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1. Introduction

The distribution of economic activity across space is strikingly uneven. Location choices made by indi-

vidual firms arguably play a role in shaping these spatial disparities: some areas boom, driven by the

presence of large and productive firms, while other areas barely attract any. Recognizing this, govern-

ments put in place a range of policies that aim at attracting firms to specific areas of a country. How

much of the productivity advantage of a region is shaped by the efficiency of the firms it attracts, and

what is the aggregate impact of altering the location choice of heterogeneous firms through place-based

policies? These questions require a theory of the location choice of heterogeneous firms and their impact

on local and aggregate productivity. In this paper, I develop such a theory and explore its quantitative

implications.

I first use this framework to decompose the productivity advantage of firms in dense areas into (1) an

advantage caused by density – i.e., the extent of agglomeration externalities – and (2) the endogenous

sorting of more productive firms into these areas. I estimate that nearly half the the elasticity of produc-

tivity to density comes from firm sorting. Second, I use the framework to evaluate the general equilibrium

effect of spatial policies. A range of such spatial policies directly target firms, and aim to attract them

to specific areas (in general, to the less developed ones). By accounting for how these policies influence

the location choice of heterogeneous firms, which type of firms they attract, and how this location choice

feeds back into the productivity of firms, the quantified model allows to study the general equilibrium

effect of such policies on aggregate productivity and on spatial disparities between regions. I find that

policies that subsidize smaller cities can have negative aggregate effects, and do not necessarily reduce

spatial disparities.

In the model, cities form endogenously, on sites that are ex-ante identical. They grow in population

as firms choose to locate there and increase local labor demand. Cities are the locus of agglomeration

externalities such as thick labor markets or knowledge spillovers (Duranton and Puga (2003)). Firms

are heterogeneous in productivity and produce in a variety of sectors with different production functions.

Firms sort across cities of different sizes. Firm sorting is driven by a trade-off between gains in productivity

through local externalities, and higher labor costs. This trade-off is shaped in particular by how labor-

intensive is production, which varies by sector. I assume that more efficient firms benefit relatively

more from local agglomeration externalities (Combes et al. (2012)). This generates positive assortative

matching: more efficient firms locate in larger cities, reinforcing their initial edge. Finally, city developers

compete to attract firms to their city. They act as a coordinating device in the economy, leading to a

unique spatial equilibrium.

Using firm-level data, I show that the model is able to reproduce salient stylized facts about French

firms. In the data, within sectors, firms have higher revenues in larger cities, but not necessarily higher

employment. The model predicts this pattern. Second, across sectors, firm sorting is systematically

related to sectoral intensity of input use. Similarly, in the model, in labor-intensive sectors, firms locate

more in small cities, where wages are lower. Third, in the data, firm-size distribution is more thick-tailed

for sectors that tend to locate in larger cities. In the model, initial differences in productivity between

firms induce sorting across city sizes. This, in turn, reinforces firm heterogeneity, as firms in large cities
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benefit from stronger agglomeration forces, which generates a thicker-tailed firm size distribution.

I structurally estimate the model using firm-level data, and recover a model-based estimate of the

shape of agglomeration externalities. This allows me to disentangle the roles played by agglomeration

forces and firm sorting in explaining the productivity difference between cities of different sizes. I find

that the magnitude of the productivity advantage of large cities is 4.2%, in line with existing measures

of agglomeration externalities in the literature as reported by Rosenthal and Strange (2004). Using

counterfactual analysis, I estimate that nearly half of this measure comes from firm sorting.

Finally, I analyze the general equilibrium impact of spatial policies that aim to influence the location

choice of firms. These policies are pervasive.1 Federal programs in the United States and in Europe

provide generous tax breaks to firms that elect to locate in less developed areas. Because they induce a

complex reallocation of factors across space, the aggregate impact of such programs is a priori ambiguous.

First, positive local impacts may be counterbalanced by undesirable effects in other regions. Second,

subsidies may attract low-productivity firms to the targeted zones while leaving high-productivity firms

in the more developed regions, thereby reinforcing spatial disparities. I use the estimated model to

quantify the effect of such spatial policies. Specifically, I simulate the new spatial equilibrium that results

from two types of programs: a tax-relief scheme targeted at firms locating in smaller cities, and the

removal of regulations that hamper city growth, such as zoning or building-height regulations.2 The

productive efficiency of the new equilibrium depends in particular on the new city-size distribution: this

distribution drives the extent of agglomeration externalities leveraged by firms in the economy. I find

that a policy that subsidizes less productive areas has negative aggregate effects on TFP and welfare. In

contrast, a policy that favors the growth of cities leads to a new spatial equilibrium that is significantly

more productive by endogenously creating agglomeration externalities and reducing the impact of market

failures.

2. Relation to the Literature

The literature that studies systems of cities, pioneered by Henderson (1974), has traditionally focused

on homogeneous firms. Recent contributions have introduced richer heterogeneity in the spatial setting.3

Compared to this literature, the main contribution of the paper is to propose a general theory of mo-

bile heterogenous firms that operate in many different sectors, without specifying firms’ heterogeneity

parametrically. Furthermore, the model is highly tractable and amenable to quantitative estimation.

In a seminal contribution, Behrens et al. (2014) study the spatial sorting of entrepreneurs who produce

non-tradable intermediates. I study the polar case of producers of perfectly tradable goods, and show that

1Kline and Moretti (2014) report that an estimated $95 billion are spent annually in the United States to attract firms
to certain locations.

2Glaeser and Gottlieb (2008) in particular advocate in favor of reducing this type of regulation.
3Early studies of heterogenous firms in the spatial context include Nocke (2006) and Baldwin and Okubo (2006). They

predict that more productive firms self-select into larger markets. These results are obtained in a setting where the size
of regions is fixed and exogenously given. In a recent contribution, Suarez Serrato and Zidar (2016) study the incidence
of the corporate tax in a spatial setting with heterogenous firms. Cities are taken as given and the paper abstracts from
agglomeration externalities. In contrast, in this research, city sizes respond endogenously to the location choice of firms and
the intensity of agglomeration externalities. Another strand of the literature studies the sorting of heterogenous firms within
a given urban area (Brinkman et al. (2015)).
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the setup is tractable enough that it can be extended to feature trade costs. Furthermore, an important

difference for policy analysis is the uniqueness of the equilibrium I obtain here. Another closely related

strand of the literature (Eeckhout et al. (2014), Davis and Dingel (2012) and Davis and Dingel (2013))

studies the spatial sorting of workers who differ in skill level, to shed light on patterns of wage inequality

and on the spatial distribution of skills. My research uses similar conceptual tools, borrowed from the

assignment literature.4 It differs however in that, by modeling firms, I can derive novel predictions on how

sectoral composition, firm size and input use vary across cities of different sizes. These dimensions are

absent from models with only heterogenous labor. Modeling firms is also necessary to study the impact

of place-based policies that explicitly target firms. My research is motivated by the empirical finding of

Combes et al. (2012). They show that the productivity advantage of firms in large cities is not driven

by tougher competition hence stronger selection in larger cities, but by agglomeration effects. Moreover,

they find that the most efficient firms are disproportionately more efficient in large cities, indicating

potential complementarities between firm productivity and city size. I build on this result and integrate

this complementarity in a spatial equilibrium model with mobile and heterogenous firms, a feature absent

from their approach. Duranton and Puga (2001) develop a lifecycle model of firm location, in order to

explicitly tackle the topic of urban diversity. They propose that diversified cities serve as incubators for

new ideas, which are then implemented in specialized cities. Contrary to this research, firms do not differ

in productivity types, nor is there heterogeneity in city sizes.

As in Desmet and Rossi-Hansberg (2013) and Behrens et al. (2017), I use structural estimation of a

model of a system of cities to assess the welfare implications of the spatial equilibrium. The focus of the

analysis is different, since they do not explicitly account for sorting by heterogeneous firms. The paper

also contributes to the literature that measures agglomeration externalities, as reviewed in Rosenthal and

Strange (2004). There is some empirical evidence that sorting across space matters to understand the

wage distribution This literature uses detailed data on workers’ characteristics or a fixed effect approach

to control for worker heterogeneity and sorting in a reduced form analysis (Combes et al. (2008), Mion

and Naticchioni (2009), Matano and Naticchioni (2011)). I use a structural approach to explicitly account

for the sorting of firms.

Finally, the counterfactual policy analysis offers a complementary approach to research that assesses

the impact of specific place-based policies. The empirical literature has traditionally focused on estimating

the local effects of these policies. A notable exception is Kline and Moretti (2014), who develop a

methodology to estimate their aggregate effects.5 They estimate that, following a local productivity

boost, additional positive local effects due to the endogenous creation of agglomeration externalities are

offset by losses in other parts of the country. My approach explicitly models the reaction of mobile

firms to financial incentives, and I find a negative aggregate effect of policies attracting firms to the

smallest cities. In contrast, a desirable policy is one that subsidizes firms to choose larger cities, as the

4The model borrows insights from the assignment model literature, such as Costinot and Vogel (2010), and in particular
Eeckhout and Kircher (2012) and Sampson (2014), who focus on the matching of heterogenous firms to heterogenous workers.
Here, firms match with heterogenous city sizes.

5Albouy (2012) focuses on a related question. He argues that federal taxes impose a de facto unequal geographic burden
since they do not account for differences in local cost of living, and estimates the corresponding welfare cost. On the
measurement of local effects, see, for example, Busso et al. (2013) for the US, Mayer et al. (2015) for France and Criscuolo
et al. (2012) for the UK.
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decentralized equilibrium features a suboptimal creation of agglomeration externalities. Finally, Glaeser

and Gottlieb (2008) study theoretically the economic impact of place-based policies. My analysis brings in

heterogeneous firms and the general equilibrium effect of place-based policies on the productive efficiency

of the country.

The paper is organized as follows. Section 3 presents the model and its predictions. Section 4 details

the empirical analysis. I show salient features from French firm-level data that are consistent with the

forces at play in the model. I then structurally estimate the model using simulated method of moments.

In section 5, I conduct a counterfactual policy analysis using the estimated model. Section 6 concludes.

3. A Model of the Location Choice of Heterogeneous Firms

Consider an economy in which production takes place in locations that I call cities. Cities are constrained

in land supply, which acts as a congestion force. The economy is composed of a variety of sectors. Within

sectors, firms are heterogeneous in productivity. They produce, in cities, using local labor and traded

capital. Non-market interactions within cities give rise to positive agglomeration externalities. I assume

that they have heterogeneous effects on firms, in the sense that more efficient firms are more able to

leverage local externalities. Firms’ choice of city results from a trade-off between the strength of local

externalities and the local level of input prices. Heterogeneous firms face different incentives, which yields

heterogeneity in their choice.

I first establish some key properties of an economy with these characteristics. I then close the model

and endogenize city formation. To that end, I follow Henderson (1974) and postulate the existence of a

class of city developers. In each potential city site, a developer represents local landowners and competes

against other sites to attract firms. City developers play a coordination role in the creation of cities,

which leads to a unique equilibrium of the economy.6

The model describes a long-run steady state of the economy and abstracts from dynamics. All deriva-

tions and proofs are detailed in the supplemental material.

3.1. Set-up and agents’ problem

3.1.1. Cities

Each city is built on a given stock of land, normalized to 1. All city sites are identical ex-ante. The

number of workers that live in a city is noted L. The economy features an distribution of city sizes, which

is left arbitrary for now.

In what follows, I index cities and all the relevant city-level parameters by L. City size is sufficient to

characterize all the economic forces at play, in the tradition of models of systems of cities pioneered by

Henderson (1974). In particular the distance between two cities plays no role as goods produced in the

economy are either freely traded between cities within the country, or are, in the case of housing, non

6In the model, the one conclusion that relies on the presence of these city developers is the uniqueness of equilibrium.
All the other characterizations, and in particular the various comparative statics with respect to city size, remain valid if
the mechanism for city formation is left unspecified i.e. if the city size distribution is taken as exogenous.
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tradable.7

Land is used to build housing, which is divisible and consumed by workers. Atomistic landowners

construct housing hS by combining their land γ with local labor `, according to the housing production

function

hS = γb
( `

1− b
)1−b

. (1)

Landowners compete in the housing market, taking both the housing price pH(L) and the local wage

w(L) as given.

3.1.2. Workers

Set-up There is a mass N of identical workers. Each worker is endowed with one unit of labor. A

worker lives in the city of his choosing, consumes a bundle of traded goods and housing, and is paid the

local wage w(L). Workers’ utility is

U =

(
c

η

)η( h

1− η

)1−η
, (2)

where h denotes housing and c is a Cobb-Douglas bundle of goods across S sectors and a CES bundle of

varieties within sector, defined as

c =

j=S∏
j=1

c
ξj
j , with

j=S∑
j=1

ξj = 1 and cj =

[ ∫
cj(i)

σj−1

σj di

] σj
σj−1

.

I denote by P =

[
S∏
j=1

(
Pj
ξj

)−ξj

]−1

the aggregate price index for the composite good c. Since goods

are freely tradable, the price index is the same across cities. Workers are perfectly mobile and ex ante

identical.

Workers’ problem Workers in city L consume c(L) units of the good and h(L) units of housing to

maximize their utility (2), under the budget constraint P c(L) + pH(L)h(L) = w(L). Given (1) and the

housing market clearing condition, the quantity of housing consumed by each worker in equilibrium in

city L is

h(L) = (1− η)1−b L−b. (3)

7The assumption of free trade, if convenient, is not necessary here. I show in Appendix C that when trade between cities
is costly, city size L is still sufficient to characterize all the economic forces at play. In turn, the characterizations of the
economy with heterogeneous firms sorting that I propose below in section 3.2 still hold in the case of costly trade. Note
that in this extension, cities of the same population have in equilibrium the same market access. To break this systematic
correlation, one would have to introduce more sources of heterogeneity to the model - for instance, heterogeneity in local
amenities. This is left for future research.
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Housing consumption is lower in more populous cities because cities are constrained in space. This

congestion force counterbalances the agglomeration-inducing effects of positive production externalities

in cities and prevents the economy from complete agglomeration into one city.

Since workers are freely mobile, their utility must be equalized in equilibrium across all inhabited

locations to a level Ū . In equilibrium, wages must increase with city size to compensate workers for

congestion costs, according to

w(L) = w̄((1− η)L)
b 1−η
η , (4)

where w̄ = Ū
1
η P is an economy-wide constant to be determined in the general equilibrium.

3.1.3. Firms

Production The economy consists of S sectors that manufacture differentiated tradable products.

Sectors are indexed by j = 1, ..., S. Firms produce varieties using two factors of production that have

the following key characteristics. One has a price that increases with city size; the other has a constant

price across cities. For simplicity, I consider only one factor whose price depends on city size: labor. In

particular, I do not consider land directly in the firm production function. I call the other factor capital,

as a shorthand for freely tradable inputs. Capital is provided competitively by absentee capitalists. The

price of capital is fixed exogenously in international markets, and the stock of capital in the country

adjusts to the demand of firms.8

Within their sectors, firms differ exogenously in efficiency z. A firm of efficiency z in sector j and city

of size L produces output according to the following Cobb-Douglas production function

yj(z, L) = ψ(z, L, sj) k
αj `1−αj ,

where ` and k denote labor and capital inputs, αj is the capital intensity of all firms in sector j and

ψ(z, L, sj) is a firm-specific Hicks-neutral productivity shifter detailed below. It is determined by firm’s

‘raw’ efficiency, the extent of the local agglomeration externalities and a sector-specific parameter sj .

Firms engage in monopolistic competition. Varieties produced by firms are freely tradable across

space: there is a sectoral price index that is constant through space. Firms take it as given. What

matters for location choice is the trade-off between production externalities and costs of production. The

relative input price varies with city size. Wages increase with L (equation (4)), whereas capital has a

uniform price. Therefore, the factor intensity of a firm shapes, in part, its location decision. A more

labor-intensive firm faces, all else equal, a greater incentive to locate in a smaller city where wages are

lower.

Productivity and agglomeration The productivity of a firm ψ(z, L, sj) increases with its own ‘raw’

efficiency z and with local agglomeration externalities that depend on city size L. The productivity

8Featuring this input to production allows the model to capture that input-use intensity is one of the determinants of
location choice of firms. Beyond allowing to capture these type of effects, capital is not necessary to build the equilibrium
of the model.
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function is also indexed by a sector-specific parameter sj . I explain the roles of these parameters in turn.

A key assumption of the model is that the productivity of a firm ψ(z, L, sj) exhibits a strong com-

plementarity between local externalities and the ‘raw’ efficiency of the firm. This assumption is driven

by the findings of Combes et al. (2012), who study a wide set of French industries and provide evidence

that more efficient firms are disproportionately more productive in larger cities, pointing to such a com-

plementarity as a potential explanation for this fact. Moreover, in Section 4, I present a set of stylized

facts on French firms’ location and production patterns. They are consistent with sorting, a consequence

of the assumed complementarity.

Knowledge spillovers can arguably exhibit this type of complementarity. More efficient firms can bet-

ter leverage the local information they obtain. A similar idea, though for individual agents, is provided

by Davis and Dingel (2012). In their model, more able individuals optimally spend less time producing

and more time leveraging local knowledge, which increases their productivity, leading to such a comple-

mentarity.

In what follows, I remain agnostic on the source of agglomeration externalities and their specific func-

tional form. This allows me to highlight the generic features of an economy with such complementarities.

I let the productivity ψ(z, L, s) have the following properties:

Assumption A ψ(z, L, s) is log-supermodular in city size L, firm raw efficiency z and sectoral charac-

teristic s. Furthemore, the log-supermodularity in (z, L) is strict, and ψ is is twice differentiable. That

is,
∂2log ψ(z, L, s)

∂L∂z
> 0,

∂2log ψ(z, L, s)

∂L∂s
≥ 0, and

∂2log ψ(z, L, s)

∂z∂s
≥ 0.

I introduce a sector-specific parameter sj that allows sectors to vary in the way they benefit from local

urbanization externalities. Rosenthal and Strange (2004) note that empirical studies suggest that the

force and scope of agglomeration externalities vary across industries. More specifically, Audretsch and

Feldman (1996) suggest that the benefits from agglomeration externalities are shaped by an industry’s

life-cycle and that highly innovative sectors benefit more strongly from local externalities than mature

industries. I index industries such that, in high s sectors, firms benefit from stronger agglomeration forces,

for a given city size. In the estimation of the model, I allow for parameter values that shut down the

heterogeneous effect between agglomeration externalities and firm efficiency. The specification I retain

for ψ nests the typical specification considered in the literature, where only agglomeration forces of the

form ψ = zLs are at play.9

Finally, I restrict the analysis to productivity functions ψ(z, L, s) for which the firms’ problem is well

defined and concave for all firms. In other words, I assume that the positive effects of agglomeration ex-

ternalities are not too strong compared to the congestion forces. A sufficient condition for this, given that

the congestion forces increase with city size with a constant elasticity, is that agglomeration externalities

have decreasing elasticity with respect to city size for any firm type z.

Entry and location choice There is an infinite supply of potential entrants who can enter the sector

of their choosing. Firms pay a sunk cost fEj in terms of the final good to enter sector j, then draw a raw

9In that case ∂2log ψ(z,L,s)
∂L∂z

= 0, ∂2log ψ(z,L,s)
∂s∂z

= 0 and ∂2log ψ(z,L,s)
∂L∂s

> 0.
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efficiency level z from a distribution Fj(.).
10 Once firms discover their raw efficiency, they choose the size

of the city where they want to produce. Contrary to the setting in Melitz (2003), the model abstracts

from any selection of firms at entry, since there is no fixed cost to produce. I focus instead on where firms

decide to produce once they discover their efficiency, and how this shapes the spatial equilibrium of the

economy. That is, rather than selection on entry, I focus on selection on city size.

Firms’ problem A firm’s choice of city size is influenced by two factors. First, relative input prices

vary by city size. Second, firm productivity increases with city size, through greater agglomeration

externalities. The firm’s problem can be solved recursively. For a given city size, the problem of the firm

is to hire labor and capital and set prices to maximize profits, taking as given the size of the city (and

hence the size of the externality term) and input prices. Then, firms choose location to maximize this

optimized profit.11

Consider a firm of efficiency z producing in sector j and in a city of size L. Firms hire optimally

labor and capital, given the relative factor prices w(L)
ρ – where ρ denotes the cost of capital – and their

local productivity ψ(z, L, sj). Firms treat local productivity as exogenous, so that the agglomeration

economies take the form of external economies of scale. Given the CES preferences and the monopolistic

competition, firms set constant markups over their marginal cost. This yields optimized profits for firm

z in sector j as a function of city size L

πj(z, L) = κ1j

(
ψ(z, L, sj)

w(L)1−αj

)σj−1

Rj P
σj−1
j , (5)

where Pj is the sectoral price index, Rj is the aggregate spending on goods from sector j and κ1j =
((σj−1)α

αj
j (1−αj)1−αj (ρP )−αj )σj−1

σ
σj
j

is a sector-specific constant.

Note that firm employment, conditional on being in a city of size L, is given by

`j(z, L) = (1− αj)(σj − 1)
πj(z, L)

w(L)
. (6)

The proportionality between profits and the wage bill is a direct consequence of constant factor shares,

implied by the Cobb-Douglas production function, and of constant markup pricing. The problem of the

firm thus is to choose the city size L to maximize (5).

3.2. Properties

I examine here the properties of an equilibrium of this economy, taking as given an arbitrary support of

city sizes L. These properties are robust to extending the model to imperfect sorting or costly trade, as

I detail at the end of the analysis.

10I assume that this distribution is an interval (possibly unbounded) on the real line. This assumption is made for
tractability; the results carry through without it, although the notation is more cumbersome.

11In reality, there are two types of sorting: ex-post sorting - that is, firms that are already established and decide to change
location - and ex-ante sorting - that is, new firms, or new establishments of an existing firm, being created somewhere. Since
the model is static, it conflates both types of sorting.
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3.2.1. Firm Sorting

Firms choose city size to maximize profits given by (5). This is summarized by the following first-order

condition12, given the wage in equation (4) and writing ψ2(z, L, sj) =
∂ψ(z,L,sj)

∂L :

ψ2(z, L, sj)L

ψ(z, L, sj)
= (1− αj) b

1− η
η

(7)

This condition states that the elasticity of productivity to city size is equal to the elasticity of labor

costs with respect to city size. At the optimal city size for a given firm, its marginal gain to choosing a

larger city equals the marginal cost of doing so. This first-order condition defines implicitly the matching

function:

L∗j (z) = arg max
L∈L

πj(z, L). (8)

There is a unique profit-maximizing city size for a firm of type z in sector j, under the regularity

conditions I have assumed. Furthemore, it is readily seen from (5) that the profit function of the firm

inherits the log-supermodularity of the productivity function in z and L. Therefore, the following lemma

holds.

Lemma 1 The matching function L∗j (z) is non-decreasing in z.

This result comes from a classic theorem in monotone comparative statics (Topkis (1998)). The benefit

to being in larger cities is greater for more productive firms and only they are willing in equilibrium to

pay the higher factor prices there. Furthermore, the matching function is fully determined by the firm

maximization problem, conditional on the set of city sizes L. This optimal choice does not depend on

general equilibrium quantities that enter the profit function proportionally for all city sizes.

3.2.2. Within-sector patterns

Within a given sector j, the revenue, production and employment distributions are all determined by the

matching function L∗j (z). In the sorting equilibrium, for a firm of efficiency z, productivity, revenues and

employment are given by

ψ∗j (z) = ψ(z, L∗(z), sj),

r∗j (z) = σjκ1j

(
ψ(z, L∗(z), sj)

w(L∗j (z))
1−αj

)σj−1

P σ−1
j Rj , (9)

`∗j (z) = κ2j
ψ(z, L∗(z), sj)

σ−1

w(L∗j (z))
(σ−1)(1−αj)+1

P
σj−1
j Rj , (10)

where the starred variables denote the outcomes in the sorting equilibrium. Since there is positive

assortative matching between a firm’s raw efficiency and city size (lemma 1), firm-level observables also

exhibit complementarities with city size.

12I assume here for simplicity that L is a convex set, so that one can take derivative. I examine the case where L is not
convex (e.g., a discrete collection of city sizes) in the Appendix
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Proposition 2 In equilibrium, within each sector, firm revenues, profits and productivity increase with

city size, in the following sense. For any LH , LL ∈ L such that LH > LL, take zH such that L∗j (zH) = LH

and L∗j (zL) = LL. Then, r∗j (zH) > r∗j (zL), π∗j (zH) > π∗j (zL), and ψ∗j (zH) > ψ∗j (zL).

These strong predictions on the ranking of the size of firms (in revenues or productivity) vis a vis the

city size are a direct consequence of the perfect sorting of firms. In contrast, employment can be either

positively or negatively associated with city size through the effect of wages. Within a sector, `∗(z) ∝
r∗(z)

w(L∗(z)) , where both revenues and wages increase with city size. Firms may have lower employment in

larger cities, even though they are more productive and profitable. More precisely, if εl = d log ¯̀∗(L)
d log L and

εr = d log r̄∗(L)
d log L are the elasticities of mean employment and mean revenues with respect to city size in

equilibrium, then εl is not necessarily positive, since:

εl = εr − b
1− η
η

, , (11)

3.2.3. Comparative statics across sectors

I now compare the predicted distribution of firm outcomes across sectors. Sectors differ in their capital

intensity αj and in the strength of their benefit from agglomeration externalities sj . Both impact the

sorting process, leading in turn to differences in observed outcomes. The following comparative statics

exercises examine how the geographic and size distribution of firms in a sector vary with each parameter

holding all other sectoral characteristics constant, in particular the distribution of raw efficiencies F (.).13

Geographic distribution Define the geographic distribution of firms in a sector as the probability

that a firm from the sector is in a city of size smaller than L. That is, let

F̃ (L;αj , sj) = P (firm from sector (αj , sj) is in a city of size smaller that L).

Proposition 3 The geographic distribution F̃j of a high αj sector first-order stochastically dominates

that of a lower αk sector, all else equal. The geographic distribution F̃j of a high sj sector first-order

stochastically dominates that of a lower sk sector, all else equal.

These results stem from the following observation. As shown before, the matching function L∗j (z) is

always increasing, but its slope and absolute level depend on the capital intensity αj and the strength of

agglomeration externalities sj in the sector. In labor-intensive sectors, the weight of the wage effect is

heavier in the trade-off between the benefits of agglomeration externalities and labor costs. This pushes

the matching function down, towards smaller cities. For any city size threshold, there are more firms

from a labor-intensive sector that choose to locate in a city smaller than the threshold. In contrast, in

sectors with strong agglomeration externalities, firms benefit more from a given city size, which pushes

the matching function up for all firms. All else equal, they locate more in larger cities.

13Note that if firms where not heterogeneous, both these distributions would be degenerate. In every sector, there would
be one firm size, and firms would be located in one city size.
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Firm-size distribution The intensity of sorting, which reinforces initial differences between firms,

impacts the dispersion of the observed sectoral firm-size distribution. Let Qj(p) denote the p-th quantile

of the firm revenue distribution in sector j.

Proposition 4 All else equal, if (αj , sj) ≥ (αi, si), the observed firm-size distribution in revenues is

more spread in Sector j than in Sector i. For any p1 < p2 ∈ (0, 1), Qi(p2)
Qi(p1) ≤

Qj(p2)
Qj(p1) .

In other words, if one normalizes the median of the revenue distribution to a common level, all higher

quantiles in the revenue distribution of Sector 2 are strictly higher than in Sector 1, and all lower quantiles

are below. This comes from the fact that the distribution of firm revenues is shaped not only by the

distribution of raw efficiencies (held constant across sectors in this comparative statics exercise), but also

by the complementarity between z and city size, whose choice is endogeneous. In higher-s sectors for

example, there is more to be gained by more productive firms to locate in larger cities. As a consequence,

the difference in city size choice, and in turn in firm revenues, is larger between high- and low-z firms in

a higher-s sector compared to a lower-s sector. The distribution of firms outcomes is more unequal.

In particular, higher αj or higher sj sectors have thicker upper-tails in their firm-size distributions.

This leads to a characterization that will prove useful empirically. Firm-size distributions are empirically

well approximated by power law distributions, in their right tail. The exponent of this distribution

characterizes the thickness of the tail of the distribution. Assume that the revenue distribution of firms

in two sectors 1 and 2 can be approximated by a power law distribution in the right tail, with respective

exponents ζ1 and ζ2. Then the following corollary holds:

Corollary 5 Let (α2, s2) ≥ (α1, s1). The tail of the firm-size distribution in Sector 2 is thicker than the

tail of the firm-size distribution in sector 1: ζ2 ≤ ζ1.

3.2.4. Model Extensions

I detail several extensions to the baseline setup in the supplemental material. The general properties

described in this section are robust to these extensions. In particular, the model can be extended to

feature costly trade between cities. Even with costly trade and unequal price indexes across cities, I show

that city size L remains a sufficient statistic for the local economic conditions. The result that more

efficient firms sort into larger cities still obtains.

Second, I examine the properties of the model in the presence of imperfect sorting as hypothesized

in the empirical specification of section 4. The properties described above are either unchanged, or hold

true on average, rather than systematically, in that case.

3.3. Closing the Model

In this section, I specify a mechanism for endogenous city formation, and close the model. I postulate

the existence of a class of large local players who develop cities. This leads to a unique equilibrium of

this economy, characterized by a specific distribution of city sizes.
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3.3.1. City developers

Set-up There is one city-developer for each potential city site. City developers fully tax local landown-

ers. They are therefore the residual claimants on local land value. Their objective is to maximize these

revenues, net of the cost of the policies they put in place. They compete to attract firms to their city

by subsidizing firms’ profits. Absent these developers, there would be a coordination failure as atomistic

agents alone - firms, workers or landowners - cannot create a new city. City developers are, in contrast,

large players at the city level. As in Henderson (1974), city developers act as a coordinating device that

allows a unique equilibrium to emerge in terms of city-size distribution. There is perfect competition and

free entry among city developers, which drives their profits to zero in equilibrium.

City developers’ problem Each city developer announces a subsidy to local firms’ profits in sector

j, Tj(L), which may depend on city size L.14 Developers are funded by fully taxing profits made on the

housing market. As the housing market clears in each city, aggregate landowner profits at the city level

are

πH(L) = b(1− η)Lw(L). (12)

It will prove useful when solving for the equilibrium to note that a constant share of the local labor force

is hired to build housing, namely

`H(L) = (1− b)(1− η)L. (13)

A city developer developing a city of size L faces the following problem:

max
{Tj(L)}j∈1,...,S

ΠL = b(1− η)w(L)L−
S∑
j=1

∫
z

Tj(L)πj(z, L)1j(z, L)dFj(z),

such that

1j(z, L) = 1 if firm z chooses their city ,

1j(z, L) = 0 otherwise.

(14)

In this expression, Fj(.) is the distribution of firm’s raw efficiencies in sector j and πj(z, L) is the local

profit of a firm of efficiency z in sector j, as defined in (5).

Note that subsidies enter the firm’s optimal location choice problem:

max
L

(1 + Tj(L))πj(z, L). (15)

Hence, one may worry that they impact firms’ choices and the properties described in section 3.2. As I

show below though, equilibrium subsidies are independent of L, hence they do not alter the location choice

of firms compared to a world without subsidy, nor the distribution of firm profits (up to a multiplicative

constant). That is, the city developers subsidies allow the economy to coordinate on a unique equilibrium

without affecting the sorting of firms.

14Local policies often offer a reduced corporate tax rate for eligible firms, which is equivalent to this profit subsidy.
Alternatively, one could consider firm-specific subsidies rather than ad-valorem subsidies. The equilibrium I find here is still
an equilibrium in this case, as shown in online Appendix D.2.
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3.3.2. Spatial equilibrium

Having set up the problems of workers, firms, landowners and city developers, I am now ready to solve

for the equilibrium of the economy. I show that this equilibrium exists and is unique.

Definition 1 An equilibrium is a set of cities L characterized by a city-size distribution fL(.), a wage

schedule w(L), a housing-price pH(L) and for each sector j = 1, ..., S a location function Lj(z), an

employment function `j(z), a capital-use function kj(z), a production function yj(z), a price index Pj

and a mass of firms Mj such that

(i) workers maximize utility (equation (2)) given w(L), pH(L) and Pj,

(ii) utility is equalized across all inhabited cities,

(iii) firms maximize profits (equation (5)) given w(L), ρ and Pj,

(iv) landowners maximize profits given w(L) and pH(L),

(v) city developers choose Tj(L) to maximize profits (equation (14)) given w(L) and the firm problem,

(vi) factors, goods and housing markets clear; in particular, the labor market clears in each city,

(vii) capital is competitively allocated, and

(viii) firms and city developers earn zero profits.

In what follows, I present a constructive proof of the existence of a such an equilibrium. Furthermore, I

show that the equilibrium is unique, and stable. As is standard in the literature, I allow for the possibility

of a non-integer number of cities of any given size (see Abdel-Rahman and Anas (2004) for a review and

more recently Rossi-Hansberg and Wright (2007b) or Behrens et al. (2014)).

Proposition 6 There exists a unique equilibrium of this economy.

The equilibrium is unique in terms of distribution of outcomes, such as firm-size distribution, city-size

distribution and matching functions between firms and city sizes. It is not, of course, unique in terms of

which site is occupied by a city of a given size, as all sites are identical ex ante.

3.3.3. Constructing the spatial equilibrium

The equilibrium is constructed in four steps. First, I solve for the equilibrium subsidy offered by city

developers. Second, I show that it pins down how firms match with city sizes, as well as the set of city

sizes generated in equilibrium by city developers. Third, general equilibrium quantities are determined

by market clearing conditions and free entry conditions in the traded goods sectors, once we know the

equilibrium matching function from step 2. Finally, the city-size distribution is determined by these

quantities, using labor-market clearing conditions. In each step, the relevant functions and quantities are

uniquely determined; hence, the equilibrium is unique.
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Step 1: Equilibrium subsidy

Lemma 7 In equilibrium, city developers offer and firms take-up a constant subsidy to firms’ profit

T ∗j =
b(1−η)(1−αj)(σj−1)

1−(1−η)(1−b) for firms in sector j, irrespective of city size L or firm type z.

Formally, each city developer announces a subsidy T ∗j δ(L − Li) for a city size Li where δ(0) = 1, and

δ(x) = 0 for x 6= 0. A city developer is indifferent between attracting firms from one or many sectors.

Therefore, there is an indeterminacy in equilibrium as to which sector(s) each city developer targets.

I sketch the proof in the case of an economy with only one traded goods sector. The formal proof with S

sectors follows the same logic and is given in online Appendix B. City developers face perfect competition,

which drives their profits down to zero in equilibrium. Their revenues correspond to the profits made in

the housing sector (equation (12)), which are proportional to the aggregate wage bill in the city w(L)L.

They compete to attract firms by subsidizing their profits. In equilibrium, irrespective of which firms

choose to locate in city L, these profits will also be proportional to the sectoral wage bill w(L)L̃, where L̃

is the labor force hired in the traded goods sector locally, as can be seen from equation (6). Finally, the

local labor force works either in the housing sector (equation (13)) or the traded goods sector, so that

L̃ = L(1− (1− b)(1− η)). Profits given by (14) simplify to b(1− η)w(L)L− T (1−(1−b)(1−η))
(σ−1)(1−α) w(L)L. The

choice of city size is irrelevant, and T ∗ is the only subsidy consistent with zero profits. City developers

that offer lower subsidies will not attract any firm, hence will not create cities. City developers that

offer higher subsidies attract firms but make negative profits. Note that the equilibrium subsidy does not

depend on city size, hence equilibrium subsidies do not alter the location choice of firms compared to a

world without subsidy, conditional on the same cities existing.

Step 2: Equilibrium city sizes and the matching function The city developers’ problem deter-

mines the equilibrium city sizes generated in the economy. Cities are opened up when there is an incentive

for city developers to do so, i.e. when there exists a set of firms and workers that would be better off

choosing this city size. Workers are indifferent between all locations, but firms are not, since their profits

vary with city size. Given the equilibrium subsidy T ∗j offered by city developers, firms choose city size to

maximize (15). There is a unique profit-maximizing city size for a firm of type z in sector j, under the

regularity conditions I have assumed. Define the optimal city size as follows

L∗∗j (z) = arg max
L≥0

π∗j (z, L). (16)

Assume that, for some firm type z and sector j, no city of size L∗∗j (z) exists. There is then a profitable

deviation for a city developer on an unoccupied site to open up this city. It will attract the corresponding

firms and workers, and city developers will make a positive profit by subsidizing firms at a rate marginally

smaller than T ∗j . The number of such cities adjusts so that each city has the right size in equilibrium.

This leads to the following lemma, letting L denote the set of city sizes in equilibrium:

Lemma 8 The set of city sizes L in equilibrium is the optimal set of city sizes for firms.

Given this set of city sizes, the optimal choice of each firm is fully determined. Under the regularity

assumptions made on ψ as well as on the distribution of z, Fj(.), the optimal set of city sizes for firms in
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a given sector is an interval (possibly unbounded). The sectoral matching function is invertible over this

support. For a given sector, I use the notation z∗j (L) to denote the inverse of L∗j (z). It is increasing in L.

The set of city sizes L available in equilibrium is the union of the sector-by-sector intervals.

Step 3: General equilibrium quantities The equilibrium has been constructed up to the determi-

nation of general equilibrium values. The reference level of wages w̄ defined in equation (4) is taken as

the numeraire. The remaining 2S + 1 unknowns are the aggregate revenues in the traded goods sector

R, the mass of firms Mj and the sectoral price indexes Pj for all j ∈ {1, ..., S}. As detailed in online

Appendix E, these are uniquely pinned down by the system of 2S+ 1 equations corresponding to the free

entry conditions for firms, the goods market clearing conditions in each sector, and the national labor

market clearing condition.

Step 4: Equilibrium city-size distribution The city developers’ problem and the firms’ problem

jointly characterize (1) the set of city sizes that necessarily exist in equilibrium and (2) the matching

function between firm type and city size. Given these, the city-size distribution is pinned down by the

labor market clearing conditions. The population living in a city of size smaller than any L must equal

the number of workers employed by firms that have chosen to locate in these same cities, plus the workers

hired to build housing. That is,∀L > Lmin,:∫ L

Lmin

ufL(u) du =
S∑
j=1

Mj

∫ z∗j (L)

z∗j (Lmin)
`j(z, L

∗
j (z)) dFj(z) + (1− η)(1− b)

∫ L

Lmin

ufL(u) du,

where Lmin = inf(L) the smallest city size in the equilibrium.

Differentiating this with respect to L and dividing by L on both sides gives the city size density (fL(L)

is not normalized to sum to 1)

fL(L) = κ4

∑S
j=1Mj1j(L) `j(z

∗
j (L)) fj(z

∗
j (L))

dz∗j (L)

dL

L
, (17)

where κ4 = 1
1−(1−η)(1−b) and 1j(L) = 1 if sector j has firms in cities L, and 0 otherwise. The equilibrium

distribution of city sizes fL(.) is uniquely determined by equation (17), hence the following lemma:

Lemma 9 fL(.) is the unique equilibrium of this economy in terms of the distribution of city sizes.

Several remarks are in order here. First, the city-size distribution is shaped by the distribution of firm

efficiency and by the sorting mechanism. This offers a static view of the determination of the city-size

distribution, driven by heterogeneity in firm types. In the empirical exercise, I compute the city-size

distribution obtained with equation (17), where firm heterogeneity is estimated from French firm-level

data but the city-size distribution is not used in the estimation. It exhibits Zipf’s law, consistent with

the data on cities.

Second, for each city size, the share of employment in each sector can be computed using the same

method, now sector by sector. For a given city size, the average sectoral composition over all cities of

a given size size L is determined by the model. On the other hand, the model is silent on the sectoral
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composition of any individual city of size L, which is irrelevant for aggregate outcomes. City developers

in particular are indifferent to the sectoral composition of their city.15

Third, the equilibrium features cities that host a variety of sectors, and sectors that spread out over a

range of cities of different sizes. This is contrast to classic urban models that rely on homogenous firms

and hence generally feature fully specialized cities and a single city size for each sector.16

Finally, I verify in the online Appendix F that this equilibrium is stable and provide there a detailed

discussion of stability.

3.3.4. Welfare analysis

To close this theoretical analysis, I explore the welfare properties of this equilibrium. This is comple-

mented in section 5 by a set of quantitative counterfactual policy analyses, in which I quantify the welfare

implications of typical spatial policies.

I consider the problem of a benevolent social planner who freely chooses allocations in this economy so

as to maximize total welfare in spatial equilibrium, i.e. under the constraint of free mobility of workers.17

In order to focus on the inefficiencies that arise in the traded good sector, I take the housing sector as

given in what follows, i.e. a constant fraction of the local labor force is used to build housing as in the

competitive equilibrium. Welfare could potentially be improved beyond what is laid out here through an

intervention on the housing market.18

The problem of the social planner, formally stated and solved in online Appendix G, is to choose

allocations of firms and workers - in particular, she chooses firm’s location, firm’s employment and firm’s

production, as well as the consumption and location of workers, so as to maximize welfare. In her choice

of city sizes she faces a trade-off between increasing productive efficiency by creating larger cities to

leverage agglomeration externalities on the one hand, and limiting the disutility from congestion borne

by workers on the other hand. The first-order condition for the location choice of firm z in the social

planner’s problem writes:

ψ2(z, L, s)L

ψ(z, L, s)
= b

1− η
η

(1− α)χ(z), (18)

where χ(z) < 1 is a wedge between the first-order condition in the market equilibrium (7) and the

one of the social planner. Firms choose cities that are too small in the market equilibrium relative to the

15This city-level indeterminacy comes from the fact that agglomeration externalities depend on the overall size of the
city, and not on its sectoral composition. To lift this, the model could easily be extended to accommodate localization
externalities. The agglomeration externality depends in that case on the size of a given (set of) sector(s), and not the
overall city size. Cities would then be perfectly specialized in that sector(s), since the congestion costs depend on the overall
city size, but the benefits are sector(s)-specific. This would not change any other characterization of the equilibrium. In
particular, the city-size distribution defined in equation (17) and lemma 9 would still hold.

16A notable exception is Helsley and Strange (2014) who propose a model of coagglomeration of a range of industries in
cities.

17Total welfare could be further improved if this constraint of equal utility of workers across inhabited cities was lifted. I
do not consider this case since this equilibrium would not be stable. Some workers would always have an incentive to move
to increase their utility. This alternative equilibrium would also raises equity issues as identical workers would have different
levels of utility in equilibrium.

18A benefit of this approach is that these results hold irrespective of the source of congestion that I consider, as long as
the congestion force increases log-linearly with city size.
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optimal spatial equilibrium.19

Proposition 10 The equilibrium is suboptimal. Firms locate in cities that are too small. To reach the

optimum, the first-best policy taxes wages offered by firms in smaller cities and subsidizes firms’ wages in

larger cities, according to a tax/subsidy schedule that varies monotonically with city size.

The intuition for this result is as follows.The social marginal benefit of choosing a larger city is

higher than the private benefit perceived by firms through their profit function. The benefit that is not

internalized by firms is that by choosing a larger city they increase the productivity of the economy as

a whole which decreases the cost of entry for all firms. Fostering entry increases welfare, by the love

of variety effect. Firms ignore the effect of their choice of city size on the cost of entry, and therefore

choose cities that are too small compared to the optimum. This general equilibrium cross-city effect is

not internalized by firms nor by city developers who, despite being large local players, are still atomistic

at the national level.

To align firms’ incentives to the solution to the social planner’s problem, wages have to be subsi-

dized/taxed so the wage schedule paid by firms is

w(L) ∝ (L
b 1−η
η +A) (19)

where A is a constant, as opposed to w(L) ∝ Lb
1−η
η in the competitive equilibrium.

This analysis helps see that “threshold-type” spatial policies, in which firms are subsidized when they

locate in cities smaller than a given size, are not intuitively welfare enhancing. They tend to distort the

choice of city size in the wrong direction. They attract firms to cities that are smaller (rather than larger)

than the one they choose in the competitive equilibrium. Desirable policies on the other hand are ones

that tend to flatten out the wage schedule, making the wage increase less fast with city size than it would

otherwise. I explore these points further, quantitatively, in section 5.

4. Estimation of the Model

I now take the model to the data, in order to be able to perform a quantitative policy analysis. Us-

ing French firm-level data, I first show that sectors display location patterns and firm-size distribution

characteristics that are consistent with the theoretical predictions. I then structurally estimate the model.

4.1. Data

The firm-level data set of French firms that I use contains information on the balance sheets of French

firms, declared for tax purposes. All firms with revenues over 730,000 euros are included. It reports

information on employment, capital, value added, production, and 3-digit industry classification. It is

matched with establishment-level data, which indicate the geographical location at the postal code level

of each establishment of a given firm-year. As is standard in the literature, the geographical areas I use to

measure city size are the 314 French commuting zones, or “Zones d’emploi” (employment zones), within

19See also Albouy et al. (2016) for a discussion of another theoretical setting where large cities can be too small.
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metropolitan France. They are defined with respect to the observed commuting patterns of workers

and cover all of France. They are designed to capture local labor markets and are better suited than

administrative areas, which they abstract from, to capturing the economic forces at play in the model.20

To measure the size of the city, I use the total local employment of the area, since I need a proxy for

externalities such as knowledge spillovers or labor market pooling that depend on the size of the workforce.

I use the data for the year 2000 in the estimation procedure.

I retain only tradable sectors in the analysis, consistent with the assumptions of the model. The set of

industries is the one considered in Combes et al. (2012), i.e., manufacturing sectors and business services,

excluding finance and insurance21, which correspond to 157,070 firms. Summary statistics are reported

in Table 1.

4.2. Descriptive evidence on sorting

Before proceeding to the structural estimation of the model, I present a first look at the raw data.

My objective is to check that the comparative statics of the model are broadly consistent with the

patterns exhibited in the data. Recall that in the model, the complementarity between firm efficiency

and agglomeration forces leads to the sorting of firms across cities of different sizes. This impacts the

elasticity of firm-level observables with respect to city size within industries (prop. 2). Furthermore,

firm sorting is shaped by two key sectoral parameters, namely, the sectoral strength of agglomeration

externalities sj as well as the sectoral intensity of use of traded inputs αj . The model shows how these

parameters shape (i) the location patterns of firms in a given industry (prop. 3) and (ii) the dispersion

of the sectoral firm-size distribution (prop. 4). I turn to examining the raw data in these dimensions.

To do so, I use the most disaggregated level of industry available in the data. I keep sectors with more

than 200 observations, for a total of 146 industries, and present correlations between different sectoral

characteristics, guided by the theory. These correlations could be driven by explanations alternative to

the ones I propose in the model. To mitigate these concerns, I check that the patterns I find are robust to

a set of sectoral controls that I detail below. The broad consistency of the data with the salient features

of the model are only suggestive evidence that sorting forces may be at play.

I first investigate how, in each sector, average firm value added and average firm employment change as

city size increases.22 In the model, the elasticity of firm revenues to city size is positive within industries

whereas the elasticity of employment to city size is strictly lower and possibly negative. Empirically, I

compute the average firm-level value added and employment by industry and city and compute their

elasticity with respect to city size.23 Figure 1 plots the distributions of these elasticities. The elasticity

of employment to city size almost always lies below the elasticity of value added to city size. For value

20They are presented as areas where ”most workers live and work, and where establishments can find most of their
workforce”. The previous definition of these zones was constrained by some administrative borders. I use a new definition of
these zones published by INSEE in 2011 that abstracts from these constraints. These zones are a collection of towns (“code
commune”). I use a concordance table between these and postal codes to classify the firm data in terms of zone d’emploi.

21for which establishment-level data is not available
22Because the model does not feature the use of intermediates, I use value added as the measure of firm output.
23For this measure, I restrict the sample to single-establishment firms as the data on value added is only available at

the firm level for multi-establishment firms. Single establishment account for 83% of firms and 44% of employment in the
sample. I verify using the full sample that, reassuringly, the employment/city size relationship is not systematically biaised
for multi-establishment firms compared to mono-establishment firms.
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added, it is positive for 85% of industries, corresponding to 93% of firms, and is significantly negative for

only one industry, the manufacture of kitchen furniture. This is broadly consistent with the intuition of

the model.

Second, the model suggests that firm location choices are linked to sectoral characteristics and, in

particular, the intensity of input use, which I can measure in the data. To proxy for inputs whose price

does not systematically increase with city size, I use a measure of “tradable capital” defined as total

capital net of real estate assets. I measure tradable capital intensity, αK , as the Cobb-Douglas share of

this tradable capital in value added. I then run the following regression:

sharej = β0 + β1α
K
j + β2Xj + εj ,

where j indexes sectors, sharej is the share of establishments in sector j located in large cities (i.e., the

largest cities that hosts half of the population) and Xj is a set of control variables varying at the industry

level. Table 2 reports the coefficient estimates. It shows that industries that use more tradable capital

are significantly more likely to be located in larger cities. However, these industries could also be the

ones with higher skill intensity, driven to larger cities in search of skilled workers. To control for that, I

use an auxiliary data set to measure industry-level skill intensity.24 Specification (III) in Table 2 shows

that controlling for industry-level skill intensity does not affect the results. Specification (IV) runs the

same regression, limiting the sample to export-intensive industries. This control aims at mitigating the

concern that location choice may be driven by demand-side explanation, whereas the model focuses on

the supply side. Again, the results are robust to using this reduced sample. Overall, Table 2 is consistent

with the idea that firms location choices are shaped by the intensity of input use in their industry.25

Third, the model predicts that firms that locate in large cities benefit disproportionally from agglom-

eration externalities. As a consequence, the sectoral firm-size distribution is more fat-tailed for industries

located in larger cities. Table 3 correlates the thickness of the industry-level firm-size distribution, sum-

marized by its shape parameter ζj , with the share of establishments located in large cities in industry j.26

Table 3 shows a negative correlation between ζj and the fraction of establishments in industry j located

in large cities (defined as in Table 2). In other words, industries that locate more in large cities also have

thicker-tailed firm-size distributions. This negative correlation is robust to controlling for the number

of firms and the average value added in industry i (Specification II), as well as reducing the sample to

export-intensive industries (Specification III).

Finally, the model predicts that more efficient firms self-select into larger cities. I investigate this

question by focusing on the relocation pattern of movers, i.e. mono-establishment firms that change

location from one year to the next. The nature of this question leads me to extend the sample period

24I use the random sample of 1/12 of the French workforce published by INSEE. It contains information on workers’ skill
level, salary and industry. For each industry, I measure the share of the labor force that is high-skilled. I define a dummy
variable that equals one for sectors with above-median skill-intensity.

25I further check that these results are robust to alternative specifications of what constitute a large city (top cities hosting
25% and 33% of the workforce), as well as to dropping business services, which are arguably less tradable, altogether from
the analysis.

26The shape parameter ζj is estimated by running the following regression, following Gabaix and Ibragimov (2011):
log
(
rankij − 1

2

)
= αj − ζj log(value addedij) + εij , where j indexes industries, i indexes firms and rankji is the rank of firm

i in industry j in terms of value added.
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to 1999-2006. There is no direct way to measure a firm’s raw efficiency from the data. However, in

the model, within a city-industry pair, firm revenues increase with firm efficiency. I thus compute the

following firm-level residual ωijt and use it to proxy for firm efficiency:

log(value addedcijt) = δc + δt + δj + ωijt,

where δc, δt and δj are sets of, respectively, city, year and industry fixed-effects, and i is a firm in

industry j located in city c in year t. For all firms relocating from year t to t + 1, I define ∆tCity Sizei

as log(Li,t+1/Li,t), where Li,t is the size of the city where firm i is located in year t. I then estimate:

∆tCity Sizei = α+ βωijt +Xit + εit

where Xit includes an industry fixed effect and the logarithm of Li,t or a set of initial city fixed effects.27

Table 4 shows that, conditional on moving, firms that are initially larger tend to move into larger cities.

Similar results obtain when I drop firms that switch industry when they move. I emphasize that this

result is a simple correlation and cannot be interpreted causally in the absence of a valid instrument for

the selection into the sample of movers. Table 4 simply shows that, among the set of movers, there exists

a positive correlation between initial firm size and the size of the city the firm moves into, a correlation

pattern that is consistent with sorting.

4.3. Structural estimation

I now turn to the estimation of the model. The model is estimated industry by industry, on 23 aggregated

industries. I minimize the distance between moments of the data and their simulated counterparts to

estimate the sectoral parameters that govern the model.

4.3.1. Model specification

I first lay out the econometric specification of the model. The literature has traditionally assumed

that agglomeration externalities were of the form ψ(z, L, sj) = zLaj , where aj measures the strength of

externalities. In such a framework, firm productivity is not log-supermodular in z and L. In contrast,

I postulate the following functional form of the productivity function, for a firm i of raw efficiency zi

operating in sector j ∈ 1 . . . S:

Assumption B

log(ψj(zi, L; sj , aj)) = aj logL+ log(zi)(1 + log
L

Lo
)sj + εi,L for log(zi) ≥ 0 and L ≥ Lo (20)

log(ψj(zi, L; sj , aj)) = 0 for L < Lo

The parameter aj measures the classic log-linear agglomeration externality. The strength of the comple-

mentarity between agglomeration externalities and firm efficiency is captured by sj . When sj = 0, the

27These controls absorb the mechanical relationship by which firms in large (resp. small) cities are more likely, conditional
on moving, to move to smaller (resp. larger) cities.
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model nests the traditional model of agglomeration externalities without complementarity. Lo measures

the minimum city size below which a city is too small for a firm to produce in. In what follows, I write

L̃ = L
Lo

, and L the set of normalized city sizes in the simulated economy.28 I assume that log (z) is

distributed according to a normal distribution with variance νZ,j , truncated at its mean to prevent log(z)

from being negative. This restriction is needed for the productivity of firms to be increasing in city

size in the specification of assumption (B). I introduce an error structure by assuming that firms draw

idiosyncratic productivity shocks εi,L for each city size, where εi,L is i.i.d. across city sizes and firms. It is

distributed as a type-I extreme value, with mean zero and variance νR,j . This shock captures the fact that

an entrepreneur has idiosyncratic motives for choosing a specific location: for example, he could decide

to locate in a city where he has a lot of personal connections that make him more efficient at developing

his business. These idiosyncratic motives for location generate imperfect sorting. The predictions of the

theory are still relevant to the case of imperfect sorting, once adapted to reflect the fact that they hold

for firms on average within a city size rather than systematically for all firms in a given city, as shown

formally in online Appendix C.

I assume that idiosyncratic shocks are city-size specific, with mean zero and a constant variance across

city size bins, and not city-specific as would perhaps be more natural. Still, these shocks can themselves

represent the maximum of shocks at a more disaggregated level (e.g., at the city level). The maximum

of a finite number of independent draws from a type-I extreme value distribution is also distributed as a

type-I EV, with the same variance. Aggregating at the city-size level does not impact the estimation of

the variance of the draws. I normalize the mean to be zero. If the model is misspecified and in reality,

there is a systematic difference in mean idiosyncratic shocks across different city-size bins, this mean value

is not separately identified from the log-linear agglomeration externality term aj , which will capture both

in the estimation.

I estimate the model under the assumption, made in section 3, that city sites are all ex ante identical.

In reality, sites differ in their natural amenities. This can contaminate the estimation of the model

if there is a correlation in the data between these amenities, local firms’ productivities and city sizes.

Under the assumption that these natural advantages benefit all firms in the same way, this correlation

will be captured in estimation by the log-linear agglomeration externality term aj . This will tend to

bias upward the coefficient aj but importantly does not affect the estimation of the log-supermodular

term sj .
29 Furthermore, the bias is likely to be small. Combes et al. (2008) show that the role played

by natural endowments on the productivity of French cities is quite limited. Michaels and Rauch (2016)

argue that French cities locations are strongly path dependent. They were efficiently chosen at the time

of the Roman Empire, but remained largely unchanged over time. Cities’ locations are unlikely to reflect

28Lo is a normalization parameter in levels that changes proportionally the size of all cities but does not affect the
estimation, which relies on relative measures. L̃ is the relevant measure for firm choices. Lo is calibrated to match the actual
level of city sizes in the data.

29‘The model does not feature consumption amenities either. In principle, the presence of consumption amenities can
systematically dampen the relationship between city size and wages. The estimation directly controls for the observed
relationship between city size and wages though. This should capture the effect of consumption amenities on city size.
Therefore, even though consumption amenities are not directly modelled, they should not biais estimation.
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strong exogenous comparative advantage from the perspective of modern technologies.30 Finally, note

that I estimate the model under the maintained assumption that labor is homogeneous. Insofar as there

is systematic cross-city variation in labor quality, the estimation will attribute this to variation in firm

productivity.

4.3.2. Estimation procedure

The estimation is conducted in two stages. In the first stage, I start by calibrating for each industry its

capital intensity αj and elasticity of substitution σj . The capital intensities are calibrated to the share

of capital in sectoral Cobb-Douglas production functions, and the elasticity of substitution is calibrated

to match the average revenue to cost margin in each sector.31 I then calibrate the composite parameter

b1−η
η , equal to the elasticity of wages to city size in the model. To do so, I follow equation (11) and use the

difference between the elasticities of average firm revenue to city size and the elasticities of average firm

employment to city size across all sectors. Finally, I calibrate the Cobb-Douglas share of each industry

ξj by measuring its share of value-added produced.

In the second stage, I use simulated method of moments (SMM) to back out the quadruple θj0 =

(aj , sj , νjR, ν
j
Z) for each sector j ∈ (1..S). Firms make a discrete choice of (normalized) city size, according

to the following equation

log L̃∗j (zi) = arg max
log L̃∈L

log(zi)
(
1 + log L̃

)sj + (aj − b(1− αj)
1− η
η

) log L̃+ εi,L, (21)

which is the empirical counterpart of equation (8). Because the choice equation involves unobservable

heterogeneity across firms and is non-linear, I have to use a simulation method (Gouriéroux and Monfort

(1997)) to recover the model primitives. The SMM method is carried through sector by sector. I retain a

rather aggregated definition of sectors, corresponding to 23 industries of the French NAF classification,

in order to limit the computing requirements of the procedure. The general approach is close to the one

in Eaton et al. (2011). The estimate θjII minimizes the loss function

‖mj − m̂j(θ)‖W 2
j

=
(
mj − m̂j(θ)

)′
Wj

(
mj − m̂j(θ)

)
, (22)

where mj is a vector stacking a set of moments constructed using firm data, as detailed below; m̂j(θ)

is the vector for the corresponding moments constructed from the simulated economy for parameter value

θ; Wj is a matrix of weights.32 Details of the estimation procedure are reported in the online appendix.

30Note that for practical reasons I also estimate the model without taking into account existing place-based policies. That
is, the estimation takes the city sizes as given, and assumes that firms’ choice of location is not systematically distorted by
policies. This corresponds to the model of section 3 with city developers, where equilibrium subsidies are independent of
city sizes. It is also the case if city sizes are taken as exogenous, without policies. To the extent that - in reality – there
are policies that tend in general to favor smaller cities, this assumption could lead to an under-estimation of agglomeration
effects in quantification.

31In each sector, σ̂j and α̂j are calibrated using
σ̂j
σ̂j−1

= mean( v.a.
costs

) where costs exclude the cost of intermediate inputs,

and α̂j = αCDj
σj
σj−1

where αCDj is the sectoral revenue-based Cobb-Douglas share of capital.
32 The weighting matrix Wj for sector j is a generalized inverse of the estimated variance-covariance matrix Ωj of the

moments calculated from the data mj .
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4.3.3. Identification and choice of moments

I use three sets of non-parametric moments, for each sector, to characterize the economy. The first set

of moments describes non-parametrically how average firm value-added increases with city size, sector

by sector. I use 4 moments for each sector, capturing average firm size for each quartile of city size.

Intuitively, how fast firm size increases with city size helps pin down the agglomeration parameters a

and s. The parameters a and s both impact firm productivity and value-added, but a impacts them

log-linearly with city size, and s impacts them more than log-linearly because it entails the sorting of

more productive (high z) firms into larger cities.

To help identify the parameters that govern firm-level heterogeneity νz and νR, I also use 5 moments

that characterize non-parametrically the firm-size distribution in value added.33 If the distribution of

value added conditional on city size does not allow me to identify separately νR from νZ , these moments

do. The parameter νR governs the variance of the noise in a classic discrete choice setting problem

(equation (21)). This parameter is usually normalized, as it cannot be inferred from simply observing the

choice of the agent. Here, in contrast to a classic discrete choice setting, I observe not only the choice of

city size made by firms, but also additional outcomes that are impacted by this choice, for instance, firm

value-added. This last part is unusual, and these additional moments allow me to identify the variance

of idiosyncratic shocks separately form the variance of firm’s raw efficiency.

In addition, I use moments that describe non parametrically the distribution of sectoral value-added

across city sizes. I measure the share of value-added in a given sector that falls into one of 4 bins

of city sizes.34 These moments summarize the geographic distribution of economic activity within a

sector. Together with the first set of moments, they give information on the density of firms located

in different city sizes. They help inform the strength of sorting forces, since they summarize the firms’

location choices. They also contribute to identifying the distribution of raw efficiencies, conditional on

the agglomeration parameters.

Online Appendix H shows identification of the parameters a, s and νz in a simple case where the

variance of shocks νR is fixed. Formally, the distribution of value added conditional on city size alone is

sufficient in that case for identification. Intuitively though, the other set of moments are economically

important in estimation.35

4.3.4. Model fit

Figures in Appendix J report the model fit for the set of moments targeted by the estimation procedure.

Specifically, the way firm average value-added increases with city size is generally well captured by the

estimated model (Figure J.1). Further, the estimation relies on five moments of the sectoral firm-size

distribution in revenues. To get a sense of the fit of the model fit in this dimension, I show in figure

33These bins are defined by the 25, 50, 75 and 90th percentiles of the distribution in the data, normalized by the median.
As in Eaton et al. (2011), higher quantiles are emphasized in the procedure, since they capture most of the value added, and
the bottom quantiles are noisier.

34I order cities in the data by size and create bins using as thresholds cities with less than 25%, 50% and 75% of the
overall workforce.

35Identification is shown conditional on the specification I retain in assumption B. A proof of identification a for more
general specification is beyond the scope of this paper and left for future research.

24



J.2 how the whole firm-size distribution compares in the data and in the model. In general, the fit is

better for the upper tail than the lower tail, which is intuitive since the estimation focuses on upper-tail

quantiles and the initial distribution of z is truncated to the left. Finally, the estimation relies on the

share of sectoral value-added in four given city-size bins. I compute more generally for each sector the

share of employment by decile of city size and represent the simulated vs. actual shares on Figure J.3.

The model accurately captures the cross-sectoral heterogeneity in location patterns. The within-sector

patterns are noisier, but still follow well the overall trends in the data.

Finally, I focus on a moment not directly targeted in the estimation, which is the city-size distribution.

The estimation is made on a grid of possible city sizes that have the same maximum to minimum range as

in the data. I make, however, no assumption on the number of cities in each size bin, i.e., on the city-size

distribution. Armed with sectoral estimations, I can solve for the general equilibrium of the model and in

particular compute the city-size distribution that clears labor markets at the estimated parameter values

(see Section 3). The estimated city-size distribution exhibits Zipf’s law and follows quite well the actual

city-size distribution measured here in total local employment of the city, consistent with the data used

in estimation. The fit is shown in Figure 2, where the city-size distribution is plotted for the simulated

data and the actual data.36

4.3.5. Analysis of the parameter estimates

The estimated parameters industry by industry are reported in table 5. The sectoral estimate of sj , the

parameter that governs the strength of the complementarity between firm efficiency and agglomeration

externalities, is positive for a vast majority of industries. It is negative for two industries, the shoes and

leather industry and metallurgy, which are relatively mature industries.37 That more mature industries

tend to exhibit different agglomeration forces is reminiscent of the argument in Audretsch and Feldman

(1996), who argues that the nature of agglomeration forces depend on the life cycle of industries and

show that agglomeration forces tend to decline as industries get more mature and less innovative.

Together, the agglomeration parameters and the variance parameters jointly determine the distri-

bution of the realized productivity of firms and, crucially, the productivity gains associated with city

size in equilibrium. These gains have been used in the literature as a proxy to measure agglomeration

externalities. Here, the productivity gains associated with city size depend not only on the strength

of agglomeration externalities, but on the sorting of firms, and on their selection on local idiosyncratic

productivity shocks. In what follows, I present direct and counterfactual measures of the elasticity of

firm productivity to city size to highlight how these forces interplay and understand how the parameter

estimates translate into economic forces. For simplicity, I present average measures across sectors.

A first raw measure of the observed elasticity of firm productivity to city size can be computed by

running the following simple OLS regression:

logψi,j = β0 + β1 log Li + δj + µi, (23)

36The fitted lines correspond to a log rank-log size regression run on each of these distributions. Parallel slopes indicate
that both distributions have the same tail. The levels are arbitrary and chosen so that the figure is readable.

37In the food manufacturing sector, the best fitting parameters correspond to no variance in firm type, hence no sorting
per se. The log-supermodular coefficient that governs sorting is not well defined in this sector.
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where ψi,j is the equilibrium productivity of simulated firm i with efficiency zi in industry j, Li = L∗j (zi)

is the size of the city where firm i has chosen to produce and δj is an industry fixed effect. The OLS

estimate of β1, the elasticity of observed firm productivity to city size, is 4.2%. Interestingly, this measure

falls within the range of existing measures of agglomeration externalities, as reported in Rosenthal and

Strange (2004). They typically range from 3% to 8%. Rosenthal and Strange (2004) note that most

studies do not account for sorting or selection effects when estimating the economic gains to density -

they are therefore broadly comparable, in scope, to the OLS estimation of β1 in equation (23).38 In

the estimated model, these productivity gains are driven only in part by the existence of agglomeration

externalities. Part of these gains come from the sorting of more efficient firms into larger cities, which I

examine now.

To measure the contribution of firm sorting in the observed economic gains to density, I conduct the

following counterfactual analysis. I recalibrate the model with firms constrained to choose their city size

as if they all had the average efficiency in their sector, thereby shutting down systematic sorting. In this

exercise, the difference in firms’ location choice is only driven by firm-city size specific iid productivity

shocks. I find that the relationship between firm-level productivity and city size is flatter in the coun-

terfactual simulation than in the baseline model. Estimating equation (23) on this counterfactual data

leads to an elasticity of firm productivity to city size of 2.3%. By this account, firm sorting accounts for

almost half of the productivity gains measured in equilibrium between cities of different sizes.

Finally, to gauge the importance of the sorting forces emphasized in the model I decompose the

variance of productivity between the contribution of the systematic component of productivity on which

firms sort, and the contribution of the idiosyncratic part. To that end, I regress the log of each of these

two components on firm’s log productivity, in each sector, as follows:

log(zi)(1 + log
L

Lo
)sj = βj,systematic log(ψ̃i) + ν1,i

εiL = βj,random log(ψ̃i) + ν2,i,

where log(ψ̃i) = log(zi)(1+log L
Lo

)sj +εiL. Mechanically, this procedure yields coefficients that sum to

one and give us a metric for the relative importance of sorting vs. random shocks to shape the distribution

of firms’ productivities. I find that, on average across sectors, the systematic component explains 51%

of the variance of firm productivities. Both dimensions of productivity contribute roughly equally to

explaining firm productivity in the estimated model. This points at sorting as an important mechanism

to rationalize the data.

5. The Aggregate Impact of Place-Based Policies

Equipped with the estimates of the model’s parameters, I finally turn to the evaluation of the general

equilibrium impact of a set of place-based policies. I use the real wage, constant across space, as a

measure of welfare. Details of the implementation are reported in the online appendix.

38An exception is Combes et al. (2008), who estimate agglomeration externalities using detailed French worker-level data
and control for the sorting of workers across locations. They find an estimate of 3.7% of the elasticity of productivity to
employment density.
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5.1. Local tax incentives

I first study policies that subsidize firms locating in less developed cities or regions. This type of federal

program aims at reducing spatial disparities and is also advocated for reason of efficiency. The case for

increased efficiency relies on the idea that in the presence of agglomeration externalities, jump-starting

a local area by attracting more economic activity can locally create more agglomeration externalities,

enhancing local TFP and attracting even more firms.39 This argument, however, needs to be refined. As

has been pointed out in the literature (Glaeser and Gottlieb (2008), Kline and Moretti (2014)) this effect

depends in particular on the overall shape of agglomeration externalities. While smaller cities may in fact

benefit from these policies, larger cities marginally lose some resources – and therefore benefit from less

agglomeration economies. The net effect on the overall economy is a priori ambiguous. Turning to spatial

disparities, since utility is equalized across all workers, there is no welfare inequality in equilibrium in

the model.40 Nevertheless, the economy is characterized by other spatial disparities, in city size or GDP

per capita for example, that may matter for political economy reasons. Place-based policies impact these

spatial differences. They tend to benefit the targeted areas, but the extent to which they reduce aggregate

measures of spatial differences depends on the overall reallocation of economic activity in space, which

I examine in the quantitative exercise below. To evaluate these policies in the context of my model, I

consider a set of counterfactuals in which firms are subsidized to locate in the smallest cities of the country,

which are also the least productive ones. To calibrate the intensity of the simulated policy, I choose as

a reference point an example of a specific policy put in place in France, which targets disadvantaged

neighborhoods (rather than smaller cities). It covers an overall population of 1.5M or 2.3% of the French

population, the French “ZFU” program (Zones Franches Urbaines). I simulate a scheme that subsidizes

firms locating in the smallest cities corresponding to 2.3% of the population in the simulated data. I

implement a subsidy of 12% of firms’ profits in these areas, paid for by a lump-sum tax levied on all firms

in the country.41

Local effects The model predicts large effects of subsidizing small cities on the targeted areas. In

targeted cities, the number of establishments grows by 19%. The corresponding local increase in popu-

lation is, however, only 4%. This is because the firms attracted by the policy in these areas are small

and have low productivity. These results are roughly consistent with the order of magnitude estimated in

Mayer et al. (2015) on the effect of the French ZFU; Mayer et al. (2015) find a 31% increase in the entry

rate of establishments in the three years following the policy’s implementation and note that these new

establishments are small relative to existing establishments. Of course, this is just a “plausibility check”

39A long line of research following Henderson (1974) has argued on theoretical grounds that cities are too big. Though
this argument could justify this type of redistribution policy, recent research has qualified this result (see in Albouy (2012),
Albouy et al. (2016) and the theoretical results of section 3).

40Since workers are identical and freely mobile, there is no welfare inequality in the model, with or without policies. If,
in reality, spatial policies lead to a reduction in well-being inequality, then the efficiency costs I estimate should be traded
off against these benefits. The quantitative analysis provides a way to gauge the aggregate efficiency costs of place-based
policy.

41The French “ZFU” program (Zones Franches Urbaines) is a policy similar to to the Empowerment Zone program in
the US. This policy costs 500 to 600 million euros in a typical year, corresponding to extensive tax breaks given to local
establishments. A 12% subsidy on profits in the model corrresponds to a a cost of 0.04% of GDP, which matches the one
reported for France for the ZFU program.
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since the two exercises are not directly comparable - the ZFU targets sub-areas smaller than the cities of

my model, and the model does not have dynamic effects.

Aggregate effects Beyond evaluating the effects of the policy on the targeted cities, the counterfactual

exercise allows me to compute the general equilibrium effect of this type of policy. I compute the aggregate

TFP and welfare effects of the policy for different levels of the subsidy, holding constant the targeted

areas. The welfare measure I use is the real income of the representative worker. It does not account for

other elements that can arguably be in the objective function of the decision maker, such as measures

of equity, and which often motivate these policies. In that sense, the (negative) welfare effects reported

here can be seen as costs of this policy, to be weighted against potential benefits that are outside of the

model.

The simulation shows that these place-based policies have negative long-run effects, both on the

productive efficiency of the economy and in terms of welfare. A subsidy to smaller cities that amounts

to 1% of GDP leads to a loss of 1.05% in TFP in the aggregate, and a loss of 1.4% in welfare. While

such a policy allows to decrease congestion overall, the welfare gain from decreasing congestion is largely

dominated by the negative TFP effect.42

I then use the counterfactual economy to study the impact of these place-based policies on the disper-

sion of spatial outcomes, by measuring how the Gini coefficient for the distribution of GDP per capita in

the economy reacts to the policy. A reason to focus on such a measure is that policy makers may want

to smooth out this type of disparity across cities. Perhaps surprisingly, the type of place-based policies

I study leads to an increase in spatial disparities as measured by this Gini index. The intuition for this

result is as follows. The counterfactual equilibrium is characterized by (1) growth in the size of smaller

cities, (2) a decrease in the population of mid-size cities, and (3) an increase in the population of the

largest cities. This change in city size distribution is plotted in figure 3. That larger cities grow in the

counterfactual economy comes from the fact that, as mid-size cities lose population in favor of smaller

cities, they offer less agglomeration externalities. As a consequence, these mid-size cities become less at-

tractive than larger cities for a set of firms that were previously indifferent between these mid-size cities

and larger cities. Small and large cities thus expand at the expense of mid-size cities. Quantitatively,

this leads to a rise in the Gini coefficient.

According to these results, place-based policies may have general equilibrium effects that run counter

to their rationale.

5.2. Land-use regulation

Glaeser and Gottlieb (2008) forcefully argue against policies that limit the growth of cities and constrain

the available housing supply. Zoning regulations or regulations on the type or height of buildings that can

be built within a city constitute examples of such land-use regulations. A rationale for these restrictions

on land-use development is that they may increase the quality of life for existing residents. On the

42TFP has a magnified impact on welfare as capital flows in and out of the economy in response to the TFP shock. The
corresponding formulas are explicited in the supplemental material (I.2).
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other hand, by constraining the housing supply and limiting the size of cities, they may dampen the

agglomeration effects at play in the economy.

I model the loosening of local land-use regulation that could be mandated by a federal government

by decreasing the land-use intensity parameter b in the housing production function (equation (1)).43

Decreasing this parameter increases the elasticity of housing supply. To quantify the impact of land-use

regulation policies, I first need to calibrate b. To do so, I assume that b is such that the housing supply

elasticity is at the median measure across US cities, as estimated by Saiz (2010).44 I then compare the

aggregate TFP and welfare of two counterfactual economies: one where the housing supply elasticity is

set at the 25th percentile of the housing supply elasticity distribution in Saiz (2010) and one where it is

set at the 75th percentile.

Increasing the housing supply elasticity has two separate effects on welfare. First, a direct – mechanical

– effect on utility. All else equal, as the housing sector becomes more productive and the housing supply

elasticity increases, the housing units available to households increase, which directly raise their utility.

This mechanical effect is not the focus here. Beyond this direct effect, an increase in the housing supply

elasticity flattens out the wage schedule (see equation (4)), which leads firms in the heterogeneous goods

sectors to locate in larger cities. This indirect effect enhances the productive efficiency of these sectors.45

Figure J.5 reports TFP and welfare, relative to the reference equilibrium, for various levels of the

housing supply elasticity. An overall increase in the housing supply elasticity from the 25th to the 75th

percentile leads to a 1.6% gain in TFP and a 1.8% indirect gain in welfare.

This policy experiment illustrates how increasing housing supply in cities can have positive effects be-

yond directly reducing congestion costs. They allow for a more efficient spatial organization of production

in the differentiated goods sectors by endogenously creating agglomeration externalities and enhancing

the way labor is allocated to heterogeneous firms in the economy.

6. Conclusion

I offer a new general equilibrium model of heterogeneous firms that are freely mobile within a country

and can choose the size of the city where they produce. I show that the way firms sort across cities of

different sizes is relevant to understanding aggregate outcomes. The sorting of firms, mediated by the

existence of city developers who act as a coordinating device for the creation of cities, leads to a unique

spatial equilibrium of this economy. Therefore, the model can be used to conduct policy analysis. It

allows the quantification of the complex spatial equilibrium effects of spatial policies. Using the structure

of the model, I estimate the general equilibrium effects of two types of place-based policies. A policy

43Land-use regulation have been largely delegated to local municipalities in France over the past 30 years, but the national
government can still decide on general rules that apply everywhere (RNU, Reglement National d’Urbanisme).

44For France, Combes et al. (2016) propose a range of estimates for the (mean) price elasticity of housing with respect to
city size. The measure I use is well within this range.

45To focus on this indirect effect, I control for the direct effect on utility of an increase in housing supply as follows. For
each value of the housing supply elasticity, I simulate the equilibrium of the economy as described above. To measure welfare
per capita, I take into account the spatial reallocation of economic activity, but hold constant b, hence the price of housing,
in the utility of workers. Fixing the price of housing mutes the mechanical welfare effect coming from an increase in housing
supply. The aggregate welfare gain, including both the direct and the indirect effects of an increase in housing supply, is
20.5%
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that explicitly targets firms locating in the least productive cities tends to hamper the productivity of

the economy as a whole. For the specific policy I study, spending 1% of GDP on local tax relief leads

to an aggregate welfare loss of 1.4% and does not reduce observed spatial dispersions that may matter

for political economy reasons. On the other hand, policies that encourage the growth of all cities - not

just the smallest ones - can enhance equilibrium productivity and welfare: moving the housing-supply

elasticity from the 25th to the 75th percentile of housing-supply elasticity leads to a 1.6% gain in TFP

and 1.8% in welfare through a spatial reorganization of production.
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Table 1: Summary statistics.

log value added log employment N
mean p25 p75 mean p25 p75

Manufacture of food products and beverages 7.57 5.81 8.43 2.30 1.39 3.00 14,102
Manufacture of textiles 8.06 6.10 9.12 2.80 1.95 3.66 2,955
Manufacture of wearing apparel 7.50 5.36 8.57 2.47 1.61 3.43 3,219
Manufacture of leather goods and footwear, leather tanning 7.90 5.88 8.95 2.79 1.79 3.78 878
Manufacture and products of wood, except furniture 7.77 6.20 8.55 2.43 1.79 3.09 3,688
Manufacture of pulp, paper and paper products 8.66 6.55 9.69 3.15 2.20 4.04 1,284
Publishing, printing and reproduction of recorded media 7.20 4.96 8.26 1.94 1.10 2.71 11,238
Manufacture of chemicals and chemical products 8.77 6.03 10.33 3.11 1.79 4.30 2,647
Manufacture of rubber and plastic products 8.41 6.50 9.40 2.94 2.08 3.81 3,563
Manufacture of glass, ceramic, brick and cement products 7.99 6.12 8.89 2.55 1.61 3.30 3,143
Manufacture of basic metals 9.06 6.90 10.18 3.52 2.30 4.51 834
Manufacture of fabricated metal products, except machinery 8.02 6.50 8.81 2.50 1.79 3.22 16,160
Manufacture of machinery 8.00 6.16 8.96 2.48 1.61 3.33 7,689
Manufacture of office machinery and computers 7.91 5.52 9.04 2.54 1.61 3.40 312
Manufacture of electrical machinery 8.14 6.22 9.09 2.70 1.61 3.56 2,273
Manufacture of radio, television and communication equipment 8.17 5.88 9.25 2.74 1.61 3.69 1,544
Manufacture of medical, precision and optical instruments 7.70 5.89 8.55 2.18 1.39 2.94 4,235
Manufacture of motor vehicles 8.48 6.39 9.42 3.06 1.95 3.83 1,346
Manufacture of other transport equipment 7.86 5.45 8.98 2.60 1.39 3.56 1,007
Manufacture of furniture 7.28 5.24 8.30 2.14 1.10 3.00 5,269
Recycling 7.62 5.89 8.45 2.11 1.39 2.77 1,394
Information technology services 7.24 4.84 8.48 1.95 0.69 2.83 10,617
Business services, non I.T. 6.93 4.79 7.95 1.55 0.69 2.20 57,673

Table 2: Share of establishment in larger cities and tradable capital intensity.

Dep. variable Share of establishments in large cities

I II III IV
export

Sample all tradables intensive

Tradable capital intensity 0.479** 0.613** 0.596** 0.551**
(0.152) (0.147) (0.168) (0.200)

High skill intensity=1 0.058** 0.042
(0.029) (0.033)

Nb firms no yes yes yes
Mean va no yes yes yes
R-squared 0.065 0.219 0.174 0.139
Observations 146 146 117 84

(*)p < 0.10, (** )p < 0.05. Tradable capital intensity: share of capital net of real estate assets in a
Cobb-Douglas production function with labor, tradable capital and non tradable capital. Large cities:
larger cities representing 50% of workers. Nb firms: number of firms. Mean va: average value added per
firm. High skill intensity are sectors above median of skill intensity. Export intensive: industry above
median for all sectors in the economy in export intensity, proxied by the ratio of export to domestic sales.
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Table 3: Tail of the firm-size distribution (ζ) vs sector location.

ζ, tail of firm-size distribution

I II III
export

Sample all tradables intensive

Share in large cities -0.544** -0.686** -0.263**
(0.142) (0.122) (0.115)

Nb firms no yes yes
Mean va no yes yes
R-squared 0.092 0.578 0.487
Observations 146 146 89

(*)p < 0.10, (** )p < 0.05. Pareto Shape: ζ estimated by Log(Ranki−1/2) = a−ζLog(vai)+εi,
on firms above median size, for industries with more than 200 firms. Nb firms: number of
firms. Mean va: average value added per firm. Export intensive: industry above median for
all sectors in the economy in export intensity, proxied by the ratio of export to domestic sales.
Heteroskedasticity-robust standard errors.

Table 4: Movers.

∆t City Size

I II III IV
Sample all tradables export intensive

log(firm size) 0.089** 0.073** 0.090** 0.080**
(0.020) (0.019) (0.026) (0.025)

Initial City Size -0.987** -0.986**
(0.055) (0.048)

Constant 12.296**
(0.651)

Industry F.E. yes yes yes yes
Initial city F.E. yes yes
R-squared 0.537 0.629 0.540 0.635
Observations 6103 6103 3675 3675

(*)p < 0.10, (** )p < 0.05. Set of mono-establishment firms which move between 2 years, between 1999 and 2005.

∆t City Size= log(
Lt+1

Lt
), where Lt is the size of the city where the firm locates at time t. Size is measured by the firm

value added relative to other firms in the same sector-year-city, as the residual of log(V A)i = DSi+DTi+DCi+ εi
where DS is a sector fixed effect, DT a year fixed effect, DC a city fixed effect. Export intensive: industry above
median for all sectors in the economy in export intensity, proxied by the ratio of export to domestic sales.
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Table 5: Estimated parameters.

ŝ ν̂R ν̂z â

Manufacture of food products and beverages n.d 0.476 0.000 0.142
n.d. (0.016) (0.089) (0.058)

Manufacture of textiles 0.038 0.294 0.274 0.009
(0.788) (0.036) (0.297) (0.080)

Manufacture of wearing apparel 0.147 0.219 0.252 0.040
(0.233) (0.020) (0.138) (0.034)

Manufacture of leather goods and footwear, leather tanning -0.102 0.162 0.465 0.033
(0.068) (0.037) (0.027) (0.006)

Manufacture and products of wood, except furniture 0.043 0.176 0.397 -0.020
(0.021) (0.009) (0.021) (0.004)

Manufacture of pulp, paper and paper products 0.049 0.243 0.589 0.019
(0.014) (0.005) (0.013) (0.008)

Publishing, printing and reproduction of recorded media 0.210 0.408 0.407 0.171
(0.639) (0.403) (0.958) (0.220)

Manufacture of chemicals and chemical products 0.217 0.430 0.977 -0.001
(0.305) (0.205) (0.694) (0.029)

Manufacture of rubber and plastic products 0.001 0.137 0.738 0.021
(0.003) (0.006) (0.005) (0.001)

Manufacture of glass, ceramic, brick and cement products 0.056 0.172 0.741 -0.019
(0.010) (0.016) (0.021) (0.005)

Manufacture of basic metals -0.037 0.172 0.790 0.027
(0.007) (0.005) (0.009) (0.004)

Manufacture of fabricated metal products, except machinery 0.065 0.178 0.317 0.027
(0.017) (0.006) (0.011) (0.003)

Manufacture of machinery 0.070 0.137 0.496 0.024
(0.006) (0.006) (0.012) (0.002)

Manufacture of computers and office machinery -0.009 0.176 0.529 0.123
(0.076) (0.022) (0.088) (0.022)

Manufacture of electrical machinery 0.033 0.071 0.552 0.034
(0.005) (0.004) (0.006) (0.001)

Manufacture of radio, television and communication equipment 0.060 0.191 0.536 0.051
(0.058) (0.143) (0.235) (0.024)

Manufacture of medical, precision and optical instruments 0.138 0.196 0.432 0.044
(0.009) (0.010) (0.013) (0.004)

Manufacture of motor vehicles 0.743 0.281 0.147 -0.062
(0.019) (0.008) (0.010) (0.031)

Manufacture of other transport equipment 0.045 0.201 0.536 0.103
(0.021) (0.011) (0.023) (0.015)

Manufacture of furniture 0.553 0.340 0.091 0.013
(0.244) (0.015) (0.028) (0.065)

Recycling 0.178 0.482 0.567 0.052
(0.039) (0.015) (0.042) (0.016)

Information technology services 0.426 0.280 0.301 0.152
(0.086) (0.020) (0.068) (0.053)

Business services, non I.T. 0.058 0.300 0.548 0.199
(0.021) (0.037) (0.063) (0.017)

Note: s is the log-supermodular agglomeration coefficient, a the log-linear agglomeration coefficient, νR the variance of iid
shocks, νz the variance of firms raw efficiency. The log-supermodular coefficient s1 is not defined for the first sector, as the
estimation backs out a degenerate distribution for firms productivity in that sector.
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Figure 1: Elasticity of mean value added and employment with city size.
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Note: This figure plots for β in the regression: log mean va(Li) = α+ β logLi + εi against β in the regression β:
log mean empl(Li) = α+ β logLi + εi, ran sector by sector at the NAF600 level for industries with more than 200 mono-establishment
firms.

Figure 2: City size distribution, model and
data.
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Figure 3: Change in city size distribution, after
policy.
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Note: This figure plots the change in city size distribution
after implementing the policy described in section 4.1.
Smallest cities corresponding to 2.3% of pop. are subsidized
; the subsidy amounts to 1% of GDP.
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Online appendix - Not for publication

A. Housing market

Since there is a fixed total supply of land equal to 1 in the city, the housing supply equation is

H(L) =
(pH(L)

w(L)

) 1−b
b , (A.24)

where H(L) is the total quantity of housing supplied in a city of size L.
The aggregate local demand for housing is

H(L) =
(1− η)w(L)L

pH(L)
. (A.25)

Equations (A.24) and (A.25) pin down prices and quantities of housing produced. Housing supply (equation
(A.24)) and demand (equation (A.25)) equate so that pH(L) = (1 − η)b w(L)Lb. This yields the following labor
use and profits in the housing sector:

`H(L) = (1− b)(1− η)L, and (A.26)

πH(L) = b(1− η)Lw(L). (A.27)

The housing supply elasticity is given by d logH(L)
d log pH(L) = η 1−b

b . Anticipating on the policy discussion, note that a

decrease in b increases the housing supply elasticity and also leads to a flatter wage schedule across city sizes, as
d logw(L)
d logL = b 1−η

η .

B. Proofs of section 3.3

B.1. Lemma 1

Proof Fix the sector s. Since π(z, L, s) is strictly LSM in (z, L), if follows that for all z1 > z2 and L1 > L2,
π(z1,L1,s)
π(z1,L2,s)

> π(z2,L1,s)
π(z2,L2,s)

. So if z2 has higher profits in L1 than in L2, so does z1. Necessarily, L∗j (z1) ≥ L∗j (z2), and

L∗j (z) is a non-decreasing function.

Moreover, in the case where the support of city sizes L is convex, then L∗j (z) is a strictly increasing func-
tion. Since the set of z is convex by assumption, and ψ(z, L, s) is such that the profit maximization problem
is concave for all firms, the optimal set of city sizes is itself convex. It follow that L∗j (z) is invertible. It is lo-
cally differentiable (using in addition that ψ(z, L, s) is differentiable), as the implicit function theorem applies and

dL∗j (z)

dz = −
∂(
ψ2L
ψ

)

∂z (z,L∗j (z),s)

∂(
ψ2L
ψ

)

∂L (z,L∗j (z),s)

.

B.2. Equilibrium when L is not convex

I describe here for completeness an equilibrium when the set L is not convex. Consider a non convex set of city
sizes L that I write it as a union of intervals on R+. : L̃ =

⋃
i∼odd[ai, ai+1]. This nests in particular the case

of a discrete number of city sizes. I focus on the case where these intervals closed, but the proof is similar if
some intervals are open. Consider [a1, a2] and [a3, a4] with a3 < a4 two such intervals, without any city available
in-between. Consider firms whose unconstrained city choice would fall between a1 and a4, which correspond to
a closed interval: [z1, z4] = L∗−1

j ([a1, a4]) (it is well defined, given that L̃j is continuous and invertible). Write

zi = L∗j
−1(ai). By construction, for all z ∈ [z1, z2]

⋃
[z3, z4], we get that L∗j (z) = L̃j(z), hence L∗j (z) is increasing on

[z1, z2] and [z3, z4] respectively. Then, pick z ∈ (z2, z3). We know that L∗j (z2) ≤ L∗j (z) ≤ L∗j (z3) since L∗j (z) is non
decreasing, hence a2 ≤ L∗j (z) ≤ a3. Since L∗(z) ∈ L, this means that L∗j (z) = a2, or L∗j (z) = a3. By monotonicity
of L∗j (z), there exists a threshold z̃ ∈ (z2, z3) such that if z ∈ (z2, z̃) , L

∗
j (z) = a2 and if z ∈ (z̃, z3) L∗j (z) = a3.
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Firms “bunch” at the city size closest to their optimal unconstrained choice (either the one to the left or to the
right), with a higher-z firm choosing a city size at least as large as a lower-z firm. This bunching preserves the
monotonicity of the matching function L∗j (.).

B.3. Proposition 2

Proof Fix j. For productivity, the results comes from the facts that (1) L∗j (z) is non decreasing in z and (2) that

ψ(z, L, sj) is increasing in L. Revenues are proportional to profits (rj ∗ (z) =
σj

1+T∗j
π∗j (z)). The proof for profits is

as follows. ψ(zH , LL, sj) > ψ(zL, LL, sj) as ψ is increasing in z, which leads to π(zH , LL) > π(zL, LL), as firms
face the same wage in the same city. Finally, π(zH , LH , sj) ≥ π(zH , LL, sj) as LH is the profit maximizing choice
for zH . Therefore, π(zH , LH , sj) > π(zL, LL, sj).

In addition, εl = εr − (1− α) 1−η
η .

Proof For a given city size L and a given sector j, r̄∗j (L) =
∑
z in L r

∗
j (z) ∝

∑
z in L w(L)`∗j (z) ∝ w(L) ¯̀∗

j (L),

where their proportion is constant across city sizes. Therefore
d log ¯̀∗

j (L)

d log L =
d log r̄∗j (L)

d log L − εw, where the elasticity of

wages with respect to city sizes is εw = b η
1−η

B.4. Proposition 3

Proof Let Z : L x A x E → Z be the correspondence that assigns to any L ∈ L and α ∈ A a set of z that chooses L
at equilibrium. (It is a function when L is convex (see proof of Lemma 1).) Define z̄(L,α, s) = maxz{z ∈ Z(L,α, s)}
as the maximum efficiency level of a firm that chooses city size L in a sector characterized by the parameters (α, s).
I will use the following lemmas:

Lemma 11 log π is supermodular with respect to the triple (z, L, α)

It is readily seen that: ∂2log π(z,L,α,s)
∂z∂L > 0, ∂2log π(z,L,α,s)

∂z∂α = 0 and ∂2log π(z,L,α,s)
∂L∂α = (σ−1)b(1−η)

ηL > 0. This result
does not rely on an assumption on the convexity of L. Checking the cross partials are sufficient to prove the
supermodularity even if L is taken from a discrete set, as π can be extended straightforwardly to a convex domain,
the convex hull of L.

Lemma 12 z̄(L,α, s) is non decreasing in α, s.

The lemma is a direct consequence of the supermodularity of log π with respect to the quadruple (z, L, α, s).
Using a classical theorem in monotone comparative statics, if log π(z, L, α, s) is supermodular in (z, L, α, s), and
L∗(z, α, s) = maxL log π(z, L, α, s) then (zH , αH , sH) ≥ (zL, αL, sL)⇒ L∗(zH , αH , sH) ≥ L∗(zL, αL, sL). Note that
everywhere, the ≥ sign denotes the lattice order on R3 (all elements are greater or equal than).

Coming back to the proof of the main proposition, we can now write:

F̃ (L;α, s) = P (firm from sector(α, s) is in a city of size smaller that L)

= F (z̄(L,α, s))

where F (.) the the raw efficiency distribution of the firms in the industry. Let αH > αL.
For any z ∈ Z, the previous lemma ensures that L∗(z, αH , s) ≥ L∗(z, αL, s). In particular, fix a given L

and s and write using shorter notation: z̄αL = z̄(L,αL, s). Then L∗(z̄αL , αH , s) ≥ L∗(z̄αL , αL, s) = L. Because
L∗(z, αH , s) is increasing in z, it follows that:

z ∈ Z(L,αH , s)⇒ z ≤ z̄αL

and therefore z̄αH ≤ z̄αL or using the long notation: z̄(L,αH , s) ≤ z̄(L,αL, s)
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It follows that F (z̄(L,αH)) ≤ F (z̄(L,αL)) and that F (L;α, s) is decreasing in α. This completes the proof of
the first order stochastic dominance of the geographic distribution of a high α sector vs that of a lower α.

The proof is exactly the same for the comparative statics in s, we just have to verify that π(z, L, s) is log

supermodular in (z, L, s). Since π(z, L, sj) = κ

(
ψ(z,L,sj)
w(L)1−α

)σ−1
Rj

P 1−σ
j

and w(L) doesn’t depend on s, π(z, L, s)

directly inherits the log supermodularity of ψ(z, L, s) in its parameters.

B.5. Proposition 4

Proof Within sectors, the revenue function r∗j (z) at the sorting equilibrium is an increasing function for any j. Let
p1 < p2 ∈ (0, 1). Under the assumption, maintained throughout the comparative statics exercise, that sectors draw
z from the same distribution, there ∃ z1 < z2 such that Qj1(p1) = r∗j1(z1) and Qj2(p1) = r∗j2(z1) (same thing for
z2 and p2), ie. the quantiles of the r∗j1 and r∗j2 distributions correspond to the same quantile of the z distribution.

This yields
Qj1 (p2)

Qj1 (p1) =
r∗j1(z2)

r∗j1(z1) , and
Qj2 (p2)

Qj2 (p1) =
r∗j2(z2)

r∗j2(z1) .

Finally, it is a classic result in monotone comparative statics (Topkis (1998)) that if π(z, L, α) is log-supermodular

in (z, L, α), then π∗(z, α) = maxL π(z, L, α) is log supermodular in (z, α), or
π∗j2(z2)

π∗j2(z1) ≥
π∗j1(z2)

π∗j1(z1) . Revenues are pro-

portional to profits within sectors, which completes the proof. The same proof applies for s.

B.6. Corollary 5

Proof Let pj ∈ (0, 1) be a threshold above which the distribution is well approximated by a Pareto distribution
in sector j, and rj the corresponding quantile of the distribution. The distribution of r conditional on being larger
than rj is:

∀r > rj , Hj(r | r ≥ rj) ≈ 1− (
r

rj
)−ζj ,

where ζj is the shape parameter of the Pareto distribution for sector j. Thus, if Fj(r) = p, one can write:

∀p > pj , p ≈ Fj(rj) +Hj(r) ≈ pj + 1− (
r

rj
)−ζj

r

rj
≈ (1 + pj − p)

− 1
ζj

Letting p0 = max(p1, p2) and writing rj = Qj(p0) for j = 1, 2, and using proposition (4) gives:

Qj1(p)

Qj1(p0)
≤ Qj2(p)

Qj2(p0)

(1 + p0 − p)−
1
ζ1 ≤ (1 + p0 − p)−

1
ζ2 for all p > p0 and p < 1

ζ1 ≥ ζ2,

where the last inequality comes from 1 + p0 − p ∈ (0, 1).

C. Extensions of the model

C.1. Extension with costly trade

In this extension of the model, I consider an economy with a more realistic geography. Call C the set of sites where
firms and workers can locate. To ship goods from site i to site j ∈ C2, firms incur an iceberg trade cost τij . To
simplify the exposition, I consider an economy with only one sector and where firms only use labor as an input.
Extension to the cases with several sectors and the use of capital is straightforward. In the presence of trade costs,
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local price indexes Pi for the traded good produced by firms are not equalized between cities and depend on the
whole distribution of firms across space:

Pi =

[∫
j∈C

∫
z∈Z(j)

(
τjiwj
ψ(z, Lj)

)1−σ

dFj(z)dj

] 1
1−σ

.

In this expression, the set Z(j) is the (endogenous) set of firms that are located on site j, and Fj(z) the
corresponding distribution of firm types. It is convenient to define the average city-level productivity ψ̄j for any
city j:

ψ̄j =

[∫
z∈Z(j)

ψ(z, Lj)
σ−1dFj(z)

] 1
σ−1

We can then rewrite the price index simply as:

Pi =

[∫
j∈C

(
τjiwj
ψ̄j

)1−σ

dj

] 1
1−σ

. (C.28)

A firm of type z located in site i has marginal costs
τijwi
ψ(z,Li)

when serving city j. This firm’s demand from city

j (where total demand is wjLj and demand across goods is CES) is therefore:

rij(z) =

(
τijwi
ψ(z, Li)

)1−σ

wjLjPj
σ−1

Firms’ profits, if located in i, are therefore π(z, i) = 1
σ

∫
j∈C

(
τijwi
ψ(z,Li)

)1−σ
wjLjPj

σ−1dj. Define the city i’s market
access as:

MAi =

∫
j∈C

τ1−σ
ij wjLjPj

σ−1dj. (C.29)

Then firm’s profits are simply:

π(z, i) =
1

σ
ψ(z, Li)

σ−1w1−σ
i MAi.

From this expression, we see already that π(z, i) is log-supermodular in z and city size Li. Therefore, for a
given equilibrium distribution of wages, market access and city sizes, more productive firms necessarily choose
larger cities Li: there is positive assortative matching between firm type and city size.1

Furthermore, city size L is still a sufficient statistic for the economic condition of a city, like in the version
without trade costs. To show this, we first use the free mobility condition. The utility of a worker in city i , defined
in equation (2) of the main text combined with the housing production equation (3), is:

U = Ui = κ0

(
wi
Pi

)η
L
−b(1−η)
i , (C.30)

where κ0 = η−η (1− η)
−b(1−η)

is an economy-wide constant. Using the free mobility condition and plugging in the

1Proof:Assume that it was not the case, that is that there are two firms z1 < z2 that choose city i1 and i2 with
L(i1) > L(i2). This means, by revealed preferences, that:π(z1,L(i1))

π(z1,L(i2))
> 1. Now, by log-supermodularity of ψ :

ψ(z2, L(i1))

ψ(z2, L(i2))
>
ψ(z1, L(i1))

ψ(z1, L(i2))

Taking this to the power σ − 1 and multiplying both sides by the positive number w1−σ
i1 MAi1/w

1−σ
i2 MAi2 leads to:

π(z2, L(i1))

π(z2, L(i2))
>
π(z1, L(i1))

π(z1, L(i2))
> 1

Therefore i2 cannot be the optimal choice of firm z2. This proves that firms choose cities whose size is increasing with z.
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expression for the price index lead to:

w1−σ
i L

−b(1−σ)( 1−η
η )

i = Ũ−1

∫
j∈C

(τjiwj)
1−σ

ψ̄σ−1
j dj, (C.31)

where the economy-wide constant Ũ is defined by Ũ−1 = (κ0/U)
(σ−1)/η

. Second, the goods market clearing
condition writes:

wiLi =

∫
j

(
τijwi
ψ̄i

)1−σ

wjLjPj
σ−1dj,

hence, using the expression for the price index implicitly given by (C.30) and simplifying, it follows that:

wσi Liψ̄
1−σ
i = Ũ−1

∫
j

τij
1−σwj

σL
1−b(σ−1) 1−η

η

j dj (C.32)

This system of 2N equations (C.31)-(C.32) corresponds to the one in Allen and Arkolakis (2014), where the

congestion force is Li
−b 1−η

η , and the local productivities are for now taken to be fixed at ψ̄i. Therefore, for a given
vector ψ̄i, and assuming that trade costs are symmetric (τij = τji), we can invoke theorem 2 in Allen and Arkolakis
(2014) to show that there exists a unique vector of Li and wi such that this system of equation holds and that, the

following holds for some endogenous constant Γ: wσi Liψ̄
1−σ
i = Γw1−σ

i L
−b(1−σ)( 1−η

η )
i . This can be rewritten as:

wi
2σ−1Li

1+b 1−η
η (1−σ)ψ̄i

1−σ = Γ (C.33)

Recombining equations lead to the following expression for market access:

MAi = wσi Liψ̄
1−σ
i = Γw1−σ

i L
−b(1−σ)( 1−η

η )
i .

Firm profits are therefore:

π(z, i) =
Γ

σ

ψ(z, Li)L
b( 1−η

η )
i

w2
i

σ−1

.

It follows from this expression that in equilibrium, two cities with the same size L cannot have different wages
w - otherwise, firms that choose a city of that size L would only go to the city with the lowest wage. Furthermore,
equilibrium wages must be increasing function of city size w(L), since firm profits are increasing in L but decreasing
in w (no firm would choose a city with a lower L if it came with a higher wage). In turn, the local price index Pi can
be simply expressed, in equilibrium, a function of city size by (C.30), using the fact that wages are (in equilibrium)
a function of local population, w(L).

Despite the introduction of costly trade in the model, it is still the case that, in equilibrium, price and wages
are a function of city size only, that is : city size is again a sufficient statistic to describe the equilibrium in terms
of firms and consumer choices.

Furthermore, firms profits can therefore be written:

π(z, L, s) =
Γ

σ

(
ψ(z, L, s)Lb(

1−η
η )

w(L)2

)σ−1

.

from which it is readily seen that the profit function is log-supermodular in (z, L, s) and (z, L, α).The proofs of
lemma 1 and propositions 2, 3 and 4 - which are based on this property - carry through to that case.

C.2. Extension with imperfect sorting

I examine the properties of the model in the presence of imperfect sorting as hypothesized in the empirical speci-
fication of section 4. The properties of equilibrium described in section 2.3. of the main text either hold true on
average, rather than systematically, in that case, or are unchanged.
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Set up with imperfect sorting Productivity in city size L is given by equation (20) in the main text. The
idiosyncratic productivity shocks εi,L for each city size are i.i.d. across city sizes and firms and distributed as
a type-I extreme value, with mean zero and variance νR. Therefore, writing ψ the non-stochastic part of firm’s

productivity ψ(zi, L, sj) = exp
(
aj logL+ log(zi)(1 + log L

Lo
)sj
)

leads to the following expression for firm i’s profit:

πj(zi, L) = κ1j

(
ψ(zi, L, sj)e

εi,L

Lb
1−η
η (1−αj)

)σj−1

Rj P
σj−1
j .

It will prove useful to write Vj(z, L) the non-stochastic part of firm profits:

Vj(z, L) = κ1j

(
ψ(z, L, sj)

Lb
1−η
η (1−αj)

)σj−1

Rj P
σj−1
j , (C.34)

and to note that the multiplicative random term e(σj−1)εi,L is distributed Frechet, with shape parameter
νRj
σj−1 . The

firm’s discrete choice problem is then:

L∗j (zi) = arg max
L∈L

Vj(zi, L)e(σj−1)εi,L

Given this setup, the following characterizations of the equilibrium hold in the case of imperfect sorting.

Characterizations with imperfect sorting First, Lemma 1 in the main text states that, within each
sector, the matching function is increasing: high-z firms are systematically found in larger cities than lower-z firms.
With imperfect sorting, we can prove a related result:

Lemma 1’: Take z1 < z2. Within a given sector, the distribution of city sizes for z2-firms first order statistically
dominates the one for z1 firms. That is, defining F (.|z) the CDF of the distribution of city sizes chosen by firms of
type z :

z1 < z2 ⇒ F (L | z2) ≤ F (L | z1)

High-z firms are more likely to be found in large cities than lower-z firms.

Proof The firm seeks to maximize profits. Given the properties of the Frechet distribution, the probability that
a firm of type z in sector j chooses city size L is:

p(L|z) =
V (z, L)

νR
σ−1∑

L′ V (z, L′)
νR
σ−1

(C.35)

Since ψ(z, L, sj) is LSM in (z, L), V (z, L)
νR
σ−1 is LSM in (z, L). In turn, p(L2|z2)

p(L1|z2) =
(
V (z2,L2)
V (z2,L1)

) ν
σ−1

>
(
V (z1,L2)
V (z1,L1)

) ν
σ−1

=

p(L2|z1)
p(L1|z1) . This means that p(L|z) has the monotone likelihood ratio property ( Milgrom (1981); Costinot (2009)).

Hence, in particular, the distribution of L for a high z first-order stochastically dominates the distribution of L for
a low z. Furthermore, it follows that p(z|L2) first order stochastically dominates p(z|L1) when L2 > L1, because:

p(z2, L2)

p(z2, L1)
=
p(L2|z2)f(z2)

p(L1|z2)f(z2)
=
p(L2|z2)

p(L1|z2)
>
p(L2|z1)

p(L1|z1)
=
p(z1, L2)

p(z1, L1)
.

Within a sector, firms’ raw efficiencies z are higher in larger cities in the sense of first order stochastic dominance.

Second, proposition p:obs of the main text states that, within each sector, firm profits, revenues and produc-
tivities increase in equilibrium with city size. With imperfect sorting, the results hold true on average over firms
located in a given city:
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Proposition p:obs’: Within each sector, average firm profits, revenue and productivity increase in equilibrium
with city size.

Proof A firm chooses city size to maximize profits following (21) in the main text. Given the properties of the
Frechet distribution, the distribution of realized profits π∗of a firm of type z, once it has optimally chosen its
location, is independent on its endogenous choice of city size L∗. That is, F (π∗|z) = F (π∗|z, L∗). Therefore, the
distribution of profits of firms located in a given city of size L∗ is given by:

p(π∗|L∗) =

∫
z

p(π∗ | L∗, z)pj(z|L∗) dz (C.36)

=

∫
z

p(π∗ | z)pj(z|L∗) dz

Therefore, firm profits in city L are on average:

E [π∗|L∗] =

∫
π∗

∫
z

π∗p(π∗ | z)p(z|L∗) dπ∗ dz (C.37)

=

∫
z

[∫
π∗
π∗p(π∗ | z)dπ∗

]
p(z|L∗) dz (C.38)

=

∫
z

E [π∗ | z] p(z|L∗) dz

We know that π(z, L) increases in z for all L, therefore E(π∗ | z) is also increasing in z. Given that p(z|L2)
first order stochastically dominates p(z|L1) if L2 > L1, it follows that:

E [π∗|L∗2] > E [π∗|L∗1]

Firms are monopolistically competitive and demand is CES, so that profits are a constant proportion of revenues
within a sector. It follows that:

E [r∗|L∗2] > E [r∗|L∗1]

Finally, the productivity of firm i in its chosen city size L∗ is φi = ψ(zi, L
∗, sj)e

εi,L∗ , where:

π(zi, L
∗) = κ1j

(
φi

L∗(1−αj)
1−η
η b

)σj−1

Rj P
σj−1
j

therefore

φi =
π(zi, L

∗)
1

σj−1 L∗(1−αj)
1−η
η b

(κ1jRj)
1

σj−1 Pj

Then, within sector j :

E [φ|L∗] = E
[
π∗(z, L∗)

1
σj−1 |L∗

] L∗(1−αj)
1−η
η b

(κ1jRj)
1

σj−1 Pj

The term E
[
π∗(z, L∗)

1
σj−1 |L∗

]
increases with L∗, by argument similar to the one made above for E [π∗(z, L∗)|L∗].

Furthermore, L∗(1−αj)
1−η
η b also increases with L∗. Therefore, E [φ|L∗] increases with L∗ .

Third, proposition p:sorting of the main text states that the geographic distribution of a high α (resp. s) sector
first-order stochastically dominates that of a lower α (resp. s) sector. This statement is unchanged in the case of
imperfect sorting.

Proposition p:sorting’: The geographic distribution of a high α (resp. s) sector first-order stochastically
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dominates that of a lower α (resp. s) sector.

Proof I make here explicit the dependency of V on sectoral parameters s and α, and write expression (C.34) as
V (z, L, s, α). We know that V (z, L, s, α) is log-supermodular (LSM) in (z, L, s, α), as the properties of the non

stochastic part of productivity ψ(z, L, s) are the same than in the main text. Therefore, V (z, L, s, α)
νR
σ−1 is also

LSM in (z, L, s, α). For any t ≥ 0, define the auxiliary function 1[0,t](L) equal to 1 if L ∈ [0, t] and 0 otherwise.
This function is LSM in (z, L, s, α, t), by lemma 3 in Athey (2002). Define

G(z, s, α, t) =

∫ ∞
0

V (z, L, s, α)
νR
σ−11[0,t](L) dFL(L) =

∫ t

0

V (z, L, s, α)
νR
σ−1 dFL(L).

where FL(L) is the economy-wide city size distribution. By lemma 4 in Athey (2002), we get that G(z, s, α, t) is
LSM in (z, s, α, t). The probability that a firm of a given type z chooses a city size smaller than t is:

p (firm z chooses city size L ≤ t|α, s) =

∫ t
0
V (z, L, α, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L, α, s)

νR
σ−1 dFL(L)

By log-supermodularity of
∫ t

0
V (z, L, s, α)

νR
σ−1 dFL(L) the following comparative statics follow if s ≤ s′:∫ t

0
V (z, L, α, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α, s)

νR
σ−1 dFL(L)

≤
∫ t

0
V (z, L, α, s′)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α, s′)

νR
σ−1 dFL(L)

and similarly if α ≤ α′: ∫ t
0
V (z, L, α, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α, s)

νR
σ−1 dFL(L)

≤
∫ t

0
V (z, L, α′, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α′, s′) dFL(L)

Therefore, the conditional probability p (firm z chooses city size L ≤ t|α, s) increases with s (resp. with α),that
is: the geographic distribution of a high α (resp. high s) sector - all else equal - first order stochastically dominates
that of a lower α (resp. lower s) sector.

Fourth, proposition 4 in the main text states that the firm size distribution in revenues of a high α (resp. s) sector
is more spread out than that of a lower α (resp. s) sector. With imperfect sorting, the following characterization
holds:

Proposition 4 ’: Normalize the distribution of firm revenues across sectors by their mean. Then, the distri-
bution of log-revenues of firms in a high α (resp. s) sector is a mean-preserving spread of that of a lower α (resp.
s) sector.

Proof Given the discrete choice problem (21) in the main text, a firm of type z has a distribution of optimized prof-

its π (resp. revenues r) that is distributed Frechet, with location parameter T (z, s, α) =
(∑

L′ V (z, L′, s, α)
νR
σ−1

)σ−1
νR and

shape parameter νR
σ−1 (common to all firm types z). The distribution of log-revenues in a given sector depends

therefore on the distribution of raw efficiency z and of a shock ε according to:

log(r(z, ε; s, α)) = κ+ log T (z, s, α) + ε,

where κ is a sectoral constant, ε is distributed type-1 EV, with location parameter 0 and shape parameter
κ = νR

σ−1 , and is independent of z. Let s1 < s2. Define the constant Ks = Ez [log T (z, s1, α)] − Ez [log T (z, s2)] .
The distributions of log(r(z, ε; s1, α)) and log(r(z, ε; s2, α)) +Ks have the same mean.

The location parameter T (z, s, α) is LSM in (z, s) and (z, α). To see this, note that T (z, s, α) = E
[
V (z, L′, s, α)

ν
σ−1
]σ−1
νR ,

where the expectation is taken over the economy-wide distribution of city sizes. Since V (z, L, s, α) is log-supermodular
in (z, s), V (z, L, s, α)

ν
σ−1 is also LSM in in (z, s), then EL

[
V (z, L′, s, α)

ν
σ−1
]

is LSM (Athey (2002) shows that the
expectation of a LSM function is LSM) and finally T (z, s, α) is LSM in (z, s). By a similar reasoning, it is also
LSM in (z, α).
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Fix α. The function log T (z, α, s) is supermodular in z and s and increasing in z, so log T (z, α, s1) and
log T (z, α, s2) + Ks cross (at most) once as functions of z. For z above that point we have log T (z, α, s2) + Ks >
log T (z, α, s1). The opposite is true below this point. Writing h(z) = log T (z, α, s1) − log T (z, α, s2) −Ks,we get
that Ez [h(z)] = 0 by definition of Ks. Given that h(z) is first positive then negative, it follows that:∫ Z

0

h(z)dF (z) ≥ 0

for all Z. This proves that the distribution log T (z, α, s2)+Ks second-order stochastically dominates the distribution
log T (z, α, s1). Since log T (z, α, s1) and ε are independent, we get in turn that, log(r(z, ε; s2, α)) +Ks second-order
stochastically dominates log(r(z, ε; s1, α)). Therefore, log(r(z, ε; s2, α)) is, once de-meaned, a mean-preserving
spread of log(r(z, ε; s1, α)). The same proof is readily adaptable to the case of α, now holding s fixed.

D. Proofs of section 3.3

D.1. Lemma 7

Proof Consider a given city of size L developed by city developer i. Equation (6) shows that, for a given city size
and a given sector, labor hired by local firms is proportionate to the ratio of firms profit to the (common) local
wage. Using this relationship, the city developers problem (14) then simplifies to

max
L,{Tj(L)}j∈1,...,S

ΠL = b (1− η)w(L)L−
S∑
j=1

Mjw(L)

(1− αj)(σj − 1)

∫
z

Tj(L)`j(z, L)1j(z, L, i)dFj(z) (D.39)

Let Nj(L, i) =
∫
z
`j(z, L)1(z, L, i)MjdFj(z) denote the number of workers working in sector j in this specific city

i. It follows that
∑S
j=1Nk(L, i) = L − `H(L) = L

(
1 − (1 − η)(1 − b)

)
where `H(L) is the labor force hired in the

construction sector and the second equality uses (13).
The problem is akin to a Bertrand game. Consider a given city size L. Free entry pushes the profit of city

developers to zero in equilibrium. I prove now that this drives Tj(L, z) to the common level T ∗j =
b(1−η)(1−αj)(σj−1)

1−(1−η)(1−b)
. First, assume that for a given (z, j), the maximum subsidy offered is strictly less than T ∗j . New city developers
could offer T ∗j for (z, j) and 0 for all other sectors, attract all (z, j) firms for whom this subsidy is more attractive,

and make exactly zero profit, as Mj

∫
z
`j(z, L)1(z, L, i)dFj(z) = L

(
1 − (1 − η)(1 − b)

)
. Second, assume a city

developer offers a subsidy Tj(L, z) > T ∗j for a couple (z, j). This leads to negative profits. To see this, consider all
cities of size L, and take the one that offers the highest subsidy city to (z, j) firms. Call this city i. From the first
step of the proof, we know that in any given city, for all sectors k, either Tk(L, z) ≥ T ∗k and Nk ≥ 0 or Tk < T ∗k
and Nk = 0. Therefore,

S∑
k=1

Mkw(L)T ∗k
(1− αk)(σk − 1)

∫
z

`k(z, L)1(z, L, i)dFk(z) =

S∑
k=1

w(L)T ∗k
(1− αk)(σk − 1)

Nk

> b (1− η)w(L)L

so that Πi < 0.

D.2. Extension with Specific Subsidies

I examine here the case where land developers can observe firm types z and offer specific subsidies that are z-
industry-city specific, rather than ad-valorem and constant within industry in the baseline model. Specifically, land
developers offer a specific subsidy Sj(z;L) to each firm of type z in industry j coming to their city of size L. I show
here that the same outcome as in the baseline model is still an equilibrium. That is, the following is an equilibrium:

- A city developer targets a city size L0 and announces a fixed subsidy Sj(L0)δ(z − z∗j (L0))δ(L − L0) where
δ(0) = 1, and δ(x) = 0 for x 6= 0. This subsidy is targeted to firms for which L0 is the best choice of
city absent any subsidy, ie. the ones for which z = z∗j (L), where z∗j (L) is the inverse of L∗j (z) defined in
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equation (8) in the main text. The subsidy is 0 for other firms. The subsidy does not vary with the profit
of the firm, but instead is fixed to the same level as what is effectively paid in the baseline equilibrium:

Sj(L0) = T ∗j π̃j(z
∗
j (L0), L0), where I write π̃j(z

∗
j (L), L) = κ1j

(
ψ(z,L,sj)

w(L)1−αj

)σj−1

Rj P
σj−1
j the profit of the firm

absent any subsidy.

- All cities in the optimal set L are announced by developers

- Firms of type z∗(L) choose cities of size L.

The proof that this is an equilibrium is as follows. Given these subsidies offered by developers, a firm of type z
chooses its optimal location as follows:

max
L

π̃j(z, L) + 1L=L∗j (z)Sj(z;L
∗
j (z)).

Given that maxL π̃j(z, L) = L∗j (z), the optimal choice of the firm with subsidy is also L∗j (z). A developer makes
the following profit in his city, where I write Nj the number of firms in sector j that end up in this city :

ΠL = b(1− η)w(L)L−
∑
j

SjNj

= b(1− η)w(L)L−
∑
j

NjT
∗
j π̃j(z

∗
j (L), L)

= b(1− η)w(L)L−
∑
j

NjT
∗
j

w(L)`j(z
∗
j (L), L)

(1− αj)(σj − 1)

= b(1− η)w(L)L−
∑
j

Nj
b(1− η)

1− (1− η)(1− b)
w(L)`j(z

∗
j (L), L)

= b(1− η)w(L)L− b(1− η)

1− (1− η)(1− b)
L(1− (1− b)(1− η))

= 0

where the second equality comes from the definition of the subsidy, the third equality comes from equation
(6) in the main text, the fourth equality uses the definition of T ∗j from the main text, and the last one uses the
local labor market clearing condition: L(1 − (1 − b)(1 − η)) =

∑
j Nj`j(z

∗
j (L), L). I finally show that there is no

profitable deviation for a developer. First, it is clear that no developer wants to offer a higher subsidy for firms
for the same city size (that is, for z = z∗j (L) in city size L), since it would lead to negative profits given that the
current subsidies yield 0 profit. Also, lower subsidies for the same city size would not attract any firms. We need
to check whether a developer want and can attract a firm of type z in a city that is not the unconstrained optimal
choice L∗(z)ofthefirm. The proof is by contradiction. Assume that a developer targets firms z in cities of size
L2 6= L∗(z) and offers them a specific subsidy S2. For the subsidy to be attractive for firms, it has to be that:

S2 ≥ π̃(z, L∗) + T ∗π̃(z, L∗)− π̃(z, L2), (D.40)

since the alternative for firm z is to choose city L∗(z) – simply written L∗ here – and get a profit of π̃(z, L∗)
plus a subsidy T ∗π̃(z, L∗). For the subsidy to generate positive profits for the developer, it has to be that:

S2N2 ≤ b(1− η)w(L2)L2,

where N2 is the number of firms of type z that populate a city L2 such that the local labor market clears,

that is: N2 = L2(1−(1−η)(1−b))
`2(z,L2) = L2w(L2)(1−(1−η)(1−b))

(1−α)(σ−1)π̃(z,L2) . Therefore the condition for positive profits becomes:

S2 ≤ b(1−η)
1−(1−η)(1−b) (1− α)(σ − 1)π̃(z, L2), which is precisely T ∗π̃(z, L2). Finally, note that by optimality of L∗,

π̃(z, L∗) + T ∗π̃(z, L∗) ≥ π̃(z, L2) + T ∗π̃(z, L2).

Therefore, T ∗π̃(z, L2) ≤ π̃(z, L∗) + T ∗π̃(z, L∗)− π̃(z, L2) and S2 cannot at the same time satisfy S2 ≤ T ∗π̃(z, L2)
and condition (D.40) . This contradiction means that there is no profitable deviation for a land developer. This
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conclude the proof that the distribution of firms and cities of the baseline model is still an equilibrium of the model
with specific subsidy for type-z firms.

D.3. Lemma 8

Proof Let Lo denote the suboptimal city size where firms of type (z, j) are located. They get profit π∗j (z, Lo).

Denote ∆ =
π∗j (zj ,L

∗(z))

π∗j (z,Lo) − 1 > 0. A city developer can open a city of size L∗(z) by offering a subsidy T̃j =

1+ ∆
2

1+∆ (1 + T ∗j ) − 1, which will attract firms as they make a higher profit than at Lo, and allows the city developer
to make positive profits. City size distribution adjusts in equilibrium to determine the number of such cities.

D.4. Lemma 9

The proof is in the main text.

E. General Equilibrium

I use the following notation:

Ej =

∫
ψ(z, L∗j (z), sj)

σj−1[
(1− η)L∗j (z)

] b(1−η)(1+(1−αj)(σj−1))

η

dFj(z) , and Sj =

∫ (
ψ(z, L∗j (z), sj)[

(1− η)L∗j (z)
] b(1−η)(1−αj)

η

)σj−1

dFj(z),

where Ej and Sj are sectoral quantities that are fully determined by the matching functions L∗j (z) for each sector j.

They are normalized measures of employment and sales in each sector.2 To find general equilibrium quantities Pj ,
Mj for all j ∈ {1, ..., S} and R, the aggregate revenues in the traded goods sector, I write the free entry conditions
for firms (equation (E.41)), the goods market clearing conditions (equation (E.42)), and the national labor market
clearing condition (workers works either in one of the traded goods sectors or in the construction sector, equation
(E.43)). This leads to the following system of equations:

fEj P = (1 + T ∗j )κ1j Sj ξjRP
σj−1
j , for all j ∈ {1, ..., S}, (E.41)

1 = σjκ1jMj Sj P
σj−1
j , for all j ∈ {1, ..., S}, (E.42)

Nv =

S∑
j=1

κ2jEjMj ξjRP
σj−1
j +N(1− b)(1− η), (E.43)

where fEj is the units of final goods used up in the sunk cost of entry, P is the aggregate price index, and
the last term derives from equation (13). First, the national labor market clearing condition (E.43) together with
equation (E.42) leads to the aggregate revenues in manufacturing,

R = N
1− (1− b)(1− η)∑S
j=1

(1−αj)(σj−1)
σj

ξj
Ej
Sj

(E.44)

This pins down uniquely the general equilibrium quantity R. Second, I combine equations (E.46) and (E.41) and
write κ̃1j = κ1jP

αj(σj−1). This is a constant parameter, whereas κ1j depended on the GE quantity P .3 This leads

2Given the wage equation (4) and the expression for operating profits (5), aggregate operating profits in sector j are

κ1jMj Sj Rj P
σj−1

j (1 + T ∗j ). Similarly, aggregate revenues in sector j are σj κ1jMjSjRjP
σj−1

j and aggregate employment

in sector j is κ2jMj Ej Rj P
σj−1

j , where the sectoral constant κ2j is κ2j = κ1j(1− αj)(σj − 1).
3 This is because κ1j depends on the price of capital which is constant, fixed in international markets in units of the

internationally traded good. Since the price of the traded good is not taken as the numeraire here, the cost of capital if ρP
in terms of the numeraire, with ρ a constant.
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to :

P
1
αj

j

S∏
k=1

(
Pk
ξk

)−ξk =

(
1

κ̃1j(1 + T ∗j )Sj ξjR

) 1
αj(σj−1)

, (E.45)

where I have used that P =
S∏
j=1

(
Pj
ξj

)ξj . Note that the matrix


− 1
α1

+ ξ1 ξ2 ... ξn
ξ1 − 1

α2
+ ξ2 ... ξn

...
...

...
ξ1 ξ2 ... − 1

αn
+ ξn

 has full

rank and is invertible. Therefore, equation (E.45) has a unique solution in {Pj}j=1..N . This pins down P in turn.
Finally, equations (E.42) leads to the sectoral mass of firms:

Mj =
Pαj(σj−1)

σj κ̃1j Sj P
σj−1
j

. (E.46)

Therefore, equations E.41-E.43 have a unique solution (R,Mj , Pj)j=1...S .

F. Stability

I verify here that the equilibrium described in section 3 is stable. First, I study the reaction of the economy to a
perturbation of the equilibrium where only workers’s location or firms’ location are perturbed. Second, I examine
a perturbation of both firms’ and workers’ location.

It is straightfoward to see that the equilibrium is stable to a small perturbation of the location of firms, holding
workers location constant. No firm has an incentive to deviate from the initial equilibrium, as they all choose their
profit maximizing city size in the first place. The equilibrium is also stable to a small perturbation of the location
of workers, holding firms location constant. To see this, fix the set of equilibrium cities as well as the set of firms
located in each cities. Consider city i. In equilibrium its population is L, and it has nj firms of raw productivity

zj from sector j. Labor demand for each firm is `j = Kj
ψ(zj ,L,sj)

σj−1

w(L)(1−αj)(σj−1)+1 with Kj a set of general equilibrium.

The local labor market clearing condition is
∑
j

njKj
ψ(zj ,L,sj)

σj−1

w(L)(1−αj)(σj−1)+1 = L. This implicitly pins down the wage

w(L) as a function of L if workers move to the city. Workers’ utility in this city is is U(L) = w(L)L
b(1−η)
η . I now

show by contradiction that this level of utility decreases with L. Since ∂logu(L)
∂logL = w′(L)L

w(L) −
b(1−η)
η , assume that

w′(L)L
w(L) > b(1−η)

η . Differentiating the local labor market clearing condition leads to

∑
j

njKj
ψ(zj , L, sj)

σj−1

w(L)(1−αj)(σj−1)+1

[
(σj − 1)

ψ2

ψ
− ((1− αj)(σj − 1) + 1)

w′(L)

w(L)

]
= .1 (F.47)

Using in equation (7) leads to L
[
(σj − 1)ψ2

ψ − ((1− αj)(σj − 1) + 1)w
′(L)
w(L)

]
< − b(1−η)

η < 0,, so that (F.47) is

contradicted. Hence ∂ logu(L)
∂logL < 0.

Second, I study the reaction of the economy to a perturbation of the equilibrium where both workers and
firms’ location are perturbed. I show here that the economy converges back to the initial equilibrium. In the
initial equilibrium, land developers on these sites had posted a subsidy schedule T ∗j δ(L − Li), which was the one
compatible with the initial equilibrium with city size distribution f∗L(L) (see main text, section 2.2.2.). Sites were
initially populated with the posted number of workers (Li for developer i), and firms which chose these sites got
subsidy T ∗j , but this is not necessarily the case anymore. If their population has changed following the perturbation,
then firms earn 0 subsidy in these cities, and land developer make strictly positive profits in these cities.

To study the stability of the initial equilibrium to this perturbation, I assume that the game is played se-
quentially. Land developers play first, in decreasing order of their current profit (for example). They announce a
new subsidy scheme. Once all of the current land developers have spoken, potential entrants can also announce a
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subsidy scheme. Then, firms and workers can choose to relocate if they want to, taking these subsidy as given. If
necessary, the game repeats until an equilibrium is reached. But I show here that the equilibrium is reached after
one iteration, because the optimal subsidy schedule T ∗j δ(L − Li) will be posted by land developers. The proof is
by contradiction. Let us first take the subsidy distribution as given, and study how firms and workers sort across
space. Necessarily, workers choose cities such that U(L) = Ũ for some value Ũ . Otherwise, the workers would move
away from cities with lower utility and into cities with higher utility. This location choice of workers leads to a set

of city sizes L̃, and pins down the wage schedule up to a constant (see equation (4)): w(L) = w̃ L b
1−η
η . Necessarily,

firms choose the city that maximizes their profit, that is:π̃j(z, L) = κ̃j
(
1 + T̃j(L)

)( ψ(z,L,sj)

L
b

1−η
η (1−αj)

)σj−1

Rj P
σj−1
j

L∗j (z) = arg maxL∈L̃ π̃j(z, L).

Finally, land developers make the following profit:
[
b(1− η)− T (1−(1−b)(1−η))

(σ−1)(1−α)

]
w(L)L.

First, assume first that for some city size L0 , a city developer makes positive profits (ie the effective subsidy

there is T < b(1−η)(σ−1)(1−α)
1−(1−b)(1−η) ). This is not compatible with all city developers maximizing profit. Indeed, a city

developer with unused land, anticipating this, would have offered a subsidy (T + ε) δ(L − L0), with T + ε < T ∗,
that would have attracted the same firms and generated profits for the developer. Therefore, it must be that no
city developer makes positive profits after that round. In other words, effective subsidies collected by firms are
necessarily T = T ∗. Therefore, firms chose:π̃j(z, L) = κ̃j

(
1 + T ∗j

)( ψ(z,L,sj)

L
b

1−η
η (1−αj)

)σj−1

Rj P
σj−1
j

L∗j (z) = arg maxL∈L̃ π̃j(z, L).

Second, assume that some firms are not back to their optimal city size L∗(z). That is, not all city size in L∗
are offered in L̃. There exists a city size L0 for which fL(L0) > 0 in the baseline equilibrium, but no developer
has offered the subsidy scheme T ∗j δ(L−L0). Absent this option, the corresponding firms z0 = L∗−1(L0) must have
chosen a suboptimal city L1 with subsidy T ∗. These firms make a profit π∗j (z0, L1) < π∗j (z0, L0). A city developer
with no city, anticipating this, would have offered a subsidy T ∗j δ(L − L0) − ε (with ε > 0 arbitrarily small), that
would have attracted the same firms, as it strictly improves their profits.

We have thereby shown by contradiction that it must be that all optimal city sizes are announced by developers
with a subsidy T ∗. Therefore, the economy converges back to the intial equilibrium, which is stable to a small
perturbation of both firms’ and workers’ locations.

G. Welfare analysis

G.1. Social planner’s problem

The utility function is as follows4:

U(L) = c(L)L−
b(1−η)
η . (G.48)

I report here the results for a single-sector economy, for simplicity. The intuitions are unchanged in a multi-
sector setup. The problem of the planner is to choose allocations optimally, namely
(1) for each firm z, its level of input `(z) and k(z) and its city size L(z)
(2) the mass of firms M and the distribution of city sizes G(L)

4As in the competitive equilibrium, a constant fraction of the local labor force is used to build housing. In this reduced-
form utility function, congestion increases log-linearly with city size. The following results therefore hold irrespective of the
source of congestion in the economy, as long as it increases log-linearly with city size. Utility has been renormalized by a
constant and by taking utility in (G.48) to the power 1

η
.
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(3) the share γ(L) of total consumption C consumed by a worker living in a city of size L, in order to maximize:

U(L) =
γ(L)C

Lb
1−η
η

,

such that:

1. U(L) = Ū if g(L) > 0 (free mobility of workers)

2. C = Q−MfE −Mρ
∫
k(z)dF (z) ; Q =

(∫
Mq(z, L(z))

σ−1
σ dF (z)

) σ
σ−1

and q(z, L) = ψ(z, L, s) k(z)α `(z)1−α (production technology)

3.
∫
γ(L)L dG(L) ≤ 1 (workers consume at most C)

4. [1− (1− η)(1− b)]
∫ L

0
u dG(u) = M

∫ z∗(L)

z∗(0)
`(z) dF (z) (local labor markets clear)

5.
∫
L dG(L) = N (aggregate labor market clears)

Combining the constraints lead to the following:∫
γ(L)L dG(L) =

Ū

C

∫
Lb

1−η
η +1 dG(L)

Ū =
C∫

Lb
1−η
η +1 dG(L)

.

The local labor market clearing condition for cities of size Li yields5:

dG(L) =
M1(L(z)) `(z)

L(z)
dF (z) (G.49)

Define Γ = M
∫
z
L(z)b

1−η
η `(z) dF (z) =

∫
Lb

1−η
η +1 dG(L) the aggregate congestion in the economy. The problem

of the social planner reduces to:

max
L(z),`(z),k(z),M

C

Γ
(G.50)

such thatM
∫
z
`(z) dF (z) = N , with C =

(∫
M
[
ψ(z, L, s) k(z)α `(z)1−α]σ−1

σ dF (z)
) σ
σ−1

−MfE−Mρ
∫
k(z)dF (z).

The city size distribution G(L) does not directly enter the objective function. It adjusts such that the local
labor markets clearing condition holds in equilibrium.

Taking the first order conditions with respect to k(z) and solving out for k(z) leads to

C = κ∗M1+ 1
(1−α)(σ−1)

[∫
(ψ(z, L, s) `(z)1−α)φ dF (z)

] 1
φ(1−α)

−MfE ,

where κ∗ =
(
α
ρ

) α
1−α

(1− α) and φ = σ−1
σ+α−ασ .

Taking the first order condition with respect to L(z) leads to:

ψ2(z, L, s)L

ψ(z, L, s)
= b

1− η
η

(1− α)χ(z), (G.51)

where6

χ(z) =

(
Q̃− fE
Q̃

)
`(z)L(z)b

1−η
η∫

`(z)L(z)b
1−η
η

∫
q̃(z)φ dF (z)

q̃φj
. (G.52)

5In particular, this yields the distribution of city sizes G(L) once M,k(z), `(z) and L(z) are known for all firms.
6I use the notations q̃(z) = ψ(z, L, s)`(z)1−α, Q̃ = κ∗M

1
(1−α)(σ−1)

[∫
(q̃(z))φ dF (z)

] 1
φ(1−α) .
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The first order condition with respect to M yields

1

(σ − 1)(1− α)

(
Q̃

Q̃− fE

)
= λN (G.53)

Taking the first order condition with respect to `(z) leads to:(
Q̃

Q̃− fE

)
q̃φj∫

q̃(z)φ dF (z)
− `(z)L(z)b

1−η
η∫

`(z)L(z)b
1−η
η dF (z)

= λM`(z) (G.54)

In particular, summing this over all types of firms and using (G.53) and the labor market clearing condition
lead to:

fE

Q̃
=

1

(σ − 1)(1− α)
, (G.55)

and λ = 1
N

1
(σ−1)(1−α)−1 .

Plugging in q̃j = ψ(zj , L(zj))`(z)
1−α into equation (G.54) and using (G.53) gives the following expression for

`(z):

`(z) =

 ψ(z, L, s)(∫
q̃(z)φ

) 1
φ

σ−1(
Q̃− fE
Q̃

L(z)b
1−η
η∫

`(z)L(z)b
1−η
η dF (z)

+
M

N

1

(σ − 1)(1− α)

)ασ−α−σ
. (G.56)

G.2. Comparison with the competitive equilbrium

Rearranging equation (G.52), using (G.56) and (G.55), leads to

χ(z) =
L(z)b

1−η
η

L(z)b
1−η
η + Γ

N
1

(σ−1)(1−α)−1

, (G.57)

where Γ = M
∫
z
L(z)b

1−η
η `(z) dF (z) is a measure of “aggregate congestion” in the economy. Therefore, in

particular, χ(z) < 1 for all j. There is a wedge in the incentives of location choice between the competitive

equilibrium (equation (7)) and the social planner problem (equation (G.51)). Since ψ2(z,L,s)L
ψ(z,L,s) is decreasing in L by

assumption (which ensures the concavity of firm’s profit function), this means that firms choose cities that are too
small in the decentralized equilibrium.

G.3. Implementing first best

To align firms’ incentives in the competitive to the solution to the social planner’s problem, firms have to see a
wage of the form

w(L) ∝ (Lb
1−η
η +A) (G.58)

where A = Γ
N

1
(σ−1)(1−α)−1 . This is in contrast to w(L) ∝ Lb

1−η
η in the decentralized equilibrium, set by the free

mobility assumption. This allows both the size of the workforce and the choice of city size to be aligned in the two
equilibria. Finally, the mass of entrants is suboptimal in the competitive equilibrium (after correcting for these
effects). This effect is classic in monopolistic competition framework, and is not of direct interest here as it does
not interact with the choice of city sizes.7

7 In the competitive equilibrium, the mass of firm is given by M = (1+T∗)
σ

Q
fE

, whereas in the social planner’s problem it

is given by M = 1
(σ−1)(1−α)

Q
fE
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H. Estimation

H.1. Identification

To guide intuition on identification, I derive the distribution of firm value-added across cities of different sizes. The
setup is the one developed to study imperfect sorting in section B.1.

Note that firm value added is proportional to profits: rj(zi, L) = σjπj(zi, L) I focus from now on on one sector
and omit the sectoral subscript for simplicity. The distribution of value added across cities of different sizes is:

E(r|L) = Ez|L [E(r|L, z)]

=

∫
z

E(r|L, z) p(z|L)dz

=

∫
z

p(L|z) f(z)

fL(L)
E(r|L, z) dz

=

∫
z

p(L|z) f(z)

fL(L)
E(r|z) dz

The first equality uses the law of iterated expectation. The last equality uses a property of the Frechet dis-
tribution: the expectation of the profits are the same for a firm of a given type z irrespective of which city size
the firm has chosen. That is, E(π|z) = E(π|z, L∗) so that in turn, since profits are proportional to value added,
E(r|z) = E(r|z, L∗). Furthermore, using again the properties of the Frechet distribution, this expectation is:

E(π|z) = Γ(ν)

[∑
L

V (z, L)ν

] 1
ν

, (H.59)

where we write ν = νR
σ−1 the shape parameter of the Frechet distribution relevant for profits. We also know that

the probability that a firm of type zchooses a city of size L is:

p(L|z) =
V (z, L)ν∑
L′ V (z, L′)ν

(H.60)

We can therefore write that:

E(r|L) =
1

fL(L)

∫
z

p(L|z)E(r|z)f(z) dz

=
C

fL(L)

∫
z

V (z, L)νE(π|z)1−νf(z) dz.

where C is a sectoral constant. One case that helps understand the intuition behind the identification is when
νR = σ − 1. In that case, we can readily see that the distribution of value added across cities of different sizes
simplifies to:

E(r|L) =
C

fL(L)

∫
z

V (z, L)f(z) dz

=
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)]
∫
z

exp
(

(σ − 1)
{

log z
(

1 + log L̃
)
s
})

f(z) dz,

where we have used the value of V (z, L) from equation (C.34) and the definition of productivity in equation (20)
of the main text. Given that zis (truncated-) log normally distributed, that is, log z is distributed like a mean-0

normal truncated at its mean, this integral can be computed as follows. Note S(L) =
(

1 + log L̃
)
s.Then, we get

that:
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E(r|L) =
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)]
∫
z

z(σ−1)S(L)f(z) dz

=
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)]Ez

[
z(σ−1)S(L)

]
If z was log normally distributed without truncation, we would simply get that ElogN

[
z(σj−1)S(L)

]
= exp(

S(L)2(σ−1)2ν2
z

2 ),
so that:

E(r|L) =
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)] exp


(

1 + log L̃
)

2s (σ − 1)
2
ν2
z

2


Taking into account that z is truncated (at the mean of the normal) we get an additional term8so that

Ez
[
z(σ−1)S(L)

]
=

exp(
S(L)2(σ−1)2ν2

z
2 )Φ((σ−1)S(L)νz)

1/2 and:

E(r|L) =
C ′

fL(L)
L(σ−1)[a−b 1−η

η (1−α)] exp


(

1 + log L̃
)

2s (σj − 1)
2
ν2
z

2

Φ((σj − 1)S(L)νz),

where C ′ is a sectoral constant. Finally, taking logs, this equation gives us the relationship between average
value added and city size (within a sector) in a (non linear) regression format, and thus helps us understand what
variation in the data help identify the parameter:

log(E[ri|Li]) = C ′′ − log (fL(Li)) + β1 logLi + β2 (1 + log Li)
2s + log [Φ((σj − 1)S(Li)νz)], (H.61)

where

β1 = (σ − 1)

[
a− b1− η

η
(1− α)

]
β2 =

(σ − 1)
2
ν2
z

2

The parameters σ, b 1−η
η and α are calibrated in the first stage, the parameters (a, νz, s) are the ones we aim to

estimate. We can see from this expression that we can identify β1,β2 and s (hence a, s and νz ) from a non linear
least square regression of r on functions of L. The parameters a and s both impact firm productivity and profits,
but a impacts them log-linearly with city size, and s impacts them more than log-linearly because it entails the
sorting of more productive (high z) firms into larger cities. The shape of the distribution of firm value added with
respect to city size pins down the agglomeration parameters. The log-linear term identifies the classic agglomeration
economies forces a, and the convex term identifies the sorting forces, that is the interaction of νz and s. To identify
in addition the parameter νR, I bring in additional moments that characterize the firm-size distribution and the
sectoral distribution of activity.

H.2. Moments

Distribution of average value-aded by city size. The distribution of average firm value-added as a

function of city size is computed as follows in sector j. Define r̄j(L) =

∫
r∗j (z)1L∗

j
(z)=LdFj(z)∫

1L∗
j

(z)=LdFj(z)
the average value-added

of sector j firms that locate in city L. Normalize firms value-added within a given sector by their median value.
Group cities by quartile of city sizes, call them q = 1...4. For each quartile, compute the data counterpart of
E(log(r̄j |Li))) in (H.61) as the sample mean Mq of log(r̄j(Li)). The targeted moments are {Mq}q=1,2,3,4.

8 If Z is distributed log normal, where the normal has mean µ and variance ν2z , then:

E(Z|Z > e0) =

∫∞
e0
zg(z)dz

1− Φ(0)
=
eµ+ν

2
z/2Φ

(
µ+ν2

z−ln(e
0)

νz

)
1− Φ(0)

,

where Φ is the CDF of the standard normal distribution,
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Distribution of total value-added by city size I order cities in the data by size and create bins using
as thresholds cities with less than 25%, 50% and 75% of the overall workforce I normalize city sizes by the size of
the smallest city, and call tLi the city size these thresholds. I compute the fraction of value-added for each sector in
each of the city bins, both in the data and in the simulated sample. The corresponding moment for sector j and bin

i is sL,ji =

∑
tL
i
≤L<tL

i+1

∫
r∗j (z)1L∗

j
(z)=L dFj(z)∫

r∗j (z)dFj(z)
, where r∗j (z) is the value-added of firm z and 1L∗j (z)=L is a characteristic

function which equals 1 if and only if firm z in sector j chooses to locate in city size L.

Firm-size distribution. I retrieve from the data the 25, 50, 75 and 90th percentiles of the distribution of
firms’ normalized value added and denote them tr,ji . These percentiles define 5 bins of normalized value-added. I

then count the fraction of firms that fall into each bin sr,ji =

∫
1
t
r,j
i
≤r̃j(z)<t

r,j
i+1

dFj(z)∫
dFj(z)

, where r̃j(z) is the normalized

value added of firm z in sector j.

H.3. Simulation and estimation procedure

I simulate an economy with 100,000 firms and 200 city sizes. I follow the literature in using a number of draws
that is much larger than the actual number of firms in each sector, to minimize the simulation error. I use a grid of
200 normalized city sizes L̃, ranging from 1 to M where M is the ratio of the size of the largest city to the size of
the smallest city among the 314 cities observed in the French data. This set of city-sizes L is taken as exogenously
given.9 In contrast, the corresponding city-size distribution is not given a priori: the number of cities of each size
will adjust to firm choices in general equilibrium to satisfy the labor-market clearing conditions.

The algorithm I use to simulate the economy and estimate the parameters for each sector is as follows:

Step 1: I draw, once and for all, a set of 100,000 random seeds and a set of 100,000 × 200 random seeds from a
uniform distribution on (0, 1).

Step 2: For given parameter values of νR and νz, I transform these seeds into the relevant distribution for firm
efficiency and firm-city size shocks.

Step 3: For given parameter values of a and s, I compute the optimal city size choice of firms according to equation
(21).

Step 4: I compute the 13 targeted moments described below.

Step 5: I find the parameters that minimize the distance between the simulated moments and the targeted moments
from the data (equation (22)) using the simulated annealing algorithm.

The estimation is made in partial equilibrium, given the choice set of normalized city-sizes L. It relies on measures
that are independent of general equilibrium quantities, namely the sectoral matching function between firm efficiency
and city size, and relative measures of firm size within a sector.10

H.4. Standard errors

Following Gourieroux et al. (1993), the matrix of variance-covariance Vj of the parameter estimates in sector j is
computed as follows:

Vj = (1 +
1

Ns
)(G′jWjGj)

−1(G′jWjΩjWjG
′
j)(G

′
jWjGj)

−1, where

Gj = E

[
∂mj(θj0)

∂θ

]
, Ωj = E [mj(θj0)mj(θj0)′] ,

9As pointed out in the theory section and developed above in B.4., the characterizations of the economy provided in
Section 3 hold if the set of possible city sizes is exogenously given.

10Specifically, as detailed in the theoretical model, the optimal choice of city size by a firm depends only on its productivity
function and on the elasticity of wages with respect to city size. It does not depend on general equilibrium quantities. The
sizes of all firms in a given sector depend proportionally on a sector-level constant determined in general equilibrium (see
equations (9) and (10)). Normalized by its median value, the distribution of firm sizes within a sector is fully determined
by the matching function.
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Ns is the number of simulation draws and Wj is the variance-covariance matrix of the data moments used in
estimation. The reported standard errors are the square-root of the diagonal of Vj .

I. Policy analysis

I.1. Computing new equilibria in response to policy change

To compute the counterfactual equilibrium, I proceed as follows.

Step 1: I start from the equilibrium estimated in the data. I hold fixed the number of workers in the economy, the
real price of capital, the set of idiosyncratic productivity shocks for each firm and city-size bin, and the
distribution of firms’ initial raw efficiencies.

Step 2: I recompute the optimal choice of city-size by firms, taking into account the altered incentives they face in
the presence of the subsidy.

Step 3: Because the composition of firms within a given city-size bin changes, total labor demand in a city-size bin
is modified. I hold constant the number of cities in each bin and allow the city size to grow (or shrink)
so that the labor market clears within each city-size bin. This methodology captures the idea that these
policies are intended to“push” or jump-start local areas, which in addition grow through agglomeration
effects.11

Step 4: As city sizes change, the agglomeration economies and wage schedules are modified, which feeds back into
firms’ location choice.

Step 5: I iterate this procedure from step 2, using the interim city-size distribution.

The fixed point of this procedure constitutes the new counterfactual equilibrium.

I.2. Decomposition

Welfare is measured by worker’s real income, constant across space. It is given by Ū = w

Pηp1−η
H

, where pH is

the local housing cost. Plugging in the values of w and pH as functions of L, this can be simply reexpressed as
Ū =

(
w̄
P

)η
=
(

1
P

)η
, given the choice of numeraire w̄. From (E.46) and (E.45), one gets the expression for the

aggregate price index, which leads to

Ū ∝
( S∏
j=1

TFP
ξj
j

) η
1−ᾱ
( S∏
j=1

(Sj
Ej

)ξj(1−αj))− η
1−ᾱ

,

where ᾱ =
S∑
j=1

αjξj is an aggregate measure of the capital intensity of the economy.

The term
S∏
j=1

TFP
ξj
j is a model-based measure of aggregate productivity. Take the example of a policy that

increases TFP by pushing firms to larger cities. It has a direct positive impact on welfare, magnified by the term
1

1−ᾱ that captures the fact that capital flows in response to the increased TFP in the economy, making workers
more productive. This effect is dampened by the second term, which captures the congestion effects that are at
play in the economy. Wages increase to compensate workers for increased congestion costs in larger cities. Here,

Sj
Ej

measures the ratio of the average sales of firms to their average employment in a given sector. It is a model-based

measure of the representative wage in the economy, since
r∗j (z)

`∗j (z) ∝ w(L∗(z)) for each firm. A policy that tends to

push firms into larger cities will also tend to increase aggregate congestion in the economy by pushing workers
more into larger cities. Individual workers are compensated for this congestion by increased wages, in relative
terms across cities, so that all workers are indifferent across city sizes. But the level of congestion borne by the
representative worker depends on how workers are distributed across city sizes. It increases as the economy is
pushed toward larger cities. This negative effect is captured by the second term in the welfare expression that
decreases with the representative wage.

11I maintain the subsidy to the cities initially targeted as they grow.
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J. Additional figures

J.1. Model fit

Figure J.1: Average value added by quartile of city size, model (blue) and data (red).
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Figure J.2: Sectoral distribution of firms revenues, model (blue) and data (red).
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Figure J.3: Employment share by decile of city size, model (blue) and data (red).

0 5 10
0

0.1

0.2

0.3

0 5 10
0

0.1

0.2

0.3

0 5 10
0.05

0.1

0.15

0.2

0.25

0 5 10
0

0.1

0.2

0.3

0 5 10
0

0.1

0.2

0.3

0.4

0 5 10
0

0.1

0.2

0.3

0 5 10
0

0.2

0.4

0.6

0 5 10
0

0.1

0.2

0.3

0.4

0 5 10
0

0.05

0.1

0.15

0.2

0 5 10
0

0.1

0.2

0.3

0 5 10
0

0.1

0.2

0.3

0 5 10
0.05

0.1

0.15

0.2

0 5 10
0

0.05

0.1

0.15

0 5 10
0

0.1

0.2

0.3

0 5 10
0

0.05

0.1

0.15

0 5 10
0

0.1

0.2

0.3

0 5 10
0.05

0.1

0.15

0.2

0 5 10
0

0.05

0.1

0.15

0.2

0 5 10
0

0.2

0.4

0.6

0 5 10
0

0.1

0.2

0.3

0 5 10
0.05

0.1

0.15

0 5 10
0

0.2

0.4

0.6

0 5 10
0

0.2

0.4

0.6

xxi



J.2. Impact of policies

Figure J.4: Aggregate impact of local subsidies, as a function of the cost of the policy (% of GDP).
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A. TFP (red) and welfare impact (blue),
relative to the reference equilibrium
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B. Change in the Gini coefficients for real wage
inequality and city production inequality

Note: The x axis represent the cost of the policy in percentage of GDP. Firms profits are subsidized when they locate in
the smallest cities of the reference equilibrium. The targeted area represents 2.3% of the population. The policy is financed
by a lump-sum tax on firms.

Figure J.5: TFP and indirect welfare effects of increasing housing-supply elasticity.
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. Saiz (2010) reports that median elasticity of
housing supply is 1.75, the 25th percentile is at 2.45 and the 75th percentile at 1.25.
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