead the conditional distribution of Φ∗z given Λ∗z ,
that is the inference one can make on the fundamental Φ∗z conditional on observing a realized
export share Λ∗z . To that end, the right panel switches the axes of the left panel. The continuous
model is again represented by the solid red diagonal line. In the granular model, inference is
very di�erent. The conditional expectation of Φ∗z given the observed Λ∗z is depicted with a blue

34For example, at the 75th percentile of Φ∗z = 0.33, the interquartile range of Λ∗z|Φ∗z is [0.27, 0.40], and its 90th
percentile is 0.49, corresponding to almost the 90th percentile of the unconditional distribution of Λ∗z .
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dashed line, which unlike in the left panel now departs from the red diagonal. In other words,
the sectoral Φ∗z|Λ∗z is not symmetric or even centered around Λ∗z , as was the case for Λ∗z|Φ∗z in
the left panel. This re�ects the pattern we already observed in Figure 1, namely that sectors
with small realized export shares tend to have negative granular residuals and sectors with
large realized export shares tend to have positive granular residuals. Therefore, sectors with
the largest realized export shares have systematically lower expected export shares, Φ∗z < Λ∗z ,
i.e. a lower fundamental comparative advantage than a continuous model would predict.35

To summarize, using a continuous model to estimate fundamental sectoral productivities
in a granular world would lead to a systematic positive bias for high export-intensity sectors.
An estimated granular model can be used to correct for this bias on average.36

6.2 Robustness

Since our approach to identifying granular contribution relies on a parametric structural model,
we now consider a variety of alternative parameterizations to verify the robustness of our
quantitative �ndings. In particular, we relax the assumption of a common productivity param-
eter θ across sectors, and we explore the robustness of our results to alternative distributional
assumptions for sectoral and �rm-level productivity draws.

Matching the Pareto shape The second column of Table 5 reports the sensitivity of our
baseline results (in column one) to alternative values of the elasticity of substitution of de-
mand, σ. We do this for two reasons. First, as we noted above, our estimation procedure is
conservative in that we target the market share of the top �rms, but understate the fatness of
the tail of the sales distribution, as measured by the estimated Pareto shape κ̂z (see (20)). We
report here what would be the outcome of a less conservative calibration procedure, which
would target instead the measured Pareto shapes of the �rm-size distribution (i.e., Zipf’s law).
Second, we note that the literature has been documenting an increase in concentration within
industries (see e.g. Autor, Dorn, Katz, Patterson, and Van Reenen 2017, Gutiérrez and Philippon
2017). One common hypothesis is that it corresponds to an increased substitutability across
products σ, for example due to the increased online competition.37 Here we are interested in
understanding the possible consequences of this increase for the role of granularity in shap-

35This corresponds to a classical selection (or reversion-to-the-mean) e�ect: a sector-outlier is only in part
shaped by fundamental forces, and the less so the more of an outlier it is. From the right panel of Figure 3, note
that over 70% of sectors (with smallest Λ∗z) have E{Φ∗z|Λ∗z} > Λ∗z , and it is only the most export-intensive sectors
that share the reverse feature (indeed, unconditionally, EΦ∗z = EΛ∗z).

36In the earlier working paper version (Gaubert and Itskhoki 2018), we discuss a Bayesian inference procedure
of the probability that exports in a given sector z are of a signi�cant granular origin, e.g. that Γ∗z ≥ ϑΛ∗z for a
given cuto� ϑ ∈ (0, 1), conditional on the sectoral observables.

37A natural microfoundation for this mechanism is a frictional discrete choice model with decreasing search
costs over time (see e.g. Hortacsu and Syverson 2014).
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ing trade �ows. We therefore consider a counterfactual with a larger elasticity of substitution
σ = 5.5, which allows the model to match exactly the average estimated Pareto shape param-
eter κ̂z in the data (equal to 1.02), while overstating somewhat the size of the largest �rms. We
�nd that the contribution of granularity to sectoral export shares increases from 18% to 26% —
intuitively, the role of granularity increases in a more concentrated economy. Our baseline es-
timation can therefore be viewed as conservative. We conclude that a reasonable contribution
of granularity to sectoral trade is around 20%.

Heterogeneity in θ Our baseline model features only two sources of ex-ante heterogeneity
across sectors: the Cobb-Douglas expenditure sharesαz and fundamental productivitiesTz/T ∗z ,
whereas in reality sectors are likely heterogeneous in a number of di�erent ways. One may
thus worry that our results are sensitive to this simplifying assumption, and speci�cally that
we overstate the role of granularity by shutting down such heterogeneity. In particular, varia-
tion in the �rm size distribution across sectors is likely to be in part due to these other sources
of heterogeneity, rather than driven by granularity alone.

To address this issue, we recalibrate the model by allowing for sector-speci�c θz , i.e. the
parameters that govern the dispersion in �rm productivity draws within sectors.38 In a con-
tinuous model, variation in this parameter is a natural way to obtain variation in �rm-size
distribution across sectors (see e.g. di Giovanni and Levchenko 2012, 2013). We discipline the
distribution of θz across sectors in three alternative ways, with results reported in columns 3–5
of Table 5. First, we choose θz so that θz

σ−1
= κ̂z sector-by-sector, where κ̂z are the empiri-

cal estimates of the Pareto shapes of the �rm size distribution in the data (using (20)). With
a continuum of �rms and constant markups, θz

σ−1
exactly corresponds to the Pareto shape of

the sales distribution, and hence justi�es this calibration approach. Variable markups, how-
ever, introduce a gap between θz

σ−1
and the Pareto shape of �rm sales in the model. To match

the Pareto shape of the data, our second calibration therefore proportionally scales down the
distribution of θz , while preserving its heterogeneity across sectors, to ensure that the mean
value of the estimated Pareto shape parameters in the model, κ̂z , matches the one in the data.
Third, since both of these calibrations overstate the average sales share of the largest �rm
relative to the data, we proportionally scale up the distribution of θz to match the top sales
share moment, as does the baseline model. The bottom panel of Table 5 and the Appendix Fig-
ure A5 illustrate the �t of di�erent moments across these three speci�cations. In particular,
the calibrated model can now accurately match the distribution of the estimated Pareto shape
coe�cients κ̂z .

38Another realistic source of heterogeneity is variation in the �xed cost of entry, Fz . However, in the model,
which is estimated to simultaneously �t the fat-tailed sales distribution and the large number of entrants,
marginal �rms are very small. Therefore, variation in Fz has very limited e�ect on the key moments of interest.
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Interestingly, Table 5 shows that the contribution of granularity increases, across all three
speci�cations with heterogenous θz , compared to our baseline with homogeneous θ. The con-
tribution of granularity now ranges from 22% to 32%. Intuitively, the strength of granularity
is largely determined by the market share of the largest �rm in the sector. Having hetero-
geneous θz does not change the ability of the model to match the relative size of the largest
�rms, on average across sectors. However, with heterogeneous θz , some sectors end up hav-
ing smaller θz , and as a result even fatter-tailed sales distributions and larger top �rms. This
additional skewness ends up reinforcing the aggregate role of granularity — even if some sec-
tors end up being less granular — because granularity is inherently an infrequent right-tail
outcome, which is favored by this increased asymmetry (recall Figure 1b). Overall, this ro-
bustness exercise con�rms that our baseline estimate of the role of granularity is, if anything,
conservative.

Fat-tailed distribution of sector-level productivity In our baseline, we assume that rel-
ative sectoral productivity levels Tz/T ∗z – which shape FCA (recall (15)) – are log-normally
distributed. As we demonstrated, this assumption allows the model to match the data well.
However, a natural concern is that assuming that this distribution is thin-tailed (log-normal)
could mechanically limits the extent of heterogeneity in FCA, and thus leads us to overstate
the important of granularity. To address this concern, we replace the log-normal distribution
for Tz/T ∗z with a fat-tailed double-sided Pareto, with µ′T and σ′T still parametrizing the mean
and the standard deviation of log Tz/T

∗
z .39 With this assumption, sector-level productivity

draws and �rm-level productivity draws are on equal footing in terms of producing potential
right-tail outcomes.40 We keep the remaining parametric assumptions unchanged, and esti-
mate this version of the model using the same procedure, described in Section 5. We report the
results of this robustness estimation in column (R1) of Table 5. Perhaps surprisingly, we �nd
that both models are nearly identical in their ability to �t the set of identifying moments in Ta-
ble 4, with the fat-tailed counterfactual model slightly underperforming on moments 11–15.41

In turn, we �nd that, reassuringly, this alternative assumption leads to estimating exactly
the same granular contribution as in the baseline (namely, 17.81% vs 17.76%), with a slightly
smaller role played by the export intensity in shaping the total exports (48.5% vs 54.4%). This
result suggests that our baseline parametrization is not mechanically constrained by the dis-

39Formally,we assume log Tz/T
∗
z ∼ Laplace(µ′T , σ

′
T /
√

2). Laplace(a, b) is a two-sided exponential with
density f(x|a, b) = 1

2b exp
{
− |x− a|/b

}
.

40An alternative strategy to calibrate the sectoral productivities Tz/T ∗z could be to match directly the export
shares sector-by-sector. This, however, mechanically implies Λz = Φz and no role for granularity Γz = 0. As
discussed in Section 5.3, such approach would be rejected by the data as it would fail to match the correlation
between sectoral exports and concentration at the top.

41We report the �t of alternative models in Appendix Table A3, where we also report the overall loss function,
which is 0.259 for the baseline and slightly bigger at 0.297 for this robustness counterfactual.
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tributional assumptions to imply a high granular contribution, but that this result is rather
driven by the model’s ability to �t data moments.

Thin-tailed distribution of �rm-level productivity We next turn to assumptions on the
distribution of �rm-level productivity. We go back to our baseline speci�cation and now relax
the assumption that �rm productivity draws are fat-tailed (Pareto). Instead, we now assume
that their distribution is thin-tailed (log-normal). This checks whether imposing a fat-tailed
distribution on the �rm-level productivity draws could lead us to mechanically to �nd a siz-
able granular contribution.42 We again re-estimate the model under the new distributional
assumption. This time, conclusions are di�erent. In short, the model is unable to match the
data in this case. In particular, it fails to jointly match the number of �rms per sector and the
size of the largest �rm — understating both moments by about 30% (see Appendix Table A3).
Furthermore, it also misses on our key identifying moments 12–15, failing to capture even
qualitatively the patterns of correlation between the size of the largest �rm and sectoral trade
�ows (see discussion in Section 5). We conclude that the log-normal distribution does not have
enough skewness to reproduce the salient empirical patterns we highlight. Unsurprisingly, as
a corollary of this failure to �t the data, this counterfactual model features a negligible granular
contribution, reported in column (R2) of Table 5.

To summarize, this robustness check, along with the previous one, suggests that our main
results on the importance of granularity are not driven by speci�c choices of functional forms
or distributional assumptions. Instead, these choices allow the baseline model to match the
moments of the data that speak to granularity, and also help discriminate between parametric
models. To the extent that these moments are matched, our quantitative conclusions on the
importance of granularity are robust to alternative modeling choices.

Non-granular foreign Our last robustness considers the case where the rest of the world
(being large) is assumed to be non-granular, while France still is. We keep the estimated pa-
rameters the same as in the baseline, but replace the foreign productivity draws {ϕ∗z,i} with
deterministic values so that the counterfactual model features the same Φz and Φ∗z as the gran-
ular model, yet shuts down the uncertainty regarding foreign productivity draws.43 We �nd
that this alternative has little impact on the moments for home (France), and in particular
changes little our conclusions about the importance of GCA. As we report in column (R3) of
Table 5, the granular contribution to French export intensity Λ∗z increases marginally to 18.2%.

42Formally, we take a �xed number Mz = αzM of potential entrants who draw productivity such that
logϕz,i ∼ N (µz, θ

′2), where µz = log Tz ∼ N (µT , σ
2
T ) is expected (fundamental) sectoral productivity and

θ′ parameterizes the dispersion of the productivity draws. We provide formal details in Appendix C.
43Speci�cally, we �x the number of �rms per sector at M̄∗z , and set ϕ∗z,i to equal the M̄∗z -percentiles of the

Pareto(ϕ∗z; θ) distribution with M̄∗zϕ∗θz = T ∗z to keep the average realization of ϕ∗z,i as in the baseline.
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7 Dynamics of Comparative Advantage

Having established the implications of granularity for cross-sectional trade patterns, we now
extend our model to a dynamic environment and study the implication of granularity for the
evolution of a country’s comparative advantage over time. We are interested in the contri-
bution of granular forces to both the volatility of sectoral export patterns, as well as the pre-
dictability of comparative advantage reversals observed in the data.

7.1 Dynamic model

We introduce dynamics by assuming that �rm-level productivity evolves over time according
to a random growth process subject to both aggregate (sectoral) and idiosyncratic (�rm-level)
shocks. As a consequence, both fundamental and granular comparative advantage change over
time, along with the within-sector distributions of �rm sales shares. In this granular model of
industry dynamics, �rm-level volatility contributes to shaping the dynamics of sectoral trade
�ows and the evolution of comparative advantage.

Consistent with our cross-sectional model, we assume that there exist a Poisson-distributed
number of shadow �rmsMz in each sector with productivity ϕz,i,t that evolves over time such
that at each date: (i) within each sector, the cross-sectional distribution of relative �rm pro-
ductivities remains stable, and distributed Pareto with shape θ; and (ii) across sectors, the
distribution of expected sector-level productivities Tz remains stable log-Normal with param-
eters µT and σT . Stability over time requires mean reversion for both �rm-level and sectoral
productivity components. To achieve this, we assume that productivity ϕz,i,t of �rm i in sector
z at period t, relative to a reference (cuto�) sectoral productivity ϕz,t, evolves according to a
geometric random walk with a negative drift µ and a re�ecting barrier at 1 (0 in logs). There-
fore, ϕz,t is the lower bound of the �rm productivity distribution, and a change in ϕz,t shifts
proportionally the entire productivity distribution in sector z, thus capturing shocks to fun-
damental comparative advantage. We assume that logϕz,t follows an autoregressive process
with parameter ρ.

Formally, we set: log(ϕz,i,t/ϕz,t) = |µ+ log(ϕz,i,t−1/ϕz,t−1) + αuuz,i,t|,

log(ϕz,t/ϕ
o
z) = ρ log(ϕz,t−1/ϕ

o
z) + αvvz,t,

(22)

where uz,i,t, vz,t ∼ iidN (0, 1) are respectively idiosyncratic and aggregate innovations, and
ϕoz are exogenous long-run sectoral means. The parameters αu and αv capture, respectively,
the magnitude of idiosyncratic and fundamental shocks in driving productivity changes. Note
that when αv = 0, the model features only idiosyncratic shocks and no change in the funda-
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mental comparative advantage over time. In contrast, when αu = 0, there are no idiosyncratic
shocks, and in particular the relative sales shares of domestic �rms remain stable over time.

We rely on the following result to ensure that the properties we describe above hold:44

Lemma 1 Let {ϕz,t, ϕz,i,t} follow (22). If µ = − θα2
u

2
, ρ =

√
1− θ2α2

v

σ2
T
, ϕoz = 1

θ

(
µT − log M̄z

)
,

and under suitable initial conditions, we have that in every time period t:

ϕz,i,t ∼ iid Pareto(ϕz,t; θ) and Tz,t = M̄zϕ
θ
z,t ∼ iid logN (µT , σ

2
T ). (23)

We adopt the parametric restrictions in the lemma to ensure the stability of the cross-sectional
distributions of productivities in every time period. Finally, there is no entry or exit, but �rms
decide each period whether to pay a per-period �xed cost and be active, or stay inactive.
Since �rms do not incur sunk costs, their choice is static. That is, each period, �rms play the
static entry game described in Section 4, given the current realized productivity distribution,
which gradually evolves over time according to (22). This o�ers a tractable way to extend our
granular model to a dynamic environment with persistent productivity processes, both at the
sector and �rm levels: every cross-section of the model for t ∈ {0, 1, 2, . . .} is consistent with
the static model in Section 4.

Dynamic calibration By Lemma 1, every cross-section of the dynamic model is consistent
with the static model, and therefore we can directly adopt our cross-sectional parameter es-
timates from Section 5. Furthermore, the dynamics are driven by two additional parameters
that drive the productivity process (22), αu and αv. These parameters govern both the volatil-
ity and persistence of the sector- and �rm-level productivity process. We discipline them by
matching the time-series properties of �rm-level and sectoral sales.

Speci�cally, using the panel of French �rms in our data from 1997 to 2007, we target the
10-year mean reversion coe�cients for sectoral log exports, logXz,t, and for �rm-level rel-
ative sales shares in the domestic market, s̃z,i,t, as we report in Table 6.45 In the model, ag-

44In our simulation, log M̄z = m is constant across sectors, and we choose m large enough to ensure that the
least productive �rms at ϕz,t always stay inactive. As a result, we have ϕoz = (µT −m)/θ, also constant across z,
and therefore we use log(ϕz,0/ϕ

o
z) = (log Tz,0− µT )/θ ∼ iid logN (0, σ2

T /θ
2) and ϕz,i,0 ∼ iid Pareto(ϕz,0; θ)

as initial conditions. The negative drift term µ = −θα2
u/2 < 0 ensures stationarity of the relative produc-

tivity distribution, ϕz,i,t/ϕz,t, which is Pareto with shape parameter θ (see Gabaix 2009). Similarly, for aggre-
gate shocks, the relationship between mean reversion ρ and volatility α2

v ensures that the dispersion of log Tz,t,
σ2
T = θ2α2

v/(1− ρ2), remains constant in every cross-section.
45Speci�cally, we run log(Xz,t+10/Xz,t) = αX+βX logXz,t+γX logDz,t+ε

X
z,t, whereDz,t is the control for

the size of the market (domestic sales), and s̃z,t+10−s̃z,t = αs+βss̃z,i,t+ε
s
z,i,t. We target the two mean reversion

coe�cients, βX and βs. We use all 300 4-digit sectors in our data, as in Tables 1 and 2, since these regressions do
not rely on the match with the COMTRADE database, and we aim to obtain the most precise possible estimate
of βX for sectoral exports. We use a balanced panel of 43,882 French �rms that survive throughout our sample
to estimate βs (and an equivalent procedure in the model-simulated data), resulting in a 10-year autocorrelation
of within-industry �rm sales shares equal to 1 + β̂s = 0.892.
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gregate shocks a�ect the former moment, but not the latter, which captures the properties of
the relative �rm productivities within a sector, and hence is not a�ected by the sectoral com-
parative advantage.46 This ensures identi�cation: the �rm-level moment is essentially only
sensitive to αu, while the sectoral trade moment is sensitive to both αv and αu. Importantly,
this means that the idiosyncratic productivity process is not identi�ed from the properties of
the trade �ows.

Matching the empirical mean reversion moments requires settingαv=0.034 andαu=0.050,
which correspond to the annual volatility of sectoral and idiosyncratic productivity shocks, re-
spectively.47 Since the annual volatility of the aggregate shocks, αv = 0.034, is much smaller
than the cross-sectional dispersion of comparative advantage, σT = 1.39, the model requires
a very high value of ρ = 0.995 (from the formula of Lemma 1), to reconcile the dynamics with
the cross-section. In other words, fundamental comparative advantage is highly persistent,
albeit mean reverting over long horizons.

7.2 Granular dynamics of comparative advantage

Equipped with our quantitative dynamic model, we now study the contribution of granularity
to the evolution of comparative advantage over time. We start with the dynamic counterpart
to the variance decomposition in Section 6. Note that this is a distinctly di�erent decompo-
sition. While the static and dynamic analyses both rely on the same general structure of the
granular model, and in particular the same dispersion of �rm-level outcomes shaped by θ,
granular forces can play di�erent roles in the cross-section and in the time series. The long-
run steady-state properties of the model are shaped by the cross-sectional dispersion of funda-
mental comparative advantage, σT , while the short-to-medium run outcomes depend on the
relative volatility of aggregate and idiosyncratic shocks, αv and αu.

Variance decomposition We begin with the variance decomposition of changes in export
intensity across sectors, var(∆kΛ

∗
z,t), where ∆kΛ

∗
z,t ≡ Λ∗z,t+k − Λ∗z,t is the k-period forward

di�erence. Given that Λ∗z,t = Φ∗z,t + Γ∗z,t, where Φ∗z,t evolves together with Tz,t/T ∗z,t according

46This is an exact analytical result with constant markups, and applies approximately in our environment,
as the behavior of most �rms is accurately apporimated by a constant markup rule (recall Appendix Figure A2,
discussed above). We check quantitatively in the estimated model that the �rm-level moment βs is not sensitive
to the volatility of the aggregate shocks αv .

47Our calibration matches the long-run mean reversion of the �rm sales shares for both small and large �rms,
which are approximately the same in the data. At the same time, we somewhat understate the extent of year-
to-year volatility in the �rm sales shares, both for small and large �rms. When we target either of these latter
moments, we recover a larger αu, and correspondingly a smaller αv , which implies a greater role for granularity.
Therefore, from the point of view of the counterfactuals below, our choice of calibration targets is conservative.
In addition to this conservative baseline, we also consider a robustness calibration, which puts weight on both the
long-run mean reversion βs and the short-run volatility std(∆s̃z,i,t), resulting in a somewhat larger αu = 0.060.
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Table 6: Dynamics of comparative advantage

Moment Data Model
HLM France Baseline αv = 0

Target moments:
— βX , 10-year mean reversion in logXz,t −0.106

(0.034)
−0.106 −0.025

— βs, 10-year mean reversion in s̃z,i,t −0.108
(0.003)

−0.108 −0.097

Granular contribution to var(∆kΛz,t):
— year-to-year changes (k = 1) 24.4%
— 10-year changes (k = 10) 23.0% 100%
— 50-year changes (k = 50) 22.4%

Share in aggregate exports:
— top-1% of sectors 21% 17% 17.2%
— top-3% of sectors 43% 30% 32.3%

Turnover of comparative advantage:
— remain in top-5% after 10 years 80% 76% 90%
— remain in top-5% after 20 years 52% 62% 87%

Note: Empirical moments from HLM for developed countries and our French dataset, where available. The export
share moments are based on sectoral exports Λ∗zαzY

∗; the turnover moments are based on export shares Λ∗z .

to (15), we decompose:

var(∆kΛ
∗
z,t) = var(∆kΦ

∗
z,t) + var(∆kΓ

∗
z,t), (24)

and we are interested in the granular contribution, var(∆kΓ
∗
z,t)/var(∆kΛ

∗
z,t). Compare this

decomposition with (21) in Section 6.48

The middle panel of Table 6 reports the results. In our calibrated dynamic model, the
contribution of the granular component is over 24% for annual changes and 23% for 10-year
changes, relative to 18% in the cross-section (recall Table 5). Therefore, the contribution of
granularity to the dynamics of comparative advantage is greater than to its long-run variation
across sectors. This is because the granular component, driven by relatively large idiosyn-
cratic �rm-level shocks, moves faster than the fundamental component, which is driven by
less volatile sectoral shocks.49 As we increase the horizon of the variance decomposition, the
role of the granular component gradually declines, but still stays above 22% even 50 years out.

48Note that the covariance term is zero in both cases, as by construction Γ∗z,t is orthogonal to Φ∗z,t in every
cross-section, and in addition Γ∗z,t+k is orthogonal to Φ∗z,t for k ≷ 0, so that cov(∆kΦ∗z,t,∆kΓ∗z,t) = 0.

49The dynamic contribution of granularity is even greater in the robustness calibration (see footnote 47), ex-
plaining over a third of the overall dynamics of comparative advantage.
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Reversals in comparative advantage Beyond the variance decomposition of changes in
export intensity, one can study the predictive ability of granularity for the future changes
in export patterns. Motivated by the recent empirical �ndings of pronounced reversals in
comparative advantage, and by the reduced-form predictive patterns we document in our data
in Section 3, we explore in particular the relative contribution of aggregate and idiosyncratic
shocks to mean reversion in comparative advantage.

In a recent paper, HLM emphasize two striking patterns: (i) hyper-specialization of exports
— with about 100 sectors in their data, a single top sector accounts for 21% of a country’s to-
tal exports on average across countries, while the top-3 sectors account for 43%; and (ii) high
turnover of comparative advantage — a top-5 sector in terms of export intensity has about a
50-50 chance of staying among the top-5 two decades later. The combination of these two
facts is indeed intriguing: countries appear to exhibit extreme specialization, yet their com-
parative advantage tends to change signi�cantly over the medium run. We explore here the
extent to which our granular model can capture this combination of cross-sectional and dy-
namic patterns.

We report the results in the lower panel of Table 6, where we also summarize the HLM
stylized facts and the corresponding moments in our French data. Note that for France, the
empirical patterns are somewhat less extreme than for an average country in HLM.50 First,
the top-1% and top-3% shares in aggregate exports are somewhat lower, equal to 17% and
30% respectively. Second, the turnover ratio over the 10 years available in our panel is also
somewhat more moderate: 80% of the sectors in the top-5% stay in the top 5% a decade later.
Nonetheless, qualitatively, the patterns are similar.

The dynamic granular model �ts well both the cross-sectional and time-series patterns ob-
served in the French data. Speci�cally, the granular model reproduces the high concentration
of sectoral exports, as well as accounts for fast turnover of top comparative advantage sectors
observed in France. A sector in the top-5% in terms of export intensity has a 76% chance to
remain in the top-5% one decade later and only a 62% chance after another decade. This goes
a substantial way towards reconciling the HLM �ndings.

To quantify the contribution of granularity to these patterns, we re-run our model with
granular shocks only — that is, we shut down the sectoral shocks by setting αv = 0. First, note
that this counterfactual model still �ts well the dynamics of �rm-level sales shares, as captured
by the mean reversion coe�cient βs, yet falls short on mean reversion in sectoral exports, βX .
Nonetheless, this model goes a considerable way in explaining the turnover at the very top
of export-intensive sectors. Speci�cally, granular dynamics alone accounts for a 10% (13%)

50HLM show that small, developing countries exhibit more extreme patterns of both specialization and mean
reversion, and FDI likely plays an important role in this (e.g., the closure of the Intel plant in Costa Rica).
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(a) Mean reversion in export shares (b) Counterfactual with αv = 0

Figure 3: Comparative advantage reversals

Note: Simulated equilibrium path of the calibrated granular model (left panel) and its counterfactual version
with αv = 0 (right panel). Sectors are sorted into deciles on Γz,0 in the initial period, and within-decile averages
are reported for Λz,k − Λz,0, k = 20 and 50 (years).

probability of dropping out of the top-5% of export-intensive sectors over a 10-year (20-year)
horizon, that is a half of the total turnover that we observe in the French data.

Finally, we �nd that, in the calibrated model, the extent of granularity can help predict
future comparative advantage reversals, as we have observed earlier in the data (recall Table 2).
To show this, we compute the changes in sectoral export shares ∆kΛ

∗
z,t over time (over k=20

and 50 years), and compare it to the initial strength of granularity in these sectors at t = 0.
We report the results in Figure 3, grouping sectors by deciles of initial granular residual Γ∗z,0.
The left panel reports the average 20 and 50 year changes in sectoral export intensities. Clearly,
the strongest mean-reversion forces are at play in the most granular sectors, which tend to
lose export shares over time.51 The right panel of Figure 3 plots the same predicted mean
reversion patterns in the counterfactual model with granular shocks alone. The bulk of the
mean reversion predicted by the full model is due to the granular forces. In particular, in the
top decile of sectors, where mean reversion is most pronounced, granularity accounts for 75%
of mean reversion over 20 years and 70% over 50 years. The dynamic granular model, therefore,
rationalizes our empirical �ndings from Table 2 that sectors with stronger concentration at the
top tend to mean-revert faster in their aggregate exports.52 This suggests that granular �rm
dynamics is a key contributor to comparative advantage reversals at the aggregate level.

51An average sector in the top decile of granularity, Γ∗z,0, is expected to lose on average about 4 (11) percentage
points of export intensity over 20 (50) years. While large, these patterns are highly volatile, with a typical standard
deviation of around 13 (18) percentage points; over 20 years, there is a 10% chance that a sector in the top decile
loses 21 percentage points or more of export intensity or gains 12 percentage points or more.

52Appendix Table A2 reproduces the empirical regression from Tables 1 and 2 on a model-simulated dataset,
for the baseline and robustness dynamic calibrations. The model captures accurately these empirical patterns,
with somewhat smaller point estimates relative to Table 2.
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Additional consequences of granularity We �nish this section with a brief discussion
of two addition dynamic implications of granular comparative advantage, and we refer the
reader to the earlier draft for details (see Gaubert and Itskhoki 2018). First, we point out
that granularity has implications for inter-sectoral reallocation of labor. In a granular open
economy, �rm-level shocks generate production and labor reallocation not only within sectors,
but also across sectors. In our quanti�ed model, the annual job creation and job destruction
rates are about 12%, of which about one �fth (2.4%) is due to inter-sectoral job reallocation,
re�ecting shifts in the country’s comparative advantage. This extent of job turnover, both
within and across sectors, is in line with the empirical patterns documented by Davis and
Haltiwanger (1999; see their Tables 1, 2 and 5). It is also interesting to note that the share
of inter-sectoral labor reallocation in the overall job �ows is very sensitive to the degree of
openness of the economy: in particular, it falls sixfold when the economy goes to autarky. The
interaction between granularity and openness, thus, contributes to the increased volatility of
equilibrium reallocation, which may be costly in frictional economies (cf Rodrik 1998).

Second, we note that in the granular model, the exit of a single �rm in a given industry can
have a marked impact on the country’s comparative advantage — an e�ect absent in models
with a continuum of �rms. In our quanti�ed model, the largest exporter accounts on average
for over a quarter of total sectoral exports. If such a large exporter fails and exits, its market
share is redistributed to both home and foreign �rms. The reallocation of this lost market share
towards foreign �rms re�ects a loss in comparative advantage. In the most granular sectors,
our model predicts that over 70% of a �rm’s sales share is lost to the foreign competitors,
resulting in a sharp loss of comparative advantage. A single large �rm leaving the industry
can �ip the sector from comparative advantage into disadvantage.

8 Granular Policies in an Open Economy

We conclude with a brief outline of the consequences of granularity for policy, which we ex-
plore further in Gaubert, Itskhoki, and Vogler (2020). A range of policies speci�cally target
large �rms. An obvious example is antitrust policy that regulates mergers of �rms with sig-
ni�cant market power. Merger policy is often viewed as part of a toolkit that policymakers
use to a�ect foreign market access (see e.g. Bagwell and Staiger 2004, Chapter 9). Further,
countries may be interested in targeting large foreign �rms directly, for example, as part of
a trade war. What impact do these policies have on trade �ows and welfare? This question
cannot be analyzed using standard continuous models where, even in the presence of hetero-
geneity, every �rm is in�nitesimal. In contrast, our quantitative granular model is well-suited
to analyze the economic motivation and the international spillovers of such policies.
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Consider, �rst, mergers and acquisitions between large �rms. They are sought by �rms
for a range of reasons. Some of them tend to be welfare-destroying (by increasing market
power and distortions in the economy), while other are desirable from a welfare standpoint
(due to positive spillovers such as cost synergies and transfer of best practices). In a closed
economy, the antitrust authority maximizing domestic welfare will only allow mergers with
su�cient positive spillovers to o�set the increase in markups. Matters are di�erent, however,
in an open economy. The increase in markups following a merger is in part passed along to
the foreign consumer, creating a negative spillover for the foreign country akin to a terms-
of-trade manipulation. This suggests a rationale for policymakers to be excessively lenient
towards domestic mergers in export-oriented sectors, at the expense of foreign countries. Our
estimated model suggests that these negative spillover e�ects are signi�cant quantitatively,
and are particularly pronounced in the most granular and open sectors, emphasizing the need
for international cooperation over M&A policies to avoid excessive build-up of market power.

Next, consider narrow trade restrictions and antidumping duties that target individual
�rms. They have been regularly emphasized in the policy debate. To capture this type of
policies, we use the estimated model to study the e�ect of a granular import tari� imposed
on the largest foreign exporter, as opposed to a uniform industry-wide tari� imposed on all
imports. Granular tari�s may be more attractive to policymakers due to domestic political
economy considerations, though perhaps more complex to impose legally. Our quanti�ed
model suggests that granular tari�s are also more e�ective at extracting surplus from foreign
producers and improving the home country’s terms of trade. The intuition behind this result
is that a granular tari� on a single large foreign exporter achieves the desired terms-of-trade
improvement with a minimal associated reduction in the domestic consumer surplus due to
higher import prices. Indeed, much of the granular tari� is absorbed by a reduction in the
markup of the foreign exporter, as it aims to maintain its market share.53 A further impli-
cation of this mechanism is that a granular tari� leads to a much smaller loss in the volume
of trade, reducing the import share in the targeted sector by a small percentage, and hence
o�ering an e�ective way to extract producer surplus from the dominant foreign �rm.

9 Conclusion

Granular �rms play a pivotal role in international trade. The goal of this paper is to contribute
to our understanding of the granular features of the global economy, with a particular focus
on international trade �ows, and to develop tools to analyze them. To this end, we propose

53Perhaps surprisingly, the average prices faced by the home consumers can even fall slightly, if the general
equilibrium e�ect from the fall in relative foreign wages is stronger than the direct e�ect of the tari� pass-through
into import prices — a version of the Metzler paradox (see Helpman and Krugman 1989, ch. 4, 7).
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and quantify a granular multi-sector model of trade, which combines fundamental compara-
tive advantage across sectors with granular comparative advantage embodied in outstanding
individual �rms. The model, estimated using a rich set of sectoral and �rm-level moments,
suggests that granularity accounts for about 20% of the variation in realized export intensity
across sectors. Moreover, granularity contributes markedly to skewness in aggregate out-
comes, as it is most pronounced in the most export-intensive sectors. Extending the analysis
to a dynamic setting shows that idiosyncratic �rm dynamics account for a large share of the
evolution of a country’s comparative advantage over time, with a strong predictive ability for
comparative advantage reversals observed in the data. The granular structure of the world
economy o�ers powerful incentives for governments to adopt trade and industrial policies
targeted at individual �rms.

By relying on the conventional modeling assumption of exogenous productivity draws, our
model abstracts from an important question of the origin of outstanding �rms. We see this line
of analysis as very fruitful for future research. In particular, it would help better understand
whether government policies can and should promote the growth of “national champions”.
Another mechanism we assume away in this paper are productivity spillovers between in-
dependent �rms. Such spillovers may be important in practice, especially for �rms that are
located close together, as the literature on agglomeration economies suggests. Analyzing the
role of granular �rms and their location decisions in determining the productivity and growth
trajectories of individual cities (e.g., the decisions of Microsoft to move from Albuquerque to
Seattle in 1979) is another fascinating question that we leave for future research.
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A Additional Figures and Tables
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Figure A1: Sectoral Cobb-Douglas shares in the data

Note: αz = Ñ α̃z so that Eαz = 1, as required by a model with a continuum of sectors.
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Figure A2: Equilibrium markups

Note: The bars in the �gure correspond to markups for the four largest French �rms in each sector and for the
residual fringe of French �rms, averaged across sectors, while the intervals correspond to the 10–90 percentiles
across sectors. Markups under monopolistic competition with continuum of �rms equal σ

σ−1 = 1.25 for all �rms,
and this constitutes the lower bound for all markups in our oligopolistic model.
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(a) Number of French �rms, log M̃z
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(d) Export share projection coe�cient, b̂∗3
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Figure A3: Identi�cation plots

Note: The lines in the plots trace out the e�ects of a change in one parameter at a time on select moments used
in estimation: (a) mean log number of French �rms, log M̃z (moment 1 in Table 4); (b) mean top French �rm
domestic sales share relative to all French �rms, s̃z,1 (moment 3); (c) average foreign share in the home
market, Λ̃z (moment 7); and (d) regression coe�cient of export share Λ̃∗′z on top-3 �rms relative sales
share in the home market (

∑3
j=1s̃z,j), b∗3 (moment 13). Black dashed horizontal lines correspond to the

empirical values of the respective moments, and the shaded areas plot a bootstrap standard error band,
which characterizes the degree of empirical uncertainty about the value of the moment. The x-axis is
the normalized grid for the values of the parameters, where 0 corresponds to the estimated parameter
vector Θ̂: (i) for F we use a log grid on [F̂ /2, 2F̂ ]; (ii) for θ we use a linear grid such that κ = θ/(σ−1),
where σ = 5, ranges on θ̂/(σ − 1)± 0.125 ≈ [0.95, 1.2]; (iii) for τ − 1 we use a log grid such it varies
on [(τ̂ −1)/2, 2(τ̂ −1)] ≈ [0.15, 0.7]; (iv-v) for µT and σT we use linear grids on µ̂T ±0.4 and σT ±0.4
respectively. See the text in Section 5.3 for interpretation.
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(a) Number of French �rms, M̃z
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(d) Pareto shape of dom. sales, κ̂z
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Figure A4: Distributions across sectors: model and data

Note: (a) corresponds to moments 1–2 in Table 4; (b) corresponds to moments 3–4; (c) corresponds to moments 7–
8; while the moments in (d) are not directly target in the baseline estimation (see Table 5). In (b), top French �rm
market share is relative to other French �rms in the domestic market. Pareto shapes κ̂z are estimated according
to (20) for �rms above the 75th percentile in terms of domestic sales within sector. The vertical lines indicate the
means of the respective distributions (dashed for data and solid for the model).
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(a) Pareto shape parameters, κz = θz
σ−1
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(b) Estimated Pareto shapes, κ̂z

0.5 1 1.5 2
0

0.5

1

1.5 Data
H1
H2
H3

(c) Top French �rm sales share, s̃z,1

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

(d) Number of French �rms, M̃z

1 10 100 1000 10000
0

0.1

0.2

0.3

0.4

Figure A5: Distributions across sectors: di�erent model speci�cations with heterogeneous θz
Note: Panels (b)–(d) correspond to panels (d), (b) and (a) in Figure A4. Panel (a) plots the kernel densities of the
model parameter κz = θz

σ−1 . Each plot considers three speci�cations with heterogeneous sector-speci�c θz , as
described in Table 5, which we denote H1–H3 respectively. H1 matches average κz = 1.02. H2 matches average
estimated Pareto shapes κ̂z = 1.02. H3 matches average top market share s̃z,1 = 0.21.
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Table A1: Granularity and exports: robustness with s̃z,(1)

Cross-section, 2005 Panel, 1997–2007 Dynamic regressions Out-of-sample, logXz,+10 − logXz

(1) (2) (3) (4) (5) (6) (7) (2′) (3′) (4′)

logXz −0.119∗∗∗
(0.039)

−0.650∗∗∗
(0.338)

s̃z,(1) 0.490
(0.371)

0.531
(0.372)

0.695∗
(0.407)

0.664
(0.407)

0.496∗∗∗
(0.111)

0.435∗∗∗
(0.112)

0.432∗∗∗
(0.112)

−0.599∗∗∗
(0.256)

−0.489∗∗∗
(0.255)

logDz 0.867∗∗∗
(0.050)

0.901∗∗∗
(0.053)

0.880∗∗∗
(0.052)

0.917∗∗∗
(0.053)

−0.029
(0.036)

0.085
(0.051)

0.588∗
(0.308)

Sector F.E. 2-digit 2-digit 4-digit 2-digit 2-digit 2-digit 2-digit
Year F.E. X X X

# obs. 300 300 3,300 3,300 3,300 3,000 3,000 300 300 300
R2
adj 0.507 0.610 0.510 0.641 0.950 0.009 0.008 0.063 0.091 —

Note: Robustness table, which replaces
∑3
i=1 s̃z,(i) with s̃z,(1) and reruns the speci�cations in Table 1 and 2; columns 1–7 correspond to re-

spective columns of Table 1 and columns 2′–4′ correspond to columns 2–4 of Table 2. The right-hand-side variable is: logXz in columns 1–5;

∆ logXz in columns 6–7 (with right-hand-side variables in �rst-di�erenced as well); and 10-year forward di�erence logXz,+10 − logXz

in columns 2′–4′.

Table A2: Granularity and exports in the model: simulated data
Table 1 panel: logXz Table 2 out-of-sample: logXz,+10 − logXz

(1) (3) (5) (6) (1) (2) (3) (4)

Baseline: αv = 0.034, αu = 0.050

logXz −0.115
[−0.143,−0.061]

−0.110
[−0.145,−0.069]

−0.140
[−0.377,0.036]∑3

i=1 s̃z,(i) 1.083
[0.909,1.351]

1.144
[0.940,1.342]

0.601
[0.394,0.845]

0.653
[0.525,0.871]

−0.168
[−0.396,0.030]

−0.031
[−0.214,0.132]

logDz 1.274
[1.255,1.311]

1.282
[1.255,1.318]

0.111
[0.034,0.166]

−0.043
[−0.080,−0.015]

0.101
[0.031,0.146]

0.123
[−0.062,0.380]

Robustness: αv = 0.029, αu = 0.060

logXz −0.100
[−0.133,−0.056]

−0.092
[−0.127,−0.079]

−0.188
[−0.438,0.079]∑3

i=1 s̃z,(i) 1.058
[0.904,1.321]

1.126
[0.945,1.340]

1.017
[0.844,1.189]

1.078
[1.006,1.248]

−0.227
[−0.462,−0.089]

−0.153
[−0.292,0.039]

logDz 1.275
[1.256,1.306]

1.280
[1.251,1.315]

0.099
[0.032,0.151]

−0.036
[−0.077,−0.013]

0.075
[0.013,0.118]

0.200
[−0.083,0.461]

Note: Empirical regressions from Tables 1 and 2 implemented on the model-simulated dataset (column numbers correspond to the respective

empirical speci�cations). The table reports median point estimates over 20 simulated datasets with [10%, 90%] ranges of point estimates across

simulations in square brackets below. For panel regressions in Table 1, speci�cation (5) includes sectoral �xed e�ects and speci�cation (6) is

in �rst di�erences over time; for out-of-sample predictive regressions in Table 2, speci�cation (4) is an IV second-stage, where the �rst stage

is equivalent to the cross-sectional regression (1) in Table 1. Top panel corresponds to the baseline calibration (see Table 6); bottom panel

corresponds to the robustness calibration (see footnote 47).
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Table A3: Robustness to distribution assumptions: additional details

Data Baseline R1 R2 R3

Granular accounting
Granular contribution 17.8% 17.8% 1.2% 18.2%
Export share contribution 54.4% 48.5% 85.0% 54.8%

Estimated parameters
θ (θ′ in R2) 4.382 4.302 0.532
τ 1.342 1.281 1.560
F (×105) 1.179 0.771 0.310
µT 0.095 0.377 0.154
σT (σ′T in R1) 1.394 1.467 0.801
L∗/L 1.932 1.447 1.377

Moments
1. Log number of �rms, log M̃z 5.631 5.429 5.709 5.348 5.470
3. Top-�rm sales share, s̃z,1 0.197 0.205 0.207 0.174 0.201
5. Top-3 sales share,

∑3
j=1s̃z,j 0.356 0.343 0.344 0.326 0.336

7. Imports/dom. sales, Λ̃z 0.365 0.354 0.350 0.364 0.335
9. Exports/dom. sales, Λ̃∗′z 0.328 0.345 0.348 0.348 0.314

11. Frac. of sectors with X̃z > D̃∗z 0.185 0.095 0.059 0.122 0.040
Regression coe�cients:
12. export share on top-�rm share, b̂∗1 0.215 0.234 0.257 0.012 0.235
13. export share on top-3 share, b̂∗3 0.254 0.222 0.219 0.013 0.228
14. import share on top-�rm share, b̂1 −0.016 −0.011 0.010 0.139 −0.044
15. import share on top-3 share, b̂3 0.002 0.008 0.040 0.146 −0.032

Overall Loss Function — 0.067 0.077 0.170 0.086

Note: Additional results behind the robustness checks in Table 5 (upper panel reproduces the counterfactual variance decompositions), where

as before: R1—fat-tailed Tz/T ∗z ; R2—log-normal ϕz,i; and R3—non-granular foreign (under the baseline parametrization). The middle and

lower panels report the parameter estimates (as in Table 3) and select moment �t (as in Table 4). The overall loss function is in units of

the average proportional deviation from the empirical moments, namely
√

1
15
L(Θ), for a given model speci�cation, with L(Θ) de�ned in

Appendix C; for example, the baseline speci�cations misses the average moment by 6.7%, while R2 by 17%.
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B Theory Appendix

B.1 Continuous DFS-Melitz model

We review here the continuous model, which serves as a benchmark in our granular analy-
sis. Consider a two-country multi-sector extension of the Melitz (2003) model, with Ricardian
comparative advantage across a unit continuum of sectors indexed by z ∈ [0, 1], as in Dorn-
busch, Fischer, and Samuelson (1977).54 We refer to this benchmark economy as DFS-Melitz.
More speci�cally, within each sector z we consider the Chaney (2008) version of the Melitz
model without free entry, in which an exogenous mass of �rms M̄z are present and their pro-
ductivities are drawn from a Pareto distribution with a sector-speci�c lower bound ϕz and a
shape parameter θ common across all sectors. We show below that in this model, the overall
sectoral productivity is determined by Tz = M̄z · ϕθz , as in (8). The two countries di�er in the
sectoral productivity measures, {Tz} at home and {T ∗z } in foreign, which is the source of the
Ricardian comparative advantage across sectors.

Housebolds are as described in Section 4 with the exception that, instead of (4), the sectoral
CES consumption bundles aggregate over a continuum of individual varieties ω:

Qz =

[∫
ω∈Ωz

qz(ω)
σ−1
σ dω

] σ
σ−1

, (A1)

where Ωz is the set of varieties available for consumption in sector z at home, and the resulting
price index is Pz =

[ ∫
ω∈Ωz

pz(ω)1−σdω
]1/(1−σ). The foreign demand structure is symmetric,

with Ω∗z replacing Ωz .

Firms and productivity are also as described in Section 4, with the exception that M̄z is
a deterministic mass of existing shadow �rms in each sector, with individual productivities
ϕz(ω) ∼ iid Pareto(θ, ϕz) with P{ϕz(ω) ≤ ϕ} = 1 − (ϕz/ϕ)θ representing the realized
productivity frequencies. A continuous model requires a parameter restriction θ > σ − 1.

Each �rm is in�nitesimal in the markets it serves. Therefore, upon entry, �rms compete
according to monopolistic competition in each market. They set a constant markup σ/(σ− 1)

over their marginal costs. This implies that the �rm’s operating pro�t in each market equals
1/σ of its revenues, and the overall pro�t of the �rm can be written as:

πz(ω) =

[(
σ

σ − 1

w/Pz
ϕz(ω)

)1−σ
αzY

σ
− wF

]+

+

[(
σ

σ − 1

τw/P ∗z
ϕz(ω)

)1−σ
αzY

∗

σ
− w∗F ∗

]+

,

54This model extends Melitz (2003) in a multi-sector way, the same way Costinot, Donaldson, and Komunjer
(2012) extend the Eaton and Kortum (2002) model. Other papers which considered a multi-sector DFS-Melitz
environment, albeit under somewhat di�erent formulation, are Okubo (2009) and Fan, Lai, and Qi (2015).
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where we substituted the markup pricing rule over the marginal cost into the expression for
revenues (5), and we use the notation [x]+ ≡ max{0, x}.55 Firms with su�ciently high pro-
ductivities pro�tably enter the home and the foreign markets respectively, as is conventional
in the Melitz model. We denote with ϕh,z and ϕf,z the productivity cuto�s for a domestic �rm
to enter the home and foreign markets respectively in sector z, and rewrite pro�ts as:

πz(ω) = wF

[(
ϕz(ω)
ϕh,z

)σ−1

− 1

]+

+ w∗F ∗
[(

ϕz(ω)
ϕf,z

)σ−1

− 1

]+

,

ϕh,z = σ
σ−1

w
Pz

(
σwF
αzY

)1/(σ−1)

and ϕf,z = σ
σ−1

τw
P ∗z

(
σw∗F ∗

αzY ∗

)1/(σ−1)

.

(A2)

The foreign �rms are symmetric, and we denote with π∗z(ω) their pro�ts, and with ϕ∗h,z and
ϕ∗f,z their productivity cuto�s for entry into the home and foreign markets respectively.

Sectoral equilibrium Using the de�nition of the price index, the markup pricing rules, the
cuto� de�nitions in (A2), and the Pareto productivity distribution, we can integrate to solve
for the price index in sector z in the home market:

Pz =
σ

σ − 1
w

[
κ

κ− 1

Tz
1− Φz

]−1/θ (
σwF

αzY

)(κ−1)/θ

, (A3)

where κ ≡ θ/(σ − 1) and Φz is the foreign share, as de�ned in (15).56 The sectoral price index
in (A3) increases in the local wage rate and in the relative �xed cost of entry (wF )/(αzY ), and
decreases in sectoral productivity Tz and in the foreign share Φz , which re�ects the gains from
trade (see ACR). Using (A3), we can express all sectoral variables as functions of the general
equilibrium vector (w,w∗, Y, Y ∗) and exogenous parameters of the model, completing the
description of the sectoral equilibrium.

The de�nition of the foreign share Φz , and its symmetric counterpart in the foreign coun-
try Φ∗z , makes it straightforward to calculate sectoral exports of home and foreign countries
respectively:

Xz = αzΦ
∗
zY
∗ and X∗z = αzΦzY, (A4)

and sectoral net exports is NXz = Xz −X∗z . In addition, we also characterize the allocation
55Speci�cally, a home �rm sets pz(ω) = σ

σ−1
w

ϕ(ω) in the home market, which results in revenues
(pz(ω)/P (z))

1−σ
αzY , according to (5), and the operating pro�ts equal fraction 1/σ of these revenues due to

constant markup pricing. Net pro�ts are operating pro�ts net of the �xed entry cost. Symmetric characterization
applies to pro�ts in the foreign market, with the di�erence that the marginal cost of delivering a good abroad is
augmented by iceberg trade cost τ .

56We note that the foreign share in (14) does not depend on the �xed costs since both domestic and foreign
�rms are assumed to face the same �xed costs of entry into the home market. As a result, �xed costs in this
framework have little e�ect on the key variables which characterize equilibrium, apart from the price indexes Pz
and P ∗z , which increase with the �xed cost of entry into the market, thereby reducing local welfare.
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of aggregate labor supply to sector z, which in the home market satis�es:

wLz = αzY
(
σκ−1
σκ

[1− Φz] + κ−1
σκ

Φz

)
+ αzY

∗ σ−1
σ

Φ∗z. (A5)

The last term is labor used in production of goods for foreign market, while the �rst two terms
are labor used for production and entry costs in the home market.57 Combining (A4) and (A5),
with (A8) below, we obtain the relationship between sectoral net exports and labor allocation:

Lz
L

= αz +
θ

σκ− 1

NXz

Y
. (A6)

In autarky, Lz = αzL due to the Cobb-Douglas preferences, yet in the open economy labor
reallocates towards the sectors with comparative advantage.

General equilibrium requires balanced current account and labor market clearing in both
countries, which (together with our choice of numerairew∗ = 1) allow us to solve for (w,w∗, Y, Y ∗).
These three conditions also imply countries’ budget balances (11) by Walras Law.

Balanced current account can, in general, be di�erent from the balanced trade in this model,
as exporting requires paying a �xed cost in the destination market. Nonetheless, the two
coincide in the continuous model with a Pareto distribution. The total home income obtain
from exports in sector z equals the value of exports Xz = αzΦ

∗
zY
∗ net of the �xed cost of

entry into the foreign market κ−1
σκ
αzΦ

∗
zY
∗, which is proportional to exports Xz = αzΦ

∗
zY
∗,

with a constant factor σκ−κ+1
σκ

in front. Aggregating across sectors and equalizing with the
foreign export income, we obtain the balanced current account (and trade balance condition):

Y
∫ 1

0
αzΦzdz = Y ∗

∫ 1

0
αzΦ

∗
zdz. (A7)

Next, aggregating sectoral labor demand in (A5) across z and using trade balance (A7), we
obtain aggregate labor market clearing:

wL = σκ−1
σκ

Y and w∗L∗ = σκ−1
σκ

Y ∗. (A8)

Therefore, total labor income is a constant share of GDP (total income), with the complemen-
tary share coming from �rm pro�ts. Combining (A7) with (A8) and normalizingw = 1, allows
to solve for (w∗, Y, Y ∗), completing the description of the general equilibrium.58

57A fraction σ−1
σ of revenues goes to cover variable production labor costs (in the country of production).

Integrating across �rms, a fraction κ−1
σκ of revenues goes to cover entry labor costs (in the country of entry).

Note that the �rst term in (A5) can be decomposed as σκ−1
σκ = σ−1

σ + κ−1
σκ . The remaining 1

σκ share is net pro�ts.
58Taking the ratio of the two equations in (A8), we have Y/Y ∗ = (wL)/(w∗L∗), which together with (A7)

allows to solve for both relative wage w/w∗ and relative incomes Y/Y ∗, as in the DFS model. Recall from (14),
that Φz and Φ∗z can be written as function of relative wages w/w∗ and the exogenous parameters of the model.
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DFS limit The continuous DFS-Melitz benchmark admits as a limiting case the classical DFS
formulation when within-sector �rm heterogeneity collapses. Speci�cally, the DFS model
emerges as a limit of the DFS-Melitz model when θ, σ → ∞, F → 0, while at the same time
holding constant κ = θ/(σ − 1), σF and the following productivity parameters: az ≡ T

1/θ
z

and a∗z ≡ (T ∗z )1/θ. In the DFS limit, the foreign shares Φz and Φ∗z in (14) become step func-
tions, de�ned by two cuto�s z, z̄ ∈ [0, 1]. Speci�cally, we rank all sectors z ∈ [0, 1] such
that az/a∗z = (Tz/T

∗
z )1/θ is a monotonically increasing function of z, and de�ne the cuto�s to

satisfy:
az

a∗z
=

w

τw∗
and

az̄
a∗z̄

=
τw

w∗
, (A9)

which implies z < z̄. For sectors z ∈ [0, z), foreign is the only supplier of the good on both
domestic and foreign markets, goods z ∈ (z, z̄) are non-traded and produced in both countries,
and for goods z ∈ (z̄, 1] home is the only world supplier.

Continuous limit Lastly, we discuss how the granular model of Section 4 admits the contin-
uous DFS-Melitz limit described above. We introduce a scaler M > 0, and rewrite the price
index in (9) and the market share in (5) as follows:

Pz =

[
1

M

∑Kz

i=1
p1−σ
z,i

]1/(1−σ)

and sz,i =
1

M

(
pz,i
Pz

)1−σ

,

where the granular model of Section 4 corresponds to the case with M = 1. Note that∑Kz
i=1 s̃z,i = 1 for any M > 0. We also rewrite the utility in (4) as Q̃z =

[
1
M

∑Kz
i=1 q̃

σ−1
σ

z,i

] σ
σ−1

,
where q̃z,i = Mqz,i are the new consumption units. Lastly, the derived productivity parameter
in (8) is generalized as Tz = M̄z

M
· ϕθz .

With this generalization to an arbitrary M > 0, we can now take the following limit:
M, M̄z → ∞ and F → 0, such that M̄z/M = const for all z and MF = const, and holding
constant the other parameters of the model, including the location of the productivity distribu-
tion ϕz . This keeps Tz unchanged. Furthermore, M̄z/M now represents the relative measure
of shadow �rms in sector z. The ratio Kz/M̄z tends to a constant related to productivity cut-
o�s (A2) in the continuous model; the price index Pz tends to a constant, the price level in
the continuous model (A3); the market shares sz,i → 0 so that the elasticity in (9) εz,i → σ

and markups become constant equal to σ/(σ − 1); and the non-negativity of pro�ts in (10)
with F → 0 at the same rate as sz,i → 0 now corresponds to the cuto� condition in (A2).
All sums (rede�ned to feature 1/M or sz,i weights) converge to corresponding integrals in the
continuous model, which is the direct counterpart to the granular model of Section 4.
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B.2 Derivations and proofs for the granular model

Foreign share Consider the foreign share Λz de�ned in (14). We reproduce

Λz =
∑Kz

i=1
(1− ιz,i)sz,i,

where ιz,i is an indicator for whether the �rm is of home origin. There is no analytical char-
acterization for the distribution of sz,i, which are complex transformation of the realized pro-
ductivity vector, which relies both on the price setting and entry outcomes (e.g., see (5), (9)
and (10)). Nonetheless, following EKS, we can prove that the conditional distributions of
sz,i|ιz,i = 1 and sz,i|ιz,i = 0 are the same, i.e. the distribution of sz,i is symmetric for �rms
of home and foreign origin, and hence the expectation of Λz simply equals the unconditional
expectation that any entrant is of foreign origin (i.e., the relative extensive margin of entry
into the home market).

The formal argument proceeds in two steps (all expectations ET{·} are conditional on the
realization of fundamental productivity Tz and T ∗z , which are hence treated as parameters):

1. For any s > 0, ET{ιz,i|sz,i > s} = PT{ιz,i = 1|sz,i > s} = Tzwθ

Tzwθ+T ∗z (τw∗)θ
= 1 − Φz , as

de�ned in (15). Hence,ET{ιz,i|sz,i > s} does not depend on s, andET{ιz,i|sz,i} = ET ιz,i.
See a sketch of a proof below.

2. ETΛz=
∑Kz

i=1 ET{(1−ιz,i)sz,i}=
∑Kz

i=1 ET{sz,i·ET{1−ιz,i|sz,i}}=Φz

∑Kz
i=1 ET sz,i=Φz ,

since ET
{∑Kz

i=1 sz,i
}

= ET{1} = 1, and where the third equality uses property 1.

Property 1 follow from the Poisson-Pareto productivity draw structure and the application
of the Bayes’ formula. Indeed, in a given sectoral equilibrium, sz,i decreases with the cost
of the �rm cz,i, which in turn decreases with the �rm productivity (ϕz,i if the �rm is home
and ϕ∗z,i if the �rm is foreign; see (7)). Given the productivity draw structure, the number of
home �rms with productivity above ϕ is a Poisson random variable with parameter ϕ−θTz ,
and symmetrically for the foreign �rms. Consequently, the number of home and foreign �rms
with a cost below c are independent Poisson random variables with parameters (w/c)−θTz and
(τw∗/c)−θT ∗z , respectively. Therefore, we can calculate:

PT{ιz,i = 1|sz,i > s} = PT{ιz,i = 1|cz,i < c}

=
PT{cz,i < c, ιz,i = 1}∑

ι∈{0,1} PT{cz,i < c, ιz,i = ι}
=

(w/c)−θTz
(w/c)−θTz + (τw∗/c)−θT ∗z

= 1− Φz.

Therefore, we conclude that indeed ETΛz = Φz , and the granular residual Γz = Λz − Φz is
zero in expectation for any sector z (see (15) and (16)).
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Equilibrium system We reproduce here the full general equilibrium system of the granular
model, which consists of the aggregate budget constraints and labor market clearing in both
countries. Using (10) and (12), we write the home country budget Y = wL+ Π constraint as:

Y = wL+ Y (1− Λ)
µ̄H − 1

µ̄H
− wFKH + Y ∗Λ∗

µ̄∗H − 1

µ̄∗H
− w∗F ∗K∗H , (A10)

where

KH =

∫ 1

0

[∑Kz

i=1
ιz,i

]
dz,

K∗H =

∫ 1

0

[∑K∗z

i=1
(1− ι∗z,i)

]
dz,

1− Λ =

∫ 1

0

αz(1− Λz)dz =

∫ 1

0

αz

[∑Kz

i=1
ιz,isz,i

]
dz,

Λ∗ =

∫ 1

0

αzΛ
∗
zdz =

∫ 1

0

αz

[∑K∗z

i=1
(1− ι∗z,i)s∗z,i

]
dz,

1

µ̄H
=

1

1− Λ

∫ 1

0

αz

[∑Kz

i=1
ιz,i

sz,i
µ(sz,i)

]
dz,

1

µ̄∗H
=

1

Λ∗

∫ 1

0

αz

[∑K∗z

i=1
(1− ι∗z,i)

s∗z,i
µ(s∗z,i)

]
dz,

where µ(s) = ε(s)
ε(s)−1

and ε(s) = σ(1− s) + s, as de�ned in (9). Note that:

• KH and K∗H are the total numbers of the home �rms selling in the home and foreign
markets respectively, across all industries;

• 1−Λ and Λ∗ are the average shares of the home �rm sales in aggregate home and foreign
expenditure Y and Y ∗ respectively;

• µ̄H and µ̄∗H are the (harmonic) average markups of the home �rms in the home and
foreign markets respectively, and hence (µ̄H − 1)/µ̄H and (µ̄∗H − 1)/µ̄∗H are the average
shares of operating pro�ts in aggregate revenues of the home �rms in the home and
foreign markets respectively, since µ(sz,i)−1

µ(sz,i)
=

pz,i−cz,i
pz,i

for a �rm with market share sz,i.

A similar equation de�nes foreign budget Y ∗ = w∗L∗ + Π∗, which we write as:

Y ∗ = w∗L∗ + Y ∗(1− Λ∗)
µ̄∗F − 1

µ̄∗F
− w∗F ∗K∗F + Y Λ

µ̄F − 1

µ̄F
− wFKF , (A11)

with K∗F , KF , µ̄∗F and µ̄∗F de�ned by analogy with the respective variables for home �rms.
Now consider the home labor market clearing condition in expenditure terms (13), which
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we write as:
wL = wFK + Y (1− Λ)

1

µ̄H
+ Y ∗Λ∗

1

µ̄∗H
, (A12)

where
K = KH +KF =

∫ 1

0

Kzdz

is the total entry of �rms in the home market across all sectors. A symmetric labor market
clearing condition for foreign is:

w∗L∗ = w∗F ∗K∗ + Y ∗(1− Λ∗)
1

µ̄∗F
+ Y Λ

1

µ̄F
, (A13)

where K∗ = K∗H +K∗F is the total entry of �rms in the foreign market across all sectors.
It is immediate to verify that the equilibrium system (A10)–(A13) has the following properties:

1. It is linear in the general equilibrium vector (w,w∗, Y, Y ∗) conditional on the vector

(Λ,Λ∗, KH , K
∗
H , KF , K

∗
F , K,K

∗, µ̄H , µ̄
∗
H , µ̄F , µ̄

∗
F ),

which depends on the outcome of the partial equilibrium
{
Kz, K

∗
z , {sz,i}Kzi=1, {s∗z,i}

K∗z
i=1

}
z∈[0,1]

.

2. It is linearly dependent, so that any of the four equations follow from the other three.
Normalizing w = 1 and dropping any of the equations (for example (A11)) results in
a linearly independent system of three equations in three unknown (w∗, Y, Y ∗) with a
unique solution.

3. Substituting in labor market clearing (A12) into the budget constraint (A10) (or equiva-
lently (A13) into (A11)) results in the current account balance condition (which in gen-
eral di�ers from the trade balance NX = Λ∗Y ∗ − ΛY ):

ΛY − wFKF = Y ∗Λ∗ − w∗F ∗K∗H . (A14)

The equilibrium system can be represented by system of three linearly independent
equations (A12)–(A14). Note the similarity and di�erences of this equilibrium system
with a corresponding system in the continuous model (A7)–(A8). In particular, due to
discreteness and variable markups, the shares of labor income and pro�ts in aggregate
income are no longer constants (σκ− 1)/(σκ) and 1/(σκ).

Finally, using the same strategy we used to prove that ETΛz = Φz above, we can show that

Λ =
KF

KH +KF

= Φ =

∫ 1

0

αzΦzdz and Λ∗ =
K∗H

K∗H +K∗F
= Φ∗ =

∫ 1

0

αzΦ
∗
zdz,
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where the integrals of Φz and Φ∗z can be viewed as expectations taken over the joint distribution
of (αz, Tz/T

∗
z ). As αz and Tz/T ∗z are assumed independent, the values of Φ and Φ∗ depend

only on the parameters θ, τ and (µT , σT ) of the distribution of Tz/T ∗z . Using this result, we can
simplify the equilibrium system. For example, conditions (A10) and (A14) can be rewritten as:

Y = wL+ (1− Φ)

[
Y
µ̄H − 1

µ̄H
− wFK

]
+ Φ∗

[
Y ∗

µ̄∗H − 1

µ̄∗H
− w∗F ∗K∗

]
,

Φ
[
Y − wFK

]
= Φ∗

[
Y ∗ − w∗F ∗K∗

]
,

which corresponds to the expression in footnote 24. Lastly, note that in a closed economy
Φ = Φ∗ = 0, and therefore the country budget constraint (A10) becomes Y = µ̄w[L − FK],
as we have it in footnote 20.

C Estimation Appendix

Detailed estimation procedure:

1. For given parameter values of µT and σT , we draw N relative sectoral productivities Tz
from the log-normal distribution (recall our normalization T ∗z ≡ 1).59 We keep the seed
of all random draws constant throughout estimation.

2. For given values of parameter θ and realization of Tz in each sector z = 1..N , we draw
productivities of potential entrants {ϕz,j}Mz

j=1 in a manner consistent with the distribu-
tional assumptions of the model.60 We obtain foreign productivity draws {ϕ∗z,j}

M∗z
j=1 in

the same manner.
59The numerical procedure necessarily simulates a �nite number of sectors, and not a continuum, so that the

law of large numbers applies only approximately across sectors. Increasing the number of simulated sectors
helps limit small-sample deviation from the model-based deterministic quantities. We increased the number of
sectors in the simulated sample from 119 to four times that (476), to limit the dependency of GE quantities to the
small-sample randomness of draws, striking a balance with computational feasibility of estimation. In particular,
with 476 sectors, the variation in the GE quantities across simulations is less than 1% of their median values. We
check that the average moments calculated using this sample approximate closely their population means. When
computing conditional moments by �ner bins of sectors to build counterfactual Figures 1–3, we draw a larger
number of sectors (10,000) in order to increase precision.

60Speci�cally, we follow EKS in using rank-order statistics for the Poisson-Pareto data generating process to
directly draw the productivity of the most productive �rm, which follows a Frechet(θ, Tz) distribution, and each
�rm thereafter, with spacings following an exponential distribution. Speci�cally, denote Uz,j ≡ Tzϕ

−θ
z,j , where

j is the rank of domestic �rms in industry z. Eaton and Kortum (2010) show that Uz,1, (Uz,2 − Uz,1), (Uz,3 −
Uz,2), . . . are iid exponential with cdf GU (u) = 1− e−u. We use the transformation to convert the exponential
draws into productivity draws {ϕz,j}. We draw enough shadow �rms in each sector to ensure that the least
productive ones never enter the market. Speci�cally, we use 5,000 �rm draws by sector for France and 10,000 for
ROW. For smaller sectors (in terms of Cobb-Douglas shares), we use 700 and 1,400 draws respectively, to reduce
computing time. We check that with these number of draws, and over the relevant range of parameter values
used in estimation, it is never the case that all shadow �rms enter in any of the sectors.
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3. With the calibrated value of the relative wage rate w/w∗ and normalization w = 1,
and given the productivity draws and the remaining model parameters (σ, τ, F ), we
implement the following �xed point procedure:

(i) Take an initial guess for (Y, Y ∗), which completes the general equilibrium vector
X = (w,w∗, Y, Y ∗) .

(ii) Given X, solve for sectoral equilibrium in each sector and each country, charac-
terizing Z ≡

{
Kz, {sz,i}Kzi=1, K

∗
z , {s∗z,i}

K∗z
i=1

}
, as described in Section 4.61

(iii) GivenZ and the normalizationL = 100, use the general equilibrium conditions (11)
and (13) to solve for the new values of Y and Y ∗. Note that these equations are
linear in (Y, Y ∗), and hence this is done by simple inversion.

(iv) Update the initial values of (Y, Y ∗) taking a half step between the initial vector
from step (i) and the new vector from step (iii), and loop over until convergence.

Upon convergence of (Y, Y ∗), we use the foreign counterpart to labor market clear-
ing condition (13) (namely, (A13)) to recover the value of L∗, which is consistent
with the general equilibrium relative wage w/w∗, given parameter vector Θ.

(v) Upon convergence of the equilibrium vector (X,Z), simulate the model and calcu-
late the moment vectorMz(Θ) for all sectors z = 1..N , corresponding to param-
eter vector Θ = (σ, θ, τ, F, µT , σT ).

4. On a grid for parameters Θ with 20,000 points, evaluate the moment functionMz(Θ),
with moments described in Table 4, and the associated SMM loss function:

L(Θ) ≡
(
M̄(Θ)− m̃

)′
W
(
M̄(Θ)− m̃

)
= w′

(
M̄(Θ)− m̃

)2
,

where M̄(Θ) ≡ 1
N

∑N
z=1Mz(Θ), m̃ are the values of the moments in our empirical

dataset, and W = diag{w} is the weighting matrix, which we chose to be diagonal
and inversely proportional to m̃2.62 Table 4 also reports the relative contribution of

61Solving for exact equilibrium values of Kz and K∗z is computationally costly, therefore, we adopt the fol-
lowing approximation procedure. We solve for equilibrium K̂z under the counterfactual assumption of constant
markup equal to µ̂ = σ/(σ−1), which is a simple analytical problem. It is easy to show that K̂z is a lower bound
for equilibrium Kz with variable markups (since from (9) equilibrium markups are strictly higher than µ̂, and
hence price level is higher, yielding room for additional entry). We solve for oligopolistic equilibrium markups
and market shares given K̂z . Given these markups for the �rst K̂z �rms, we then solve for additional entry
∆Kz , assuming the marginal entrants charge constant markup µ̂. We then setKz = K̂z +∆Kz , and recalculate
the oligopolistic equilibrium markups and market shares for this Kz . We check numerically that this procedure
recovers a Kz which di�ers from the exact solution by at most one or two �rms. Given that a typical French
sector has over 300 �rms, we view this approximation error as small.

62We use this weighting to express the moment �t in percentage-deviation terms, apart for the �rst moment
log M̃z , which is already in relative (log) terms (see Table 4 for the list of moments). For moments 14 and 15,
with empirical values close to zero, w uses the values of the symmetric moments 12 and 13. Finally, we down-
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each moment k to the overall loss function, which with a diagonal weighting matrix is
straightforward to calculate as wk

(
M̄k(Θ̂) − m̃k

)2
/L(Θ̂), where subindex k refers to

the kth entry of the respective vector.

We use a Halton sequence to de�ne the grid points, so that it covers the whole parameter
space more e�cienctly than if points were regularly spaced.

5. With the results from the �rst Halton grid, we recompute a second �ner Halton grid of
20,000 points. We restrict this grid to be wide enough to ecompass the 50 best �tting
parameter values of the previous grid, but exclude the regions with the highest loss func-
tion. We iterate this procedure �ve times. After �ve iterations, the procedure converges
to a narrow region of the parameter space.

6. We take the best 20 of all the evaluated grid points, i.e. the ones that correspond to the
lowest value of the loss function, and start local minimizers from each of them. We take
as our estimate (the global minimizer) the point of local convergence with the lowest
loss function, Θ̂ = arg minΘ L(Θ).

Standard errors (asymptotic inference) We use the standard SMM asymptotics (as the num-
ber of sectors increases unboundedly) to calculate the standard errors for our estimator Θ̂.
Rewrite the moment conditions as Emi(Θ) = 0, where mi(Θ) = M̄(Θ)− m̃i is the moment
function such that 1

Ñ

∑Ñ
i=1mi(Θ) = M̄(Θ) − m̃, where i correspond to one of Ñ sectors

we observe in the data. With this, we express our SMM estimator Θ̂ minimizing L(Θ) as a
conventional extremum estimator:

Θ̂ = arg min
Θ

1

Ñ

Ñ∑
i=1

mi(Θ)′W
1

Ñ

Ñ∑
i=1

mi(Θ).

Furthermore, note that M̄(Θ) are model-evaluated moments, which do not contribute to
the sample variation in mi(Θ).63 Thus, all sample variation emerges from the empirically
measured moments m̃i over a �nite sample of Ñ sectors. This gives rise to the standard errors
of SMM estimation, which we compute according to the conventional asymptotic theory for
an extremum estimator:√

Ñ · (Θ̂−Θ)→ N (0, VΘ) with VΘ ≡ (J ′WJ)−1J ′WHWJ(J ′WJ)−1,

where VΘ is the asymptotic sandwich-form variance matrix with J = E
{∂mi(Θ)

∂Θ

}
is the Jaco-

weight all standard deviation moments relative to the mean moments by a factor of 3, to emphasize the greater
importance of matching the average patterns relative to the patterns of variation across sectors.

63We simulate a su�cient number of sectors in the model, so that this assumption is indeed accurate.
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bian andH = E{mi(Θ)mi(Θ)′} is the variance of moments, both in population under the true
parameter vector Θ. Note that with our SMM moment structure, the e�ects of the data m̃ and
the model parameters Θ separate inside the moment function mi(Θ), and hence the Jacobian
J does not depend at all on the data. Hence we calculate J by numerical di�erentiation using
the model-generated moment function M̄(Θ), evaluated around Θ = Θ̂, that is Ĵ = ∂M̄(Θ̂)

∂Θ
.

The variance of moments matrix H depends on both M̄(Θ̂) and the data, and we calculate its
estimate as follows:

Ĥ =
1

Ñ

Ñ∑
i=1

mi(Θ̂)m′i(Θ̂) =
1

Ñ

Ñ∑
i=1

(
M̄(Θ̂)− m̃i

)(
M̄(Θ̂)− m̃i

)′
.

We combine Ĥ and Ĵ , and the weighting matrix W, to calculate the estimate of the variance
matrix for the estimated parameter vector Θ̂:

V̂Θ =
(
Ĵ ′WĴ

)−1
Ĵ ′WĤWĴ

(
Ĵ ′WĴ

)−1
.

The standard errors for parameters in Table 4 are then calculated as s.e.(Θ̂) =
√

diag
(
V̂Θ/Ñ

)
.

Robustness to Pareto �rm productivity draws We describe here the procedure for the ro-
bustness check of Section 6.2, in which we replace the Pareto distribution for ϕz,i draws with
a thinner-tailed log-Normal:

1. The number of shadow �rms in sector z at home is a deterministic constantMz=round(Mαz)

proportional to expenditure size of the sector αz , for some large constantM � 1. In for-
eign,M∗

z = kMz for some factor k > 1 (re�ecting the relative size of the foreign, L∗/L).
This details are only important to the extent we need to ensure that M and k are large
enough that the least productive �rms are never active, as in the baseline. In practice,
we set k = 1.5 and M = 350 (recall that the average of αz is one).

2. We set µ∗z = 0 for all z as a normalization, and choose µz = log Tz
T ∗z
∼ N (µT , σ

2
T ) for

each sector in the simulation.

3. Draw �rm productivities according to ϕz,i ∼ logN (µz, θ
′2) for Mz home shadow �rms

and ϕ∗z,i ∼ logN (µ∗z, θ
′2) for M∗

z foreign shadow �rms.

4. Given these log-Normal productivity draws, carry out the rest of the numerical solution
and estimation procedure, as described above, to estimate (θ′, σT , µT , τ, F ). Check that
least productive �rms are inactive in every sector-country (adjust k and M if needed).
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