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Abstract

We propose a spatial equilibrium model with heterogeneous households holding

general non-homothetic preferences over tradable goods and housing. In equilibrium,

desirable and productive locations command high housing prices. So long as housing

is a necessity, these locations are disproportionately inhabited by high-income earners

who are relatively less affected by high housing prices. We clarify how this source

of sorting complements other potential sorting forces in spatial equilibrium models,

namely, comparative advantage in production and heterogeneous preferences for loca-

tions. We show how to measure changes in welfare inequality across income groups

in a theoretically-consistent way when housing is a necessity, extending the approach

popular in models with homothetic preferences. We use our framework to track the

evolution of welfare inequality between college and non-college graduates in the United

States between 1980 and 2020. We find that, accounting for change in prices, it has

risen by more than nominal wage inequality, even as college graduates increasingly sort

into cities with expensive housing over this time period.

∗For comments, suggestions, and discussions, we are grateful in particular to Don Davis, Jonathan Dingel,
Gilles Duranton, J. Peter Neary, Rowan Shi, Kohei Takeda, and participants to seminars and conferences at
Bern, Bocconi, CURE, Duisburg, Geneva, HEC Paris, NYU-AD, OSUS, SecGo, Singapore Management Uni-
versity, and the Urban Economics Association. We thank Matthew Tauzer for excellent research assistance.
Cécile Gaubert acknowledges support from NSF CAREER grant #1941917.

†uc Berkeley, nber and cepr. cecile.gaubert@berkeley.edu
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1 Introduction

Cities differ dramatically in size, productivity, and cost of living. They also vary in composi-

tion: larger, more productive, and more expensive cities typically attract a disproportionate

share of high-skill workers and high-income earners — that is, they feature spatial sorting

(Diamond and Gaubert, 2022). While a growing literature relies on quantitative spatial

models to study the uneven distribution of economic activity in space, these models typi-

cally assume homogeneous agents with homothetic preferences over housing and consumption

(Redding and Rossi-Hansberg, 2017). These assumptions facilitate tractability and welfare

analysis and make these models well suited to analyze quantitative differences across cities,

such as their relative sizes. However, they cannot, by construction, explain why cities differ

in their composition.

In this paper, we propose a spatial model where heterogeneous households hold general

non-homothetic preferences for housing. The model is well-suited to analyze spatial sorting,

as it makes consumption patterns—and thus location choices— income-dependent. Higher-

ability and higher-income workers, who allocate a smaller share of their income to housing,

are more willing to pay the premium to live in attractive, high-cost cities, leading to endoge-

nous spatial sorting. Our framework has three main advantages. First, the assumption of

non-homotheticity is realistic. Second, it provides a microfounded driver of sorting. This is in

contrast to a common alternative in the literature that relies on a standard homothetic model

but assume exogenous differences in preferences for urban amenities across worker groups.

While useful for describing observed patterns, such models assume preference heterogeneity

rather than deriving spatial sorting from fundamental economic behavior. Third, our ap-

proach preserves a common preference structure across agents, making welfare comparisons

meaningful.

We first characterize the theoretical properties of a spatial model with general non-

homothetic preferences. We then show how the model allows to track welfare inequality be-

tween skill groups using a convenient sufficient statistics approach. This extends the popular

methods in the quantitative spatial literature to settings with non-homothetic preferences.

A key sufficient statistic for welfare in our framework is the housing expenditure share,

which plays no role in models with homothetic preferences. Finally, we use our framework to

quantify the evolution of welfare inequality between college and high-school graduates in the

United States from 1980 to 2020, accounting for changes in spatial sorting. Moretti (2013),

using a framework with homothetic preferences, finds that real wages grew less unequal

than nominal wages because college graduates increasingly clustered in expensive cities. In

contrast, when we incorporate income-dependent housing expenditure shares, we find that
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welfare inequality rose by more than nominal wage differences suggest. Although low-wage

workers are under-represented in expensive cities, those who do live there bear a heavier

burden from high housing costs compared to high-income workers.

Our framework is motivated by four established stylized facts:

1. Housing is more expensive in large cities. For instance, dwelling rent increase

with respect to urban population density with an elasticity of about 0.15 – as reported

in the meta-analysis of Ahlfeldt and Pietrostefani (2019).

2. Housing demand is income-inelastic. The expenditure share of housing falls with

household income.1 In addition, housing is the largest single component of household

consumption, making it determinant in location choices. Specifically, housing costs

represent a median of 28% of a household’s expenditures and up to 62% for the bottom

decile of renters by income based on French data (Combes, Duranton, and Gobillon,

2019).

3. The urban wage premium increases with workers’ skill. Wages rise with city

size, and this urban wage premium is larger for more skilled workers.2 Davis and

Dingel (2020) report that the elasticity of the urban skill premium with respect to city

population size is 0.3 in the United States.

4. Higher incomes and highly educated workers are over-represented in larger

cities in the U.S. (Glaeser and Mare, 2001; Baum-Snow and Pavan, 2013) and be-

yond.3 This pattern holds within narrowly defined skilled groups: the elasticity of

PhD graduates to city population is 1.14 in the United States (Davis and Dingel,

2020).

Fact 2 is the foundation for our core assumption: we take household preferences to be non-

homothetic, with housing as a necessity. Combined with Fact 1, this will generate a natural

mechanism for sorting: high-income households self-select into larger, more expensive cities.

Alone, however, Facts 1 and 2 would imply that the urban wage premium should decrease

with city size (Black, Kolesnikova, and Taylor, 2009). In spatial equilibrium, differences in

1See e.g. Aguiar and Bils (2015); Albouy, Ehrlich, and Liu (2016); Finlay and Williams (2022); Ganong
and Shoag (2017); Glaeser, Kahn, and Rappaport (2008).

2See e.g. Baum-Snow and Pavan (2013); Baum-Snow, Freedman, and Pavan (2018); Davis and Dingel
(2019); Card, Rothstein, and Yi (2023).

3The fact was established in particular for France (Combes, Duranton, and Gobillon, 2008) , Britain
(D'Costa and Overman, 2014), as well as in the developing world (Dingel, Miscio, and Davis, 2021). In
contrast to this evidence of sorting on observed individual characteristics, the evidence of sorting on unob-
served ability is more mixed (Baum-Snow and Pavan, 2012; Combes, Duranton, and Gobillon, 2008; Dauth,
Findeisen, Moretti, and Suedekum, 2022; De La Roca and Puga, 2017).
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the burden of housing costs should offset differences in skill returns across locations. Since

housing costs affect a smaller share of the expenditure of high-income households than that

of low-income households, standard compensating differential logic suggests that skill premia

should be lower in expensive cities. Therefore, Fact 3 suggests an additional force at play:

high-ability workers have a comparative advantage in productive cities. This comparative

advantage together with cost-of-living effects drive spatial sorting (Fact 4).4

The paper is organized as follows. We first lay out our spatial sorting model and establish

conditions for equilibrium existence and uniqueness (Section 2). Cities differ in exogenous

amenities and productivity. Workers are endowed with heterogeneous ability, which may

be relatively more valuable in some cities than others, and have general, potentially non-

homothetic preferences over a freely traded consumption good and housing. They also have

idiosyncratic preferences for locations, generating imperfect sorting within skill. We do not

impose specific functional forms on preferences or technology. We establish that the equi-

librium exists under general technical conditions. Moreover, we show that the equilibrium

is unique if there is a single type of workers, whether preferences are homothetic or not, or

if utility is homogeneous in income, whether workers have homogeneous ability or not. In

contrast, the interaction between non-homothetic preferences and heterogeneity in worker

types may generate multiple equilibria. In this case, we provide sufficient conditions for

uniqueness that can be evaluated in quantitative applications.

We then characterize theoretical conditions under which spatial sorting emerges (Section

3). We highlight how these conditions relate to existing frameworks in the literature. A key

insight is that seemingly innocuous functional form choices can strongly influence sorting

outcomes. We clarify that both the sub-utility of consumption and the distribution of loca-

tional preference shocks affect sorting. In fact, it is the combination of these two that drive

theoretical results, rather than each of them separately. As a result, the a priori uncontro-

versial choice of the distribution of idiosyncratic shocks for locations can be as consequential

for spatial sorting as choosing between a homothetic and a non-homothetic utility function.

We next examine how city fundamentals impact worker composition. In equilibrium, cities

with better consumption or production amenities exhibit higher housing rents, consistent

with classic urban theory (Rosen, 1979; Roback, 1982). We establish conditions under which

higher-ability workers sort into these cities. Non-homothetic preferences alone yield such

sorting, since even in the absence of comparative advantage and even if household agree on

the quality of local amenities, higher income workers can more easily afford the higher cost

4A third driver of sorting may be taste-based, driven by heterogeneous preferences for local amenities or
local public goods (Kuminoff, Smith, and Timmins, 2013; Diamond, 2016; Fajgelbaum and Gaubert, 2020;
Diamond and Gaubert, 2022). We discuss this source of sorting briefly in Section 3.1.
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of living in attractive places. In addition, sorting also arises if high-type workers have what

we define as a “strong comparative advantage” in productive cities. In this case, the two

sorting mechanisms reinforce each other.

Third, we study the normative implications of the model (Section 4). In quantitative

spatial models with homogeneous agents, welfare changes are often measured using a “suf-

ficient statistics” approach, which computes the representative welfare effects of economic

shocks based on model elasticities and a small set of key statistics from the data. We extend

this approach to our model with heterogeneous agents and non-homothetic preferences to

measure the distributional consequences of shocks. We show that relative welfare changes

across any pair of skill types in the economy can be expressed as a function of three statistics

that are usually readily available in the data: (i) relative change in nominal incomes, (ii)

relative changes in location choices, and (iii) relative change in housing expenditure shares.

The first two elements are standard in models with homothetic preferences, but the third

component is novel to our framework. It captures how local housing price changes affect

workers differently based on income, reflecting the unequal burden of housing costs. Intu-

itively, measuring changes in expenditure share on a necessity is informative about welfare

change (Atkin, Faber, Fally, and Gonzalez-Navarro, 2023). Finally, to enable meaningful

interpersonal welfare comparisons in the context of non-homothetic preferences, we convert

utility changes into money-metric terms.

We apply this framework to measure how welfare inequality between college and high-

school graduates evolved in the United States between 1980 and 2020 (Section 5). Our

approach differs from Moretti (2013)’s original contribution on this question in two ways.

First, we account for heterogeneous housing expenditure shares. College graduates spend a

substantially smaller share of income on housing than high-school graduates, which alters

the welfare effects of housing price changes. Second, we incorporate the fact that sorting is

not random – newcomers attracted to a city following a shock are a selected group that has

lower intrinsic preference for that location than incumbent residents. This leads to a selection

correction when computing welfare changes. If nominal income inequality has increased by

25% between 1980 and 2020, welfare inequality has increased by 27% to 31%, depending on

the specification. In the context of the housing affordability crisis, taking into account the

disproportionate burden that housing cost place on lower-income households – even though

they sort less into expensive cities than high-income ones – sheds a strikingly different light

on welfare inequality.

This paper contributes to the Economic Geography literature by studying the properties

of spatial models with non-homothetic preferences, thereby enriching the quantitative spatial

toolbox pioneered by Ahlfeldt, Redding, Sturm, and Wolf (2015) and Allen and Arkolakis
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(2014). Within quantitative spatial frameworks, a literature posits different homothetic pref-

erences for different groups to generate sorting across cities (Diamond, 2016; Giannone, 2019;

Fajgelbaum and Gaubert, 2020) or sorting within cities across neighborhoods (Tsivanidis,

2019; Almagro and Domı́nguez-Iino, 2020), different from our approach. In contrast, some

recent applied quantitative work has incorporated income-based sorting in their analysis

of sorting across regions or cities (Finlay and Williams, 2022; Fretz, Parchet, and Robert-

Nicoud, 2021; Takeda, 2022) or within cities (Couture, Gaubert, Handbury, and Hurst, 2023;

Hoelzlein, 2023; Gaigné, Koster, Moizeau, and Thisse, 2022; Tsivanidis, 2019). Also related,

Handbury (2021) measures the prevalence and welfare incidence of heterogeneous prices

over space. Our work complements these papers by deriving general positive and norma-

tive theoretical results. Our research also connects with earlier (non-quantitative) theories

of systems of cities, specifically those featuring heterogeneous agents making heterogeneous

location choices in equilibrium (Behrens, Duranton, and Robert-Nicoud, 2014; Davis and

Dingel, 2019). In these papers, sorting follows from the popular assumption of unit housing

consumption, an extreme form of non-homotheticity, which we relax. Finally our welfare

analysis relates to the recent work of Baqaee and Burstein (2022), Jaravel (2021), Jaravel

and Lashkari (2022) and Oberfield (2023) that study the measurement of welfare inequality

with income-dependent preferences in non-spatial contexts.

2 An Elementary Spatial Sorting Model With Non-

Homothetic Preferences

2.1 Setup

Consider an economy populated by a continuum of workers of heterogeneous skills t, s ∈ T .

The set of skills is discrete, and there is a fixed aggregate supply Lt of workers of skill t.

Workers make a discrete choice of where to live among n,m ∈ C ≡ {1, ..., N} locations. A

worker of type t supplies one unit of labor where they live, facing wage wtn in location n and

a rental cost of housing rn.

Preferences Preferences are the same for all workers. They consume a freely traded good

c (taken as the numeraire), housing h, and directly derive utility from the amenities An of

the city where they live. Worker ω has idiosyncratic preferences for locations {εωn}n∈C, iid
across workers. In line with extant work, we assume that utility is separable in its idiosyn-

cratic component, εin, and its common component, Ũ (c, h, An) and restrict the analysis to

distributions of idiosyncratic shocks that result in Luce aggregation. That is, there exists an
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increasing function g (.) such that we can write the fraction of workers of type t choosing to

live and work in location n as:

λtn =
V t
n∑

m∈C V
t
m

,

where V t
n ≡ g

(
Ṽ t
n

)
in a monotonic transform of the common component of indirect utility

in location n:

Ṽ t
n = max

c,h
Ũ (c, h, An)

such that c+ rnh = wtn.

In particular, under the assumption popular in the quantitative spatial literature that utility

is Ũε, i.e. multiplicative and separable in idiosyncratic shocks, and that idiosyncratic shocks

are distributed Frechet with shape parameter κ > 1, we have g
(
Ṽ t
n

)
=
(
Ṽ t
n

)κ
. Location

choice probabilities become:

λtn =

(
Ṽ t
n

)κ
∑

m∈C

(
Ṽ t
m

)κ . (1)

If instead utility is Ũ + ε and idiosyncratic shocks follow the standard Gumbel distribution,

an assumption popular in IO that is also used in the urban economics literature (see e.g.,

Almagro and Domı́nguez-Iino 2020; Diamond 2016; Giannone 2019), then g
(
Ṽ t
n

)
= exp Ṽ t

n

and choice probabilities are:

λtn =
exp Ṽ t

n∑
m∈C exp Ṽ

t
m

. (2)

With some abuse of terminology, we henceforth refer to V t
n as the (common component of)

indirect utility of type t in city n, even though it is a combination of the indirect utility proper,

Ṽ t
n , and of the functional form chosen for the distribution of the idiosyncratic preferences

shocks.

The Marshallian demand for housing in city n for skill t is denoted htn :

htn ≡ h
(
wtn, rn, An

)
.

We assume it is continuously differentiable in all its arguments. Furthermore, we take housing

to be a normal good so that htn is increasing in its first argument and decreasing in the second.

Our object of interest in this paper is the case where preferences are non-homothetic in (c, h).

Specifically, we will focus on the case where housing is a necessity, so that the expenditure
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share on housing is non-decreasing in income, consistent with empirical evidence.5 Denoting:

stn =
rnh

t
n

wtn
(3)

the housing expenditure shares, we assume in what follows that

∂stn
∂wtn

≤ 0. (4)

Popular functional forms Though we work with minimalist assumptions throughout,

and most of our results do not depend on parametric assumptions, applied work requires

using specific functional forms. It is therefore useful to summarize how popular functional

forms for preferences fit in our framework.

Table 1 does so. The first column lists Stone-Geary and the acronyms of five other classes

of non-homothetic preferences, several of which are well-known (see the Table caption for

the meaning of acronyms and for references). The second column reports the indirect utility

function V as a function of the vector of prices (p, r, w) and amenities A. We choose V to

be multiplicatively separable in amenities as we discuss in Section 3.1. Parameter ν ∈ {0, 1}
governs the (non-)homotheticity of each class of preferences. In all cases, preferences are

homothetic if ν = 0 and non-homothetic if ν = 1. Under the assumption ν = 1, the third

column imposes restrictions on the structural parameters that ensure that the inequality in

equation (4) holds (housing is a necessity).

Most applications in urban economics use either of the following polar preferences over

housing and the consumption good: homothetic Cobb-Douglas (in which case the price-

and income-elasticity of housing demand are unitary), or unit housing consumption (in

which households consume exactly one unit of housing).6 Recent exceptions include Albouy,

Ehrlich, and Liu (2016) and Finlay and Williams (2022), who use NH-CES, Eckert and

5In contrast, the Economic Geography literature usually models housing consumption assuming Cobb-

Douglas utility, so that expenditure share on housing is constant across households and cities (
∂stn
∂wtn

= 0).

This latter assumption is convenient, together with the assumption of homogeneous workers, to reflect the
aggregate patterns reported by Davis and Ortalo-Magné (2011): the median of the distribution of expenditure
share on housing is stable across cities. However, this aggregate empirical pattern masks heterogeneity in
consumption patterns of housing across incomes within cities – poorer households spend more on housing
as a share of their income – as well as heterogeneity in income distribution across cities. These cannot be
rationalized with Cobb-Douglas preferences and instead call for non-homothetic preferences, motivating the
current study.

6These polar cases are limiting cases of some of the functional forms listed in Table 2. Homothetic
Cobb-Douglas preferences correspond to limit case ν = 0 in all cases of Table 2, with the exception of
CRIE and NH-CES. The case of unit housing consumption corresponds to the limiting case ψ → 0 and the
normalization h = 1 if preferences are Stone-Geary, and to the limiting case ψ → 0, ι→ 1 if preferences are
PIGL.
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Table 1: Non-homothetic preferences: Functional forms

Preferences Indirect utility V Structural parameters

Stone-Geary V = A w−νhr
p1−ψrψ

ψ ∈ (0, 1), h > 0

PIGL V = A
[(

w
p1−ψrψ

)ι
− ν

γ

(
r
p

)γι]1/ι
ι, ψ ∈ (0, 1), γ ≥ 1

PIGLOG V = A
(
r
p

)ν
ln
(

w
p1−ψrψ

)
ψ ∈ (0, 1)

CRIE V = A

[(
w
r

)−ψ
+
(
w
p

)−ψ+ν(ψ−µ)]−1

ψ > µ

NH-CES w1−σ =
(
V
A

)1−σ [(V
A

)ν(µ−ψ)
r1−σ + p1−σ

]
σ ∈ (0, 1), ψ > µ > σ − 1

HCD 0 =
(
V
A

)µ
ln
(
r
w

)
+
(
V
A

)µ+ν(ψ−µ)
ln
(
p
w

)
ψ > µ

Notes: PIGL stands for "Price Independent Generalized Linearity" (Muellbauer, 1975), PIGLOG

stands for "Price Invariant Generalized Logarithmic" (Deaton and Muellbauer, 1980), CRIE

stands for "Constant Relative Income Elasticity" (Caron, Fally, and Markusen, 2014; Eeckhout,

Pinheiro, and Schmidheiny, 2014; Fieler, 2011; Hanoch, 1975), NH-CES stands for "Non

Homothetic Constant Elasticity of Substitution" (Albouy, Ehrlich, and Liu, 2016; Comin,

Lashkari, and Mestieri, 2021; Hanoch, 1975; Matsuyama, 2019; Sato, 1977), and HCD stands for

"Heterothetic Cobb-Douglas" (Bohr, Mestieri, and Robert-Nicoud, 2024). HCD preferences are a

limiting case of NH-CES preferences. The indicator variable ν ∈ {0, 1} governs the

(non-)homotheticity of each class of preferences. In all cases, preferences are homothetic if ν = 0

and non-homothetic if ν = 1.

Peters (2022) and Fan, Peters, and Zilibotti (2023), who use PIGL, and Fretz, Parchet, and

Robert-Nicoud (2021) and Tsivanidis (2019), who use Stone-Geary.

Production The traded good is produced in each city by perfectly competitive producers

using labor under constant returns to scale. Worker skills are perfect substitutes in produc-

tion, but they may differ in their complementarity with city productivity Tn. Workers of

type t who work in city n provide ℓtn ≡ ℓ (Tn, t) effective units or labor, with

∂ℓ (Tn, t)

∂Tn
≥ 0,

∂ℓ (Tn, t)

∂t
≥ 0.

Higher-t workers are more productive everywhere, and all worker types are more productive

in high-T cities. We leave ℓ (Tn, t) general for now, but will explore assumptions on the

complementarity between Tn and t later on. For simplicity, we model here vertical differen-

tiation of worker skills (ability) without modeling their horizontal differentiation (between

different sectors or occupation for instance). Therefore, results have to be understood as

characterizing spatial sorting on ability within a given sector or occupation. Traded output
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is simply:

Yn =
∑
t∈T

Ltλtnℓ
t
n.

Housing Housing is produced by perfect competitors in each market combining land and

the traded good under constant returns to scale. We parameterize the aggregate supply

function for housing in city n so that both the level of housing supply and the elasticity

of housing supply can vary across markets (Saiz, 2010). They are captured respectively by

parameters Hn and ηn in the following production function:

Hn = Hn k

(
rn
p
; ηn

)
, (5)

where we assume:
∂k

∂r
> 0,

∂k

∂η
> 0,

∂2 ln k

∂η∂ ln r
≥ 0, (6)

This latter assumption insures that the elasticity of housing supply is increasing in η, and

we may refer to η as the housing supply elasticity for short when we compare two locations

with different η’s.

Taking stock, cities are differentiated in four dimensions: productivity Tn, amenities An,

land endowment Hn, and housing supply elasticity ηn. We now analyze an equilibrium of

this economy, with the goal of understanding how these city primitives impact the sorting

of heterogeneous skills across locations.

2.2 Equilibrium

An equilibrium of this economy is a set of prices
(
{rn}n , {wtn}n,t

)
, a distribution of types

across space {λtn}n,t, and consumption profiles by type and city {ctn, htn}n,t such that the

following conditions hold:

(i) Workers are paid their marginal product, so that ∀n, t:

wtn = ℓ (Tn, t) . (7)

(ii) Workers choose location n, and consumption c and h to maximize utility under their

budget constraint, given prices. In particular, ∀n, t:

λtn =
V t
n∑

m∈C V
t
m

, (8)

where V t
n = V

(
wtn, rn;An

)
. (9)
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(iii) The housing market clears in each city n:

Hn k

(
rn
p
; ηn

)
=
∑
t∈T

Ltλtnh
t
n. (10)

The consumption good market then clears by Walras’ law. Note that after substitution

of equations (7)-(9) into equation (10), the set of N equations (10) pins down the N un-

known {rn}n that fully summarize equilibrium conditions. All other endogenous variables

are explicit functions of the vector {rn}n.
Our first result concerns the existence of such an equilibrium:

Proposition 1. Existence. An equilibrium of the economy always exists.

Proof. The proof relies on Brouwer’s fixed point theorem, and is provided in Appendix A.

The next result establishes sufficient conditions for the equilibrium to be unique. Through-

out the paper, it will be convenient to use the city n-type t elasticity notation:

E tn (x, y) ≡
∂ lnxtn
∂ ln ytn

.

We also denote by En (x, y), i.e. without a superscript, elasticities of variables that are

independent from worker-type.

Proposition 2. Uniqueness. The spatial equilibrium is unique if either of the following

conditions holds:

(i) there is only one type of workers;

(ii) preferences are homothetic and multiplicatively separable in amenities;

(iii) preferences and the production function for housing jointly satisfy:

inf
n
En (k, r) + inf

n,t

∣∣E tn (h, r)∣∣ > sup
n,t

∣∣∣E tn (V, r)− E t (V, r)
∣∣∣ , (11)

where we have defined E t (V, r) ≡
∑N

i=1 λ
t
iE ti (V, r) .

Proof. See Appendix A.

Interestingly, the threat to uniqueness comes from the interaction between non-homothetic

preferences and type heterogeneity. Taken in isolation, neither is sufficient to lead to multiple

equilibria, as conditions (i) and (ii) highlight.

To understand the threat to equilibrium uniqueness when preferences are non-homothetic

and workers are of heterogeneous type, start from a reference equilibrium and consider the
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impact of an increase in the the price of the traded good on the housing markets of all

locations. Relative housing prices decrease everywhere and, holding constant the distribution

of workers across locations, this equilibrium perturbation increases demand for housing in

all locations. However, what then happens to the distribution of population across cities is

ambiguous. The relative attractiveness of cities changes following a housing price decrease

everywhere, and these relative changes in attractiveness may lead some types to migrate out

of some cities, given income effects in location choice. If out-migration is large enough to

decrease total demand for housing in some city n, then the possibility of multiple equilibria

arises. In particular, the demand system does not exhibit the gross substitutes property

in this case, as an increase in the price of the traded good leads to a decrease in excess

demand for housing in n. Several equilibria may coexist in principle: for instance, a reference

equilibrium alongside an equilibrium with higher traded-good price and higher housing costs

everywhere except in n, where they are lower.

When the economy features several workers types, a sufficient condition for uniqueness

is given by equation (11). Consider first the left-hand side of this inequality. When the

housing supply elasticity En (k, r) is high, a pervasive decrease in housing rents yields strong

reductions in housing supply. Similarly, a high price-elasticity of housing demand also leads

to a large increase in excess demand when housing prices decrease. Both channels lead to

large responses in the excess demand for housing, which makes the gross substitutes prop-

erty more likely to hold. Consider next the right-hand side of the inequality, which captures

the equilibrium location choice response of workers. If the elasticity of indirect utility with

respect to housing prices is heterogeneous across locations, a proportional decrease in hous-

ing costs everywhere leads to net out-migrations in some locations. If this effect is strong

enough, it can lead to a net decrease in housing demand in some locations, violating the

gross substitutes property. Overall, uniqueness is all the more guaranteed as supply and

demand for housing respond strongly to prices, or as the relative attractiveness of cities does

not change too much when housing prices change in the same proportion everywhere.7 In

quantitative applications, the sufficient condition in equation (11) can be checked.

We assume from now on that model parameters are such that the equilibrium is unique,

and turn to studying how heterogeneous skill types sort into different locations.

7We show in Appendix A.1 that Condition (11) is akin to a single-crossing condition in the space of
housing prices in the two-city case.
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3 Sorting in Spatial Equilibrium

In this section, we first give conditions under which the equilibrium exhibits sorting – i.e.,

location choices are heterogeneous across skills (Section 3.1). We then characterize the sort-

ing equilibrium. We establish in particular that spatial sorting is shaped by the distribution

of equilibrium housing prices. We characterize these equilibrium prices in Section 3.2, before

establishing in Section 3.3 which skills sort into which type of cities.

3.1 Conditions for Spatial Sorting

An equilibrium with sorting is defined as follows:

Definition 1. Sorting. Sorting occurs when equilibrium location choices differ by skill

type:

∃n ∈ {1, ..., N} , ∃s ̸= t ∈ T , such that λtn ̸= λsn.

In contrast, a no-sorting equilibrium is characterized by:

∀m,n ∈ C, ∀s, t ∈ T :

(
λtn
λsn

)(
λtm
λsm

)−1

= 1. (12)

We lay out and discuss two conditions, which jointly will rule out sorting.

Condition 1. The productivity advantage of cities is skill-neutral. That is, for all

n ∈ {1, ..., N} and all t ∈ T , ∂
2 ln ℓtn
∂Tn∂t

= 0.

Note that in this case, we can re-normalize t and T without loss of generality and write

wtn = Tnt. This condition shuts down the possibility of a given skill enjoying comparative

advantage in production in some location.

Condition 2. The indirect utility V is homogeneous in income. That is, there exists

a function P , common across types, and a real number κ > 0 such that V t
n =

[
wtn

P (rn,An)

]κ
for

all n ∈ C and all t ∈ T .8

This condition crucially requires that the common component of preferences be homo-

thetic as all types face the same price index P (rn, An). However, the condition is more

stringent, as it is in effect a joint condition on the representation chosen for these homo-

thetic preferences, Ũ , and on the distribution of idiosyncratic shocks {εn}. Specifically,

Condition 2 can fail when the common component of preferences Ũ is homothetic. Assume

8If V (w, r,A) is homogeneous in income, then ∀x > 0, V (xw, r,A) = xκV (w, r,A) and, in particular,

V (w, r,A) = wκV (1, r, A). Denoting P (rn, An) = V (1, r, A)
− 1
κ , we get V tn =

[
wtn

P (rn,An)

]κ
.
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for instance that utility is Ũ (c, h;An) ε
ω
n where Ũ = 1 + cαh1−α and shocks are distributed

Frechet, with shape parameter κ. Ũ represents homothetic preferences, but condition 2 fails,

as
(
1 + wtn

r1−αn

)κ
is not homogeneous in income. What matters ultimately is not the separate

properties of Ũ and of the distribution of {εn}, but only the properties of the resulting prob-

ability choice λ. Specifically, the property of location choices that matter for sorting is that,

given Condition 2, location choices are given by:

∀m,n ∈ C, ∀s, t ∈ T : λtn =

[
wtn

P (rn,An)

]κ
∑

m∈C

[
wtm

P (rm,Am)

]κ , (13)

so that location choice are homogeneous of degree zero in wages.

We are now ready to establish necessary conditions under which spatial equilibria exhibit

sorting, generically (that is, for arbitrary distributions of city primitives):

Proposition 3. Sorting.

(i) (Necessary condition) If there is sorting, then at most one of Conditions 1 and 2

holds.

(ii) (Sufficient condition) If exactly one of the two Conditions 1 or 2 holds, then sorting

obtains.

Proof. See Appendix A.3.

A few comments are in order. First, Proposition 3 characterizes a necessary condition for

sorting, as well as a more stringent sufficient condition. To see why the necessary condition

is not sufficient, consider the following case, which shows that even if neither Condition 1 nor

Condition 2 hold, the equilibrium can still have no sorting. Assume that ℓtn = wtn = t+ Tn,

so the productivity advantage of cities is unskilled-biased (∂
2 ln ℓtn
∂Tn∂t

< 0) and Condition 1

fails. In addition, assume that utility is exp (c) εωn with unit housing consumption, so that

c = w− r (which generates housing housing expenditure shares stn = rn
wtn

that are decreasing

with income). Assume that εωn are distributed Frechet with shape parameter κ, so that

V t
n =

[
exp(wtn)
exp(rn)

]κ
. Under these assumptions, Condition 2 fails. However, it is easy to see

that λtn = expκ(Tn−rn)∑
m∈C expκ(Tm−rm)

does not depend on t, hence the spatial equilibrium features no

sorting. In this example, the comparative advantage in production that the unskilled enjoy

in high-productivity cities is exactly offset by the differential burden that housing prices

places on them, so that location choices are ultimately independent from skill. In knife-edge

cases where neither Conditions 1 nor condition 2 hold, but they exactly offset each other,

there can still be no sorting.
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Second, the representations commonly used in quantitative spatial equilibrium models

feature a single type of agents, with Cobb-Douglas preferences between traded good and

housing, multiplicative amenities and Frechet idiosyncratic shocks (see Redding and Rossi-

Hansberg, 2017). Once extended to several agent types, these baseline assumptions allow

for sorting across locations to be driven by comparative advantage only (i.e., heterogeneous

nominal wage premium of groups across locations). To allow for sources of sorting other than

these nominal wage effects, the most popular approach in the literature has been to keep

this general Cobb-Douglas multiplicative structure within groups, but allow the parameters

that govern preferences to vary by group. The alternative we explore in this paper is to

maintain the assumption of preferences that are common across all groups, but to allow for

non-homotheticity in these preferences. Doing so offers a microfounded model where groups

with different incomes make systematically different choices.

Before studying the consequences of our alternative approach, we discuss here how various

papers in the literature have generated the failure of Condition 2 to model sorting. In what

follows, we assume for simplicity that Condition 1 holds. First, some papers assume that

different groups have different common components of utility. In order to illustrate the

consequences of this assumption in a simple way, assume that preferences are Cobb-Douglas,

but with different housing shares µt ̸= µs for some types s ̸= t. In this case, Condition

2 is violated, and households types that spend a higher share of income on housing are

disproportionately drawn into cheaper cities:

∀m,n ∈ C ∀s, t ∈ T :

(
λtn
λsn

)(
λtm
λsm

)−1

=

(
rn
rm

)−κ(µt−µs)
.

It is also often assumed that different types have ex-ante heterogeneous preferences for ameni-

ties (as in Almagro and Domı́nguez-Iino, 2020; Diamond, 2016; Fajgelbaum and Gaubert,

2020). To illustrate this channel, assume that V t
n = Atn

wtn
rµn
, where the notation Atn highlights

that the valuation of amenities differ across groups. Then, households types are dispropor-

tionately drawn into cities with amenities that they disproportionately care about:

∀m,n ∈ C ∀s, t ∈ T :

(
λtn
λsn

)(
λtm
λsm

)−1

=

(
Atn
Asn

)(
Atm
Asm

)−1

.

Alternatively, some authors assume that the common component of utility is homothetic

and identical for all skills, but sorting is obtained through the distribution of shocks. For

instance, if shocks are distributed Frechet, but the distribution of shocks differ by skill with a

Frechet parameter κt ̸= κs for some types s ̸= t (as in e.g. Tsivanidis, 2019), then Condition
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2 is violated. It then follows that:

∀m,n ∈ C ∀s, t ∈ T :

(
λtn
λsn

)(
λtm
λsm

)−1

=

(
Tn

P (rn,An)

Tm
P (rm,Am)

)κt−κs

,

and high-κ types disproportionately sort into cities displaying high productivity, desirable

amenities, and cheap housing, as their sensitivity to these differences in local attractiveness

is higher. Relatedly, assume that the common component of utility is a homothetic function,

but consider additive logit shocks as in equation 2. In this case, Condition 2 also fails.

Specifically, so long as Condition 1 holds, relative choice probabilities are given by:(
λtn
λsn

)(
λtm
λsm

)−1

= exp

[(
Tn

P (rn, An)
− Tm
P (rm, Am)

)
(t− s)

]
,

which generically differs from unity. The reason why this seemingly innocuous change of

functional forms has a direct impact on sorting is that, as discussed above, what matters

for the properties of sorting is the combined feature of the representation of preferences and

the distribution of shocks. With additive logit shocks, the migration elasticity E tn
(

λ
1−λ , Ṽ

)
is city- and type-specific and equal to V t

n , and thus is increasing in type t, given n. Through

this mechanism, more mobile types (that is, higher utility/higher-t type in this case) are

disproportionately represented in more attractive cities.

Our analysis on the role of identical but non-homothetic preferences in generating sorting

complements this literature. A common definition of preferences is particularly desirable in

that it allows for transparent welfare comparison across individuals, as well as for welfare

accounting in the context of changing groups composition – e.g., the context of the stark

rise in college education in developed economies.

We now move on characterizing the sorting equilibrium, i.e. which skills sort to which

type of cities, in our model with income-inelastic preferences for housing.

3.2 Equilibrium Housing Prices

We first make a detour through housing rents and establish that, under quite general con-

ditions, desirable and productive cities command relatively high housing prices in spatial

equilibrium. However, we will see that this result may not hold when the quality of some

local amenities directly reduce housing consumption. The following assumption rules out

this case:
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Assumption 1. Housing and amenities are q-complements in the sense that

∀n ∈ C, ∀t ∈ T :
∂htn
∂An

≥ 0.

Note that Assumption 1 is warranted in particular in the case that is ubiquitous in the

literature where U (c, h, An) = U (u (c, h) , An) for some function u, i.e., when consumption

and amenities are separable. In this case, ∂htn/∂An = 0.9

The following proposition summarizes how equilibrium housing rents reflect city charac-

teristics:

Proposition 4. "Rosen-Roback." Consider two cities m,n ∈ C. If Tn > Tm, Hn < Hm or

ηn < ηm, all else equal, then city n is more expensive than city m in equilibrium (rn > rm).

In addition, under Assumption 1, if An > Am all else equal, then city n is more expensive

than city m in equilibrium ( rn > rm).

Proof. See Appendix A.3.

Note that the effect of a higher amenity An on the equilibrium housing price rn is am-

biguous if Assumption 1 is violated. Indeed, when housing and amenities are q-substitutes,

higher amenities reduce housing demand of locals. This force pushes housing prices down.

At the same time, higher amenities attract more households to the city, pushing prices up,

so that the net effect of amenities on housing prices is ambiguous. However, Assumption 1 is

strong for our purposes: Proposition 4 holds so long as local aggregate demand for housing in

the city,
∑

t L
tλtnh

t
n, is non-decreasing in An, a condition that may hold even if Assumption

1 (that pertains to individual housing demand htn) is violated.

3.3 City Primitives and Sorting

We now characterize spatial sorting, that is, we establish the effects of cities primitives

{An, Tn, Hn, ηn} on the composition of their labor force. We restrict the analysis to a demand

system separable in amenities and consumption, in line with the literature.10 Specifically,

9The case
∂htn
∂An

> 0 corresponds to a situation in which natural amenities are a complement to housing
services – e.g., a soft climate that makes a large garden more enjoyable, or nice views that make a spacious

living room with large windows more desirable. The case
∂htn
∂An

< 0 corresponds to cultural or natural
amenities that make hanging out outside more attractive than staying home watching Netflix, or if the
variety and quality of local restaurants makes you use your kitchen less frequently.

10Arntz, Brull, and Lipowski (2023) use a stated-preference experiment to elicit preferences for urban
amenities. They do not find any significant differences among skill groups. We are unaware of other empirical
results measuring substitution patterns between local amenities and consumption. We therefore make the
assumption, pervasive in the literature, that preferences are separable in these two terms. Relaxing this
assumption would lead to a typology of cases that are ancillary to the main point of the paper.
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we assume from now on that:

Assumption 2. Preferences are separable in amenities and consumption. Location choices

are given by:

λtn =
[v (wtn, rn)An]

κ∑
m∈C [v (w

t
m, rm)Am]

κ . (14)

In particular, Assumption 1 holds under Assumption 2, since ∂htn
∂An

= 0. This formulation

allows for two distinct drivers of sorting: comparative advantage (Condition 1 may fail),

and income effects (Condition 2 may fail). The assumption that preferences are separable in

amenities and real wages v conveniently emphasizes the role of non-homothetic preferences

(embedded in v) on sorting: heterogeneous amenities do drive sorting in equilibrium, but

only indirectly – through their capitalization in housing prices.

As is intuitive, the direction of sorting depends on which worker type gets a higher benefit

from city productivity and/or is more burdened by local cost of living. We detail here

assumptions on primitives that drive these two forces, before characterizing sorting under

these assumptions. First, we assume that high-skill workers have a comparative advantage

in cities with high productivity, as it is the more empirically relevant case. :

∂E tn (ℓ, T )
∂t

> 0. (15)

We will see below that a stronger form of comparative advantage may sometimes be re-

quired. We say that high-skill workers have a strong comparative advantage in cities with

high productivity when:

∂E tn (v, T )
∂t

> 0. (16)

Strong comparative advantage means a high-skill worker is comparatively more productive

than a low-skill in a high productivity city, not just in income terms, as in expression (15),

but also in utility terms, as in expression (16).11 Second, income-based sorting is driven by

how concave is utility. This is because concavity in utility makes differences in real income

across locations more salient for low-skill workers than for high-skill workers. To fix ideas,

we derive results under the following assumption:

Assumption 3. The elasticity of indirect utility with respect to income is non-increasing in

11The cardinality of utility matters in discrete choice models of the sort we adopt here since the magnitude
of utility differences affects choice probabilities (McFadden, 1974).
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income and therefore in worker type by ∂wtn/∂t > 0:

∂2 (ln vtn)

∂ (lnwtn)
2 ≤ 0 ⇒ ∂E tn (v, w)

∂t
≤ 0. (17)

Note that under Assumption 3, strong comparative advantage (16) implies comparative

advantage (15). We show in Appendix B that all the functional forms for utility listed in

Table 2 satisfy Assumption 3.12 We are now ready to characterize sorting patterns in this

economy.

Proposition 5. Sorting Patterns. Consider two cities m,n ∈ C, and two worker types

s, t ∈ T with s < t. In equilibrium, city n disproportionately attracts high-t workers relative

to city m (λ
t
n

λsn
> λtm

λsm
):

(i) If Hn < Hm or ηn < ηm, all else equal.

(ii) Under Assumption 1, if An > Am, all else equal.

(ii) Under Assumption 3, if Tn > Tm and if high-ability workers have a strong comparative

advantage in productive cities, all else equal.

Proof. See Appendix A.3.

Two comments are in order. The first part of the proof shows that any city characteristic

that increases local housing prices, all else equal, increases the relative supply of high-skill

workers there. In that sense, high-skill workers sort into expensive cities. In particular,

this mechanism leads high-skill workers to sort into productive cities (which pay high wages

and tend to be more expensive in equilibrium). In addition, their comparative advantage

in production also leads high-skill workers to sort to high-productivity places. Though

seemingly intuitive, this result is more subtle, as the decreasing marginal utility of income

dampens the effect of comparative advantage on the relative attractiveness of cities. As the

proposition shows, this type of comparative advantage has to be stronger than the effect

of decreasing marginal utility of income to generate this sorting. Condition (16) provides

a sufficient condition for the comparative advantage effect to dominate decreasing marginal

utility of income, and drive sorting of high-skill workers to high-productivity locations. With

this correction, non-homothetic preferences and comparative advantage do reinforce each

other in shaping the sorting of high skill into high productivity cities. The role played by

12Note also that
∂2vtn
∂(wtn)

2 ≤ 0 and Etn (v, w) ≥ 1 together imply
∂Etn(v,w)

∂t ≤ 0. That is, the log-log marginal

utility of income Etn (v, w) is decreasing in income if (i) the marginal utility of income
∂vtn
∂wtn

is decreasing in

income and (ii) if Etn (v, w) ≥ 1 holds, as is the case for the functional forms that we consider in Appendix

B. This result follows from ∂E(v,w)
∂w = ∂2v

∂2w + ∂v
∂w [1− E (v, w)] .
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the concavity of preferences does not arise in quantitative models that use preferences that

are unit-elastic in income (typically Cobb-Douglas).

4 Welfare Inequality

We have focused so far on positive questions, and have discussed in particular how city

characteristics shape the spatial sorting of heterogeneous types of workers. Another class of

questions urban economists are interested in is normative in nature. What are the distribu-

tional consequences of spatial shocks? To make progress on these issues, we propose results

on the measurement of welfare and welfare inequality between types, in our spatial model

with heterogeneous agents and non-homothetic preferences.

4.1 Welfare Changes: Sufficient Statistics Approach

Models with homogeneous agents typically rely on a “sufficient statistics” approach for wel-

fare, which allows to compute representative welfare changes following an economic shock,

given available statistics. We extend this approach to our model with heterogeneous agents

and non-homothetic preferences, to measure the distributional consequences, across hetero-

geneous groups, of given economic shocks. We assume that indirect utility takes the form

in (1), maintaining Assumption 2. That is, the indirect utility of a worker ω of type t in

location m is v (wtm, rm)Amϵ
t
m (ω), where ϵtm (ω) are distributed i.i.d. Frechet with shape

parameter κ > 1. In particular, expected utility of type t is equal to Γ
(
1− 1

κ

)
times Vt,

where Γ is the gamma function and:

Vt =

[∑
m∈C

[
v
(
wtm, rm

)
Am
]κ] 1

κ

. (18)

Compared to the literature, we relax the assumption that v(.) is Cobb-Douglas, and consider

instead functions that exhibit income effects. We use the hat notation to compute relative

changes in variables, x̂ ≡ x′/x, where x′ denotes the value of x after an economic shock or a

policy change.

We first look into how expected utility changes for different types following a shock. Given

the properties of the Frechet distribution, expected utility of type t changes as follows, for

any location n:

V̂t = Ân
ŵtn

P̂ t
n

(
λ̂tn

)− 1
κ
, (19)

where P t
n ≡ wtn/v

t
n = P (wtn, rn; Θ) is a price index for type t in city n. It depends on
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wages and prices (which can a priori be observed) and on the vector Θ that summarizes the

parameters of the demand function (which can a priori be estimated). This price index is

generically both city-specific, because housing prices differ across space, and type-specific,

because of non-homothetic preferences.

In turn, change in expected utility inequality between types s and t is given by:

V̂t

V̂s
=
ŵtn
ŵsn

(
P̂ t
n

P̂ s
n

)−1(
λ̂tn

λ̂sn

)− 1
κ

, for any n ∈ C. (20)

Expression (20) makes clear that simple measures of changes in relative real income in a

given city, such as ŵtn
ŵsn

(
P̂ tn
P̂ sn

)−1

, do not deliver a theoretically consistent measure of change in

expected utility between types. This is because, in spatial equilibrium, the economy responds

to shocks in two ways: through a change in prices, captured by this real income measure,

but also through a reallocation of population, moving out of (relatively) adversely affected

locations. In addition to real income changes, one must account for a selection effect in how

population responds to shock: those newly attracted to a location following a positive shock

have typically lower idiosyncratic preference for that location than incumbents. Therefore,

larger inflows signal larger selection effects, which lower average utility. This is controlled

for through the term
(
λ̂tn
λ̂sn

)− 1
κ
, to obtain a theoretically grounded measure of the change in

utility inequality.

Note that if the first and last terms in the right hand side of equation (20), ŵtn
ŵsn

and λ̂tn
λ̂sn
,

are readily observable empirically, changes in type-specific price indices P̂ tn
P̂ sn

are model-based

constructs and are not directly observable. In order to make progress, then, one has to

impose a functional form for utility and hence for price indices, as in Handbury (2021).

We consider several popular classes of non-homothetic preferences, and we propose below

a new convenient result for distributional analysis in these classes of models: in each case,

the change in expected utility inequality in equation (20) depends on a small set of simple

statistics, including – crucially – changes in the expenditure shares on housing, stn. These

housing expenditure shares are key statistics that measure the distributional effect of a shock,

as they are informative about relative welfare changes when preferences are non-homothetic.

The key insight here is that these statistics exploit the mapping between Engel curves and

welfare, as in Aguiar and Bils (2015) and Atkin, Faber, Fally, and Gonzalez-Navarro (2023).

Specifically, we show that in all functional forms we consider, the type-t-specific price

index can be written as

P t
n = PnS

t
n, (21)
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the product of a component common to all incomes (Pn ≡ P (p, rn), where P is homogeneous

of degree one in p and rn) and a correction for income effects (Stn) which only depends on

the expenditure share on housing.13 Consider the following Stone-Geary preferences as an

example:

v
(
wtn, rn

)
=

wtn − hrn

p1−ψ (rn)
ψ
, (22)

where h can be interpreted as the subsistence level of housing if it is positive (so that

housing is a necessity) and ψ ∈ (0, 1). This expression encompasses Cobb-Douglas as a

special case when h = 0. This attractive feature and its simplicity make this functional form

a popular one – see e.g. Tsivanidis (2019) and Gaigné, Koster, Moizeau, and Thisse (2022)

for applications in spatial contexts. Using Roy’s identity, the expenditure share of housing

is stn = ψ + (1− ψ) hrn
wtn

, so that in this case, we get:

v
(
wtn, rn

)
=

wtn
PnStn

,with Pn = p1−ψ (rn)
ψ and Stn =

1− ψ

1− stn
.

14 Therefore, relative changes in indirect utility V only depend on prices via the housing

expenditure share term Stn. Specifically, the relative change in expected utility between

types s and t is :

V̂t

V̂s
=
ŵtn
ŵsn

1̂− stn

1̂− ssn

(
λ̂tn

λ̂sn

)− 1
κ

, (23)

where n is any arbitrary city. That is, changes in nominal incomes, housing expenditure

shares and skill composition of any location n, as well as an estimate of the migration

elasticity κ, are sufficient to compute changes in expected utility inequality between any pair

of types. Thus, any change in expected utility inequality can be decomposed into changes

in nominal earnings (which are equal to changes in real earning inequality if preferences

are homothetic), a correction for location changes, and a correction for non-homothetic

preferences, as captured by heterogeneous changes in expenditure shares.

This logic generalizes to the six alternative functional forms for utility that are listed in

Table 1. To establish this result, we define the composite demand parameters α, β, δ, a, b > 0

that combine structural parameters of each demand system, as described in Columns 3 to 7

13This decomposition is not unique; we normalize the homothetic component consistently across equilibria
to ensure comparability.

14By the same token, in the case of non-homothetic CES preferences that we also use in the application
of Section 5 below, we show in Appendix section B.5 that Pn and Stn obey

Pn = p and Stn =
(
1− stn

)−1/(1−σ)
.

We also provide two alternative decompositions in this appendix section.
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of Table 2. These composite parameters (a, b, α, β, δ) are the elasticities needed to implement

welfare computations.15

Table 2: Non-homothetic preferences: Definition of composite parameters.

Preferences Indirect utility V Composite parameters
α β δ a b

Stone-Geary V = A w−νhr
p1−ψrψ

1 0 1 0 1

PIGL V = A
[(

w
p1−ψrψ

)ι
− ν

γ

(
r
p

)γι]1/ι
1 0 1

ι
ψ 1

γ

PIGLOG V = A
(
r
p

)ν
ln
(

w
p1−ψrψ

)
0 0 1 0 1

ψ

CRIE V = A

[(
w
r

)−ψ
+
(
w
p

)−ψ+ν(ψ−µ)]−1

1 1
µ

1
µ

ψ
ψ−µ −ψ−µ

µ

NH-CES w1−σ =
(
V
A

)1−σ [(V
A

)ν(µ−ψ)
r1−σ + p1−σ

]
1 0 1

1−σ 0 1

HCD 0 =
(
V
A

)ψ+ν(µ−ψ)
ln
(
r
w

)
+
(
V
A

)ψ
ln
(
p
w

)
0 1

ψ−µ
1

ψ−µ 0 1

Notes: PIGL stands for "Price Independent Generalized Linearity" (Muellbauer, 1975), PIGLOG

stands for "Price Invariant Generalized Logarithmic" (Deaton and Muellbauer, 1980), CRIE

stands for "Constant Relative Income Elasticity" (Caron, Fally, and Markusen, 2014; Eeckhout,

Pinheiro, and Schmidheiny, 2014; Fieler, 2011; Hanoch, 1975), NH-CES stands for "Non

Homothetic Constant Elasticity of Substitution" (Albouy, Ehrlich, and Liu, 2016; Comin,

Lashkari, and Mestieri, 2021; Hanoch, 1975; Matsuyama, 2019; Sato, 1977), and HCD stands for

"Heterothetic Cobb-Douglas" (Bohr, Mestieri, and Robert-Nicoud, 2024). HCD preferences are a

limiting case of NH-CES preferences. The indicator variable ν ∈ {0, 1} governs the

(non-)homotheticity of each class of preferences. In all cases, preferences are homothetic if ν = 0

and non-homothetic if ν = 1.

Second, we define Stn, a monotonically increasing transformation of the housing expendi-

ture share stn:

Stn ≡ (stn − a)
β

[1− b (stn − a)]δ
. (24)

With these notations, the following result obtains:

Proposition 6. Relative Welfare Changes. Under all of the functional forms for V

considered in Table 2, the relative change in expected utility between any pair of types can

simply be expressed as:

V̂t

V̂s
=

(
ŵtn
ŵsn

)α(
Ŝtn

Ŝsn

)−1(
λ̂tn

λ̂sn

)− 1
κ

, for any n ∈ C. (25)

15Appendix B provides the details.
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Proof. Appendix B derives this result for each class of non-homothetic preferences.

Proposition 6 establishes that changes in nominal incomes and populations by skill in

any location n, pre- and post-housing expenditure shares, and relative migration changes,

together with knowledge of some structural parameters of the model, are sufficient to com-

pute changes in expected utility inequality between any pair of types. Note that the formula

does not necessarily requires estimates of all structural parameters of the utility function, in

line with the “hat algebra” approach more generally. Consider the NH-CES case as an ex-

ample. The formula requires an estimate for the elasticity of substitution σ between housing

and other goods, but not of the parameters governing the income elasticity of demand µ, ψ.

Similarly, the approach does not require estimating any of the structural parameters of the

Stone-Geary utility function. In either case, the effect of the “superfluous” parameters on

equilibrium outcomes are subsumed in the (potentially observable) expenditure shares.

Finally, we note that one can augment the model to allow for type-specific local amenities,

as in Diamond (2016) and Fajgelbaum and Gaubert (2020). In this case maintaining the

assumption of multiplicatively separable amenities, equation (25) becomes

V̂t

V̂s
=
Âtn

Âsn

(
ŵtn
ŵsn

)α(
Ŝtn

Ŝsn

)−1(
λ̂tn

λ̂sn

)− 1
κ

. (26)

We return to that case in the application of Section 5 below.

4.2 Money-Metric Welfare Changes

Proposition 6 takes a first step to extend the “exact hat algebra” approach to welfare analysis,

common in trade, economic geography, and other fields, to a setting with general non-

homothetic preferences. In the context of non-homothetic preferences, however, changes in

utility are not money-metric changes. An additional step is thus required to convert changes

in utility into interpretable changes. We now show how to map these changes in utils into an

equivalent variation-type measure. As will become clear, E tn (v, w) is an important variable

for our analysis, and we henceforth refer to this object as the “log-log marginal utility of

income.” (the marginal utility of income, expressed in elasticity terms).

Specifically, we interpret the expected utility function (18) as the utility function of a

representative type-t agent. We measure the impact of a shock on welfare of type t by asking

what should be her proportional increase in income in the period prior to the shock to reach

the well-being of the period posterior to the shock? This offers a natural unit-less measure of

money-metric welfare change between the two periods, which we write ŷt. It is an equivalent
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variation concept, expressed in percentage terms. Formally, ŷt is implicitly defined as:

[∑
m∈C

v
(
wtmŷ

t, rm
)κ

(Am)
κ

] 1
κ

=

[∑
m∈C

v
(
w

′t
m, r

′

m

)κ
(A′

m)
κ

] 1
κ

. (27)

We consider small shocks to the economy. Using a first order approximation, we establish

the following result.16

Proposition 7. Equivalent Variation.The equivalent variation (in proportional terms)

is related to the relative change in expected utility as follows:

ŷt =
(
V̂t
)1/ε̄t

, (28)

where ε̄t ≡
∑

n λ
t
nE tn (v, w) is the average log-log marginal utility of income across all cities.

Proof. See Appendix B.7.

The change in income that is equivalent to the change in the economic environment caused

by a given shock is given by the corresponding proportional change in utility, converted in

money-metric unit (converting 1% util increase into 1% dollar increase) by the term ε̄t.

When utility is homothetic and unit-elastic in income, it is clear that ε̄t = 1, so that ŷt = V̂t.

Hence, expected utility can be used directly in this case to measure welfare change in an

appropriate metric. Here, in contrast, the log-log marginal utility of income is not constant,

and varies across individuals and choices. McFadden (1999) and Karlstrom (2000) discuss

how to compute equivalent variation in discrete choice models with income effects, which

is generally intractable and computationally intensive. The Frechet formulation, combined

with a generic non-homothetic common utility, strikes a balance between allowing for realistic

income effects and preserving some tractability for welfare computations.

We use ŷt

ŷs
as a money metric measure of change in welfare inequality. It measures the

difference in the proportional income growth equivalent to a given shock for type t versus

type s. Using equation (28) and considering two arbitrary types t, s, this change in welfare

inequality following a small shock can be expressed as follows:

ŷt

ŷs
=

(
V̂t
)1/ε̄t

(
V̂s
)1/ε̄s . (29)

16We note that Proposition 7 does not require Assumption 2 (that is, V does not have to be multiplicatively
separable in v and A). The equivalent variation term captures both change in prices and changes in amenities.
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Expression (29) tells us that the measure of change in expected utility inequality using suffi-

cient statistics, V̂t
V̂s , in equation (25) has to be corrected in two ways to deliver a meaningful

measure of change in inequality between types. First, it has to be corrected by the average

log-log marginal utility of income, ε̄t to convert a change in utils into a change in income. The

second correction accounts for the fact that the average log-log marginal utility of income

differs across types. That is, using only expected utility inequality V̂t
V̂s generally leads to a

biased measure of change in welfare because ε̄t, ε̄s ̸= 1, and because ε̄t ̸= ε̄s. To conclude, we

highlight that taking into account these corrections for different marginal utility of incomes

leads to less simple expressions that our initial welfare inequality measure (25). To see this,

develop the change in inequality from (28) fully, using equations (19) and (21). The change

in inequality is:

ŷt

ŷs
=

[(
ŵtn

)α (
Ŝtn

)−1 (
λ̂tn

)− 1
κ

]1/ε̄t
[(
ŵsn
)α (

Ŝsn

)−1 (
λ̂sn

)− 1
κ

]1/ε̄s
(
Ân

P̂n

) 1
ε̄t

− 1
ε̄s

. (30)

The first term in the right-hand side corrects relative utility changes in equation (25) using

the equivalent-variation correction. Since it is income-, hence type-specific, the correction

is done separately in the numerator and the denominator. The second term corresponds to

elements that are common to both types and enter multiplicatively their utility, hence dis-

appeared from equation (25). In contrast, when expressing inequality in equivalent-variation

term, the homothetic components of utility common to both types also enter the computa-

tion of inequality. They are valued differently by the two types, in money-metric terms. This

second correction is moot if changes in local amenities are fully capitalized in changes in the

homothetic component of local prices (and henceÂn = P̂n). By contrast, if changes in local

amenities are not fully capitalized in changes in the homothetic component of local prices,

and if type-t corresponds to a higher-income type in that it has a lower marginal utility of

income than type-s , then this correction increases the money-metric correction whenever

amenities increase by more than the homothetic component of local prices (i.e., if Ân > P̂n).

5 Measuring Changes InWelfare Inequality: USA 1980-

2020

In this section, we evaluate the model-consistent money-metric change in welfare inequality

between high- and low-skill workers in the U.S., in the last four decades, using the results

from Section 4. In doing so we revisit results from a literature that has measured these

26



changes taking into account the heterogeneous spatial sorting of high- and low-skill workers

(Moretti, 2013; Diamond, 2016). We show that accounting for income effects in housing

consumption changes these measures significantly.

We maintain Assumption 2 throughout this section, so that we can write V t
n = (vtnAn)

κ
,

where vtn = v (wtn, rn) and κ > 1 governs the elasticity of the spatial labor supply.

5.1 Data

To operationalize the formulas of Section 4, we need data on nominal wages, location choices

of high- vs low-skill workers, and – crucially – expenditure on housing over time. We describe

these here in turn and refer the reader to Appendix B for more details.

Raw data Our data collection and definitions follow Moretti (2013) as closely as possible.

Data for our key variables come from the Decennial Census for 1980 to 2000 and the 5-year

American Community Survey (ACS) sample for 2010 and 2020 (Ruggles et al., 2024). A

location in the analysis is one of 303 Metropolitan Statistical Areas (MSAs) and “rest-of-

state” regions. The sample includes US-born, full-time workers aged 25 to 59 who live in

private households. We define individuals with 4+ years of higher education as “high skill”

and individuals with a high school degree as “low skill.”

Sufficient statistics First, from the dataset above, we directly read the share λtn,y of

workers of type t living in location n in year y. Second, we use an adjusted measure of

wages to control for demographic changes among worker types over time. To that end, we

use the same controls as in Moretti (2013): sex, dummies for race, and a cubic in work

experience. The adjustment is performed separately for 1980-2000 and 2010-2020 periods to

maintain consistency with Moretti (2013), who analyzes the earlier period. For each period,

we regress wages on these demographic controls and use the residuals, holding demographic

characteristics constant at their period-specific means. We compute
{
wtn,y

}
t,n,y

as the median

adjusted wage for each city-year-skill. Housing expenditure shares
{
stn,y
}
t,n,y

are calculated

as the ratio of annual gross rent to household income, where again we use the median

within a city-year-skill group. Our measure shows that in 2020 the median share of income

spent on housing was 20% for high-skill individuals and 24% for low-skill individuals. These

shares vary across cities from 11% to 24% for high-skill households, and from 16% to 31%

for low-skill ones. Moreover, from 1980 to 2020, housing expenditure shares rose relatively

more for low-skill individuals, increasing by 5 percentage points against 2 percentage point

increase for high-skill individuals. Much of the increase in spending shares occurred after

2000. Summary statistics for these housing shares are detailed in Appendix Table OA.1.
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5.2 Model Parameters

In addition to this data, implementing the formulas of Section 4 requires estimates of the

elasticity of population to wages κ and estimates of the average log-log marginal utility of

income by group,
{
ε̄L, ε̄H

}
.

Non-homotheticity and marginal utility of income We apply equation (25) con-

sidering two alternative specifications of non-homothetic demand: Stone-Geary and Non-

Homothetic CES. In each case, we review here how we calibrate the average log-log marginal

utility of income for each group,
{
ε̄L, ε̄H

}
.

In the Stone-Geary case, recall from equation (22) that two parameters, ψ ∈ (0, 1) and

h ≥ 0, characterize the indirect sub-utility function: vtn = wtn−hrn
rψn

. We show in Appendix B.1

that the log-log marginal utility of income for type t in location n is given by:

E tn,SG (v, w) =
1− ψ

1− stn
,

which is larger than one given that stn ≥ ψ (here we add the subscript “SG” to emphasize that

the computation of this elasticity is specific to the choice of functional form for preferences,

and to avoid confusion with the computation of E tn,NHCES below). We calibrate parameter ψ

noting that this parameter relates to the expenditure share on housing as follows: stn = ψ +

(1− ψ) hrn
wtn
. In particular, ψ corresponds to the housing expenditure share for infinitely high

incomes. We calibrate ψ to match the 10th percentile of the expenditure share distribution

of high skills as the actual minimum of the housing expenditure share minn,t s
t
n is very

prone to measurement error. This yields ψ = 0.1. We then compute the distribution of{
E tn,SG (v, w)

}
n,t

given that of {stn}n,t using the median housing expenditure share for each

combination of city and type and finally compute the mean ε̄tSG ≡
∑

n λ
t
nE tn,SG (v, w). We

report the results in Table 3. We also report the median rather than the mean value to

assess the stability of the results.

In the Non-Homothetic CES case, vtn is implicitly defined by

(
wtn
)1−σ

=
(
vtn
)1−σ [(

vtn
)µ−ψ

(rn)
1−σ + p1−σ

]
.

Housing demand is price-inelastic if σ ∈ (0, 1) and income-inelastic if σ − 1 ≤ µ − ψ < 0.

Appendix B.5 provides details. The log-log marginal utility of income for type t in location

n is given by:

E tn,NHCES (v, w) =
1− σ

1− σ − (ψ − µ) stn
,
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Table 3: Log-log marginal utility of a dollar (1980)

Mean Median

Low Skill High Skill Low Skill High Skill

Homothetic 1.000 1.000 1.000 1.000
Nominal 1.000 1.000 1.000 1.000
Stone-Geary 1.104 1.094 1.096 1.094
NH-CES 1.132 1.126 1.127 1.126

which is strictly larger than one if µ < ψ. We set σ = 0.53 and ψ − µ = 0.306 based on

Finlay and Williams (2022). As for the Stone-Geary case, we then compute the distribution

of
{
E tn,NHCES (v, w)

}
n,t

using the median housing expenditure share for each combination of

city and type, and report ε̄tNHCES ≡
∑

n λ
t
nE tn,NHCES (v, w) in Table 3. We also report the

median of E tn,NHCES (v, w) for robustness.
Two intermediate results are worth emphasizing. First, the computed values of the log-log

marginal utility of income are very stable whether we use the median value of E tn instead of

the weighted average (a comparison across column pairs). Second, these computed values are

remarkably similar across types and across functional forms, around 1.1 for both high-skill

and low-skill renters. By inspection of equation (30), an immediate, quantitative implication

of this finding is that the elasticity of inequality to changes in the levels of local amenities

(and the common component of price indices) is two orders of magnitude smaller than its

responsiveness to changes in wages, expenditure shares, or migration patterns.17 For this

reason, we can neglect the last term in Equation (30) when computing changes in inequality

between groups in terms of equivalent variation.

Migration elasticity Implementing the formulas of Section 4 also requires an estimate

of the migration elasticity, κ. Taking logs of equation (14) and differentiating the equation

between types (we denote high-skill households with H and low-skill households with L) and

17The change in money-metric inequality in Equation (30) responds with an elasticity greater than

min
{

1
εL
, 1
εH

}
to the change in inequality in terms of

(
ŵtn

)α (
Ŝtn

)−1 (
λ̂tn

)− 1
κ

(first term in (30)), whereas it

responds to changes in amenities with elasticity εL−εH
εLεH

(second term in (30)). Given the mean values in Table

3 computed in the Stone-Geary case, the ratio of the first elasticity to the second is at least 1.094
1.104−1.094 = 109.4

(the same ratio in the NH-CES case is at least 1.127
1.132−1.127 = 225.4).
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over time by decade (as symbolized by the operator ∆) yields our estimating equation for κ:

∆ lnλHn,y −∆ lnλLn,y = α + κ

(
∆ ln

wHn,y
PH
n,y

−∆ ln
wLn,y
PL
n,y

)
+ κ

(
∆ lnAHn,y −∆ lnALn,y

)︸ ︷︷ ︸
unobserved

+ϵn,y,

(31)

where λtn,y is the population share of type t in MSA n and year y, wtn,y is the nominal wage,

P t
n,y is the type-specific price index, A

t
n,y is type-specific amenities and the term ϵn,y captures

measurement error.

One may worry that OLS estimates of κ using equation (31) are biased due to reverse

causality, due e.g. to housing prices responding to population changes, or omitted variables

(amenity changes). In addition to double differencing our estimating equation to control

for city-level shocks that are common to both types and for city-level characteristics that

are constant over time, we follow common practice in the literature and instrument for

relative real wage changes using a shift-share instrument differenced between types and over

time. Our instrument predicts local changes in real wages by fixing type- and city-specific

employment shares by industries to their 1980 levels and using national leave-one-out wage

growth by industry. The identifying assumption is that relative 1980 employment shares in a

city are uncorrelated with future changes in relative amenities (Goldsmith-Pinkham, Sorkin,

and Swift, 2020).

We estimate κ for the homothetic case – in which case both types face the same price

index PH
n,y = PL

n,y – as well as for Stone-Geary and NH-CES specifications of non-homothetic

preferences. In these latter cases, we use the decomposition in equation (21) and the result

in Proposition 6 to replace relative changes in city-type-specific price indices, which we do

not observe, by relative changes in city-type-specific expenditure shares, which we do.18

Results are presented in Table 4. Our preferred specifications using the IV estimator yield

an estimate of the migration elasticity of 1.87 in the homothetic case, 1.82 in the non-

homothetic Stone Geary case, and 1.76 in the non-homothetic CES case. Our estimates

18Specifically, building on the derivations in Appendix B.1 for Stone-Geary preferences, we use:

P̂Hn

P̂Ln
=

(
1̂− sHn

1̂− sLn

)−1

.

By the same token, building on the derivations in Appendix B.5 for NH-CES preferences, we use:

P̂Hn

P̂Ln
=

(
1̂− sHn

1̂− sLn

)−1/(1−σ)

,

where we use the estimates from Finlay and Williams (2022) to set σ = 0.53.
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of decadal migration elasticities are within the range [0.6, 4] of estimates in the literature

(Diamond, 2016; Notowidigdo, 2020; Suarez Serrato and Zidar, 2016).19

Table 4: Estimation of Migration Elasticity κ

Homothetic preferences Stone-Geary NH-CES
OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

∆
(
ln wHn

PHn
− ln wLn

PLn

)
0.50∗∗∗ 1.87∗∗∗ 0.46∗∗∗ 1.82∗∗∗ 0.34∗∗∗ 1.76∗∗∗

(0.13) (0.42) (0.13) (0.42) (0.10) (0.41)

Constant 0.00 -0.01 0.00
(0.01) (0.01) (0.01)

Observations 876 876 876 876 876 876
F -Stat 627.50 499.92 307.85

Dependent variable: ∆ lnλHn −∆ lnλLn (relative labor supply changes). IVs are shift-shares.

Standard errors clustered at the MSA level in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Regressions are weighted using 1980 MSA population.

One can interpret the IV coefficient in the second column as the labor supply elasticity

with respect to nominal wages, and the IV coefficient in the fourth and sixth columns as

the labor supply elasticity with respect to real wages when preferences are non-homothetic

(Stone-Geary or NH-CES). Although the difference between these coefficients is not statisti-

cally significant, we note the coefficient on nominal wages is higher than on real wages. This

means that omitting skill-specific prices from the regression (as we do under the homothetic

assumption) yields an upward bias in the elasticity. This suggests that, in the cities where

nominal wage ratios wHn /w
L
n have gone up the most and hence attracted the largest fractions

of high-skill households, real wage ratios vHn /v
L
n have increased by even more, i.e. relative

prices for high skill have increased less than for low skill. This is consistent with housing

being a necessity: when house price rise in these skill-intensive cities, lower-skill are more

sensitive to the corresponding price change.

5.3 Welfare Inequality 1980-2020

With this data at hand, we are ready to compute the model-consistent change in welfare

inequality from 1980 to 2000 and 2000 to 2020 between high- and low-skill households,

revisiting the seminal work of Moretti (2013). Our approach differs from that in Moretti

19Our estimates in the homothetic case are close to the upper bound of those of Diamond (2016), No-
towidigdo (2020), and Suarez Serrato and Zidar (2016), which vary between 2 and 4, and above those in
Goldsmith-Pinkham, Sorkin, and Swift (2020) and Autor, Dorn, and Hanson (2013). Goldsmith-Pinkham,
Sorkin, and Swift (2020) report an inverse labor elasticity in the range [1.28, 1.76] (and hence an elasticity
in the range [0.6, 0.8]).
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(2013) in two ways. First, our framework allows us to go from real wages to expected

utility by taking into account the revealed preferences of households across locations, as we

demonstrate in Section 4. Second, our non-homothetic preferences allow for price indices to

be income specific, while Moretti (2013) imposes homothetic preferences.

We start by computing changes in nominal inequality as a benchmark. We report the

findings in the first row of the left panel of Table 5. We find that the skill premium has risen

by 19% between 1980 and 2000 (the time period covered by Moretti, 2013), by 5% between

2000 and 2020, and overall by 25% between 1980 and 2020. For the sake of comparison,

we report the change in real-wage inequality computed using the methodology in Moretti

(2013). Specifically, this corresponds to the difference between the average change in real

wage for high-skill and low-skill, weighted by their respective populations across cities. Real

wages are measured by skill-specific nominal wages deflated by a common price index for

low- and high-skill workers:

ln
ŴH

ŴL
=

[∑
n∈C

ωHn,y′ ln

(
wHn,y′

Pn,y′

)
−
∑
n∈C

ωHn,y ln

(
wHn,y
Pn,y

)]

−

[∑
n∈C

ωLn,y′ ln

(
wLn,y′

Pn,y′

)
−
∑
n∈C

ωLn,y ln

(
wLn,y
Pn,y

)]
. (32)

According to this measure, real wage inequality has increased by 16% in the period 1980-

2000 and 24% in the period 1980-2020, less than the 19%- and 25% corresponding increases

in nominal wage inequality.

Table 5: Welfare Results

Relative Welfare Change Relative Equivalent Variation

1980–2000 2000–2020 1980–2020 1980–2000 2000–2020 1980–2020

Nominal ŵH

ŵL
1.19 1.05 1.25 1.19 1.05 1.25

Real (Moretti, 2013) ŴH

ŴL
in eq. (32) 1.16 1.07 1.24 1.16 1.07 1.24

Nominal + sorting ŵH

ŵL

(
λ̂H

λ̂L

)− 1
κ

1.15 1.06 1.23 1.15 1.06 1.23

Homothetic + sorting ŵH

ŵL
P̂

P̂

(
λ̂H

λ̂L

)− 1
κ

1.15 1.06 1.23 1.15 1.06 1.23

Stone-Geary + sorting ŵH

ŵL
1̂−sH

1̂−sL

(
λ̂H

λ̂L

)− 1
κ

1.17 1.09 1.28 1.16 1.09 1.27

NH-CES + sorting ŵtn
ŵsn

(
1̂−sHn
1̂−sLn

)1/(1−σ) (
λ̂Hn
λ̂Ln

)− 1
κ

1.19 1.12 1.34 1.17 1.10 1.31

Note: Our estimate of a 19% change in nominal wage inequality over 1980–2020 corresponds to Table 5, Column 8 of Moretti
(2013), where the log wage difference is 0.18, implying exp(0.18) = 1.20, or 20%. The slight discrepancy is due to rounding. When
we replicate his specification, we obtain a coefficient of 0.177, so exp(0.177) = 1.19, or 19%.

Next, we implement our approach. Starting with nominal wage inequality, our first step is

to correct for idiosyncratic location preferences and differential sorting patterns. Results are

reported in the third row of Table 5. We find a relative increase in inequality of 23% between

1980 and 2020, which is slightly lower than the 25%-increase in nominal inequality and the
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24%-increase in real inequality. We report in the fourth row of the table the model-consistent

welfare changes in equation (25) under the assumption that preferences are homothetic. In

this case, high- and low-skill households face the same changes in local prices, and hence

measured changes in inequality are identical to those of the previous specification (in the

row above).

We then allow for non-homothetic housing demand. We compute the change in utility

inequality from equation (25) in the Stone-Geary and NH-CES cases, which we recall here

for convenience:

V̂t
SG

V̂s
SG

=
ŵtn
ŵsn

1̂− stn

1̂− ssn

(
λ̂tn

λ̂sn

)− 1
κ

,
V̂t
NHCES

V̂s
NHCES

=
ŵtn
ŵsn

(
1̂− stn

1̂− ssn

) 1
1−σ
(
λ̂tn

λ̂sn

)− 1
κ

. (33)

Given our calibrated σ = 0.53, changes in welfare inequality put a geometric weight on

changes in expenditure shares that is about twice as large if preferences are NH-CES than

if preferences are Stone-Geary (i.e., 1
1−0.53

≈ 2). In the model, the formulas in equation

(33) hold exactly across all locations; in the data, the resulting measure differs by location,

which we interpret as measurement error. We compute the formula for each city and report

the geometric average as our main estimate of V̂H
V̂L , weighted by 1980 population shares.20

We report the results in the fifth and sixth rows of Table 5. The main takeaway from

this exercise is that welfare inequality between high- and low-skill households has risen by

more than nominal inequality once we account for non-homothetic preferences. Rather than

increasing by 23% under homothetic preferences, inequality has risen by 28% between 1980

and 2020 if we assume that preferences are Stone-Geary, and by 34% if preferences are

NH-CES.

Our third and final modification is to convert these changes in “utils” into money-metric

changes, using the average log-log marginal utility of income for each worker type. Specif-

ically, we use equation (30) for high- and low-skill households, treating the contribution of

the final term in the expression as negligible (i.e., ≃ 1) as discussed above. This yields for

each specification of preferences ζ = SG,NHCES:

ln
ŷHζ
ŷLζ

=
1

εHζ
ln V̂H

ζ − 1

εLζ
ln V̂L

ζ . (34)

The rightmost panel of Table 5 applies this measure on the relative welfare changes in the

left panel using the estimates of the log-log marginal utility of incomes for renters that we

report in Table 3. Results are qualitatively similar to those in the left panel, but a bit more

20Results are almost identical when they are non-weighted or weighted by low-skill or high-skill population
instead.
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muted. We find that money-metric welfare inequality has increased by 27% if we assume

that preferences are Stone-Geary, and by 31% if preferences are NH-CES.

We conclude that accounting for non-homothetic preferences considerably changes con-

clusions on welfare inequality. High-skill households have increasingly flocked into cities with

high and fast-growing housing costs, but they did so in a large part because their purchas-

ing power is less affected by housing costs than low-skill households. As a result, welfare

inequality has risen by more than nominal inequality, not less.

6 Conclusion

This paper develops a spatial equilibrium model where agents have heterogeneous incomes

and non-homothetic consumption preferences. In this framework, the relative price of traded

vs. non-traded goods varies across locations, and because agents share identical but non-

homothetic preferences, they value locations differently. This generates spatial sorting as a

direct consequence of income-inelastic housing demand. We embed this force in a broader

model where comparative advantage in production further shapes location choices. Our

results show that under general conditions, high-income agents systematically sort into ex-

pensive cities, driven both by their lower housing expenditure share and their productivity

advantage in large cities.

Beyond explaining sorting, the model has implications for welfare inequality measurement

in a spatial equilibrium context. We extend standard welfare measurement approaches in

economic geography to account for non-homothetic preferences. Applying this framework to

the United States (1980–2020), we show that while high-skill workers increasingly relocated to

high-cost cities, they did so in part because their purchasing power is less affected by housing

costs than low-skill workers. As a result, welfare inequality rose by 27-31%—outpacing the

increase in nominal wage inequality.

Our model abstracts from endogenous agglomeration economies, amenities, and trade

costs to highlight the role of housing demand in driving sorting. While some of our results

could be adapted to specific functional forms that incorporate endogenous agglomeration

and amenities, introducing heterogeneous trade costs poses significant analytical challenges.

Existing methods Allen, Arkolakis, and Takahashi (2020) do not apply when agents have

heterogeneous incomes and non-homothetic preferences. Addressing this limitation is an

important direction for future research.
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Appendix

A Theory Appendix

A.1 Proof of Proposition 1 (Existence).

Set p = 1 by choice of numeraire. We use bold letters to denote vectors: let A ≡ {An}n∈C
and ℓt ≡ {Ltλtn}n∈C. Manipulating (10) yields

rnk (rn, ηn) =
rn
∑

t∈T L
tλtnh

t
n

Hn

.

Let K (rn, ηn) ≡ rnk (rn, ηn). K is continuously increasing in both its arguments, and
K (0, η) = 0. Let

En ≡ rn
∑
t∈T

Ltλtn
(
r, ℓt,A

)
h
(
rn, ℓ

t
n, An

)
denote total expenditure on housing in n. Inverting the housing market clearing condition
above yields

rn = K−1

(
En
Hn

, ηn

)
≡ fn (r) . (35)

An equilibrium of the economy is then a solution of f (r) = r. The function f is continuous
on RNC

+ by inspection since all functions λtn and h are continuously differentiable. The lower
bound of En is obviously equal to zero. To find an upper bound, assume that the whole
labor force settles in city n and that it spends all its income on housing; in this case the
numerator inside the parenthesis of f in equation (35) is equal to Emax

n ≡
∑

t∈T L
tℓtn, which is

exogenously given and finite, hence K−1
(
Emax
n

Hn
, ηn

)
is finite, too. The image of f is therefore:

S ≡
∏
n∈C

[
0, K−1

(
Emax
n

Hn

, ηn

)]
⊂ RNC

+ ,

which is compact. Since f : S → S is continuous and S is compact, equation (35) admits a
fixed point by Brouwer’s fixed point theorem. QED.

A.2 Proof of Proposition 2 (Uniqueness).

Denote Ẑ (r) the adjusted aggregate excess demand function for housing as a function of
prices (rewriting equation (10)), normalizing the price of the traded good to 1:

Ẑn (r) =

∑
t∈T L

tλtnh
t
n

Hnk
(
rn
p
, ηn

) − 1 ∀n ∈ C.
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The proof makes use of the index theorem . In step 1, we compute the Jacobian of the
adjusted excess demand function, DẐ (r) , and compute the corresponding index of the
Jacobian at equilibrium prices r∗, where the index is defined as:

Index(r∗) = sgn
(
Det

[
−DẐ (r∗)

])
In step 2, we derive conditions under which that this index is necessarily positive at any equi-
librium. Using the index theorem, we conclude that under these condition, the equilibrium
is also unique.

After some algebra, the Jacobian of Ẑ (r) is given by:

∂Ẑn
∂ri

= −
∑
t∈T

Lt λtnh
t
n

[
Hnk

(
rn
p
, ηn

)]−1

λti
∂ log V t

i

∂ri
for i ̸= n

(36)

∂Ẑn
∂rn

=
∑
t∈T

Ltλtnh
t
n

[
Hnk

(
rn
p
, ηn

)]−1 [
∂ log V t

n

∂rn

(
1− λtn

)
+
∂ log htn
∂rn

− 1

rn
En (k, r)

]
.

We next show conditions under which −DẐ (r) is an M-matrix, so that all its eigenvalues are

positive hence, in particular, sgn
(
Det

[
−DẐ (r∗)

])
= +1. To do so, we use the following

characterization of M-matrices: a matrix M with all its off-diagonal elements less than or
equal to 0 (i.e., a Z-matrix) is an M-matrix if it is is semi-positive. That is, there exists some
vector x > 0 such that Mx > 0.

Note that for i ̸= n, it is clear from equation (36) that −∂Ẑn
∂ri

≤ 0, since
∂ log V ti
∂ri

≤ 0, and

the other terms are positive. Therefore, −DẐ (r) is a Z-matrix. We next establish conditions
under which it is an M-matrix.

We first consider the case NT = 1, namely, there is only one type t in the economy. In this

case, we compute the elements of −
(
DẐ (r)

)T
x for the positive vector x =

{
H0
nk( rnp ,ηn)

htn

}
n

,

leading to:

−
∑
n

∂Ẑn
∂ri

xn = Ltλti

(
1

rn
En (k, r)−

∂ lnhti
∂ ln ri

)
> 0.

Therefore, when NT = 1, −
(
DẐ (r)

)T
is an M-matrix (and so is −

(
DẐ (r)

)
, since the

transpose of an M-matrix is an M-matrix) and its eigenvalues are all positive. So is its
determinant, so that:

Index(r∗) = +1.

The index theorem, which states that
∑

r∗eq. Index(r
∗) = +1, ensures that the equilibrium

is unique.
Next, in the case NT > 1, we apply this strategy to the positive vector x = {rn}n and
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compute the elements of −DẐ (r) · x, which are :

−
∑
i

∂Ẑn
∂ri

xi =
∑
t∈T

Lt λtnh
t
n

[
Hnk

(
rn
p
, ηn

)]−1
(
−E tn (V, r)− E tn (h, r) + En (k, r) +

N∑
i=1

λtiE ti (V, r)

)
.

A sufficient condition for this to be positive is that ∀n, ∀t :

En (k, r)− E tn (h, r) > E tn (V, r)−
N∑
i=1

λtiE ti (V, r) . (37)

Notice that if V is homothetic in the sense of Condition 2, and amenities are multiplica-
tively separable in utility, then E ti (V, r) = constant so that the sufficient condition become
En (k, r)−E tn (h, r) > 0, which is always satisfied when h is a normal good. That is, uniqueness
is warranted under homothetic preferences and separable amenities.

If Condition 2 does not hold, the sufficient condition (37) requires that the heterogeneity
in E tn (V, r) across cities, for each type, be not too large. A more stringent condition that
ensures that equation (37) holds is simply:

inf
n
En (k, r) + inf

n,t

∣∣E tn (h, r)∣∣ > sup
n,t

∣∣∣E tn (V, r)− E t (V, r)
∣∣∣ ,

E t (V, r) ≡
N∑
i=1

λtiE ti (V, r)

which is the one reported in the proposition. When this condition holds, −DẐ (r) is an M-
matrix, hence its index is positive at all equilibrium r∗. By the index theorem, which states
that

∑
r∗eq. Index(r

∗) = +1, the uniqueness of the equilibrium is then warranted. Notice,
equation (37) is also the condition that ensures that the excess demand system exhibits
gross substitutes. Specifically, denoting Z(r, p) the excess demand function, it is clear that
∂Zn
∂ri

> 0 for i ̸= n , but condition (37) ensures that, in addition, ∂Ẑn
∂p

> 0.

A.3 Proof of Proposition 3 (Sorting).

(i) The contrapositive (Conditions 1 and 2⇒ No sorting) is immediate to verify, since in this
case location choices are given by:

λtn =

[
Tn

P (rn,An)

]κ
∑

m∈C

[
Tm

P (rm,Am)

]κ .
Clearly, λtn is independent of t, hence there is no spatial sorting by type.

(ii) Assume Condition 1 fails but Condition 2 holds. Then:

∂2

∂Tn∂t
ln

(
λtn

1− λtn

)
= κ

(
1− λtn

) ∂2 lnwtn
∂Tn∂t

,
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which is different from 0 for some t, n given that Condition 1 is assumed to fail. Therefore,
equation (12) cannot hold generically.

Finally, recast the no-sorting condition (12) as

∂

∂ ln t
ln

(
λtn

1− λtn

)
− ∂

∂ ln t
ln

(
λtm

1− λtm

)
= 0

for all n,m, and assume that Condition 2 fails but Condition 1 holds, i.e. wtn = Tnt. Proceed
by contradiction and assume that there is no sorting. Therefore:

0 =
∂

∂ ln t
ln

(
λtn

1− λtn

)
− ∂

∂ ln t
ln

(
λtm

1− λtm

)
=
∂ lnV t

n

∂ ln t
− ∂ lnV t

m

∂ ln t
=
∂ lnV t

n

∂ lnwtn
− ∂ lnV t

m

∂ lnwtm
.

In turn, if ∂ lnV tn
∂ lnwtn

= ∂ lnV tm
∂ lnwtm

generically holds for any Tn, Tm , then ∂ lnV
∂ lnw

is constant; hence V
is homogeneous in income, a contradiction.

A.4 Proof of Proposition 4 ("Rosen-Roback").

Consider equation (10), 0 =
∑

t∈T L
tλtnh

t
n −Hnk (rn, ηn) . The right-hand side is increasing

in A and T , and decreasing in H and η; it is also decreasing in r, so it has to be that rm < rn
if An > Am (respectively if Tn > Tm, Hn < Hm , ηn < ηm), all else equal.

A.5 Proof of Proposition 5 (Sorting Patterns).

By Definition 1, city n disproportionately attracts high-t workers relative to city m if and
only if, for any s, t ∈ T with s < t:

1 <
λtn
λtm

(
λsn
λsm

)−1

=

[
v (rn, w

t
n)

v (rm, wtm)

]κ [
v (rn, w

s
n)

v (rm, wsm)

]−κ
,

where the equality follows from equation (8). For further reference, observe also that the
share of expenditure devoted to housing is equal to

stn ≡ s
(
rn, w

t
n

)
= − E tn (V, r)

E tn (V,w)
(38)

by Roy’s identity. (i) and (ii) By assumption, Tm = Tn so that wtn = wtm = wt for all t, and
the inequality above obtains if and only if (taking logs):

0 <

∫ rn

rm

[
E t (v, r)− Es (v, r)

]
d ln r.

Given equation (38), the right hand side of this expression is equal to∫ rn

rm

[
−s
(
r, wtn

)
E t (v, w) + s (r, wsn) Es (v, w)

]
d ln r >

∫ rn

rm

[
−s
(
r, wtn

)
+ s (r, wsn)

]
E t (v, w) d ln r,
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given s < t and Assumption 3. Finally, the term in the square parenthesis is positive by
equation (4) (housing is a necessity), and E tn (v, w) > 0 by definition. Hence, this inequality
holds if and only if rn > rm, which can arise only if either An > Am, Hn < Hm, or, provided
that the properties of function k obey equation (6), if ηn < ηm, by Proposition 4 (recall
Tm = Tn by assumption).

(iii) For this part, note first that Tn > Tm implies rn > rm, everything else equal, by
Proposition 4.Then,

v (rn, w
t
n)

v (rm, wtn)

[
v (rn, w

s
m)

v (rm, wsm)

]−1

=
v (rn, w

t
n)

v (rn, wtm)

[
v (rn, w

s
n)

v (rn, wsm)

]−1
v (rn, w

t
m)

v (rm, wtm)

[
v (rn, w

s
m)

v (rm, wsm)

]−1

.

This term is larger than unity because
v(rn,wtn)
v(rn,wtm)

[
v(rn,wsn)
v(rn,wsm)

]−1

> 1 by equation (16), and

v(rn,wtm)
v(rm,wtm)

[
v(rn,wsm)
v(rm,wsm)

]−1

> 1 by the first part of this Proposition.

B Appendix: Data

Sample This analysis uses decennial U.S. Census microdata from 1980-2000 and the 5-year
American Community Survey (ACS) for 2010 and 2020 from IPUMS (Ruggles et al., 2024).
The sample is restricted to individuals aged 26-59 in private households who worked at least
5 weeks in the previous year. The analysis excludes individuals enrolled in school and those
born outside the United States.

Unit of Geography All geographic identifiers are based on the Office of Management
and Budget’s (OMB) Metropolitan Statistical Area definitions. To maintain consistent ge-
ographic definitions across the 1980-2020 period, we construct a crosswalk between Census
METAREA codes (available through 2010) and 2013-based Metropolitan Statistical Area def-
initions. Using the 2010 Census sample, we observe both METAREA codes and 2013-based
MSA codes for each individual. We calculate population-weighted concordance shares that
map each METAREA to potentially multiple 2013 MSAs. Specifically, for each METAREA-
2013 MSA pair, we compute the share of the METAREA’s population that resides in each
2013 MSA. These shares are used as weights to allocate observations from the 2020 data to
METAREA definitions. For 2013 MSAs that span multiple METAREAs, observations are
probabilistically assigned based on these population shares, with sampling weights adjusted
proportionally.

Education Education levels are coded into two categories: high school graduates and
college graduates (those with 4+ years of college). Experience is calculated as age minus
years of education minus 6, where years of education is assumed to be 16 for college graduates
and 12 for high school graduates.

Wages Wages are constructed from annual wage income divided by the product of weeks
worked and usual weekly hours. Weeks worked are imputed for categorical responses using
interval midpoints.
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Housing Costs Housing costs are measured using gross rent for renters. Housing cost
shares are calculated as annual housing costs divided by household income, which we impute
to the individual.

Local Prices Local price indices are constructed following Moretti (2013). The housing
component uses rental costs for 2-3 bedroom units. The non-housing component uses local
BLS CPI data. Housing expenditure shares are based on BLS Consumer Expenditure Survey
weights for shelter plus utilities, ranging from 38.2% in 1980 to 37.7% in 2020.

Covariate Adjustment All wage and income measures are adjusted for demographic
composition by regressing log outcomes on a cubic in experience, gender, and race indi-
cators (White, Black, Asian, and other), separately for 1980-2000 and 2010-2020, nesting
Moretti (2013). The adjusted values hold demographic characteristics constant at their
period-specific means.

Bartik Instrument The Bartik labor demand instruments are constructed using local
industry employment shares from 1980 interacted with national industry wage growth. We
begin with individual-level Census data collapsed to MSA-year-industry-skill cells containing
employment counts and average wages. Industries are harmonized using a balanced panel of
1990 Census industry codes following Autor, Dorn, and Hanson (2013). Industries with zero
national employment in any sample year are dropped to maintain consistency across years.

For each MSA and skill group (college and non-college), we calculate 1980 employment
shares across industries to capture the initial local industrial structure. National wage growth
by industry and skill level is computed using a leave-one-out mean that excludes each MSA’s
own wages when calculating the national trend. Wage growth is measured as the change in
log average wages between consecutive decades.

The instrument is then constructed by multiplying each MSA’s 1980 industry employ-
ment shares by the subsequent national industry wage growth rates and summing across
industries within MSA-skill cells. The final relative shock measure is calculated as the dif-
ference between the college and non-college predicted wage changes.
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Online Appendix (not for publication)

A Additional Theory results

A.1 Sorting in the Two-City Case

We claim in Footnote 7 that, in the two-city case n ∈ {1, 2}, the sufficient condition for
uniqueness in equation (11) is akin to a single-crossing condition in the space of unit housing
prices (the proof in Appendix A works with an arbitrary number of cities).

Totally differentiate equation (10) for city 1 with respect to r1 and r2 yields

0 =
∑
t

θt1
{[

−E1 (k, r) + E t1 (h, r) +
(
1− λt1

)
E t1 (V, r)

]
d ln r1 −

(
1− λt1

)
E t2 (V, r) d ln r2

}
,

where θt1 ≡ Ltλt1h
t
1 (H

0
1k1)

−1
, k1 ≡ k(r1, η1), and

∑
t θ

t
1 = 1. Thus

d ln r2
d ln r1

∣∣∣∣
Z1=0

=

∑
t θ

t
1 [E1 (k, r)− E t1 (h, r)− (1− λt1) E t1 (V, r)]

−
∑

t θ
t
1 (1− λt1) E t2 (V, r)

,

which is positive by E tn (h, r) , E tn (V, r) < 0. It follows that the locus for an equilibrium in
the housing market for city 1 in the (r1, r2)-space is upward sloping. By the same token,
totally differentiating (10) for city 2 yields:

d ln r2
d ln r1

∣∣∣∣
Z2=0

=
−
∑

t θ
t
2λ

t
2E t1 (V, r)∑

t θ
t
2 [E2 (k, r)− E t2 (h, r)− λt1E t2 (V, r)]

> 0.

The locus for an equilibrium in city 1 crosses the locus for an equilibrium in city 2 from
below in the space of housing prices (r1, r2), where r1 is on the horizontal axis and r2 is on
the vertical one if and only if , ∀r, h, k :

1 <

∑
t θ

t
1 [E1 (k, r)− E t1 (h, r)− (1− λt1) E t1 (V, r)]

−
∑

t θ
t
1 (1− λt1) E t2 (V, r)

∑
t θ

t
2 [E2 (k, r)− E t2 (h, r)− λt1E t2 (V, r)]

−
∑

t θ
t
2λ

t
1E t1 (V, r)

(39)
(and> 1 for the opposite ordering). Whenever En (k, r)−E tn (h, r) > (1− λtn)

[
E tn (V, r)− E tm̸=n (V, r)

]
holds for all n, t as in (11), we get that

∑
t θ
t
1[E1(k,r)−Et1(h,r)−(1−λt1)Et1(V,r)]

−
∑
t θ
t
1(1−λt1)Et2(V,r)

> 1 (and similarly for

city 2), so that the single crossing property holds.
What is the economic intuition for the condition in equation (39)? Denote by (r∗1, r

∗
2) a

pair of housing prices that satisfy Z1 (r
∗
1, r

∗
2) = Z2 (r

∗
1, r

∗
2) = 0 – that is, both housing markets

are in equilibrium. Heuristically, if the conditioning equation (39) holds, then, whenever
excess demand in either or both housing markets is non-zero, market forces whereby the
housing price in j = 1, 2 rises if excess demand Zj is positive and falls otherwise, lead prices
to return to equilibrium. Further, this equilibrium is unique as condition (39) implies that
the two r2(r1) curves intersect at most once.
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B Derivations of Section 4 for Specific Functional Forms

The proof of Proposition 6 is by construction, and is provided in Appendix s B.1 to B.6.
Appendix B.7 provides the proof of Proposition 7.

We maintain Assumption 2 throughout in this Appendix , so that we can write V t
n =

(Anv
t
n)
κ
, where vtn = v (rn, w

t
n) and κ > 1 governs the migration elasticity.

B.1 Stone Geary

Recall equation (22) from Section 4 in the main text and use Roy’s identity to write:

vtn =
wtn − hrn

p1−ψ (rn)
ψ
=

wtn

p1−ψ (rn)
ψ

1− stn
1− ψ

, stn = ψ + (1− ψ)h
rn
wtn
, (40)

where ψ (0, 1), and h can be interpreted as the subsistence level of housing if it is positive
(observe that stn ∈ (ψ, 1) whenever h ≥ 0). The final expression for vtn in equation (40) is

the product of a homothetic component, wtn
p1−ψ(rn)

ψ , and of a non-homothetic one, 1−stn
1−ψ .

We show in the main text that the change in welfare inequality between types s and t in
equation (20) is equal to:

V̂t

V̂s
=
ŵtn
ŵsn

1̂− stn

1̂− ssn

(
λ̂tn

λ̂sn

)− 1
κ

. (41)

This expression is a special case of equation (25) where α = b = 1 and a = β = 0.
Under which conditions is Assumption 3 satisfied when preferences take the form in this

section? In this case, we may rewrite the inequality in equation (62) as

0 ≤ hrn
wtn − hrn

,

which is automatically satisfied whenever the wage covers the subsistence level of housing.
Further,

E tn (v, w) =
1− ψ

1− stn
, (42)

which is larger than one by stn ≥ ψ and increasing in stn by inspection. Thus, E tn (v, w) is
decreasing in w (and hence in t). We note also that the Arrow-Pratt measure of risk-aversion,
−E tn (vw, w), is equal to zero in this case: Engel curves are linear.

B.2 PIGL

Boppart (2014) and, in a spatial context, Eckert and Peters (2022) use the following Price-
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Independent Generalized Linear (PIGL) form for indirect utility (Muellbauer, 1975):

vtn =

[(
wtn

p1−ψ (rn)
ψ

)ι

− ν

γ

(
rn
p

)γι]1/ι
, ι, ψ ∈ (0, 1) , |γ| ≥ 1, ν ∈ {0, 1} , (43)

where ι governs income effects, γι governs relative price effects, and v is an indicator param-
eter; preferences are non-homothetic if ν = 1 and collapse to the homothetic Cobb-Douglas
case if ν = 0. Note that Boppart (2014) uses ψ = 0 and Eckert and Peters (2022) use
γ ≤ −1. Henceforth we set ν = 1, which yields the following expenditure share of housing:

stn = ψ +

(
wtn

p1−ψ (rn)
ψ

)−ι(
rn
p

)γι
. (44)

Combining equations (43) and (44) leads to:

vtn =
wtn

p1−ψ (rn)
ψ

(
γ

γ + ψ

1

Stn

)1/ι

, Stn =
γ

γ + ψ − stn
. (45)

Note that this expression for vtn is the product of a homothetic homothetic component,
wtn

p1−ψ(rn)
ψ , and of a non-homothetic one, (Stn)

−ι
. Therefore the change in welfare inequality

between types s and t in equation (20) is equal to:

V̂t

V̂s
=
ŵtn
ŵsn

(
Ŝtn

Ŝsn

)−1/ι(
λ̂tn

λ̂sn

)− 1
κ

. (46)

That is, changes in housing expenditure shares and composition of any arbitrary municipality
n, as well as an estimate of parameters κ, γ, ι, and ψ, are sufficient to compute changes in
utility inequality between any pair of types. This expression is a special case of equation
(25) where α = 1, β = δ = 1/ι, a = ψ and b = 1/γ. Note that the Stone-Geary and PIGL
cases are isomorphic, and even identical in the limiting case ι→ 1 and γ + ψ = 1.

Under which conditions is Assumption 3 satisfied when preferences take the form in this
section? In this case,

E tn (v, w) =

[
1− 1

γ

(
rn
p

)γι(
wtn

p1−ψ (rn)
ψ

)−ι]−1

=
γ

γ + ψ − sn
= Stn, (47)

where the second equality uses equation (44), and the last one follows from the definition of
Stn in equation (45). By inspection, E tn (v, w) is larger than one, and it is increasing in stn,
and hence decreasing in t by ∂stn/∂t < 0, since housing is a necessity; hence, the inequality
in equation (62) holds. The Arrow-Pratt measure of risk-aversion −E tn (vw, w) is equal to
1− ι ∈ (0, 1) in this case.
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B.3 PIGLOG

Consider next the following Price Invariant Generalized Logarithmic (PIGLOG) indirect
utility, which is a simplified version of Deaton and Muellbauer’s Almost Ideal Demand System
(Deaton and Muellbauer, 1980):

vtn =

(
rn
p

)ν
ln

(
wtn

p1−ψ (rn)
ψ

)
, ν > 0, ψ ∈ (0, 1) . (48)

Under Assumption (2), shocks are Frechet distributed, which requires a cardinality for utility
such that vtn > 0; in turn, this requires choosing units such that

∀n ∈ C, ∀t ∈ T ; wtn > p1−ψ (rn)
ψ . (49)

Using Roy’s identity, it is easy to verify that the expenditure share of housing is equal to

stn = ψ − ν ln

(
wtn

p1−ψ (rn)
ψ

)
. (50)

Thus stn < ψ by equation (49). In turn, stn ∈ (0, ψ) if and only if

ln

(
wtn

p1−ψ (rn)
ψ

)
∈
(
0,
ψ

ν

)
.

Combining equations (48) and (44) leads to:

vtn =

(
rn
p

)ι
ψ − stn
ν

.

Therefore the change in welfare inequality between types s and t in equation (20) is equal
to:

V̂t

V̂s
=
ψ̂ − stn

ψ̂ − ssn

(
λ̂tn

λ̂sn

)− 1
κ

. (51)

That is, changes in housing expenditure shares and composition of any arbitrary municipality
n, as well as an estimate of parameters κ and ψ, are sufficient to compute changes in utility
inequality between any pair of types. This expression is a special case of equation (25) where
α = 0, β = 0, δ = 1, a = 0 and b = 1/ψ.

Under which conditions is Assumption 3 satisfied when preferences take the form in this
section? Under Assumption 2, the inequality in equation (17) holds if and only if

0 ≤ ln

(
wtn

p1−ψ (rn)
ψ

)
=
ψ − stn
ν

,

where the second equality follows from equation (50). Then the condition above is satisfied
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since stn ≤ ψ by inspection of equation (50). We note also that the Arrow-Pratt measure of

risk-aversion −E tn (vw, w) is equal to 1−
(
rn
p

)ν
in this case.

B.4 CRIE

Next, consider the case of preferences displaying Constant Relative Income Elasticity (CRIE)
indirect utility (Caron, Fally, and Markusen, 2014; Eeckhout, Pinheiro, and Schmidheiny,
2014; Fieler, 2011; Hanoch, 1975):

vtn =

[(
wtn
rn

)−ψ

+

(
wtn
p

)−µ
]−ι

, (52)

where the parameters {ι, µ, ψ} all have the same sign (either positive or negative). Using
Roy’s identity, it is easy to verify that the ratio of expenditure shares is equal to

1− stn
stn

=
µ

ψ

(
wtn
rn

)ψ (
wtn
p

)−µ

. (53)

Housing demand is income-inelastic if and only if µ < ψ, and price-inelastic if only if µ, ψ < 0.
This configuration is the empirically relevant one, so we focus on the case 0 < µ < ψ, 0 < ι.
Combining equations (52) and (53) leads to:

vtn =

[
(ψ − µ)2

µψ

]−ι(
wtn
p

)µι  stn −
ψ

ψ−µ

1 + ψ−µ
µ

(
stn −

ψ
ψ−µ

)
−ι

.

Note that this expression for vtn is the product of a combination of parameters, of a homo-

thetic homothetic component,
(
wtn
p

)µι
, and of a non-homothetic one (the term involving sn

inside brackets). Only three among parameters κ, ι, µ, ψ can be separately identified. We
set ι = 1/µ so that vtn is proportional to wtn given stn. Let also define

Stn =
sn − a

1− b (sn − a)
, a =

ψ

ψ − µ
, b = −ψ − µ

µ
.

By inspection, 0 < a and b < 0 hold in the combination of structural parameters of interest.
Furthermore, Stn is positive if stn ∈ (a, 1), and Stn is increasing in stn. This normalization and
the expressions above together yield the change in welfare inequality:

V̂t

V̂s
=
ŵtn
ŵsn

(
Ŝtn

Ŝsn

)−1/µ(
λ̂tn

λ̂sn

)− 1
κ

. (54)

This expression for relative welfare changes is a special case of equation (25), where α = 1,
β = δ = 1

µ
, a = ψ

ψ−µ and b = −ψ−µ
µ

.
Under which conditions is Assumption 3 satisfied when preferences take the form in this
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section? In this case,

E tn (v, w) = ψ
1

stnµ+ (1− stn)ψ
. (55)

Observe that E tn (v, w) is larger than one and increasing in stn by µ < ψ. Thus, E tn (v, w) is
decreasing in w (and hence in t). We note also that the Arrow-Pratt measure of risk-aversion
is equal to

E tn (vw, w) = 1− ψ

ψ (1− stn) + µstn

[
ψ − (ψ − µ)2 stn

(
1− stn

)]
,

which, under the parameter configuration ψ > µ > 0, can be shown to be bounded above by
1− ψ.

B.5 NH-CES

Consider next the Non-Homothetic Constant Elasticity of Substitution (NH-CES) indirect
utility (Albouy, Ehrlich, and Liu, 2016; Comin, Lashkari, and Mestieri, 2021; Hanoch, 1975;
Matsuyama, 2019; Sato, 1977), defined implicitly in :(
wtn
)1−σ

=
(
vtn
)1−σ+χ [

Ω
(
vtn
)µ

(rn)
1−σ +

(
vtn
)ψ
p1−σ

]
, 0 < σ,Ω, −1 + σ − χ < µ < ψ.

We set χ = −ψ so that the elasticity of vtn with respect to wtn in equation (58) below is one,
given stn.

21 We can thus rewrite the expressions above as:(
wtn
)1−σ

=
(
vtn
)1−σ [

Ω
(
vtn
)µ−ψ

(rn)
1−σ + p1−σ

]
, 0 < σ,Ω, −1 + σ < µ− ψ < 0. (56)

The second parameter restriction above is guided by economic logic (indirect utility is de-
creasing in housing and non-housing prices) and empirical evidence (housing demand is price-
and income-inelastic).22 The main text sets Ω = 1. This restriction is innocuous because,
as we show below, this parameter enters neither the equilibrium expression for changes in
welfare inequality in equation (59), nor the expression for the marginal utility of income in
equation (60). Using Roy’s identity, the ratio of the expenditure shares is equal to:

1− stn
stn

=
1

Ω

(
vtn
)ψ−µ( p

rn

)1−σ

. (57)

21Finlay and Williams (2022) instead set χ = 0, which yields

vtn =

(
wtn
p

) 1−σ
1−σ+ψ (

1− stn
) 1

1−σ+ψ

and

Etn (v, w) =
1− σ

1− σ + µstn + ψNHCES (1− stn)

instead of the corresponding expressions in equations (58) and (60) below.
22From equation (57) below, the housing expenditure share stn is increasing in its relative price rn

p if and

only if σ < 1, and decreasing in utility vtn if and only if µ < ψ.
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We can combine equations (56) and (57) to write vtn as a function of stn and two prices among
{p, rn, wtn}. There are three such combinations. Solving equation (57) for (vtn)

µ
(rn)

1−σ and
plugging the result into equation (56) lead to one such combination:23

vtn =
wtn
p

(
1− stn

)1/(1−σ)
. (58)

This expression is the product of a homothetic component, w
t
n

p
, and of a non-homothetic one

(the term involving stn).
The corresponding expression for the change in welfare inequality becomes:24

V̂t

V̂s
=
ŵtn
ŵsn

(
1̂− stn

1̂− ssn

)1/(1−σ)(
λ̂tn

λ̂sn

)− 1
κ

. (59)

This expression is isomorphic to its equivalents in the Stone-Geary and PIGL cases – in
equations (41) and (46), respectively. The corresponding expression for relative welfare
changes is a special case of (25) where α = 1, β = 0, δ = 1

1−σ a = 0 and b = 1.
Under which conditions is Assumption 3 satisfied when preferences take the form in this

section? In this case:

E tn (v, w) =
1− σ

1− σ − (ψ − µ) stn
. (60)

This expression is larger than one and increasing in stn by ψ > µ, and hence it is decreasing
in t by ∂stn/∂t < 0 since housing is a necessity; hence, the inequality in equation (62) holds.
The equilibrium expression for the Arrow-Pratt measure of risk-aversion, −E tn (vw, w), is too
unwieldy in this case to be revealing.

23The other two are

vtn =

[
Ω

(
rn
p

)1−σ
1− stn
stn

]1/(ψ−µ)
and

vtn =

[(
wtn
rn

)1−σ
stn
Ω

]1/(1−σ+µ−ψ)
.

24Those corresponding to the alternatives in footnote 23 are:

V̂t

V̂s
=

̂(1− stn
stn

)1/(ψ−µ) ̂(1− ssn
ssn

)−1/(ψ−µ)(
λ̂tn

λ̂sn

)− 1
κ

and

V̂t

V̂s
=

(
ŵtn
ŵsn

)(1−σ)/(1−σ+µ−ψ)(
ŝtn
ŝsn

)1/(1−σ+µ−ψ)(
λ̂tn

λ̂sn

)− 1
κ

,

respectively.
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B.6 HCD

Finally, consider the case of Heterothetic Cobb-Douglas preferences (HCD) analyzed by Bohr,
Mestieri, and Robert-Nicoud (2024), which is a limiting case of Non-Homothetic CES pref-
erences for σ → 1. Solving equation (57) for vtn and taking the limit σ → 1 yield:

vtn = lim
σ→1

[
Ω

(
rn
p

)1−σ
1− stn
stn

]1/(ψ−µ)

=

(
Ω
1− stn
stn

)1/(ψ−µ)

.

In this case, the expression for changes in welfare inequality becomes:

V̂t

V̂s
=

(
Ŝtn

Ŝsn

)−1/(ψ−µ)(
λ̂tn

λ̂sn

)− 1
κ

, Stn =
stn

1− stn
. (61)

B.7 Proof of Proposition 7

Recall V = Ṽ κ by equations (1) and (1). Here we explicitly work with Ṽ to study wel-
fare changes in a transparent way. Here we allow for amenities to be type-specific and
to enter utility in a flexible way (that is, we do not impose Assumption 2); in the text,

we work with Ṽ t
n = Atnv (w

t
n, rn). By definition of Vt ≡

[∑
m∈C Ṽ (wtm, rm, A

t
m)

κ
]1/κ

and

V′t ≡
[∑

m∈C Ṽ
(
w

′t
m, r

′
m, A

′t
m

)κ]1/κ
, and making use of the hat notation, we have:

ln V̂t ≡ 1

κ
ln

∑
m∈C Ṽ

(
w

′t
m, r

′
m, A

′t
m

)κ∑
m∈C Ṽ (wtm, rm, A

t
m)

κ

=
1

κ
ln

{∑
m∈C

λtm

[
Ṽ
(
wtme

ln ŷt , rm, A
t
m

)
Ṽ (wtm, rm, A

t
m)

]κ}

≈ 1

κ
ln (1) +

1

κ

{∑
m∈C

λtm

[
Ṽ (wtm × 1, rm, A

t
m)

Ṽ (wtm, rm, A
t
m)

]κ}−1

×
∑
m∈C

λtmκ

[
Ṽ (wtm × 1, rm, A

t
m)

Ṽ (wtm, rm, A
t
m)

]−1+κ
wtm

Ṽ (wtm, rm, A
t
m)

×
∂Ṽ
(
wtme

ln ŷt , rm, A
t
m

)
∂ (wtme

ln ŷt)

∣∣∣∣∣
ln ŷt=0

× ln ŷt

= ln ŷt
∑
m∈C

λtmE tm
(
Ṽ , w

)
= ε̄t ln ŷt,

where the second line uses equation (27) to substitute Ṽ (wtmŷ
t, rm, A

t
m)

κ
for Ṽ

(
w

′t
m, r

′
m, A

′t
m

)κ
and uses equation (1), the following one is a Taylor expansion around ln ŷt = 0 (i.e., ŷt = 1).
We then use ŷt = 1 to simplify terms and the elasticity notation E .
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B.8 Implications of Assumption 3

Recall Assumption 3:

∂E tn (v, w)
∂w

≤ 0.

Computing the derivative explicitly, we get: ∂Etn(v,w)
∂w

= vw
v

(
1− wvw

v
+ wvww

vw

)
where we use

the short notation fx ≡ ∂f
∂x
. Observe that the term outside the parenthesis in the final RHS

is positive, thus
∂E tn (v, w)

∂w
∝ 1− wvw

v
+
wvww
vw

,

where “x ∝ y” is used to mean “x is of the same sign as y.” Thus, Assumption 3 holds if
and only if

1 ≤ wVw
V

− wVww
Vw

. (62)

In turn, wvww
vw

is negative whenever v is concave, which we assume. Thus a sufficient condition
for Assumption 3 is:

−wvww
vw

≥ 1,

where −wvww
vw

is the Arrow-Pratt measure of relative risk aversion associated with v.

C Additional Results for Section 5

Table OA.1: Summary Statistics for Expenditure Housing Shares

Non-College College

1980 1990 2000 2010 2020 ∆ 1980 1990 2000 2010 2020 ∆

Median 0.18 0.20 0.19 0.24 0.24 0.05 0.17 0.18 0.17 0.19 0.20 0.02
Min 0.13 0.15 0.13 0.18 0.16 0.03 0.13 0.12 0.09 0.12 0.11 -0.02
Max 0.24 0.25 0.25 0.28 0.31 0.06 0.23 0.23 0.22 0.26 0.24 0.01
p75-p25 0.03 0.03 0.03 0.03 0.03 0.01 0.02 0.02 0.02 0.03 0.03 0.01

Note: Housing shares represent the proportion of expenditure allocated to housing. Minimum
and maximum values are taken across Metropolitan Statistical Areas (MSAs). Specifically, we
first calculate the median housing share within each MSA, then report the lowest (Min) and
highest (Max) of these MSA-level medians. The p75-p25 range represents the interquartile
range of these MSA-level medians.
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