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Abstract

In a dynamic economy, we characterize the fiscal policy of the government when

it levies distortionary taxes and issues defaultable bonds to finance its stochastic ex-

penditure. Households anticipate the possibility of default, generating endogenous

debt limits that hinder the government’s ability to smooth shocks using debt. De-

fault is followed by temporary financial autarky. The government can only exit this

state by paying a fraction of the defaulted debt. Since this payment may not occur

immediately, in the meantime, households trade the defaulted debt in secondary

markets; this device allows us to price the government debt before and during the

default.
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1 Introduction

For many governments, debt and tax policies are conditioned by the possibility of de-

fault. For emerging economies, default is a recurrent event and is typically followed by

a lengthy debt-restructuring process, in which the government and bondholders engage

in renegotiations that conclude with the government paying a fraction of the defaulted

debt.1

We find that emerging economies exhibit lower levels of indebtedness and higher

volatility of government tax revenue than industrialized economies — where, contrary

to emerging economies, default is not observed in our dataset.2 In particular, we find that

amongst emerging economies, higher spreads are associated with more volatile tax rev-

enues. Also, emerging economies exhibit higher interest rate spreads, especially for high

levels of domestic debt-to-output ratios, than industrialized economies. In fact, interest

rate spreads in industrialized economies are low and roughly constant for different levels

of domestic debt-to-output ratios. Moreover, in emerging economies the highest interest

rate spreads are observed after default and during the debt-restructuring period.3

These empirical facts indicate that economies that are more prone to default display

different government tax policy, as well as different prices of government debt, before

default and during the debt-restructuring period. Therefore, the option to default, and

the actual default event, will affect the utility of the economy’s residents: indirectly, by

affecting the tax policy and debt prices, and also directly, by lowering the payoff of their

bond holdings.4

1See Pitchford and Wright (2008) and Benjamin and Wright (2009).
2To measure “indebtedness”, we use government domestic debt-to-output ratios, where domestic debt

is defined as the debt issued under domestic law (see Panizza (2008)); a similar pattern for indebtedness

levels is observed for external debt (see Reinhart et al. (2003)). Domestic debt is used as a proxy of

domestically held debt since, as argued by Reinhart and Rogoff (2008), in most countries, over most of

their history, the former has been mainly in the hands of local residents, while the majority of foreign debt

has been held by foreign investors. As a proxy of tax policy, we are using government revenue-to-output

ratio or inflation tax.
3Some examples are Argentina 2001, Ecuador 1997, and Russia 1998.
4Empirical evidence seems to suggest that government default has a significant direct impact on

domestic residents; either because a considerable portion of the foreign debt is in the hands of local in-

vestors, or because the government also defaults on domestic debt. For example, for Argentina’s default

in 2001, about 60 percent of the defaulted debt is estimated to have been in the hands of Argentinean

residents; local pension funds alone held almost 20 percent of the total defaulted debt (see Sturzenegger

and Zettelmeyer (2006)). For Russia’s default in 1998 about 60 percent of the debt was held by resi-

dents. For Ukraine’s default in 1997-98, residents — Ukrainian banks and the National Bank of Ukraine
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Our main objective is to understand how the possibility of default and the actual de-

fault event affect tax policy, debt prices — before default and during financial autarky —,

and welfare of the economy.5 For this purpose, we analyze the dynamic taxation prob-

lem of a benevolent government with access to distortionary labor taxes and non-state-

contingent debt in a closed economy under incomplete markets. We assume, however,

that the government cannot commit to pay the debt. In case the government defaults,

the economy enters temporary financial autarky wherein it faces exogenous random offers

to repay a fraction of the defaulted debt that arrive at an exogenous rate.6 The govern-

ment has the option to accept the offer — and thereby exit financial autarky — or to

stay in financial autarky awaiting new offers. During temporary financial autarky, the

defaulted debt still has some value as the recovery rate is positive; a fraction of it will

be eventually repaid in the future. Hence, households can trade the defaulted debt in a

secondary market from which the government is excluded; the equilibrium price in this

market is used to price the debt during the period of default. Finally, in order to keep the

model close to the standard optimal tax literature, e.g. Aiyagari et al. (2002), we assume

that the government commits itself to its optimal path of taxes as long as the economy is

not in financial autarky.

In the model, the government has three policy instruments: (1) distortionary taxes,

(2) government debt, and (3) default decisions that consist of: (a) whether to default

on the outstanding debt and (b) whether to accept the offer to exit temporary financial

autarky.

In order to finance the stochastic process of expenditures, the government faces a trade-

off between levying distortionary taxes and not defaulting, or issuing debt and thereby

increasing the exposure to default risk. The option to default introduces some degree of

(NBU) among others — held almost 50 percent of the outstanding stock of T-bills (see Sturzenegger and

Zettelmeyer (2006)). See Reinhart and Rogoff (2008) for a discussion and stylized facts on domestic debt

defaults.
5In this model, financial autarky is understood as the period during which the government is precluded

from issuing new debt/savings. Also, throughout this paper, we will also refer to the restructuring period

as the financial autarky.
6While in our model we allow only for outright default on government bonds, governments could

liquidate the real value of the debt and repayments through inflation risk, which could be viewed as a form

of partial default. In several economies, however, this second option may not available, either because the

country has surrendered the control over its monetary policy (for example, as in the eurozone, Ecuador,

and Panama), or a significant portion of the government debt is either foreign-currency denominated,

or local-currency denominated but indexed to the CPI or a similar index. We see our environment

particularly appropriate for this class of economies.
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state contingency on the payoff of the debt since the financial instrument available to the

government becomes an option, rather than a non-state-contingent bond. This option,

however, does not come free of charge: in equilibrium households anticipate the possibility

of default, demanding a compensation for it in the pricing of the bond; this originates

a “Laffer curve” type of pattern for the bond proceedings, thereby implying endogenous

debt limits. In this sense, our model generates “debt intolerance” endogenously.7

The main insight of the paper is that these borrowing limits hinder the government’s

ability to smooth shocks using debt, thus rendering tax policy more volatile, and implying

higher interest rate spreads. In equilibrium, the government may optimally decide not to

honor its debt contracts —even though the bondholders are the households whose welfare

it cares about— because default would prevent the government from incurring in the

future tax distortions that would come along with the service of the debt. We believe this

is a novel motive to default on government debt which, to our knowledge, had not been

explored before in the literature.

The possibility of default introduces a trade-off between the cost of the lack of com-

mitment to repay the debt, reflected in the price of the debt, and the flexibility that comes

from the option to default and partial payments, reflected in the payoff of the bond.

In a benchmark case, with quasi-linear utility and i.i.d. government expenditure but

allowing for offers of partial payments to exit financial autarky, we characterize analyti-

cally the determinants of the optimal default decision and its effects on the optimal taxes,

debt and allocations. In particular, we first show that default is more likely when the

government expenditure or debt is higher, and that the government is more likely to ac-

cept any given offer to pay a fraction of the defaulted debt when the level of defaulted

debt is lower. These theoretical results have implications for haircuts and duration of

debt restructuring processes that are aligned with the data. Second, we show that prices

— both outside and during financial autarky — are non-increasing on the level of debt,

thus implying that spreads are non-decreasing and also implying the existence of endoge-

nous borrowing limits. Third, we show that the law of motion of the optimal government

tax policy departs from the standard martingale-type behavior found in Aiyagari et al.

(2002) (henceforth, AMSS). In particular, we show that the law of motion of the optimal

government tax policy is affected, on the one hand, by the benefit from having more

state-contingency on the payoff of the bond, but, on the other hand, by the cost of having

the option to default.8

7A term coined by Reinhart et al. (2003).
8See also Farhi (2010) for an extension of Aiyagari et al. (2002) results to an economy with capital.
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Finally, we calibrate a more general model; this model is qualitatively consistent

with the differences observed in the data between emerging and industrialized economies.

In terms of welfare, the numerical simulations suggest a nonlinear relationship between

household utility and the probability of receiving an offer of partial payments. In par-

ticular, increasing the probability of receiving offers for exiting autarky decreases welfare

when this probability is low/medium to begin with, but increases it when the probability

is high.

The paper is organized as follows. We first present the related literature. Section

2 presents some stylized facts. Section 3 introduces the model. Section 4 presents the

competitive equilibrium, and section 5 presents the government’s problem. Section 6

derives analytical results. Section 7 contains some numerical exercises. Section 8 briefly

concludes. All proofs are gathered in the appendices.

1.1 Related Literature

The paper builds on and contributes to two main strands in the literature: endogenous

default and optimal taxation.

Regarding the first strand, we model the strategic default decision of the government

as in Arellano (2008) and Aguiar and Gopinath (2006), which, in turn, are based on the

seminal paper by Eaton and Gersovitz (1981). Our model, however, differs from theirs

in several ways. First, we consider distortionary taxation; Arellano (2008) and references

therein implicitly assume lump-sum taxes. Second, in our model the government must

pay at least a positive fraction of the defaulted debt to exit financial autarky through a

debt-restructuring process; in Arellano (2008) and references therein, the government is

exempt from paying the totality of the defaulted debt upon exit of autarky. We consider

a simple debt-restructuring process, indexed by two parameters, wherein renegotiation

opportunities arrive exogenously, but the government endogenously chooses whether to

accept of reject the repayment offers. We make this modeling assumption because we

are interested in studying only the consequences of this process on the optimal fiscal

policy and welfare.9 Third, our economy is closed—i.e., “creditors” are the representative

household—; Arellano (2008) and references therein assume an open economy with foreign

creditors. This difference is key to capture the direct impact of the default event in the

residents of the economy. Empirical evidence suggests that when governments renege

9See Benjamin and Wright (2009), Pitchford and Wright (2008), Yue (2010) and Bai and Zhang (2012)

for ways of modeling the entire deb-restructuring process endogenously.
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their debt contracts domestic residents and banks are severely affected, either because

the default is on external debt and large fraction of it is held by them, or because it

directly involves domestic debt; see footnote 4 for particular examples.10

Regarding the second strand, we build our framework on Aiyagari et al. (2002). Their

economy is a closed one wherein the government chooses distortionary labor taxes and

non-state-contingent risk-free debt, taking into account restrictions from the competitive

equilibria, to maximize the households’ lifetime expected utility.

In their work, by imposing non-state-contingent debt, AMSS reconcile the behavior

of optimal taxes and debt observed in the data with the theory developed in the seminal

paper of Lucas and Stokey (1983), in which the government has access to state-contingent

debt under complete markets. These papers work under the assumption of full commit-

ment on both the tax policy and the debt policy. Our work relaxes this last assumption

and, as a consequence, generates endogenous debt limits, reflected in the equilibrium

prices. It is worth noting that all these papers (and ours) take market incompleteness as

exogenous, since the goal is to study the implications of this assumption. Albeit outside

the scope of this paper, it would be interesting to explore ways of endogenizing market

incompleteness; the paper by Hopeynhan and Werning (2009) seems a promising avenue

for this.

Following the aforementioned literature, we assume that the government can commit

itself to a tax policy outside temporary financial autarky. During financial autarky taxes

are set mechanically to cover the government expenditure. Finally, when the government

regains access to financial markets, we assume that it is able to revise and reset its fiscal

policy. This feature is related to Debortoli and Nunes (2010). That work studies the

dynamics of debt in the Lucas and Stokey (1983) setting but with the caveat that at

each time t, with some given probability, the government can lose its ability to commit

to taxes; the authors refer to this as “loose commitment.” Thus, our model provides a

mechanism that “rationalizes” this probability of “loosing commitment” by allowing for

endogenous default, and resetting of fiscal policy when the debt settlement is reached.

It is worth noting that in their model the budget constraint during the no-commitment

stage remains essentially the same, whereas ours does not.

Finally, in recent independent papers, Doda (2007) and Cuadra et al. (2010) study the

procyclicality of fiscal policy in developing countries by solving an optimal fiscal-policy

10Although outside the scope of this paper, allowing for both type of lenders could be an interesting

avenue for future research. See Broner et al. (2010) for a paper studying this issue in a more stylized

setting.
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problem. Their work differs from ours in two main aspects. They assume first an open

small economy (i.e., foreign lenders) and, second, no secondary markets.11

2 Stylized Facts

In this section, we present stylized facts regarding the domestic government debt-to-output

ratio and central government revenue-to-output ratio of several countries: industrialized

economies (IND), emerging economies (EME) and a subset of these: Latin American

(LAC).12

In the dataset set, IND do not exhibit default events, whereas EME/LAC (LAC in

particular) do exhibit several defaults.13 Thus, we take the former group as a proxy for

economies with access to risk-free debt and the latter group as a proxy for economies with-

out commitment. It is worth to point out that we are not implying that IND economies

are a type of economy that will never default; we are just using the fact that in our

dataset IND economies do not show default events, to use them as a proxy for the type

of economy modeled in AMSS (i.e., one with risk-free debt). There is still the question

of which characteristics of an economy will prompt it to behave like IND or EME/LAC

economy. One possible explanation is that for IND default could be more costly due

to a higher degree of financial integration, affecting more severely the balance sheets of

financial intermediaries and, thus, the financing conditions of firms, leading in turn to

a sharper drop in productivity for the overall economy.14 As we will see below, in the

model this effect is captured in a “reduced form” by a parameter κ that determines the

productivity level during financial autarky.

The main stylized facts that we found are, first, that EME/LAC economies have

higher default risk than IND economies and that within the former group, the default

risk is much higher for economies with high levels of debt-to-output ratio. Second, EME

and LAC economies exhibit tighter debt ceilings than economies that do not default (in

11Aguiar et al. (2009) also allow for default in a small open economy with capital where households

do not have access to neither financial markets nor capital and provide labor inelastically. The authors’

main focus is on capital taxation and the debt “overhang” effect.
12For government revenue-to-output ratios, we used the data from Kaminsky et al. (2004), and for the

domestic government debt-to-output ratios, we used the data from Panizza (2008). See appendix F for a

detailed description of the data.
13In our sample for LAC, four countries defaulted, and most notable, Argentina defaulted repeatedly.
14In a general equilibrium setup, Mendoza and Yue (2012) endogenize the output loss during sovereign

defaults as an outcome resulting from the substitution of imported inputs by less-efficient domestic ones

when the financing costs of the former rises due to sovereign default risk.
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this dataset, represented by IND). Third, economies with higher default risk exhibit more

volatile tax revenues than economies with low default risk, and this fact is particularly

notable for the group of EME/LAC economies (where defaults are more pervasive).

As shown below, our theory predicts that endogenous borrowing limits are more active

for a high level of indebtedness. That is, when the government debt is high (relative to

output), the probability of default is higher, thus implying tighter borrowing limits, higher

spreads and higher volatility of taxes. But when this variable is low, default is an unlikely

event, thereby implying slacker borrowing limits, lower spreads and lower volatility in

the taxes. Hence, implications in the upper tail of the domestic debt-to-output ratio

distribution can be different from those in the “central part” of it. Therefore, the mean

and even the variance of the distribution are not too informative, as they are affected

by the central part of the distribution; quantiles are better suited for recovering the

information in the tails of the distribution.15

Figure 2.1 plots the percentiles of the domestic government debt-to-output ratio and

of a measure of default risk for three groups: IND (black triangle), EME (blue square)

and LAC (red circle).16 The X-axis plots the time series averages of domestic government

debt-to-output ratio, and the Y-axis plots the values of the measure of default risk.17

For each group, the last point on the right correspond to the 95 percentile, the second

to last to the 90 percentile and so on; these are comparable between groups as all of

them represent a percentile of the corresponding distribution. EME and LAC have lower

domestic debt-to-output ratio levels than IND; in fact the domestic debt-to-output ratio

value that amounts for the 95 percentile for EME and LAC, only amounts for roughly

85 percentile for IND (which in both cases is only about 50 percent of debt-to-output

15We refer the reader to Koenker (2005) for a thorough treatment of quantiles and quantile-based

econometric models.
16This type of graph is not the conventional QQplot as the axis have the value of the random variable

which achieves a certain quantile and not the quantile itself. For our purposes, this representation is

more convenient.
17The measure of default risk is constructed as the spread using the EMBI+ real index from J.P.

Morgan for countries for which it is available and using the 3-7 year real government bond yield for the

rest, minus U.S. bond return. Although bond returns are not entirely driven by default risk but also

capture other factors related to risk appetite, uncertainty and liquidity, for our purpose they constitute

a valid conventional proxy of default risk. Furthermore, our spreads are an imperfect measure of default

risk for domestic debt since EMBI+ considers mainly foreign debt. However, it is still informative since

domestic default are positively correlated with defaults on sovereign debt, at least for the period of 1950’s

onwards, see figure 10 in Reinhart and Rogoff (2008).
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Figure 2.1: The percentiles of the domestic government debt-to-output ratio and of a

measure of default risk for three groups: IND (black triangle), EME (blue square) and

LAC (red circle)

ratio).18 Thus, economies that are prone to default (EME and LAC) exhibit tighter debt

ceilings than economies that do not default (in this dataset, represented by IND).

Figure 2.1 also shows that for the IND group, the default risk measure is low and

roughly constant for different levels of debt-to-output ratios. On the other hand, the

default risk measure for the EME group is not only higher, but increases substantially

for high levels of debt-to-output ratios. We consider this as evidence that, for EME

economies, higher default risk is more prevalent for high levels of debt-to-output ratios.

Table 2.1: (A) Measure of default risk for EME and IND groups for different levels of

debt-to-output ratio; (B) standard deviation of central government revenue over GDP

(%) for EME and IND groups for different levels of default risk.

(A) (B)

Debt/GDP EME IND Default Risk EME IND

25% 5.4 2.0 25% 0.9 1.4

75% 10.7 2.9 75% 2.5 1.7

18We obtain this by projecting the 95 percentile point of the EME and LAC onto the X-axis and

comparing with the 85 percentile point of IND.
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Table 2(A) compares the measure of default risk between IND and EME matching

them across low and high debt-to-output ratio levels. That is, for both groups (IND and

EME) we select economies with debt-to-output ratio below the 25th percentile (these are

economies with low debt-to-output) and for these economies we compute the average risk

measure; we do the same for those economies with debt-to-output ratio above the 75th

percentile (these are economies with high debt-to-output). For the case of low debt-to-

output ratio, the EME group presents higher (approximately twice as high) default risk

than the IND group; however, for high debt-to-output ratio economies, this difference is

quadrupled. Thus, economies that are prone to default (EME and LAC) exhibit higher

default risk than economies that do not default (in this dataset, represented by IND), and,

moreover, the default risk is much higher for economies in the former group that have

high levels of debt-to-output ratio.

Table 2(B) compares the standard deviation of the central government revenue-to-

output ratio between IND and EME matching them across low and high default risk

levels. It shows that for IND there is little variation of the volatility across low and high

levels of default risk. For EME, however, the standard deviation of the central government

revenue-to-output ratio is higher for economies with high default risk.19 It is worth noting

that all the EME with high default risk levels defaulted at least once during our sample.

Thus, economies with higher default risk exhibit more volatile tax revenues than economies

with low default risk. This is particularly notable for the group of EME/LAC economies.

These stylized facts establish a link between (a) default risk/default events, (b) debt

ceilings and (c) volatility of tax revenues. In particular, the evidence suggests that

economies that show higher default risk, also exhibit lower debt ceilings and more volatile

tax revenues. The theory below sheds light upon the forces driving these facts.20

3 The Model

In this section we describe the stochastic structure of the model, the timing and policies

of the government and present the household’s problem.

19We looked also at the inflation tax as a proxy for tax policy; results are qualitatively the same.
20It is important to note that we are not arguing any type of causality; we are just illustrating co-

movements. In fact, in the model below all three features are endogenous outcomes of equilibrium.
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3.1 The Setting

Let time be indexed as t = 0, 1, .... Let (gt, δt) be the vector of government expenditure at

time t and the fraction of the defaulted debt which is to be repaid when exiting autarky,

respectively. If the economy is not in financial autarky, δt is equal to one in order to model

the option of the government to repay the totality of the debt or to default. These are

the exogenous driving random variables of this economy. Let ωt ≡ (gt, δt) ∈ G× ∆̄, where

G ⊂ R, ∆̄ ≡ ∆ ∪ {1} ∪ {δ̄} and ∆ ⊂ [0, 1), and in order to avoid technical difficulties, we

assume |G| and |∆| are finite.21 The set ∆ models the offers — as fractions of outstanding

debt — to repay the defaulted debt; and δ̄ is designed to capture situations where the

government does not receive any offer to repay.22

For any t ∈ {1, ....,∞}, let Ωt = (G × ∆̄)t be the space of histories up to time t, a

typical element is ωt = (ω0, ω1, ..., ωt).

3.2 The government policies and timing

In this economy, the government finances exogenous government expenditures by levying

labor distortionary taxes and trading one-period, discount bonds with households. The

government, however, cannot commit to repay and may default on the bonds at any point

in time.

Let B ⊆ R be compact. Let Bt+1 ∈ B be the quantity of bonds issued at time t to

be paid at time t + 1; Bt+1 > 0 means that the government is borrowing at time t from

households. Let τt be the linear labor tax. Also, let dt be the default decision, which

takes value 1 if the government decides to default and 0 otherwise. Finally, let at be the

decision of accepting an offer to repay the defaulted debt. It takes value 1 if the offer is

accepted and 0 otherwise.

The timing for the government is as follows. Following a period with financial access,

after observing the current government expenditure, the government has the option to

default on 100 percent of the outstanding debt carried from last period, Bt.

As shown in figure 3.2, if the government opts to exercise the option to default at time

t, it cannot issue bonds in that period and runs a balanced budget, i.e., tax revenues equal

government expenditure. At the beginning of next period, time t + 1, with probability

21For a given set, |S| is the cardinal of the set.
22An alternative way of modeling this situation is to work with ∆̄ ≡ ∆∪{1}∪{∅} where ∅ indicates no

offer. Another alternative way is to add an additional random variable, ι ∈ {0, 1} that explicitly indicates

if the government received an offer (ι = 1) or not (ι = 0) and let ∆̄ ≡ ∆ ∪ {1}.
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Figure 3.2: Timing of the Model

1 − λ, the government remains in temporary financial autarky for that period (node B).

With probability λ, the government receives a random offer to repay a fraction δ of the

debt, and has the option to accept or reject it. If the government accepts the offer, it

pays the restructured amount (the outstanding defaulted debt times the fraction δ), and

it is able to issue new bonds for the following period (node A). If the government rejects

the offer, it stays in temporary financial autarky (node B).

Finally, if the government decides not to default, it levies distortionary labor taxes,

and allocates discount bonds to the households to cover the expenses gt and liabilities

carried from last period. Next period, it has again the option to default, for the new

values of outstanding debt and government expenditure (node A).

As it will become clear later, default on bonds can be seen as a negative lump-sum

transfer to households, but a costly one. Default will turn to be costly for two reasons.

First, households anticipate the government default strategies and demand higher returns

to bear the bond. Second, default is assumed to be followed by temporary financial

autarky. During autarky, the government is not only unable to smooth taxes but also

could suffer an ad-hoc output cost, as shown later.

We now formalize the probability model mentioned above. Let πG : G → P(G) be the

Markov transition probability function for the process of government expenditures and

12



let π∆ ∈ P(∆) be the probability measure over the offer space ∆.23

Also, for any t, let φt be the variable that takes value 0 if at time t the government

cannot issue bonds during this period, and value 1 if it can. The implied law of motion

for φt is φt ≡ φt−1(1 − dt) + (1 − φt−1)at. That is, if at time t− 1, the government could

issue bonds, then φt = (1 − dt), but if it was in financial autarky, then φt = at, reflecting

the fact that the government regains access to financial markets only if the government

decides to renegotiate the defaulted debt.

Assumption 3.1. For any (t, ωt), Pr(gt = g|ωt−1) = πG(g|gt−1) for any g ∈ G and

Pr(δt = δ|gt, ω
t−1) =





1{1}(δ) if φt−1 = 1

(1 − λ)1{δ̄}(δ) + λπ∆(δ) if φt−1 = 0

for any δ ∈ ∆̄.24

Essentially, this assumption imposes a Markov restriction on the probability distribu-

tion over government expenditures and also additional restrictions over the probability of

offers. In particular, this assumption implies that in financial autarky with probability

1 − λ, δ = δ̄ (i.e., receiving no offer) and with probability λ, an offer from the offer space

is drawn according to π∆. Also, if φt−1 = 1 (i.e., the government was not in financial

autarky at period t − 1), then if the government decides not to default at time t, it will

pay the totality of the outstanding debt and therefore δt = 1 with probability one.

Finally, we use Π to denote the probability distribution over Ω∞ generated by assump-

tion 3.1, and Π(·|ωt) to denote the conditional probability over Ω, given ωt.

The next definitions formalize the concepts of government policy, allocation, prices of

bonds and the government budget constraint. In particular, it formally introduces the fact

that taxes, default decisions and debt depend on histories of past realizations of shocks,

and in particular that debt is non-state contingent (i.e., Bt+1 only depends on the history

up to time t, ωt).

Definition 3.1. A government policy is a collection of stochastic processes σ = (Bt+1, τt, dt, at)
∞
t=0,

such that for each t, (Bt+1, τt, dt, at) ∈ B × [0, 1] × {0, 1}2 are measurable with respect to

ωt and (B0, φ−1).

Definition 3.2. An allocation is a collection of stochastic processes (gt, ct, nt)
∞
t=0 such that

for each t, (gt, ct, nt) ∈ G × R+ × [0, 1] are measurable with respect to ωt and (B0, φ−1).

23For a finite set X, P(X) is the space of all probability measures defined over X. Also, for any A ⊆ X,

the function 1A(·) takes value 1 over the set A and 0 otherwise.
24It is easy to generalize this to a more general formulation such as λ and π∆ depending on g.
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Given a government policy, we say an allocation is feasible if for any (t, ωt)

ct(ω
t) + gt = κt(ω

t)nt(ω
t), (3.1)

where κt : Ωt → R+ is such that κt(ω
t) is the productivity at period t, given history

ωt. For simplicity, we set κt(ω
t) = φt(ω

t) + κ(1 − φt(ω
t)) with κ < 1. The parameter

κ represents direct output loss following a default event, associated for example with

financial disruption in the banking sector, limited insurance against idiosyncratic risk,

among others.

Definition 3.3. A price process is an stochastic process (pt)
∞
t=0 such that for each t,

pt ∈ R+ is measurable with respect to ωt and (B0, φ−1).

Note that pt denotes the price of one unit of debt in any state of the world, both with

access to financial markets and during autarky, where it represents the price of defaulted

debt in secondary markets. Finally, we introduce the government budget constraint.

Definition 3.4 (def:sig-att). A government policy σ is attainable, if for all (t, ωt),

gt + φt(ω
t)δtBt(ω

t−1) ≤ κt(ω
t)τt(ω

t)nt(ω
t) + φt(ω

t)pt(ω
t)Bt+1(ω

t), (3.2)

and dt(ω
t) = 1 if φt−1(ω

t−1) = 0 and at(ω
t) = 0 if φt−1(ω

t−1) = 1 or δt = δ̄. 25

Observe that in equation 3.2, if the government is in financial autarky (φt(ω
t) = 0), its

budget constraint boils down to gt ≤ τt(ω
t)nt(ω

t). On the other hand, if the government

has access to financial markets (φt(ω
t) = 1), then it has liabilities to be repaid for δtBt

and can issue new debt.26 The final restriction on dt(ω
t) and at(ω

t) simply states that

if last period the government was in financial autarky, then it trivially cannot choose to

default at time t, and if δt = δ̄ or if last period the government had access to financial

markets at(ω
t) is set to 0.

A few final remarks about the “debt-restructuring process” are in order. This process

is parameterized by (λ, π∆). These parameters capture the fact that debt restructuring

is time-consuming but, generally, at the end a positive fraction of the defaulted debt is

honored.27 This debt-restructuring process intends to capture the fact that after defaults

25The inequality in equation 3.2 implies that the government can issue lump-sum transfers to the

households. Lump-sum taxes are not permitted.
26If the government had access to financial markets at time t − 1 (φt−1 = 1), then by assumption 3.1,

δt = 1.
27We could also allow for, say, π∆(·|gt, Bt, dt, dt−1, ..., dt−K) some K > 0, denoting that possible partial

payments depend on the credit history and level of debt. See Reinhart et al. (2003), Reinhart and Rogoff

(2008) and Yue (2010) for an intuition behind this structure.
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(on domestic or international debt, or both), economies see their access to credit severely

hindered.28

3.3 The Household’s Problem

There is a continuum of identical households, that are price takers and have time-separable

preferences for consumption and labor processes. They also make debt/savings decisions

by trading government bonds. Formally, we define a household debt process as a stochastic

process given by (bt+1)∞
t=0 where bt+1 : Ωt → [b, b] is the household’s savings in government

bonds at time t+ 1 for any history ωt.29

For convenience, let qt denote the price of defaulted debt at time t, i.e., qt = pt if

φt = 0. Given a government policy σ, for each t, let ̺t : Ωt → R be the payoff of a

government bond at period t; i.e.,

̺t(ω
t) = φt(ω

t)δt + (1 − φt(ω
t))qt(ω

t). (3.3)

A few remarks about ̺ are in order. First, since the household takes government

actions as given, from the point of view of the households the government debt is an

asset with payoff that depends only on the state of the economy, and this dependence

clearly illustrates that default decisions add certain degree of state contingency to the

government debt. In particular, if φt(ω
t) = 1, then ̺t(ω

t) = δt denoting the fact that

the government pays a fraction δt. If the government defaults or rejects the repayment

option, the household can sell each unit of government debt in the secondary market at a

price ̺t(ω
t) = qt(ω

t).

The household’s problem consists of choosing consumption, labor and debt processes

in order to maximize the expected lifetime utility. That is, given (ω0, b0) and σ,

sup
(ct,nt,bt+1)∞

t=0
∈C(g0,b0;σ)

EΠ(·|ω0)

[
∞∑

t=0

βtu(ct(ω
t), 1 − nt(ω

t))

]

28The duration of debt restructurings after sovereign defaults in particular on external debt has received

considerable attention in the literature. For instance, for Argentina’s default in 2001 the settlement with

the majority of the creditors was reached in 2005. In the default episodes of Russia (1998), Ecuador

(1999) and Ukraine (1998), the renegotiation process lasted 2.3, 1.7 and 1.4 years, respectively, according

to Benjamin and Wright (2009). In general, domestic debt restructuring periods tend to be not as long

as in the case of external debt. For example, as documented by Sturzenegger and Zettelmeyer (2006),

after the default by Russia in 1998 it took six months to restructure the domestic GKO bonds.
29We assume bt+1 ∈ [b, b] with [b, b] ⊃ B so in equilibrium these restrictions will not be binding.
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where β ∈ (0, 1) is the discount factor, EΠ(·|ω0)[·] is the expectation using the conditional

probability Π(·|ω0), and C(g0, b0; σ) is the set of household’s allocations and debt process,

given government policy σ, such that for all t and all ωt ∈ Ωt,

ct(ω
t) + pt(ω

t)bt+1(ωt) = (1 − τt(ω
t))κt(ω

t)nt(ω
t) + ̺t(ω

t)bt(ω
t−1) + Tt(ω

t),

where Tt(ω
t) ≥ 0 are lump-sum transfers from the government. The previous equation

indicates that after-tax labor income, proceedings from bond holdings and government

transfers have to be sufficient to cover consumption and new purchases of government

bonds.

4 Competitive Equilibrium

We now define a competitive equilibrium for a given government policy and derive the

equilibrium taxes and prices.

Definition 4.1. Given ω0, B0 = b0 and φ−1, a competitive equilibrium is a government

policy, σ, an allocation, (gt, ct, nt)
∞
t=0, a household debt process, (bt+1)∞

t=0, and a price

process (pt)
∞
t=0 such that:

1. Given the government policy and the price process, the allocation and debt process

solve the household’s problem.

2. The government policy, σ, is attainable.

3. Given σ, the allocation is feasible.

4. For all (t, ωt), Bt+1(ωt) = bt+1(ωt), and Bt+1(ωt) = Bt(ω
t−1) if φt(ω

t) = 0.

Observe that the market clearing for debt indicates that Bt+1(ω
t) = bt+1(ωt). In

addition, if the economy is in financial autarky — where the government cannot issue

debt, and thus agents can only trade among themselves —, imposing Bt+1(ωt) = Bt(ω
t−1)

implies, since agents are identical, that in equilibrium bt(ω
t−1) = bt+1(ωt), i.e., agents do

not change their debt positions.

4.1 Equilibrium Prices and Taxes

In this section we present the expressions for equilibrium taxes and prices of debt. The

former quantity is standard (e.g. Aiyagari et al. (2002) and Lucas and Stokey (1983)); the
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latter quantity, however, incorporates the possibility of default of the government. The

following assumption is standard and ensures that u is smooth enough to compute first

order conditions.

Assumption 4.1. u ∈ C2(R+ × [0, 1],R) with uc > 0, ucc < 0, ul > 0 and ull > 0, and

liml→0 ul(l) = ∞.30

Henceforth, for any (t, ωt), we use uc(ω
t) as uc(ct(ω

t), 1−nt(ω
t)) and proceed similarly

for other derivatives and functions.

From the first order conditions of the optimization problem of the households (assum-

ing an interior solution) the following equations hold for any (t, ωt), 31

ul(ω
t)

uc(ωt)
= (1 − τt(ω

t))κt(ω
t), (4.4)

and

pt(ω
t) =EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
̺t+1(ωt+1)

]

=βEΠ(·|ωt)

[
uc(ω

t+1)

uc(ωt)
φt+1(ωt+1)δt+1

]
+ βEΠ(·|ωt)

[
uc(ω

t+1)

uc(ωt)
(1 − φt+1(ωt+1))qt+1(ωt+1)

]

(4.5)

Given the definition of ̺ and the restrictions on Π, equation 4.5 implies for φt(ω
t) = 1,

32

pt(ω
t) =β

∫

G

(
uc(ω

t, g′, 1)

uc(ωt)
(1 − dt+1(ωt, g′, 1))

)
πG(dg′|gt)

+ β
∫

G

uc(ω
t, g′, δ̄)

uc(ωt)
dt+1(ωt, g′, δ̄)qt+1(ωt, g′, δ̄)πG(dg′|gt), (4.6)

and for φt(ω
t) = 0

qt(ω
t) =βλ

∫

G

∫

∆

(
uc(ω

t, g′, δ′)

uc(ωt)
δ′at+1(ωt, g′, δ′)

)
π∆(dδ′)πG(dg′|gt)

+ βλ
∫

G

{∫

∆

(
uc(ω

t, g′, δ′)

uc(ωt)
(1 − at+1(ωt, g′, δ′))π∆(dδ′)

)}
qt+1(ωt, g′, δ̄)πG(dg′|gt)

+ β(1 − λ)
∫

G

(
uc(ω

t, g′, δ̄)

uc(ωt)

)
qt+1(ωt, g′, δ̄)πG(dg′|gt). (4.7)

30C2(X, Y ) is the space of twice continuously differentiable functions from X to Y . The assumption

ucc < 0 could be relaxed to include ucc = 0 (see the section 6 below).
31See appendix B for the derivation.
32The notation (ωt, g, δ) denotes the partial history ωt+1 where (gt+1, δt+1) = (g, δ).
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Equation 4.5 reflects the fact that, in equilibrium, households anticipate the default

strategies of the government and demand higher returns to compensate for the default

risk. The second line in the Euler equation 4.6 shows that, due to the possibility of

partial repayments in the future, defaulted debt has positive value and agents can sell it

in a secondary market at price qt+1(ωt+1). Equation 4.7 characterizes this price. Each

summand in the right hand side corresponds to a “branch” of the tree depicted in figure

3.2. The first line represents the value of one unit of debt when an offer arrives and the

government decides to repay the realized fraction of the defaulted debt next period. The

second and third lines capture the value of one unit of debt when either the government

decides to reject the repayment offer, or it does not receive one. A final observation is

that, as it will become clear later on, when φt+1(ω
t+1) = 0, uc(ω

t+1) is only a function

of gt+1 (not the entire past history ωt+1) because in equilibrium the government runs a

balanced budget.

To shed some more light on equations 4.6 and 4.7, consider the case where uc = 1,

λ = 0. In this case, for any (t, ω)

pt(ω) = β
∫

G

(1 − dt+1(ω
t, g′))πG(dg′|gt).

Here, the bond price is simply the discounted one-period ahead probability of not default-

ing. Also observe that, since λ = 0, it follows that qt(ω
t) =

∫
G
qt+1(ωt, g′, δ̄)πG(dg′|gt),

which by substituting forward and invoking standard transversality conditions, yields

qt(ω
t) = 0. These pricing equations are analogous to those in Arellano (2008) and Aguiar

and Gopinath (2006) and references therein. See also Chatterjee and Eyingungor (2012)

for the equilibrium prices in the presence of long-term debt.

The novelty of these pricing equations with respect to the standard sovereign default

model is the presence of secondary market prices, qt. By imposing a positive recovery

rate (with some probability), the model is able to deliver a positive price of defaulted

debt during the financial autarky period. In sections 6 and 7, we shed some light on the

pricing implications of this model and how it relates with the data.

4.2 Characterization of the Competitive Equilibrium

In this environment, the set of competitive equilibria can be characterized by a sequence

of non-linear equations which impose restrictions on (dt, at, Bt+1, nt)
∞
t=0 and are derived

from the first order conditions of the household, the budget constraint of the government

and the feasibility condition. The next theorem formalizes this claim.
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Henceforth, we call (dt, at, Bt+1, nt)
∞
t=0 an outcome path of allocations. We say an out-

come path is consistent with a competitive equilibrium if the outcome path and (ct, pt, bt+1, τt, gt)
∞
t=0,

derived using the outcome path and market clearing, feasibility and first order conditions,

is a competitive equilibrium. Also, let

Zt(ω
t) ≡ z(κt(ω

t), nt(ω
t), gt) =

(
κt(ω

t) −
ul(ω

t)

uc(ωt)

)
nt(ω

t) − gt (4.8)

be the primary surplus (if it is negative, it represents a deficit) at time t given history

ωt ∈ Ωt.

Theorem 4.1. Given ω0, B0 = b0 and φ−1, the outcome path (dt, at, Bt+1, nt)
∞
t=0 is con-

sistent with a competitive equilibrium iff for all (t, ωt) ∈ {0, 1, 2, ...} × Ωt, the following

holds:

Zt(ω
t)uc(ω

t) + φt(ω
t){pt(ω

t)uc(ω
t)Bt+1(ωt) − δtuc(ω

t)Bt(ω
t−1)} ≥ 0, (4.9)

Bt+1(ωt) = Bt(ω
t−1) if φt(ω

t) = 0,

and ct(ω
t) = κt(ω

t)nt(ω
t) − gt(ω

t) and equations 4.4 and 4.6 hold.

For any (ω,B, φ) ∈ (G× ∆) ×B× {0, 1}, let CEφ(ω,B) denote the set of all outcome

paths that are consistent with competitive equilibria, given ω0 = ω, φ0(ω0) = φ and

where B is the outstanding debt of time 0, after any potential debt restructuring in that

period. We observe that by setting φ0(ω0) = φ we are implicitly imposing restrictions on

a0, d0, φ−1 and δ0.33,34

5 The Government Problem

The government is benevolent and maximizes the welfare of the representative household

by choosing policies. The government, however, cannot commit to repaying the debt,

but commits to previous tax promises until a debt restructuring takes place. That is,

as long as the government keeps access to financial markets, it honors past promises of

taxes. For autarky states, the government chooses taxes that balance its budget. Once the

33For example, if φ0 = 1 we could arrive to it because φ−1 = 1 and d0 = 0, given (g0, B0) = (g, B), or

because φ−1 = 0 with defaulted debt B̃0 = B0/δ0 – but offer δ0 is accepted (a0 = 1) and the renegotiated

debt becomes B̃0.
34Constructing the set CEφ(ω, B) is useful since, in order to make a default/repayment decision, the

default authority evaluates alternative utility values both for repayment and for autarky that are sustained

by competitive equilibrium allocations.
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government accepts an offer to restructure the debt, it regains access to financial markets

and starts anew, without any outstanding tax promises, by assumption.35 Therefore,

the government problem can be viewed as a problem involving two types of authorities: a

default authority and a fiscal authority. On the one hand, the default authority can be seen

as comprised by a sequence of one-period administrations, where the time-t administration

makes the default and repayment decision in period t, taking as given the behavior of all

the other agents including the fiscal authority. On the other hand, the fiscal authority

can be viewed as a sequence of consecutive administrations, each of which stays in office

until there is a debt renegotiation. While ruling, a fiscal administration has the ability to

commit, and chooses the optimal fiscal and debt processes, taking as given the behavior

of the default authority. When debt is renegotiated, the fiscal administration is replaced

by a new one, which is not bound by previous tax promises, and is free to reset the fiscal

and debt policy.36

For any t ∈ {0, 1, ...}, let ht ≡ (φt−1, Bt, ωt) and ht ≡ (h0, h1, ...., ht) be the public

history until time t.37 We use Ht to denote the set of all public histories until time t.

A government strategy is given by a strategy for the default and fiscal authorities, γ ≡

(γD,γF ). The strategy for the default authority γ
D specifies a default and a repayment

decision for any period t and any public history ht ∈ Ht, i.e., γ
D = (γD

t (·))∞
t=0 with

γD
t (ht) ≡ (dt(h

t), at(h
t)) for any ht ∈ Ht. The strategy for the fiscal authority, γ

F ,

specifies next period’s debt level for any public history ht ∈ Ht and any φt, i.e., γ
F =

(γF
t (·, ·))∞

t=0 with γF
t (ht, φt) ≡ Bt+1(ht, φt) for any (ht, φt) ∈ Ht × {0, 1}. The fact that

γF
t (ht, φt) depends on φt reflects our assumption on the timing protocol by which the

default authority moves first in each period. Also, we omit labor taxes (or labor directly)

as part of the government strategy because, given (ht, φt) and γF
t (ht, φt), labor taxes are

35A similar feature is present in Debortoli and Nunes (2010), where the government can randomly

reoptimize and reset fiscal policies with a given exogenous probability. In our model, however, the

resetting event, given by the debt restructuring, is an equilibrium outcome that emerges endogenously.
36We focus exclusively on symmetric strategies for households, where all of them take the same decisions

along the equilibrium path. Similarly, we assume that all default and fiscal administrations choose

identical actions conditional on the same state of the economy, to be specified later on, thereby introducing

a Markovian structure for optimal strategies.
37In our economy an individual household cannot alter prices and faces a (strictly) concave opti-

mization problem. Any deviation from the equilibrium path determined by the Euler equation and the

consumption-labor optimality condition, taking prices and policies as given, cannot be profitable from the

household’s perspective. Hence, there is no need to specify the household’s behavior off the equilibrium

path as well as to make households’ strategies depend on private histories but only on public ones.
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obtained by the budget constraint.38 Finally, note that any strategy γ jointly with a

stochastic process (ωt)
∞
t=0 generates an outcome path of allocations (dt, at, Bt+1, nt)

∞
t=0. To

stress that a particular policy action, say Bt+1(h
t, φt), belongs to given strategy we use

Bt+1(γ)(ht, φt).

Let γ|(ht,φt) denote the continuation of strategy γ after history (ht, φt) ∈ H
t ×{0, 1}.39

We say a strategy γ is consistent with a competitive equilibrium, if after any (ht, φt) ∈

Ht × {0, 1}, the outcome path generated by γ|(ht,φt) belongs to CEφt
(ωt, B) with B =

(δtφt(γ)(ht)+(1−φt(γ)(ht)))Bt(γ)(ht−1, φt−1(γ)(ht−1)). For any h0 ∈ H and φ0 ∈ {0, 1},

we denote the set of such strategies as

S(h0, φ0) ≡
{
γ : ∀ (ht, φt)

∞
t=1, γ|(ht,φt) renders (dτ(γ), aτ (γ), Bτ+1(γ), nτ (γ))∞

τ=t ∈ CEφt
(ωt, B),

with B = (δtφt(γ)(ht) + (1 − φt(γ)(ht)))Bt(γ)(ht−1, φt−1(γ)(ht−1))
}
.

Henceforth, we only consider strategies that are consistent with competitive equilibrium.

Finally, for any public history ht ∈ Ht, φ ∈ {0, 1} and γ ∈ S(h0, φ), let

Vt(γ)(ht, φ) = EΠ(·|ωt)




∞∑

j=0

βju(κt+j(ω
t+j)nt+j(γ)(ωt+j) − gt+j, 1 − nt+j(γ)(ωt+j))




(5.10)

be the expected lifetime utility of the representative household at time t, given strategy

γ|(ht,φ).

5.1 Default and Renegotiation Policies

As mentioned before, the default authority can be viewed as comprised by a sequence of

one-period administrations, each of which makes the default and renegotiation decision

in its respective period, taking as given the behavior of all the other agents including the

other default administrations and the fiscal one. It is easy to see that, for each public

history ht ∈ Ht, the default authority will optimally choose as follows: if φt−1 = 1

d∗
t (γ)(ht) =





0 if Vt(γ)(ht, 1) ≥ Vt(γ)(ht, 0)

1 if Vt(γ)(ht, 1) < Vt(γ)(ht, 0)
(5.11)

and if φt−1 = 0

a∗
t (γ)(ht) =





1 if Vt(γ)(ht, 1) ≥ Vt(γ)(ht, 0)

0 if Vt(γ)(ht, 1) < Vt(γ)(ht, 0)
(5.12)

38For this reason we do not include them as part of the public history.
39Observe that with a strategy the default authority moves first at t = 0, with the continuation strategy,

as we defined, the fiscal authority is moving first at t and then the default authority moves at t + 1.
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Also, recall that by assumption a∗
t (γ)(ht) = 0 if φt−1 = 1 or δt = δ̄ and d∗

t (γ)(ht) = 1 if

φt−1 = 0. The dependence on γ denotes the fact that d∗
t and a∗

t are associated with the

strategy of the fiscal authority γ
F . Indeed, to specify the optimal default and repayment

decisions at any history ht ∈ Ht we need to know the value of repayment and the value

of default, Vt(γ)(ht, 1) and Vt(γ)(ht, 0), respectively, which are evidently functions of γ
F .

In equilibrium, the government will find it sometimes optimal to renege its debt con-

tracts, even though the bondholders are the households whose welfare our (benevolent)

government aims to maximize. It will do so because by defaulting it avoids the future

tax distortions that would come along with the service of the debt. If this benefit of not

repaying exceeds the ad-hoc costs of default (i.e. temporary output loss and financial

exclusion), the government will optimally decide not to pay back the bonds. We believe

this is a novel motive to default on government debt which, to our knowledge, had not

been explored before in the literature.

5.2 Recursive Representation of the Government Problem

Taking as given the optimal decision rules 5.11 and 5.12 for the default authority, we now

turn to the optimization problem of the fiscal authority and the recursive representation of

the government problem. To do so, we adopt a recursive representation for the competitive

equilibria by introducing an adequate state variable. In any competitive equilibrium, as

can be seen from the equations in theorem 4.1, all relevant information for households’

decision-making in the current period t about future tax continuation policy — that is,

the policy the government can commit to temporarily— is summarized in uc(ω
t, ωt+1) for

all ωt+1. By keeping track of the profile of “promised” marginal utilities of consumption,

we ensure that the fiscal authority commits to deliver the “promised” marginal utility

—as long as the default authority does not restructure the debt— for each realization of

g; thereby guaranteeing that the last-period households’ Euler equation is satisfied after

each possible history.40 Thus, following Kydland and Prescott (1980) and Chang (1998)

among others, it follows that the relevant (co-)state variable is the “promised” marginal

utilities of consumption.

We therefore draw our attention to the set of ”promised” marginal utilities that can be

delivered in a competitive equilibrium. This set differs from the standard set of equilibrium

promised marginal utilities in Kydland and Prescott (1980) along some dimensions. In

40If the debt is restructured and a new fiscal administration takes power, it sets the current marginal

utility at its convenience, which in equilibrium is anticipated by the households.
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particular, in an standard Ramsey problem it would suffice to only specify the set of

promised marginal utilities, but in our framework with endogenous default decisions we

need to also specify continuation values to evaluate alternative courses of action of the

default authority. By the same token, we compute this set for any φ, even for the value

of φ not optimally chosen by the default authority through its policy action.

For autarky (φ = 0), the ”promised” marginal utilities of consumption are trivially

pinned down by the choice of labor that balances the government budget and maximizes

the per-period payoff; i.e., for any g ∈ G, the ”promised” marginal utility of consumption

equals mA(g) ≡ uc(n
∗
0(g) − g, 1 − n∗

0(g)) where41

n∗
0(g) = arg max

n∈[0,1]
{u(κn− g, 1 − n) : z(κ, n, g) = 0}.

We now proceed to formally define our object of interest in more generality. For any

h0 = (φ−1, g0, δ0, B0) ∈ H and φ ∈ {0, 1}, let

Ω(h0, φ) = {(µ, v) ∈ R+ × R :

∃ γ ∈ S(h0, φ), and (Vτ (hτ , 0), Vτ(hτ , 1))hτ ,τ such that :

µ = mA(g) if φ = 0, and µ = uc(n0(γ)(h0) − g0, 1 − n0(γ)(h0)) if φ = 1,

v = V0(h0, φ)

(Vτ (hτ , φ))hτ ,τ satisfies (5.10) for any φ ∈ {0, 1},

γ
D|h0,φ1(γ) are determined by (5.11) − (5.12)

}
,

For each initial history h0 and φ, the set Ω(h0, φ) assigns the set of all values for

marginal utility and lifetime utility values at time zero that can be sustained in a com-

petitive equilibrium, wherein the default authority reacts optimally from next period on.

Each pair (µ, v) imposes restrictions on the labor allocation at time 0 (for the case of

φ = 0) as well as on the lifetime utility at time 0, given h0 and φ. Finally, note that the

set indexed by the value of φ optimally chosen by the government contains the promised

marginal utilities (and utility values) that can be delivered along the equilibrium path,

while its counterpart with the other value of φ includes only off-equilibrium marginal

utilities.

The correspondence Ω is an equilibrium object, endogenously determined, that can

be computed using numerical methods as the largest fixed point of an appropriately

constructed correspondence operator, in the spirit of Abreu et al. (1990). Henceforth,

41The lemma D.1(1) ensures that n
∗
0(g) exists and is unique for all g.
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we proceed to formulate and solve the recursive problem of the fiscal authority as if we

already know Ω.

For any (g, B, µ) ∈ G × B × R+, let V ∗
1 (g, B, µ) be the value function of a fiscal

authority that had access to financial markets last period and continue to have it this

current period (i.e., φ−1 = φ = 1) and that takes as given the optimal behavior of

the default and subsequent fiscal authorities, with outstanding debt B and a promised

marginal utility of µ and government expenditure g. Similarly, let V ∗
0 (g, B) be the value

function of a fiscal authority that does not have access to financial markets (i.e., φ = 0)

and has an outstanding defaulted debt B and government expenditure g. Observe that

since in financial autarky the government ought to run a balanced budget, V ∗
0 does not

depend on µ.

Finally, let V
∗

1(g, δB) be the value function of a “new” fiscal authority (i.e., when φ−1 =

0 and φ = 1) that takes as given the optimal behavior of the default and subsequent fiscal

authorities, when an offer δ is accepted, given government spending g and outstanding

defaulted debt B. Note that in this case the fiscal authority does not have any outstanding

“promised” marginal utility and thus it sets the current marginal utility at its convenience.

By construction of Ω, it follows that

V
∗
1(g, δB) = max{v|(µ, v) ∈ Ω(0, B, g, δ, 1)}, (5.13)

as the government maximizes the households’ utility without any attached promise of

marginal utility to be delivered.42 Let µ(g, δ, B) = {µ|(µ, V
∗
1(g, δB)) ∈ Ω(0, B, g, δ, 1)} be

the associated marginal utility.

Given the aforementioned value functions, the optimal policy functions of the default

authority in expressions (5.11)-(5.12) become 43 44

d∗(g, B, µ) =





0 if V ∗

1 (g, B, µ) ≥ V ∗
0 (g, B)

1 if V ∗
1 (g, B, µ) < V ∗

0 (g, B)
(5.14)

and

a∗(g, δ, B) =





1 if V
∗
1(g, δB) ≥ V ∗

0 (g, B)

0 if V
∗
1(g, δB) < V ∗

0 (g, B)
(5.15)

42We are implicitly assuming that the maximum is achieved. This assumption is imposed to ease the

exposition and could be relaxed by defining V
∗

1 in terms of a supremum and approximate maximizers.
43Implicit in both definition is the refinement that in case of indifference, the government decides to

accept/not default on the debt. Without this refinement, the optimal decisions will be correspondences

that take any value between 0 and 1 in case of indifference.
44As indicated before, by assumption, d

∗(g, B, µ) = 1 if φ−1 = 0 and a
∗(g, δ, B) = 0 if φ−1 = 1 or

δ = δ̄.
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The next theorem presents a recursive formulation for the value functions.

Theorem 5.1. The value functions V ∗
0 and V ∗

1 satisfy the following recursions

V ∗
1 (g, B, µ) = max

(n,B′,µ′(·))∈Γ(g,B,µ)

{
u(n− g, 1 − n) + β

∫

G

max{V ∗
1 (g′, B′, µ′(g′)), V ∗

0 (g′, B′)}πG(dg′|g)
}
,

(5.16)

and

V ∗
0 (g, B) =u(κn∗

0(g) − g, 1 − n∗
0(g)) + βλ

∫

G

∫

∆
max{V

∗
1(g

′, δ′B), V ∗
0 (g′, B)}π∆(dδ′)πG(dg′|g)

+ β(1 − λ)
∫

G

V ∗
0 (g′, B)πG(dg′|g) (5.17)

where, for any (g, B, µ),

Γ(g, B, µ) =
{
(n,B′, µ′(·)) ∈ [0, 1] × B × R

|G| :

(B′, µ′(g′), V ∗
1 (g′, B′, µ′(g′)) ∈ Graph(Ω(1, ·, g′, 1, 1)), ∀g′ ∈ G

µ = uc(n− g, 1 − n) and z(1, n, g)µ+ P∗
1 (g, B′, µ′(·))B′ −Bµ ≥ 0} (5.18)

and, for any (B′, µ′(·)),

P∗
1 (g, B′, µ′(·)) =β

∫

G

((1 − d∗(g′, B′, µ′(g′)))µ′(g′) + d∗(g′, B′, µ′(g′))mA(g′)P∗
0 (g′, B′))πG(dg′|g)

P∗
0 (g, B′) =β

∫

G

(∫

∆
µ(g′, δ′, B′)δ′a∗(g′, δ′, B′)π∆(dδ′) + π∗

A(g′, B′)mA(g′)P∗
0 (g′, B′)

)
πG(dg′|g)

where π∗
A(g, B) ≡ {(1 − λ) + λ

∫
∆(1 − a∗(g, δ, B))π∆(dδ)} for any (g, B).

Below we present some particular cases of special interest where the recursive repre-

sentation of the government problem gets simplified.

Example 5.1 (Nondefaultable debt). Consider an economy with risk-free debt (this is

imposed ad-hoc). The value function V ∗
0 is irrelevant and V ∗

1 boils down to

V ∗
1 (g, B, µ) = max

(n,B′,µ′(·))∈Γ(g,B,µ)

{
u(n− g, 1 − n) + β

∫

G

V ∗
1 (g′, B′, µ′(g′))πG(dg′|g)

}

where

Γ(g, B, µ) =





(n,B′, µ′(·)) : z(1, n, g)µ+ βEπG(·|g)[µ
′(g′)]B′ −Bµ ≥ 0

where µ = uc(n− g, 1 − n)



 .

In addition, V̄ ∗
1 coincides with the value function for the initial period V ∗

1 since there is no

“re-setting”. This case is precisely the type of model studied in Aiyagari et al. (2002).�
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Example 5.2 (quasi-linear per-period payoff, λ ≥ 0, and π∆ = 1{0}). Assume that

u(c, 1 − n) = c + H(1 − n) for some function H consistent with assumption 4.1. Under

this assumption, µ can be dropped as a state variable since uc = 1 and thus it does not

affect the pricing equation. In this case, the value function during financial autarky is

given by

V ∗
0 (g) =κn

∗
0(g) − g +H(1 − n

∗
0(g)) + β

∫

G

(λV ∗
1 (g′, 0) + (1 − λ)V ∗

0 (g′)) πG(dg′|g).

This expression follows from the fact that there is no need to keep the debt B as part of

the state during financial autarky since none of the defaulted debt is ever repaid, and all

the offers of zero repayment are accepted by the government. The value function during

financial access is given by

V ∗
1 (g, B) = max

(n,B′)∈Γ(g,B)

{
n− g +H(1 − n) + β

∫

G

max{V ∗
1 (g′, B′), V ∗

0 (g′)}πG(dg′|g)
}
,

where Γ(g, B) ≡ {(n,B′) : z(1, n, g) + βEπG(·|g)[1{g:V ∗

1
(g,B′)≥V ∗

0
(g)}(g′)]B′ −B ≥ 0}.

The expression for the price function highlights an important difference between our

default model and a model with risk-free debt such as AMSS. Since uc = 1, the market

stochastic discount factor is equal to β, and thus in the latter model the government

cannot manipulate the return of the discount bond. In our economy with defaultable debt,

however, while not being able to influence the risk-free rate, the government is still able

to manipulate the return of the discount bond by altering its payoff through the decision

of default.

Moreover, assuming H is increasing and strictly concave with H ′(1) < 1 and 2H ′′(l) <

H ′′′(l)(1−l), we can view the government problem as directly choosing tax revenues R with

a per-period payoff given by Wκ(R) = κnκ(R) +H(1 −nκ(R)) where nκ(R) is the amount

of labor needed to collect revenues equal to R, given κ. Under our assumptions, Wκ is

non-increasing and concave function. The Bellman equation of the value of repayment is

given by

V ∗
1 (g, B) = max

(R,B′)

{
W1(R) − g + β

∫

G

max{V ∗
1 (g′, B′), V ∗

0 (g′)}πG(dg′|g)
}
, (5.19)

subject to R + βEπG(·|g)[1{g:V ∗

1
(g,B′)≥V ∗

0
(g)}(g′)]B′ ≥ g +B, and

V ∗
0 (g) =Wκ(g) − g + β

∫

G

(λV ∗
1 (g′, 0) + (1 − λ)V ∗

0 (g′))πG(dg′|g). (5.20)

The previous equations imply that this government’s problem is analogous to that stud-

ied in Arellano (2008) and Aguiar and Gopinath (2006) among others where the govern-

ment chooses how much to “consume”, captured by −R, given an exogenous process of
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“income”, −g. An important difference, however, is the non-standard per-period payoff

which reflects the distortive nature of labor taxes. In particular in our model the per-period

payoff has a satiation point at R = 0 (i.e., zero distortive taxes).45

We think this last observation is relevant because it allows us to extend some of our

results to general sovereign debt models with endogenous default, especially those regarding

the impact of the debt restructuring in prices. �

6 Analytical Results

In this section we present analytical results for a benchmark model characterized by quasi-

linear per-period utility, i.i.d. government expenditure shocks and debt repayments for

exiting financial autarky. The proofs for the results are gathered in appendix E.

Assumption 6.1. (i) κ = 1; (ii) u(c, n) = c + H(1 − n) where H ∈ C2((0, 1),R) with

H ′(0) = ∞, H ′(l) > 0, H ′(1) < 1, H ′′(l) < 0 and 2H ′′(l) < H ′′′(l)(1 − l)

Part (i) implies that there are no direct cost of defaults in terms of output. Part (ii) of

this assumption imposes that the per-period utility of the households is quasi-linear and

it is analogous to assumption in p. 10 in AMSS. As noted above, under this assumption,

µ can be dropped as a state variable. This implies that the value functions V ∗
0 , V ∗

1 are

only functions of (g, B) and the same holds true for the optimal policy functions.

We also assume that government expenditure are i.i.d., formally

Assumption 6.2. For any g′ 6= g, πG(·|g) = πG(·|g′).

With a slight abuse of notation and to simplify the exposition we use πG(·) to denote

the probability measure of g. Finally, to further simplify the technical details, we assume

that B has only finitely many points, unless stated otherwise.46

For the rest of the section, we proceed as if these assumptions 6.1 - 6.2 hold and will

not be referenced explicitly.

45Another subtle difference with the standard sovereign default literature is that while in our economy

government and bondholders share the same preference, in this literature they do not. In particular,

the government tends to be more impatient than (foreign) investors, thus bringing about incentives to

front-load consumption through borrowing.
46This assumption is made for simplicity. It can be relaxed to allow for general compact subsets, but

some of the arguments in the proofs will have to be changed slightly. Also, the fact that B ≡ {B1, ..., B|B|}

is only imposed for the government; the households can still choose from convex sets; only in equilibrium

we impose {B1, ..., B|B|}.
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6.1 Characterization of Optimal Default Decisions

The next proposition characterizes the optimal decisions to default and to accept offers

to repay the defaulted debt as “threshold decisions”; analogously to Arellano (2008) but

adapted to this setting. Recall that d∗(g, B) and a∗(g, δ, B) are the optimal decision of

default and of renegotiation, respectively, given the state (g, δ, B).

Proposition 6.1. There exists λ̄ such that for all λ ∈ [0, λ̄], the following holds:

1. There exists a δ̂ : G × B → ∆ such that a∗(g, δ, B) = 1{δ:δ≤δ̂(g,B)}(δ) and δ̂ non-

increasing as a function of B.47

2. There exists a ḡ : B → G such that d∗(g, B) = 1{g:g≥ḡ(B)}(g) and ḡ non-increasing

for all B > 0.

This result shows that for a (non-trivial) range of probabilities of receiving outside

offers, λ ∈ [0, λ̄], default is more likely to occur for high levels of debt, and so are rejections

of offers to exit financial autarky.48 The latter result implies that the average recovery

rate is decreasing in the level of debt, as documented by Yue (2010) in the data.49 It

also follows that other things equal, higher debt levels are on average associated with

longer financial autarky periods.50 Thus, these two results imply a positive co-movement

between the (observed) average haircut and the average length of financial autarky.51

6.2 Implications for Equilibrium Prices and Taxes

We now study the implications of the above results on equilibrium prices and taxes.

47It turns out that the first part of the statement holds for any λ.
48In our numerical simulations for the benchmark calibration with λ = 0.2, all theoretical results from

proposition 6.1 hold, therefore implying that λ̄ ≥ 0.2.
49According to the proposition, the average recovery rate equals EπG

[
∫

δ′∈∆
δ′

1{δ : δ≤δ̂(g,B)}(δ′)π∆(dδ′)].
50The expected length of autarky — given a defaulted debt of B — is given by 1

EπG
[Fπ

∆
(δ̂(g,B))]

where

Fπ∆
is the cdf corresponding to π∆.

51This last fact seems to be consistent with the data; see fact 3 in Benjamin and Wright (2009). Cruces

and Trebesch (2013) found a similar relationship for 180 sovereign debt restructuring cases of 68 countries

between 1970 and 2010. It is important to note, however, that we derived the implications by looking at

exogenous variations of the debt level; in the data this quantity is endogenous and, in particular, varies

with g. This endogeneity issue should be taken into account if one would like to perform a more thorough

test of the aforementioned implications. We further explore this issue in the numerical simulations.
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Equilibrium prices and endogenous debt limits. Under assumption 6.2 equilib-

rium prices do not depend on g, i.e., P∗
φ(·) ≡ P∗

φ(g, ·) for any g ∈ B. By proposition 6.1

it follows that, for any B′ ∈ B,

P∗
1 (B′) =β

∫

G

1{g′≤ḡ(B′)}(g′)πG(dg′) +
(
β
∫

G

1{g′>ḡ(B′)}(g′)πG(dg′)
)

P∗
0 (B′) (6.21)

and 52

P∗
0 (B) =

βλ
∫

∆

(∫
G

1{δ:δ≤δ̂(g′,B)}(δ)πG(dg′)
)
δπ∆(dδ)

1 − β + βλ
∫

∆

∫
G

1{δ:δ≤δ̂(g′,B)}(δ)πG(dg′)π∆(dδ)
. (6.22)

A key feature of endogenous default models is the existence of endogenous borrowing

limits. A necessary condition for this result is that, due to the possibility of default,

equilibrium prices are non-increasing as a function of debt; thus implying a “Laffer-type

curve” for the revenues coming from selling bonds. In an economy without debt repayment

(e.g., π∆ = 1{0}), it follows that P∗
0 = 0 and P∗

1 (B′) = β
∫
G

1{g:g≤ḡ(B′)}(g′)πG(dg′) which is

non-increasing in B′ by proposition 6.1. Moreover, it takes value zero for sufficiently high

B′. Therefore, there exists an endogenous debt limit, i.e., finite value of B′ that maximize

the debt revenue P∗
1 (B′)B′.

In an economy where we allow for debt repayments, by inspection of equation 6.21

and the fact that P∗
0 ≥ 0, it is easy to see that, other things equal, the previous re-

sult is attenuated by the presence of (potential) defaulted debt payments and secondary

markets. Although, for a general π∆ is hard to further characterize P∗ analytically, the

next proposition shows that when repayment offers exist but are non-random, the price

is non-increasing on the level of debt and there are endogenous borrowing limits.

Proposition 6.2. Suppose π∆(·) = 1δ0
(·) for some δ0 ∈ [0, 1]. Then there exists a λ̄ > 0,

such that for all λ ∈ [0, λ̄], P∗
i (·) is non-increasing for B > 0 and for all i = 0, 1.

This proposition shows that high levels of debt are associated with higher return

on debt, both before and during financial autarky. This result is consistent with the

evidence regarding debt-to-output levels and default risk measures presented in section 2.

Moreover, this result in conjunction with the implications derived from proposition 6.1,

implies that high levels of debt are associated with higher return on debt, lower (observed)

average recovery rate, and, on average, longer financial autarky spells. In particular, it

implies that (on average) longer periods in financial autarky are associated with higher

spreads during this period.

52See lemma E.5(3) in the appendix for the derivation.
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In particular, the existence of endogenous borrowing limits implies that the ability

to roll over high levels of debt is hindered. This in turn implies not only that labor is

higher but due to the concavity of z(1, ·, g) labor is more “sensitive” to fluctuations in

government expenditure.

Default risk and the law of motion of equilibrium taxes. In order to analyze the

ex-ante effect of default risk on the law of motion of taxes, we consider the case λ = 0 (i.e.,

autarky is an absorbing state) to simplify the analysis. We also strengthen assumption

6.1 by requiring that H ′′(l) < H ′′′(l)(1 − l). By proposition 6.1, the default decision is

a threshold decision, so for each history ω∞ ∈ Ω∞ we can define T (ω∞) = inf{t : gt ≥

ḡ(Bt(ω
t−1))} (it could be infinity) as the first time the economy enters in default. For all

t ≤ T (ω∞) the economy is not in financial autarky, and the implementability constraint

is given by

Bt(ω
t−1) + gt ≤

(
1 −H ′(1 − nt(ω

t))
)
nt(ω

t) + P∗
1 (Bt+1(ωt))Bt+1(ωt),

where P∗
1 (gt, Bt+1(ωt)) ≡ EπG

[1 − d∗(g′, Bt+1(ω
t))]. Let νt(ω

t) be the Lagrange multiplier

associated to this restriction in the optimization problem of the government, given ωt ∈

Ωt. In appendix E.2 we derive the FONC of the government and provide a closed form

expression for νt(ω
t) as a decreasing nonlinear function of nt(ω

t); see equation E.87.53

Hence, as noted by AMSS, by studying the law of motion of νt we can shed light on the

law of motion of labor and taxes.

From the FONC of the government it follows (see appendix E.2 for the derivation) 54

νt(ω
t)

(
1 +

dP∗
1 (Bt+1(ωt))

dBt+1

Bt+1(ωt)

P∗
1 (Bt+1(ωt))

)
=
∫

G

νt+1(ωt, g′)
1{g′ ≤ ḡ(Bt+1(ωt))}

∫
G

1{g′ ≤ ḡ(Bt+1(ωt))}πG(dg′)
πG(dg′).

(6.23)

The Lagrange multiplier associated with the implementability condition is constant

in Lucas and Stokey (1983) and, thus, trivially a martingale. In Aiyagari et al. (2002)

the Lagrange multiplier associated with the implementability condition is a martingale

with respect to the probability measure πG.55 Equation 6.23 implies that the law of

53The strengthening of assumption 6.1 is only needed to show that νt(ω
t) is an decreasing function of

nt(ω
t); the proof is in appendix E.2.

54This derivation assumes that B is a convex set and πG has a density with respect to the Lesbegue

measure, so as to make sense of differentiation. It, also, assumes differentiability of V ∗.
55The martingale property is also preserved if capital is added to the economy; see Farhi (2010). If we

allow for ad-hoc borrowing/savings limits, the equality has to be replaced by the corresponding inequality;

see Aiyagari et al. (2002).
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motion of the Lagrange multiplier differs in two important aspects. First, the expec-

tation is computed under the so-called default-adjusted probability measure, given by
1{·≤ḡ(Bt+1(ωt))}∫

G
1{g′≤ḡ(Bt+1(ωt))}πG(dg′)

πG(·). The wedge between πG and this new probability stems from

the fact that the option to default adds “some” degree of state-contingency to the payoff of

the government debt making it lower for high values of government expenditure, and im-

plies that the default-adjusted probability measure is first order dominated by πG. In fact,

it implies that only the states tomorrow in which there is repayment, are relevant for the

law of motion of νt.
56 It follows that, in the case that νt+1(ωt, ·) is increasing, the presence

of the default-adjusted probability lowers νt(ω
t) and, consequently, lowers also the tax dis-

tortions. Second, νt(ω
t) in the left-hand side is multiplied by

(
1 +

dP∗

1
(Bt+1(ωt))

dBt+1

Bt+1(ωt)
P∗

1
(Bt+1(ωt))

)
,

which can be interpreted as the “markup” that the government has to pay for having the

option to default; this effect increases νt(ω
t) and the tax distortions. These two forces act

in opposite directions, and is not clear which one will prevail. In order to shed more light

on this issue, in section 7 we explore quantitatively this trade-off by plotting the impulse

responses for νt(ω
t) delivered by our model and a version of Aiyagari et al. (2002).

7 Numerical Results

Throughout this section, we run a battery of numerical exercises in order to assess the

performance of the model. We compare our findings with an economy in which the option

to default is not present—precisely the model considered in Aiyagari et al. (2002). We

denote the variables associated with this model with a (sub)superscript “AMSS”; variables

associated to our economy are denoted with a (sub)superscript “ED” (short for Economy

with Default).

In the dataset IND economies are proxies of the AMSS model and EME/LAC are

proxies of our model. As discussed before, IND do not exhibit default events in the

dataset. There is the question of what characteristics of the economy will prompt it to

behave like AMSS- or ED-type economies. One possible explanation is that by factors

extraneous to the model, such as political instability, ED presents lower discount factor

from the government and thus are more prone to default. An alternative explanation, in

line with our model, is that for AMSS-type/IND economies, default is more costly because

they are financially more integrated, and the financial autarky following a default could

56If default occurs, the link between multipliers today and tomorrow is severed and tax rates stop

exhibiting persistence, as they are set to balance the budget inheriting the i.i.d. properties of the stochastic

process of the government spending.
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have a larger impact on financing of the firms, thus lowering their productivity (in our

model represented by a lower κ).57

For all the simulations the utility function is given by u(c, 1−n) = c+C1
(1−n)1−σ

1−σ
, where

−σ is the inverse Frisch elasticity of labor supply. In this parametrization, we assume

that |G| consists of five values, evenly spaced between [0.207, 0.277]; πG is the uniform

distribution over G; the debt state space is given by B = [0, 0.1], with |B| = 1, 000.

Finally, we rule out negative lump-sum transfers.

We choose the parameters of the model as follows. We set β = 0.984, σ = 4, κ = 1

and C1 = 0.04. For the benchmark parametrization (Table 7.2) we choose λ = 0.2, and

∆ = {0.3, 0.7} where the probability π∆ assigns probability of 0.75 and 0.25, respectively.58

Table 7.2: Parameter Values

Parameter Value

Preferences

Preference Parameter σ 4

Constant in Preference χ 0.04

Time discount factor β 0.984

Debt Restructuring

Probability of receiving offer λ 0.20

Offer 1 d1 0.30

Offer 2 d2 0.70

Probability of offer 1 π(d1) 0.75

Probability of offer 2 π(d2) 0.25

To compute the statistics, we perform 5,000 Monte Carlo (MC) iterations, each con-

sisting of sample paths of 2,500 observations for which the first 500 observations were

disregarded in order to eliminate the effect of the initial conditions. We then compute the

mean statistics across MC simulations. 59

The results for the whole sample for our model and the risk-free debt model (AMSS)

57In our calibration, κ = 0.96, is sufficiently low to prevent the economy from defaulting.
58These values are taken from the 70- percent and the 30-percent haircuts in the debt restructuring

following the default by Argentina in 2001 and by Ecuador in 1997, respectively.
59The unconditional default frequency is computed as the sample mean of the number of default events

in the simulations. The model is solved numerically using value function iterations with a discrete state

space and an “outer” loop that iterates on prices until convergence.
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Table 7.3: MC Statistics for the whole sample for our model and the risk-free debt model

(AMSS).

Statistic ED AMSS

Mean(debt/y)(%) 2.5 7.0

Mean(τ) 0.530 0.528

Std.dev.(τ) 0.057 0.038

Autocor.(τ) 0.373 0.630

Mean(y) 0.459 0.460

Mean(c) 0.216 0.218

Std.dev.(y) 0.017 0.011

Std.dev.(c) 0.040 0.033

Mean(r − rf) (%) 105.39 0

Mean(default spell) 6.28 NA

Mean(recovery rate) (%) 38.3 NA

Failed reneg. freq. (%) 4.56 NA

Default frequency (%) 1.248 0

20th-percentile(τ) 0.472 0.506

80th-percentile(τ) 0.573 0.553
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Table 7.4: MC Statistics for the “financial autarky” sample and “financial access” sample.

Financial Access Financial Autarky

Statistic ED AMSS ED AMSS

Mean(debt/y)(%) 2.4 6.9 12.7 13.7

Mean(τ) 0.530 0.528 0.557 0.570

Std.dev.(τ) 0.056 0.038 0.093 0.053

Autocor.(τ) NA NA NA NA

Mean(y) 0.459 0.460 0.448 0.446

Mean(c) 0.217 0.218 0.201 0.200

std.dev.(y) 0.017 0.011 0.031 0.019

std.dev.(c) 0.040 0.033 0.054 0.039

Mean(r − rf) (%) 3.40 0 6266.72 0

cor(y, r − rf) -0.214 0 0 0

cor(τ , r − rf) 0.181 0 0 0

20th-percentile(τ) 0.473 0.506 0.467 0.531

80th-percentile(τ) 0.572 0.552 0.663 0.608
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are reported in Table 7.3. In our economy default occurs with an annual default frequency

of around 1.25 percent. Bond holders anticipate the default strategies in equilibrium and

charge higher bond returns to bear the bond. Facing higher borrowing costs, the govern-

ment responds by issuing less bonds. Consequently, the average level of indebtedness is

significantly lower in our environment than in AMSS model. It is 2.5 percent of output in

the former, while 7 percent in the latter economy.60 Thus, our model is able to generate

considerable levels of “debt intolerance”, a fact observed to be present in economies prone

to default; see section 2.

The presence of endogenous borrowing limits, arising from the possibility of default,

hinders the government’s ability to smooth taxes. As a result, taxes are higher but

particularly more volatile: the standard deviation of tax rates is 50 percent higher in our

model. Our model can therefore replicate the corresponding empirical fact documented

in section 2. Also, note that the 20th-80th percentile interval for the tax distribution

in the economy with defaultable bonds contains its counterpart in the AMSS model,

which reflects the fact that the latter distribution is relatively more spread out. Not

surprisingly, taxes are less persistent in our environment.61 The lower autocorrelation is

attributed to two main factors. First, a lower persistence of taxes in borrowing states due

to the incidence of endogenous default, manifested in the law of motion of the Lagrange

multiplier of the implementability constraint; see subsection 6.2.62 Second, the fact that

if default occurs, the economy switches to autarky and the tax rate inherits the stochastic

properties of the government spending, which is assumed to be i.i.d. Higher, volatile taxes

in our model lead to lower, more volatile labor supply.

Our model also generates a frequency of renegotiation failures of roughly 5 percent,

an average recovery rate of almost 40 percent, and a mean autarky spell of 6-7 periods.

While in table 7.3 we focus on the entire sample, in table 7.4 we show the results for two

subsamples: “financial autarky” and “financial access”. To construct these subsamples,

we split each MC simulation into the periods in which the ED economy is in autarky and

those in which it is not.

In this environment, the one-period gross risk-free 1+rf rate is equal to the reciprocal

of the households’ discount factor β. Bond spreads are computed as the differential

between annualized bond returns and the risk-free rate. The (one-period) gross return of

60For comparison, in the data for Argentina (1990-2005) this ratio is approximately 23 percent. During

the default period (2001-2005), it increased to around 45 percent.
61Since the “financial autarky” and “financial access” subsamples may contain nonconsecutive periods

by construction, the autocorrelation is not computed for them.
62As discussed in subsection 6.2, the Lagrange multiplier in AMSS follows a martingale process.
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the government bond is given by 1/pt, both with borrowing and in financial autarky.63

As expected, our model is able to generate higher spreads in financial autarky than in

financial access. Bond spreads are on average 3.4 percent with borrowing but jump to

over 6, 000 percent in autarky. The particular high value of the spread in financial autarky

reflects the fact that although the probability of accepting an offer is around 95 percent,

less than 40 percent of the defaulted debt is honored. In the data we also observe such

high levels of bond yields during autarky: the average sovereign spreads measured by

the EMBI+ index reached 5, 757 percent over 2002, the year after the default episode in

Argentina, and remained around 5, 485 percent between 2002 and 2004. Also, our model

delivers countercyclical bond spreads, a feature well-documented in the data for emerging

economies.64 As indicated by the positive correlation between tax rates and spreads,

taxes tend to be higher precisely when borrowing is more expensive. Labor supply is

optimally lower in those states leading to a negative commovement between bond returns

and output.

During financial autarky, the average debt-to-output ratio is actually the defaulted

debt-to-output ratio and is around 13 percent. The fact that it is roughly five times larger

than in financial access provides additional evidence of endogenous borrowing limits being

“active” for high debt levels and is consistent with the stylized facts presented in section

2.

The findings for taxes in financial access and financial autarky echo the results in

Table 7.3. When there is borrowing, taxes are relatively more volatile in the economy

with the defaultable bond due to the endogenous credit limits. Furthermore, when our

economy is in financial autarky, the government is precluded from issuing debt, rendering

taxes more volatile that in financial access. The 20th-80th percentile intervals for taxes

are consistent with the same patterns.

Both the average output and consumption are similar in both economies, although in

both cases these quantities are higher in the financial access subsample. Financial autarky

63This calculation of the bond return during autarky is reminiscent to the methodology applied by J.P.

Morgan to obtain sovereign bond yields and spreads for the construction of the EMBI+ index. While

a country is in default before any debt settlement is reached, bond yields and spreads are calculated

assuming future cash flows stay the same as dictated in the original instrument structure. In this situation,

future cash flows are not determined based on any expected haircuts until after a restructuring event

officially takes place. For more details, see J. P. Morgan (2004).
64For both output and tax rates, the correlations with bond spreads are zero in autarky since govern-

ment spending is i.i.d. —hence prices only depend on the debt level, as shown in expressions 6.21 and

6.22— and bond holdings remain unchanged until the debt is restructured.
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Figure 7.3: Standard deviation of tax rates and mean bond spreads in financial access for

low debt (blue) and high debt (red).

is characterized by on average higher indebtness levels and also slightly higher government

expenditure (not reported), that is, higher expenditure overall. Given that the primary

surplus function z is decreasing in n, it follows that output (and consumption) are lower

during financial autarky. This fact shows that our model is able to endogenously generate

a drop in output (and consumption) during financial autarky, even even though no ad-hoc

output loss is assumed in this calibration.

In addition, in both economies output and consumption are more volatile in the fi-

nancial autarky subsample. The fact that the primary surplus function is also concave

implies a higher sensitivity of these variables to changes in government spending and thus

higher volatility during financial autarky. Finally, both output and consumption are more

volatile in our economy than in AMSS, portraying the differences in the dynamics of their

taxes.

Behavior of Taxes. As mentioned in section 2, our dataset suggests that default

risk and tax volatility are positively correlated and that both are higher for high levels of

debt-to-output ratio. Figure 7.3 shows that our model is able to generate this pattern.

The blue (red) dots show the standard deviation of taxes and spreads for low (high) levels

of debt, respectively. Each dot corresponds to the financial access subsample in a MC
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Figure 7.4: Histograms of tax rates in financial access for our model (solid red) and AMSS

(dotted blue) conditioned on current g realization, from lowest value (top panel) to highest

value (bottom panel).
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simulation. For low (high) debt we consider debt-to-output ratios below (over) the median

of its distribution. For both cases we can see a positive relationship between spreads and

tax volatility. This result follows from the fact that higher spreads are caused by higher

risk of default which in turn limits the ability of the government to use debt to smooth

taxes when financing government shocks. A second noteworthy observation is that the

red cloud is shifted to the upper right corner of the graph with respect to the blue cloud,

thus indicating that both spreads and tax volatility are higher for higher level of debts.

In order to shed more light regarding the behavior of taxes when there is risk of default,

in figure 7.4 we compare, for different values of government expenditure, the histograms

(which were smoothed using kernel methods) of taxes in our model with that in AMSS.

First, as observed in the bottom panels, for high values of g the distribution of taxes

in our model is shifted to the right compared to that in AMSS model. This difference

between the two models arises from the fact that due to default risk debt is too costly for

our government to finance high government expenditure. In contrast, as noted in the top

panels, when the g realization is low the situation is reversed and now the distribution of

taxes in AMSS model is shifted to the right relative to our model. During those states, the

government repays the outstanding debt, which typically is higher in AMSS than in our

credit-constrained economy. A final noteworthy observation is that for our model taxes

are more concentrated around a single peak (which shifts to the right with the level of

government expenditure), indicating more limited borrowing. In contrast, in AMSS the

distribution of taxes is more spread-out for each g realization but at the same time more

“stable” regarding changes in g, a clear reflection of more tax smoothing.

Table 7.5: MC Statistics for debt renegotiation for different values of λ.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. offer accepted 0.40 0.38 0.37 0.35 0.35 0.34 0.33 0.33 0.32 0.32

Avg. duration | High debt 10.9 6.30 4.71 5.18 4.67 4.61 3.99 3.77 3.56 3.34

Avg. duration | Low debt 10.9 6.30 4.70 3.62 3.15 2.90 2.87 2.77 2.70 2.68

Debt Renegotiation. In table 7.5 we present some statistics regarding the debt

renegotiation process for different values of λ. From the first row we see that as the

probability of receiving an offer increases, the average offer accepted decreases. This

fact and the fact that the frequency of rejected offers increases monotonically with λ

(bottom panel in figure 7.7), follows because as λ increases the option value of staying

39



in financial autarky increases and thus the government becomes more selective regarding

which offers it accepts. Furthermore, it is also the case that as λ increases, the average

number of periods in financial autarky declines (as shown in the top panel in figure 7.7),

implying a positive relationship between the average haircuts and the average length of the

debt restructuring process, in line with the findings of Benjamin and Wright (2009) and

Cruces and Trebesch (2013). The last two rows in the table shows the average duration,

conditioning on the fact that the defaulted debt is “high” (second row) and “low” (third

row).65 We can see that for both cases, it decreases as the probability of receiving an

offer increases, but more importantly it shows that for “high” levels of debt we have,

on average, longer financial autarky spells; in fact, the difference can be as large as 50

percent higher for intermediate values of λ. This fact coincides with the implications of

proposition 6.1 and, at least for our benchmark case, the numerical simulations indicate

that the differences in the duration are non-negligible.

Impulse responses. Figure 7.5 plots the impulse response for debt and taxes for our

model and AMSS. The path of government expenditure is plotted in the first panel. We

consider two values of initial debt, one “low” (B0 = 0) and one “high” (B0 = 0.05). To

finance high government expenditure during the first periods, the government makes use

of both instruments: bond issuance and taxes. While in both economies the government

accumulates debt in those periods, in our model it does so to a lesser extent due to

the presence of endogenous borrowing limits. From t = 6 onwards, when government

expenditure becomes low, the level of debt decreases, eventually reaching zero. Taxes

behave analogously.

In our economy taxes are higher than AMSS during the periods of high government

expenditure since borrowing is more limited, but they decrease more rapidly when the

realization of government expenditure becomes lower (see the third panel). Overall, not

surprisingly, one can see a smoother behavior for taxes in AMSS than in our economy.

The last panel plots the behavior of the Lagrange multiplier νt studied in subsection 6.2.

The fact that ours is above the one of AMSS for periods of high government expenditure

reflects the “mark-up” effect mentioned in subsection 6.2. It also follows that the Lagrange

multiplier increases during these periods, reflecting the fact that the marginal cost of debt

is increasing in the level of debt. From t = 6 onwards, as debt decreases, the Lagrange

multiplier in our model falls and eventually becomes lower than the one of AMSS. This

last feature stems from the facts that the accumulated debt is relatively lower in our

65As low (high) defaulted debt we consider debt-to-output ratios in the default episodes below (above)

the unconditional median.
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Figure 7.5: Impulse responses for our model (red) and AMSS (blue). Realization of

government expenditure (first panel); debt path (second panel); tax path (third panel);

and Lagrange multiplier path (fourth path).

model and that, as the level of debt decreases, the “mark-up” effects vanish.

Welfare Analysis. As a measure of welfare we use the compensation in terms of

initial consumption that would make the household indifferent between our economy and

AMSS. Formally, this compensation denoted by W is computed as

W ≡

∫
V AMSS(g, B)µAMSS(dg, dB) −

∫
V ∗

φ (g, B)µ(dg, dB, dφ)
∫

(n∗
φ(g, B) − g)µ(dg, dB, dφ)

where µAMSS and µ are the ergodic distributions generated by the AMSS and our model

respectively and V AMSS is the value function corresponding to the AMSS economy. That

is, W measures the increase in initial consumption that would make the household indif-

ferent between our economy and AMSS, under the ergodic distribution.66

66The ergodic distribution is constructed by collecting the last observation from each of the 5,000 MC

simulated paths.
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Figure 7.7: Average number of periods in autarky (top panel) and frequency of rejected

offers (bottom panel) for different values of arrival probability of offers λ.
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Figure 7.6 plots this measure for different values of the arrival probability of offers λ

with our, otherwise, benchmark parametrization. As we can see, for low values of λ the

compensation is almost zero, which is consistent with the fact that in these cases autarky

is very costly pushing down the default frequency and thereby implying that our econ-

omy and AMSS are very similar. As λ increases, default occurs more often and welfare

decreases in our economy relative to AMSS. In particular, for λ = 0.7 the compensation

is as high as 63.64 percent of the initial consumption. Welfare, however, does not de-

crease monotonically with λ. In fact, for λ ranging from 0.7 to 1, welfare increases in

our economy. A key effect for understanding this non-monotonicity is the behavior of the

government during financial autarky. The average time the economy spends in financial

autarky decreases monotonically, especially for low values of λ (top panel in figure 7.7),

and perhaps more importantly the frequency of rejected offers increases monotonically

with λ (bottom panel in figure 7.7) as well. These facts imply that, for high values of

λ, the government is frequently confronted with the option to reject a repayment offer

and stay in financial autarky, whereas for low values of λ, this option is presented more

infrequently. Thus, roughly speaking, for high values of λ, the time the economy spends

in financial autarky is not only low but is driven by choice, whereas for low values of λ it

is not. This last observation explains the non-monotonic behavior of welfare with respect

to λ and also presents a nuanced view for evaluating how costly renegotiations periods are.

Robustness check: Persistent process for government expenditure. We fi-

nally explore the quantitative implications of our model under the assumption of per-

sistence on the stochastic process for government expenditure. To do so, we consider

the same parametrization as in our benchmark calibration, except that |G| = 3 and the

transition probability for g is

πG =




0.5 0.5 0

0.1 0.8 0.1

0 0.5 0.5


 .

We interpret this state space as a “recession”, “normal times” and “booms”. We assume

that normal times are more persistent than the other two states, and for simplicity we

treat these two states symmetrically. For comparison, we also present the results for the

case with uniformly distributed g. Table 7.6 reports the MC statistics for our economy

and AMSS. When the government expenditure is highly persistent (and less volatile),

default tends to occur more often. The annual default frequency is 5.67 percent with
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persistent g while it only reaches 0.8 percent in the i.i.d. case. The government decides

to default usually after a sufficiently long sequence of high government expenditure after

increasing substantially its debt level. Because the defaulted debt is significantly higher

with persistent g (not reported), the government is less willing to accept high repayment

offers, as indicated by a frequency of failed renegotiations of roughly 27 percent. This,

in turn, translates into more lengthy debt restructuring processes: the default spell is

almost two periods longer with persistent government expenditure. Also, in spite of the

higher default frequency, taxes are more persistent, and less volatile than in the i.i.d.

case, which is consistent with the stochastic properties of their respective government

expenditure processes.

Table 7.6: MC Statistics for the “persistence case” and “i.i.d. case” both for our model

and AMSS.

Persistence case i.i.d. case

Statistic ED AMSS ED AMSS

Mean(debt/y)(%) 1.4 3.6 3.7 7.5

Mean(τ) 0.531 0.529 0.531 0.529

Std.dev.(τ) 0.059 0.046 0.060 0.045

Autocor.(τ) 0.570 0.683 0.448 0.631

Mean(y) 0.458 0.459 0.458 0.459

Mean(c) 0.216 0.217 0.216 0.217

Mean(g) 0.242 0.242 0.242 0.242

Std.dev.(y) 0.018 0.014 0.018 0.013

Std.dev.(c) 0.036 0.031 0.044 0.039

Std.dev.(g) 0.019 0.019 0.029 0.029

Mean(r − rf) (%) 1868.66 0 52.72 0

Mean(default spell) 7.88 NA 5.96 NA

Mean(recovery rate) (%) 0.30 NA 0.40 NA

Failed reneg. freq. (%) 26.84 NA 0 NA

Default frequency (%) 5.37 0 0.80 0
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8 Conclusion

In this paper we study a government problem in a closed economy, that consists of choosing

distortionary taxes with only non-state-contingent government debt, but allowing for

partial defaults on the debt.

First, we provide an explanation for the lower debt-to-output ratios and more volatile

tax policies observed in emerging economies, vis-à-vis industrialized economies. This

stems from the fact that the holders of government debt forecast the possibility of default,

imposing endogenous debt limits. These limits restrict the ability of the government to

smooth shocks using debt, resulting in higher tax variability.

Second, we propose a device to price the debt during temporary financial autarky.

Our results show that the spread during the default period is higher than for the rest

of the sample; this characteristic is consistent with data for defaulters—e.g., Argentina,

Ecuador and Russia.

Third, and last, the numerical simulations suggest that increasing the probability of

receiving offers for exiting autarky decreases welfare when this probability is low/medium

to begin with, but increases it when the probability is high.

Although this model does a good job of explaining qualitatively several empirical

regularities, it could be enriched in several dimensions so as to better fit the data of

particular economies. In particular, we think a promising line of future research could be

to extend the production side of this economy to allow for physical capital accumulation

and productivity shocks. Our model also provides a novel device that allow us to study

asset prices of government debt both during periods of financial access and autarky;

further research could fully explore the pricing implications of this device for general

sovereign debt held by uncertainty or risk averse creditors.67
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A Notation and Stochastic Structure of the Model

Throughout the appendix for a generic mapping f from a set S to T , we use s 7→ f(s) or f : S → T

to denote it. For the case that a mapping depends on many variables, the notation s1 7→ f(s1, s2)

is used to denote the function f only as a function of s1, keeping s2 fixed. Also, for a generic set

A, |A| denots the cardinality of A.

B Optimization Problem for the Households

The Lagrangian associated to the household’s problem is given by

L({ct, nt, bt+1, νt, µt, ψt}
∞
t=0) ≡

∞∑

t=0

βtEΠ(·|ω0)

[{
u(ct(ω

t), 1 − nt(ω
t)) − νt(ω

t){ct(ω
t) − (1 − τt(ω

t))κt(ω
t)nt(ω

t) + pt(ω
t)bt+1(ωt) − ̺t(ω

t)bt(ω
t−1)}

+ Ψt(ω
t)ct(ω

t) + ψ1t(bt+1(ωt) − b) + ψ2t(b− bt+1(ωt))
}]
,

where νt and Ψt are the Lagrange multipliers associated to the budge constraint and to the

restrictions that non-negative bound on consumption, and ψit i = 1, 2 are the Lagrange multipliers

associated to the debt limits.

Assuming interiority of the solutions, the first order conditions (FONC) are given by:

ct(ω
t) : uc(ct(ω

t), 1 − nt(ω
t)) − νt(ω

t) = 0

nt(ω
t) : − ul(ct(ω

t), 1 − nt(ω
t)) + νt(ω

t)(1 − τt(ω
t))κt(ω

t) = 0

bt+1(ωt) : pt(ω
t)νt(ω

t) − EΠ(·|ωt)[βνt+1(ωt+1)̺t+1(ωt+1)] = 0.

Then, using uj(ω
t) for uj(ct(ω), 1 − nt(ω)) with j ∈ {c, l}, it follows

ul(ω
t)

uc(ωt)
= (1 − τt(ω

t))κt(ω
t), (B.24)

and

pt(ω
t) = EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
̺t+1(ωt+1)

]
. (B.25)

From the definition of ̺, equation B.25 implies, for dt = 0 and at = 1,

pt(ω
t) = EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
(1 − dt+1(ω))

]
+ EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
dt+1(ωt+1)qt+1(ωt+1)

]
.

For dt = 1 and at = 0, (where in this case recall that pt = qt)

pt(ω
t) = λEΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
at+1(ωt+1)δt+1

]

+ EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
{1 − λ+ λ(1 − at+1(ωt+1))}qt+1(ω

t+1)

]
.
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C Proofs for section 4.2

The next lemma characterizes the set of competitive equilibria as a sequence of restrictions in-

volving FONC and budget constraints. The proof is relegated to the end of the section.

Lemma C.1. Suppose assumption 4.1 holds. The tuple (ct, gt, nt, bt+1, pt)
∞
t=0 and σ is a compet-

itive equilibrium iff given a B0 = b0, for all ωt ∈ Ωt, for all t,

ct(ω
t) = κt(ω

t)nt(ω
t) − gt, and Bt+1(ωt) = bt+1(ωt), (C.26)

κt(ω
t)τt(ω

t) =

(
κt(ω

t) −
ul(ω

t)

uc(ωt)

)
; (C.27)

and

Zt(ω
t) + φt(ω

t){pt(ω
t)Bt+1(ωt) − δtBt(ω

t)} ≥ 0, (C.28)

and if φt(ω
t) = 0, Bt+1(ωt) = Bt(ω

t−1) (C.29)

where

pt(ω
t) = EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
̺t+1(ωt+1)

]
. (C.30)

Proof of Theorem 4.1. We now show the “⇒” direction. Consider an outcome path (dt, at, Bt+1, nt)
∞
t=0

that is consistent. This means by lemma C.1 that the tuple (ct, gt, nt, bt+1, pt)
∞
t=0 and σ is a com-

petitive equilibrium iff given a B0 = b0, for all ωt ∈ Ωt, for all t,

ct(ω
t) = κt(ω

t)nt(ω
t) − gt, and Bt+1(ωt) = bt+1(ωt), (C.31)

κt(ω
t)τt(ω

t) =

(
κt(ω

t) −
ul(ω

t)

uc(ωt)

)
; (C.32)

and

Zt(ω
t) + φt(ω

t){pt(ω
t)Bt+1(ωt) − δtBt(ω

t−1)} ≥ 0, (C.33)

and if φt(ω
t) = 0, Bt+1(ωt) = Bt(ω

t−1)

where

pt(ω
t) = EΠ(·|ωt)

[
β
uc(ω

t+1)

uc(ωt)
̺t+1(ωt+1)

]
. (C.34)

It is easy to see that equations C.32 and C.34 imply equations 4.4 and 4.5. Equations C.32,

C.34 and C.33 imply equation 4.9.
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We now show the “⇐” direction. Suppose now that the outcome path satisfies that for all

ωt ∈ Ωt, the following equations holds: 4.4, 4.5, 4.9 and

ct(ω
t) = κt(ω

t)nt(ω
t) − gt. (C.35)

By using Bt+1(ωt) = bt+1(ωt), equations 4.4, 4.5 and the feasibility condition, we can enlarge

the outcome path by (ct, pt, bt+1, τt, gt)
∞
t=0. Clearly, restrictions C.31, C.32 and C.34 hold. By

replacing equations 4.4 and 4.5 on 4.9, it is easy to see that equation C.33 holds too.

C.1 Proofs of supplementary lemmas

For the proof of Lemma C.1 we need the following lemma (the proof is relegated to the end of

the section).

Lemma C.2. Suppose assumption 4.1 holds. Then first order conditions 4.4 and 4.5 are also

sufficient.

Proof of Lemma C.1. Take σ and (ct, gt, nt, bt+1)∞
t=0, and a price schedule (pt)t that satisfy the

equations. It is easy to see that feasibility and market clearing holds (conditions 3 and 4). Also,

by lemma C.2 optimality of the households is also satisfied.

To check attainability of the government policy (condition 2). Observe that by equations C.26

- C.28 imply for all ωt ∈ Ωt,

gt + φt(ω
t)δtBt(ω

t−1) − φt(ω
t)pt(ω

t)Bt+1(ωt) ≤ κt(ω
t)τt(ω

t)nt(ω
t).

Finally, we check optimality of the households. We first check that the sequences satisfy the

budget constraint. Observe that by equations C.26 - C.28

−ct(ω
t) + κt(ω

t)nt(ω
t) + φt(ω

t){δtBt(ω
t−1) − pt(ω

t)Bt+1(ωt)} ≤ κt(ω
t)τt(ω

t)nt(ω
t).

If φt(ω
t) = 1, then equation C.28 implies that bt+1(ωt) = Bt+1(ωt) for all t (and for b0 we

assume it is equal to B0) and thus

− ct(ω
t) + κt(ω

t)nt(ω
t) + δtbt(ω

t−1) − pt(ω
t)bt+1(ωt) ≤ κt(ω

t)τt(ω
t)nt(ω

t).

This coincides with the budget constraint of the household.

If dt(ω
t) = 1, but at(ω

t) = 0, then equations C.26 and C.28 imply that bt(ω
t−1) = bt+1(ωt) = 0

for all t, so

−ct(ω
t) + κt(ω

t)nt(ω
t) = κt(ω

t)τt(ω
t)nt(ω

t).

This coincides with the budget constraint of the household.

Take σ and (ct, gt, nt, bt+1, pt)
∞
t=0 being a competitive equilibrium. Then it is easy to see that

it satisfies the equations.
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Proof of Lemma C.2. Under assumption 4.1 the objective function of the household optimization

problem is strictly concave. The budget constraints and debt constraint form a convex set of

constraints. Thus, if the transversality condition holds, the FONC are sufficient; this follows from

a simple adaptation of the results in Stokey et al. (1989) Ch. 4.5.

In order to verify the transversality condition, it suffices to show that for any ζt(ω
t) such that

bt(ω
t) + ζt(ω

t) ∈ B,

lim
T →∞

βTEΠ[uc(κT (ωT )nT (ωT ) − gT , 1 − nT (ωT ))̺T (ωT )ζT (ωT )] = 0.

Since, by assumption, debt is constrained, this condition follows from Magill and Quinzii

(1994) Theorem 5.2.

D Proofs for section 5

The next lemma characterizes the government surplus function, the proof is relegated to the end

of this section.

Lemma D.1. Let (κ, n, g) 7→ z(κ, n, g) =
(
κ− ul(n−g,1−n)

uc(n−g,1−n)

)
n− g. Then:

1. arg maxn∈[0,1]{u(κn− g, 1 − n) : z(κ, n, g) = 0} exists and is unique.

2. Suppose assumption 6.1 holds and let n̄(g) = arg maxn∈[0,1] z(1, n, g). Then, n 7→ z(1, n, g)

is decreasing and strictly concave for all n ∈ [n̄(g), 1]

To show theorem 5.1 we need the following lemma whose proof is relegated to the end of this

section.

Lemma D.2 (lem:rec-S). If, for any h0 = (1, B, g, δ) ∈ H and φ0 ∈ {0, 1}, γ ∈ S(h0, φ0), then

γ|ht,φ ∈ S(ht, φ) for any ht ∈ Ht and φ ∈ {0, 1}. Moreover,

z(κφ0
, n0(γ)(h0), g)µ0(γ)(h0) + φ0{Pφ0

(g, B1(γ)(h0, φ0), µ1(γ)(h0, h1(·)))B1(γ)(h0, φ0) − δµ0(γ)(h0)B} ≥ 0

where κφ = κ(1 − φ) + φ and h1(·) ≡ (1, B1(γ)(h0, 1), ·, 1) and for t = 0, 1

µt+1(γ)(ht, ht+1(g′)) = uc(nt+1(γ)(ht, ht+1(g′)) − g′, 1 − nt+1(γ)(ht, ht+1(g′)))

Proof of Theorem 5.1. By definition of V ∗
1 , V ∗

0 and V
∗
1, it follows that:

with h0 = (1, B, g, δ̄)

V ∗
0 (g,B) = sup

γ

V0(γ)(h0, 0) (D.36)

subject to γ = (γF ,γD) ∈ S(h0, 0) (D.37)

γ
D|h0,φ=0 are determined by (5.12) − (5.11) (D.38)

uc(κn0(γ)(h0) − g, 1 − n0(γ)(h0)) = mA(g) (D.39)

52



and similarly, with h0 = (1, B, g, δ)

V ∗
1 (g, δB, µ) = sup

γ

V0(γ)(h0, 1) (D.40)

subject to γ = (γF ,γD) ∈ S(h0, 1) (D.41)

γ
D|h0,φ=1 are determined by (5.12) − (5.11) (D.42)

uc(n0(γ)(h0) − g, 1 − n0(γ)(h0)) = µ. (D.43)

finally, with h0 = (0, B, g, δ)

V
∗
1(g, δB) = sup

γ

V0(γ)(h0, 1) (D.44)

subject to γ = (γF ,γD) ∈ S(h0, 1) (D.45)

γ
D|h0,φ=1 are determined by (5.12) − (5.11). (D.46)

The first (sequential) problem consists of selecting γ, consistent with competitive equilibrium

and optimality for the default authority from t = 1 on, to maximize the lifetime utility of house-

holds, conditional on h0 = (1, B, g, δ̄) and φ = 0. The solution is given by V ∗
0 (g,B), which does

not depend on δ nor µ. Condition D.39 ensures that the current marginal utility is equal to the

autarkic value defined before.

Problem D.40 is analogous to Problem D.36 with φ = 1 instead. In this case, we impose

through condition D.43 that the current marginal utility is µ.

Henceforth, we refer to strategies that satisfy the restrictions on the above programs as admis-

sible. We also assume that the suprema are achieved; this assumption is to ease the exposition, if

this were not the case the proof still goes through by exploiting the definition of the supremum.

By definition, V
∗
1(g, δB) ≥ V0(γ)(0, B, g, δ, 1) for all γ ∈ S(0, B, g, δ, 1) and γ

D|h0,φ=1 are

determined by (5.12)-(5.11). By definition of Ω(0, B, g, δ, 1), this implies that for all (µ, v) ∈

Ω(0, B, g, δ, 1), V
∗
1(g, δB) ≥ v. On the other hand, assuming that the there exists a strategy γ

that achieves the supremum, it has to be true that there exists a µ such that (µ, V
∗
1(g, δB)) ∈

Ω(0, B, g, δ, 1). Therefore,

V
∗
1(g, δB) = max{v|(µ, v) ∈ Ω(0, B, g, δ, 1)}. (D.47)

It is easy to see that the same result applies for any time t and any history (ht, 0, B, g, δ) (not

just t = 0 and h0 = (0, B, g, δ)).

Let h0 ≡ (1, B, g, δ). Suppose that there exists a strategy γ̂ that achieves the supremum in

program D.36. Then 68

V ∗
0 (g,B) =u(κn0(γ̂)(g) − g, 1 − n0(γ̂)(g))

+ βλ

∫

G

∫

∆
max{V1(γ̂)(h0, 0, B, (g

′, δ′), 1), V1(γ̂)(h0, 0, B, (g
′, δ′), 0)}π∆(dδ′)πG(dg′|g)

+ β(1 − λ)

∫

G

V1(γ̂)(h0, 0, B, (g
′, δ), 0)πG(dg′|g).

68Henceforth we abuse notation and use n0(γ)(g) instead of n0(γ)(h0).
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Observe that, for any g′ ∈ G, V1(γ̂)(h0, 0, B, (g
′, δ′), 0) is constant with respect to δ′. Also,

note that γ̂|h1,φ is admissible by lemma D.2. Hence, these observations and definition of V ∗
0 ,

imply that V1(γ̂)(h0, 0, B, (g
′, δ̄), 0) ≤ V ∗

0 (g′, B). It also follows that V1(γ)(h0, 0, B, (g
′, δ′), 0) =

V0(γ)(0, B, (g′, δ′), 0) for any strategy γ and any (h0, g
′, δ′). Thus

V1(γ̂)(h0, 0, B, (g
′, δ̄), 0) = V ∗

0 (g′, B), ∀g′ ∈ G. (D.48)

Therefore,

V ∗
0 (g,B) =u(κn0(γ̂)(g) − g, 1 − n0(γ̂)(g)) (D.49)

+ βλ

∫

G

∫

∆
max{V1(γ̂)(h0, 0, B, (g

′, δ′), 1), V ∗
0 (g′, B)}π∆(dδ′)πG(dg′|g) (D.50)

+ β(1 − λ)

∫

G

V ∗
0 (g′, B)πG(dg′|g). (D.51)

By construction, n0(γ̂)(g) = n∗
0(g) and thus,

V ∗
0 (g,B) =u(κn∗

0(g) − g, 1 − n∗
0(g))

+ βλ

∫

G

∫

∆
max{V1(γ̂)(h0, 0, B, (g

′, δ′), 1), V ∗
0 (g′, B)}π∆(dδ′)πG(dg′|g)

+ β(1 − λ)

∫

G

V ∗
0 (g′, B)πG(dg′|g).

Observe that at (h0, φ0 = 0, B, g′, δ′, φ1 = 1) a “new” fiscal authority beings at time t = 1. By

construction, this fiscal authority starts without binding promises regarding the marginal utility of

consumption. Since γ̂ is optimal, it follows that V1(γ̂)(h0, 0, B, g
′, δ′, 1) = V

∗
1(g′, δ′B). Therefore,

V ∗
0 (g,B) =u(κn∗

0(g) − g, 1 − n∗
0(g)) + βλ

∫

G

∫

∆
max{V

∗
1(g′, δ′B), V ∗

0 (g′, B)}π∆(dδ′)πG(dg′|g)

+ β(1 − λ)

∫

G

V ∗
0 (g′, B)πG(dg′|g).

(D.52)

We now consider program D.40. With an slight abuse of notation, let γ̂ be the strategy that

achieves the supremum in program D.40. Then,

V ∗
1 (g, δB, µ) =u(n0(γ̂)(g) − g, 1 − n0(γ̂)(g))

+β

∫

G

max{V1(γ̂)(h0, 1, B1(γ̂)(h0, 1), (g′, 1), 1), V1(γ̂)(h0, 1, B1(γ̂)(h0, 1), (g′, 1), 0)}πG(dg′|g)

≥u(n0(γ)(g) − g, 1 − n0(γ)(g))

+β

∫

G

max{V1(γ)(h0, 1, B1(γ)(h0, 1), (g′, 1), 1), V1(γ)(h0, 1, B1(γ)(h0, 1), (g′, 1), 0)}πG(dg′|g)

(D.53)

where h0 = (1, B, g, δ) and the second line holds for any γ admissible.
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Henceforth, let µt(γ)(ht) ≡ uc(nt(γ)(ht) − gt, 1 − nt(γ)(ht)) for any strategy γ and history

ht ∈ H
t. Observe that, for h1 = (1, B1(γ̂)(h0, 1), (g′, 1)), due to lemma D.2, γ̂|h1,φ is admissible

(taking µ as µ1(γ̂)(h1)), because γ̂|h1,φ ∈ S(h1, φ), and also γ
D|h1,φ=1 are determined by (5.12)-

(5.11). Thus

V1(γ̂)(h0, h1, 1) ≤ V ∗
1 (g′, B1(γ̂)(h0, 1), µ1(γ̂)(h1))

and V1(γ̂)(h0, h1, 0) ≤ V ∗
0 (g′, B1(γ̂)(h0, 1)).

Therefore, letting h1(g′) = (1, B1(γ̂)(h0, 1), (g′, 1))),

V ∗
1 (g, δB, µ) ≤u(n0(γ̂)(g) − g, 1 − n0(γ̂)(g))

+ β

∫

G

max{V ∗
1 (g′, B1(γ̂)(h0, 1), µ1(γ̂)(h1(g′))), V ∗

0 (g′, B1(γ̂)(h0, 1))}πG(dg′|g).

By lemma D.2, (n0(γ̂)(g), B1(γ̂)(h0, 1), µ1(γ̂)(h1(·)))) are such that uc(n0(γ̂)(g) − g, 1 −

n0(γ̂)(g)) = µ and

z(1, n0(γ̂)(g), g)µ+ P∗
1 (g,B1(γ̂)(h0, 1), µ1(γ̂)(h1(·))B1(γ̂)(h0, 1) ≥ δBµ.

Therefore,

V ∗
1 (g, δB, µ) ≤ max

(n′,B′,µ′(·))∈Γ(g,δB,µ)
u(n− g, 1 − n) + β

∫

G

max{V ∗
1 (g′, B′, µ′(g′)), V ∗

0 (g′, B′)}πG(dg′|g).

We now show that the reversed inequality holds. For this we construct the following strategy

γ̃: (1) γ̃
D are determined by (5.12)-(5.11); (2) for any φ and h1, γ̃

F (h0, φ) = B1(γ̃)(h0, φ) and

µ1(γ̃)(h1) are such that

z(1, n0(γ̃)(g), g)µ+ φ{P∗
1 (g,B1(γ̃)(h0, 1), µ1(γ̃)(h0, ◦))B1(γ̃)(h0, 1) − δBµ} ≥ 0, (D.54)

where ◦ stands for (1, B1(γ̃)(h0, φ), (·, φ)), andB1(γ̃)(h0, φ) = B and µ1(γ̃)(h1) = mA(g′) if φ = 0;

(3) the remainder components of the strategy γ̃
F agree with γ̂

F , i.e., γ̃
F |h1,φ = γ̂

F |h1,φ for all

history h1 ∈ H1 and φ ∈ {0, 1}.

We now verify that γ̃ is admissible, which boils down to proving that γ̃ ∈ S(h0, 1). Observe

that by our construction (n0(γ̃)(g), B1(γ̃)(h0, 1)) satisfy the implementability constraint (equation

D.54) at time t = 0 for a price given by P∗
1 (g,B1(γ̃)(h0, 1), µ1(γ̃)(h0, ◦)) and it satisfies that

B1(γ̃)(h0, 0) = B. Additionally, from lemma D.2, γ̂|h1,φ ∈ S(h1, φ), so these two results imply

that γ̃ ∈ S(h0, 1).

Also, since γ̂|h1,φ ∈ S(h1, φ), it follows that V1(γ̂)(h1, 1) = V ∗
1 (g′, δ′B1(γ̃)(h0, 1), µ1(γ̃)(h1))

and V1(γ̂)(h1, 0) = V ∗
0 (g′, B1(γ̃)(h0, 1)), otherwise there would be an admissible strategy that

achieves a higher value for V0(·)(h0, φ) than γ̂.

Hence, evaluating display D.53 at γ̃, it follows that

V ∗
1 (g, δB, µ) ≥u(n0(γ̃)(g) − g, 1 − n0(γ̃)(g))

+ β

∫

G

max{V ∗
1 (g′, B1(γ̃)(h0, 1), µ1(γ̃)(h0, h1(g′))), V ∗

0 (g′, B1(γ̃)(h0, 1))}πG(dg′|g)
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where h1(g′) stands for (1, B1(γ̃)(h0, 1), (g′, 1)). Since (n0(γ̃)(h0), B1(γ̃)(h0, 1), µ1(γ̃)(h1)) are

arbitrary (other than the fact that they belong to Γ(g, δB, µ)), it follows that

V ∗
1 (g, δB, µ) ≥ max

(n,B′,µ′(·)∈Γ(g,δB,µ)
u(n− g, 1 − n) + β

∫

G

max{V ∗
1 (g′, B′, µ′(g′)), V ∗

0 (g′, B′)}πG(dg′|g).

D.1 Proofs of Supplementary lemmas

Proof of Lemma D.1. (1) Under assumption assumption 4.1, n 7→ u′(κn − g, 1 − n) = uc(κn −

g) − ul(1 − n) = 1 − (1 − τ)κ and since κ < 1 and τ ∈ [0, 1] it implies that u′(κn− g, 1 − n) > 0.

Also, n 7→ u(κn − g, 1 − n) is continuous. Moreover, {n : z(κ, n, g) = 0} = {n : κ(uc(n − g, 1 −

n) − ul(n− g, 1 − n))n− uc(n− g, 1 − n)g = 0}. Under assumption 4.1, uc and ul are continuous,

and thus this set is closed (and bounded). Therefore compact. By the theorem of the maximum

arg maxn∈[0,1]{u(κn − g, 1 − n) : z(κ, n, g) = 0} exists. Uniqueness follows from the fact that

n 7→ u(κn− g, 1 − n) is increasing.

(2) First observe that n 7→ z(1, n, g) = (1 −H ′(1 − n))n − g (with uc = 1) is continuous and

thus n̄(g) exists for all g ∈ G (G is such that for all g ∈ G, maxn∈[0,1] z(1, n, g) ≥ g). Observe that

n 7→ z′(1, n, g) = (1 −H ′(1 − n)) +H ′′(1 − n)n and n 7→ z′′(1, n, g) = 2H ′′(1 − n) −H ′′′(1 − n)n.

By assumption 6.1, z′′(1, n, g) < 0 and thus is strictly concave. We now show that z is decreasing.

If n̄(g) = 1 then the statement is vacuous, so consider n̄(g) < 1. Since n̄(g) is the “argmax”,

z′(1, n̄(g), g) ≤ 0. Since z is strictly concave, z′ is a decreasing, hence z′(1, n, g) < z′(1, n̄(g), g) ≤ 0

for all n > n̄(g), and the result follows.

Proof of Lemma D.2. If γ ∈ S(h0, φ0) it follows that, for any public history ht with ht =

(φt−1, Bt, ωt = (gt, δt)) with Bt = Bt(γ)(ht−1, φ) and any φ ∈ {0, 1},

z(κφ, nt(γ)(ht), gt)uc(ω
t) + φ{pt(ω

t)uc(ω
t)Bt+1(γ)(ht, φ) − δtuc(ω

t)Bt} ≥ 0

and Bt+1(γ)(ht, 0) = Bt,

pt(ω
t)uc(ω

t) =β

∫

G

dt+1(γ)(ht, ht+1(g′))µt+1(γ)(ht, ht+1(g′))πG(dg′|gt)

+ β

∫

G

(1 − dt+1(γ)(ht, ht+1(g′)))mA(g′)qt+1(ωt, δ̄, g′)πG(dg′|gt) (D.55)

where ht+1(g′) ≡ (1, Bt+1(γ)(ht, 1), g′, 1) and

µt+1(γ)(ht, ht+1(g′)) = uc(nt+1(γ)(ht, ht+1(g′)) − g′, 1 − nt+1(γ)(ht, ht+1(g′)))

and qt is the “secondary market” price at time t, i.e.,

qt+1(ωt+1, δ̄, g) ≡βλ

∫

G

∫

∆
at+1(γ)(ht, ht+1(g′, δ′))µt+1(γ)(ht, ht+1(g′, δ′))δ′π∆(dδ′)πG(dg′|g)

+ β

∫

G

(
1 − λ + λ

∫

∆
(1 − at+1(γ)(ht, ht+1(g′, δ′)))π∆(dδ′)

)
mA(g′)qt+2(ωt+1, δ̄, g′)πG(dg′|g)

(D.56)
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with ht+1(g′, δ′) = (0, δ′Bt+1(γ)(ht, 1), g′, δ′).

From equation D.55 it follows that pt(ω
t)uc(ω

t) = P1(gt, Bt+1(γ)(ht, 1), µt+1(γ)(ht, ht+1(·)))

and from equation D.56 qt+1(ωt, δ̄, g′) = P0(g′, Bt+1(γ)(ht, 1)). Also, from these equations and

the first display it is clear that if γ ∈ S(h0, φ0), then γ|ht,φ ∈ S(φt−1, Bt, ωt, φ).

E Proofs for section 6

In order to show proposition 6.1, we need the following lemmas (whose proofs are relegated to the

end of this section). Throughout this section we assume that assumption 6.1 holds.

Throughout this section, let

Γφ(g,B) = {(n,B′) : z(κφ, n, g) + φ(P∗
φ(g,B′)B′ −B) ≥ 0 and B′ = B if φ = 0}

with κφ ≡ φ + κ(1 − φ).

Lemma E.1. There exists a constant ∞ > C > 0, such that |V ∗
φ (g,B)| ≤ C for all (φ, g, B) such

that Γφ(g,B) 6= {∅}.

Lemma E.2. B 7→ V ∗
1 (g,B) is non-increasing for all g ∈ G.69

Lemma E.3.

max
g′∈G

max
B1,B2∈B2

|V ∗
0 (g′, B1) − V ∗

0 (g′, B2)| ≤ λ
βC

1 − β
.

The previous lemma implies that, for any ǫ > 0, there exists a λ(ǫ) > 0 such that, for any

λ ∈ [0, λ(ǫ)]

max
g′∈G

max
B1,B2∈B2

|V ∗
0 (g′, B1) − V ∗

0 (g′, B2)| ≤ ǫ. (E.57)

Lemma E.4. There exists λ̄ > 0 such that for all λ ∈ [0, λ̄], the following holds: For all (g,B)

such that B > 0 and d∗(g,B) = 1, P∗
1 (g,B′)B′ ≤ B for all B′ ∈ B.

We observe that for each B ∈ B, P∗
0 is the fixed point of the following mapping

q 7→T ∗
B [q](·)

=λβ

∫

G×∆
a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′|·) + β

∫

G

(
(1 − λ) + λ

∫

∆
(1 − a∗(g′, δ′, B))π∆(dδ′)

)
q(g′)πG(dg′|·)

=λβ

∫

G×∆
a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′|·) + β

∫

G

(
1 − λ

∫

∆
a∗(g′, δ′, B)π∆(dδ′)

)
q(g′)πG(dg′|·)

for any B ∈ B, and q ∈ {f : G → R | f uniformly bounded}. We use this insight to derive

properties of P∗
0 .

69This result clearly implies that δ 7→ V ∗
1 (g, δB) is non-decreasing for all g ∈ G and B > 0.
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Lemma E.5 (lem:T-q). Suppose assumption 6.1 holds. Then:

1. For each B ∈ B, T ∗
B is a contraction.

2. For any (g,B) ∈ G × B, P∗
0 (g,B) ∈

[
0, λ β

1−β
Eπ∆

[δ]
]
.

3. If g is iid (distributed according to πG(·)), then P∗
0 (g,B) is constant in g and given by

P∗
0 (g,B) =

λβ
∫
G×∆ a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′)

1 − β + βλ
∫
G×∆ a∗(g′, δ′, B)π∆(dδ′)πG(dg′)

and in this case |P∗
0 (g,B)| ≤ βλ

1−β+βλ
< 1.

Proof of Proposition 6.1. Part (1). By lemma E.2, δ 7→ V ∗
1 (g, δB) is non-increasing, provided

B > 0 (but this is the only case it matters since the government will never default on savings

B < 0). On the other hand V ∗
0 (g,B) is constant with respect to δ. Therefore if for some δ ∈ ∆,

a∗(g, δ, B) = 1, then for all δ1 ≤ δ the same must hold. Thus, there exists a δ̄ : G × B → [0, 1]

such that

a∗(g, δ, B) = 1{δ:δ≤δ̂(g,B)}(δ). (E.58)

We now show that B 7→ δ̂(g,B) is non-increasing, for all g ∈ G. It suffices to show that for

any δ such that δ > δ̂(g,B1) then δ > δ̂(g,B2) for any B1 < B2.

Since δ > δ̂(g,B1), it follows that V ∗
1 (g, δB1) < V ∗

0 (g,B1). Let ǫ(g,B1, δ) ≡ V ∗
0 (g,B1) −

V ∗
1 (g, δB1). It is easy to see that ǫ(g,B1, δ) > 0 for any (g,B1, δ) such that δ > δ̂(g,B1). Moreover,

since g, B1 and δ belong to discrete sets, there exists a ǫ > 0 such that ǫ ≤ ǫ(g,B1, δ) for all

(g,B1, δ) such that δ > δ̂(g,B1).

Since B 7→ V ∗
1 (g,B) is non-increasing (see lemma E.2) for any g ∈ G, it follows that

V ∗
1 (g, δB2) ≤ V ∗

1 (g, δB1) for all (g, δ) ∈ G × ∆ (observe that δ > 0 always). Therefore,

V ∗
1 (g, δB2) − V ∗

0 (g,B2) ≤V ∗
1 (g, δB1) − V ∗

0 (g,B2)

≤V ∗
1 (g, δB1) − V ∗

0 (g,B1) + {V ∗
0 (g,B1) − V ∗

0 (g,B2)},

for all (g,B1, B2, δ) such that δ > δ̂(g,B1).

Hence, if |V ∗
0 (g,B1) − V ∗

0 (g,B2)| < ǫ for any (g,B1, B2), the previous display implies that

V ∗
1 (g, δB2) − V ∗

0 (g,B2) < 0 and the desired result follows. We now show that |V ∗
0 (g,B1) −

V ∗
0 (g,B2)| < ǫ for any (g,B1, B2). By lemma E.3,

|V ∗
0 (g,B1) − V ∗

0 (g,B2)| < λ
βC

1 − β
.

Thus for any ε > 0, there exists a λ(ε), such that

|V ∗
0 (g,B1) − V ∗

0 (g,B1)| < ε
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for all λ ∈ [0, λ(ε)]. By setting ε = ǫ and λ̄ = λ(ǫ), the desired result follows.

Part (2). Following Arellano (2008) we show the result in two steps. Throughout the proof

n∗
φ and B∗ are the optimal policy functions for labor and debt.

Step 1. We show that for any B1 < B2, S(B1) ⊆ S(B2) where S(B) = {g : d∗(g,B) = 1}.

If S(B1) = {∅} the proof is trivial, so we proceed with the case in which this does not hold and

let ḡ ∈ S(B1). If B2 is not feasible, in the sense that there does not exist any B′ such that

B2 − P∗
1 (g;B′)B′ − maxn∈[0,1] z(1, n, ḡ) ≤ 0, then S(B2) = G. And the result holds trivially, so

we proceed with the case that B2 is feasible, given ḡ.

It follows (since we assume that under indifference, the government chooses not to default)

V ∗
1 (ḡ, B1) < V ∗

0 (ḡ, B1). Since B 7→ V ∗
1 (ḡ, B) is non-increasing (see lemma E.2), it follows that

V ∗
1 (ḡ, B2) ≤ V ∗

1 (ḡ, B1), for all B1 < B2.

Therefore,

V ∗
1 (ḡ, B2) − V ∗

0 (ḡ, B2) ≤V ∗
1 (ḡ, B1) − V ∗

0 (ḡ, B2)

≤V ∗
1 (ḡ, B1) − V ∗

0 (ḡ, B1) + {V ∗
0 (ḡ, B1) − V ∗

0 (ḡ, B2)}.

Let ǫ(ḡ, B1) ≡ −{V ∗
1 (ḡ, B1)−V ∗

0 (ḡ, B1)}, observe that ǫ(ḡ, B1) > 0 for any (B1, ḡ) ∈ Graph{S}.

Thus, if V ∗
0 (ḡ, B1) − V ∗

0 (ḡ, B2) < ǫ(ḡ, B1), then V ∗
1 (ḡ, B2) < V ∗

0 (ḡ, B2) and the desired result fol-

lows.

Observe that |B ×Graph(S)| < ∞, so there exists ǫ > 0 such that ǫ ≤ ǫ(ḡ, B1) for any ḡ and

B1 in Graph(S). By lemma E.3 and our derivations in part (1), there exists a λ(ǫ) > 0 such that

|V ∗
0 (g,B1) − V ∗

0 (g,B2)| < ǫ, ∀λ ∈ [0, λ(ǫ)] and (g,B1, B2) ∈ G × B
2.

Hence, V ∗
1 (ḡ, B2) − V ∗

0 (ḡ, B2) < 0, thereby implying that ḡ ∈ S(B2).

Step 2. We show that, for any B ∈ B and any g1 < g2 in G, if d∗(g1, B) = 1, then

d∗(g2, B) = 1. That is, we want to show that V ∗
1 (g2, B) < V ∗

0 (g2, B). Since default occurs for g1,

it suffices to show that

V ∗
1 (g2, B) − V ∗

0 (g2, B) < V ∗
1 (g1, B) − V ∗

0 (g1, B) (E.59)

or equivalently, V ∗
1 (g2, B) − V ∗

1 (g1, B) < V ∗
0 (g2, B) − V ∗

0 (g1, B). Observe that

V ∗
0 (g2, B) − V ∗

0 (g1, B) = r(n∗
0(g2)) − r(n∗

0(g1)) − (g2 − g1). (E.60)

where n 7→ r(n) = n+H(1 − n). And now take ñ such that

z(1, ñ, g1) = B − P∗
1 (B∗(g2, B))B∗(g2, B);
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i.e., ñ is such that (ñ,B∗(g2, B)) are feasible choices given the state (g1, B), and recall z(1, n, g) ≡

(1 − H ′(1 − n))n − g and (g,B) 7→ B∗(g,B) is the optimal policy function for debt, when the

government has access to financial markets. Observe that if no such choice exists, then trivially

d∗(g2, B) = 1. Also, P∗
1 does not depend on g because of the i.i.d. assumption. Given this

construction,

V ∗
1 (g2, B) − V ∗

1 (g1, B)

≤r(n∗
1(g2, B)) − g2 + β

∫

G

V
∗(g′,B∗(g2, B))πG(dg′) −

{
r(ñ) − g1 + β

∫

G

V
∗(g′,B∗(g2, B))πG(dg′)

}

=r(n∗
1(g2, B)) − r(ñ) − (g2 − g1)

where (g,B) 7→ V∗(g,B) ≡ max{V ∗
1 (g,B), V ∗

0 (g,B)}. Given this display and E.60, it suffices to

show that

r(n∗
1(g2, B)) − r(ñ) ≤ r(n∗

0(g2)) − r(n∗
0(g1)). (E.61)

We now show this inequality. By construction of ñ,

z(1, ñ, g1) = z(1,n∗
1(g2, B), g2) (E.62)

where (g,B) 7→ n∗
1(g,B) is the optimal policy function for labor, when the government has access

to financial markets. Since n 7→ z(1, n, g) is non-increasing in the relevant domain (by relevant

domain we mean the interval of n which are in “correct side of the Laffer curve”; see lemma

D.1(2)) and g1 < g2, ñ ≥ n∗
1(g2, B). By analogous arguments, it follows that n∗

0(g1) > n∗
0(g2).

Also, note that

z(1, ñ, g1) − z(1,n∗
0(g1), g1) = P∗

1 (B∗(g2, B))B∗(g2, B) = z(1,n∗
1(g2, B), g2) − z(1,n∗

0(g2), g2),

(E.63)

or equivalently, with n 7→ ρ(n) = (1 −H ′(1 − n))n

ρ(ñ) − ρ(n∗
0(g1)) = ρ(n∗

1(g2, B)) − ρ(n∗
0(g2)). (E.64)

Since n 7→ z(1, n, g) (and thus ρ) is concave and non-increasing (see lemma D.1(2)), it follows

ñ > (<)n∗
0(g1) iff n∗

1(g2, B) > (<)n∗
0(g2).

Putting all these observations together, we have the following possible orders

(I) : n∗
0(g1) ≥ ñ ≥ n∗

0(g2) ≥ n∗
1(g2, B)

(II) : n∗
0(g1) ≥ n∗

0(g2) ≥ ñ ≥ n∗
1(g2, B)

(III) : ñ ≥ n∗
0(g1) ≥ n∗

1(g2, B) ≥ n∗
0(g2)

(IV ) : ñ ≥ n∗
1(g2, B) ≥ n∗

0(g1) ≥ n∗
0(g2).
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Moreover, since in (g1, B) the government defaults, it follows from the proof of lemma E.4

that B − P∗
1 (B′)B′ ≥ 0 for any B′ ∈ B, in particular for B′ = B∗(g2, B). Therefore, z(1, ñ, g1) >

z(1,n∗
0(g1), g1), and thus ñ ≤ n∗

0(g1), and consequently n∗
1(g2, B) ≤ n∗

0(g2). Hence, cases (III) and

(IV) are ruled out.

We now study cases (I) and (II). Since n 7→ z(1, n, g) is strictly concave and non-increasing

(see lemma D.1), equation E.64 and (I) and (II) imply

n∗
0(g1) − ñ ≤ n∗

0(g2) − n∗
1(g2, B). (E.65)

Since n 7→ r(n) ≡ n+H(1−n) is concave and increasing under our assumptions, the previous

inequality implies that

r(n∗
0(g1)) − r(n∗

0(g2)) ≤ r(ñ) − r(n∗
1(g2, B)) (E.66)

for both case (I) and (II), or equivalently

r(n∗
1(g2, B)) − r(ñ) ≤ r(n∗

0(g2)) − (n∗
0(g1)).

Which is precisely equation E.61.

Hence, step 2 establishes that d∗ is of the threshold type, since it shows that, for any B,

if d∗(g,B) = 1, the same is true for any g′ > g. That is {g : d∗(g,B) = 1} is of the form

{g : g ≥ ḡ(B)}. Step 1 shows that the ḡ ought to be non-increasing.

Proof of Proposition 6.2. We first establish the result for i = 0. From lemma E.5(3), observe that

P∗
0 (B) =

βλ
∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)π∆(dδ)πG(dg′)

1 − β + βλ
∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)π∆(dδ)πG(dg′)

∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)δπ∆(dδ)πG(dg′)

∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)π∆(dδ)πG(dg′)

.

The first term in the RHS is an increasing function (namely x 7→ x
1−β+x

) of βλ
∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)π∆(dδ)πG(dg′).

SinceB 7→ δ̂(g,B) is non-increasing (proposition 6.1), it follows thatB 7→
∫

∆ 1{δ≤δ̂(g′,B)}(δ)π∆(dδ)

is also non-increasing, this in turn implies that the first term in the RHS is also non-increasing as

a function of B.

By our assumption π∆(·) = 1δ0
(·), the second term in the RHS is given by

∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)δπ∆(dδ)πG(dg′)

∫
G

∫
∆ 1{δ≤δ̂(g′,B)}(δ)π∆(dδ)πG(dg′)

= δ0

∫
G

1{δ0≤δ̂(g′,B)}(δ)πG(dg′)
∫
G

1{δ0≤δ̂(g′,B)}(δ)πG(dg′)
= δ0

and thus constant. Hence, B 7→ P∗
0 (B) is non-increasing.

For i = 1, observe that for any B1 ≤ B2,

P∗
1 (B1) =β

∫

G

1{g′≤ḡ(B1)}(g′)πG(dg′) + β

∫

G

1{g′>ḡ(B1)}(g′)πG(dg′)P∗
0 (B1) (E.67)

≥β
∫

G

1{g′≤ḡ(B2)}(g′)πG(dg′) + β

∫

G

1{g′>ḡ(B2)}(g′)πG(dg′)P∗
0 (B1) (E.68)

≥β
∫

G

1{g′≤ḡ(B2)}(g′)πG(dg′) + β

∫

G

1{g′>ḡ(B2)}(g′)πG(dg′)P∗
0 (B2) (E.69)

=P∗
1 (B2) (E.70)
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where the first inequality follows from the fact that B 7→ ḡ(B) is non-increasing (proposition 6.1)

and P∗
0 (B) < 1 for any B ∈ B (see lemma E.5(3)) ; the second inequality follows from the fact

that P∗
0 is non-increasing.

E.1 Proofs of supplementary lemmas

Proof of Lemma E.1. For any (φ−, g, δ, B) ∈ {0, 1}×G×∆×B, and any function (φ−, g, δ, B) 7→

F (φ−, g, δ, B) we define the following operator

T [F ](φ−, g, δ, B) = max
(a,d)∈D(φ−,δ)

T1[F ](φ−(1 − d) + a(1 − φ−), g, δ, ϕ(B, δ, a, d)) (E.71)

with D(0, δ) = {0, 1} × {1} if δ 6= δ̄ and D(0, δ̄) = {0} × {1}, also D(1, δ) = {1} × {0, 1};

ϕ(B, δ, a, 0) = B and ϕ(B, δ, 1, d) = δB and ϕ(B, δ, 0, d) = B; and

T1[F ](φ, g, δ, B) = max
(n,B′)∈Γφ(g,B)

{
κφn− g +H(1 − n) + β

∫

G

∫

∆̄
F (φ, g′, δ′, B′)π∆̄(dδ′|φ)πG(dg′)

}
,

(E.72)

where π∆̄(·|φ) = 1{1}(·) if φ = 1 and π∆̄(·|φ) = (1 − λ)1{δ̄}(·) + λπ∆(·) if φ = 0.

A fix point of the T operator, is given by

V
∗(φ−, g, δ, B) = max

(a,d)∈D(φ− ,δ)
V ∗

φ−(1−d)+a(1−φ−)(g, ϕ(B, δ, a, d)) (E.73)

and for any φ ∈ {0, 1}

V ∗
φ (g,B) = max

(n,B′)∈Γφ(g,B)

{
κφn− g +H(1 − n) + β

∫

G

∫

∆̄
V

∗(φ, g′, δ′, B′)π∆̄(dδ′|φ)πG(dg′)

}
.

(E.74)

In order to verify equation E.74, observe that if φ = 0, B′ = B by the restrictions imposed on

Γ0, κ0 = κ and
∫

∆̄
V

∗(0, g′, δ′, B′)π∆̄(dδ′|0) =λ

∫

∆
V

∗(0, g′, δ′, B)π∆̄(dδ′) + (1 − λ)V∗(0, g′, δ̄, B)

=λ

∫

∆
max

a∈{0,1}
V ∗

a (g′, B(δa+ (1 − a)))π∆̄(dδ′) + (1 − λ)V∗(0, g′, δ̄, B)

=λ

∫

∆
max{V ∗

1 (g′, Bδ), V ∗
0 (g′, B)}π∆̄(dδ′) + (1 − λ)V ∗

0 (g′, B)

where the last line follows from the fact that D(0, δ̄) = {0} × {1}. If φ = 1, then
∫

∆̄
V

∗(1, g′, δ′, B′)π∆̄(dδ′|1) =V
∗(1, g′, 1, B′)

= max
d∈{0,1}

V ∗
(1−d)(g

′, ϕ(B′, 1, 1, d))

= max{V ∗
1 (g′, ϕ(B′, 1, 1, 0)), V ∗

0 (g′, ϕ(B′, 1, 1, 1))}

= max{V ∗
1 (g′, B′), V ∗

0 (g′, B′)}.
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Observe that from this fixed point we can derive the functions V ∗ by using equation E.74.

We now show that the operator T maps bounded functions onto bounded functions. Take F

such that |F (φ−, g, δ, B)| ≤ C for all (φ−, g, δ, B) and for some finite constant C > 0. Then

|T [F ](φ−, g, δ, B)| = | max
(a,d)∈D(φ− ,δ)

T1[F ](φ−(1 − d) + a(1 − φ−), g, δ, ϕ(B, δ, a, d))|.

If (g, δ, B) are such that Γ1(g, δB) = {∅}, then by convention, φ−(1−d)+a(1−φ−) = 0 (i.e., there

is default/no repayment) and thus max(a,d)∈D(φ−,δ) T1[F ](φ−(1−d)+a(1−φ−), g, δ, ϕ(B, δ, a, d)) =

F (0, g, δ, ϕ(B, δ, 0, 1)) = F (0, g, δ, B) and since by our assumptions over G, Γ0(g,B) 6= {∅} for any

(g,B), there exists a finite c′ > 0 such that | maxn∈Γ0(g,B) κn − g + H(1 − n)| ≤ c′. This implies

that in this case |T [F ](φ−, g, δ, B)| ≤ c′ + βC.

Similarly, if (g, δ, B) are such that Γ1(g, δB) 6= {∅} then | maxn∈Γ1(g,δB) n− g+H(1 −n)| ≤ c′

and it follows that |T [F ](φ−, g, δ, B)| ≤ c′ + βC. Hence, by letting C = c′

1−β
we showed that T

maps bounded functions onto bounded functions.

The fix point V∗ inherits this property, i,.e., |V∗(φ−, g, δ, B)| ≤ C for all (φ−, g, δ, B). This

result, the fact that | maxn∈Γ0(g,B) κn − g + H(1 − n)| ≤ c′ and equation E.74 implies that there

exists a finite constant C ′′ > 0, such that |V ∗
0 (g,B)| ≤ C ′′. An analogous result holds for V ∗

1 (g,B)

provided that (g,B) are such that Γ1(g,B) 6= {∅}.

Proof of Lemma E.2. It is easy to see that Γ1(g,B1) ⊆ Γ1(g,B2) for any B1 ≥ B2 and this

immediately implies that

V ∗
1 (g,B1) = max

(n,B′)∈Γ1(g,B1)
{n− g +H(1 − n) + β

∫

G

max{V ∗
0 (g′, B′), V ∗

1 (g′, B′)}πG(dg′)

≤ max
(n,B′)∈Γ1(g,B2)

{n− g +H(1 − n) + β

∫

G

max{V ∗
0 (g′, B′), V ∗

1 (g′, B′)}πG(dg′)

=V ∗
1 (g,B2)

and the result follows for V ∗
1 .

Proof of Lemma E.3. Observe that, for any (g,B1, B2) ∈ G × B
2,

|V ∗
0 (g,B1) − V ∗

0 (g,B2)| ≤λβ
∫

G

∫

∆
a∗(g, δ, B)|V ∗

1 (g′, δB1) − V ∗
1 (g′, δB2)|π∆(dδ)πG(dg′|g)

+ β

∫

G

{(1 − λ) + λ

∫

∆
(1 − a∗(g, δ, B))π∆(dδ)}|V ∗

0 (g′, B1) − V ∗
0 (g′, B2)|πG(dg′|g)

≤λβ
∫

G

∫

∆
a∗(g, δ, B)|V ∗

1 (g′, δB1) − V ∗
1 (g′, δB2)|π∆(dδ)πG(dg′|g)

+ βmax
g′∈G

|V ∗
0 (g′, B1) − V ∗

0 (g′, B2)|

≤λβC + βmax
g′∈G

|V ∗
0 (g′, B1) − V ∗

0 (g′, B2)|

where the last line follows from lemma E.1 and the fact that if (g, δ, B) are such that Γ1(g, δB) =

{∅} then a∗(g, δ, B) = 0. Therefore,

max
g′∈G

max
B1,B2∈B2

|V ∗
0 (g′, B1) − V ∗

0 (g′, B2)| ≤ λ
βC

1 − β
.
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Proof of Lemma E.4. Suppose not. That is, for any λ, there exists a (g,B) with B > 0 such that

d∗(g,B) = 1 but there exists a B′ such that P∗
1 (g,B′)B′ > B.

First observe that for any (g,B,B′) such that P∗
1 (g,B′)B′ > B,

z(1,n(g,B,B′), g) < z(1,n∗
0(g), g)

where n(g,B,B′) is the level of labor that solves z(1, n, g)+P∗
1(g,B′)B′ = B. Since n 7→ z(1, n, g)

is non-increasing in the relevant domain (see lemma D.1(2)), it follows that n(g,B,B′) > n∗
0(g),

thereby implying that the per-period payoff is greater under no default, i.e.,

r(n(g,B,B′)) − g − {r(n∗
0(g)) − g} > 0 (E.75)

where n 7→ r(n) = n + H(1 − n) is increasing our assumptions. Let U ≡ {(g,B,B′) ∈ G × B2 :

equation E.75 holds}. Under our assumptions |U | < ∞, so there exists a ǫ′ > 0 such that

r(n(g,B,B′)) − g − {r(n∗
0(g)) − g} ≥ ǫ′ for all (g,B,B′) ∈ U .

Consider any λ ∈ [0, λ(0.5ǫ′)] where ǫ 7→ λ(ǫ) is such that

λ(ǫ)|
∫

G

{
∫

∆
max{V ∗

1 (g′, δB′) − V ∗
0 (g′, B′), 0}π∆(dδ)}πG(dg′|g)| ≤ ǫ; (E.76)

such λ exists by lemma E.1.

By our hypothesis, there exists a (g,B,B′) withB > 0 such that d∗(g,B) = 1 and P∗
1 (g,B′)B′ >

B. And thus (g,B,B′) ∈ U .

By our choice of λ,

∫

G

V ∗
0 (g′, B′)πG(dg′|g) + 0.5ǫ′ ≥

∫

G

{λ
∫

∆
max{V ∗

1 (g′, δB′), V ∗
0 (g′, B′)}π∆(dδ) + (1 − λ)V ∗

0 (g′, B′)}πG(dg′|g).

(E.77)

By definition of ǫ′ and the fact that (g,B,B′) ∈ U , it follows that

r(n(g,B,B′)) − g + β

∫

G

max{V ∗
1 (g′, B′), V ∗

0 (g′, B′)}πG(dg′|g) (E.78)

>r(n∗
0(g)) − g + 0.5ǫ′ + β

∫

G

max{V ∗
1 (g′, B′), V ∗

0 (g′, B′)}πG(dg′|g) (E.79)

≥r(n∗
0(g)) − g + 0.5ǫ′ + β

∫

G

V ∗
0 (g′, B′)πG(dg′|g) (E.80)

≥r(n∗
0(g)) − g + β{

∫

G

V ∗
0 (g′, B′)πG(dg′|g) + 0.5ǫ′} (E.81)

≥V ∗
0 (g,B). (E.82)

Since V ∗
1 (g,B) is larger or equal than the LHS, we conclude that for (g,B) the government

decides not to default, but this is a contradiction to the fact that d∗(g,B) = 1.
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Proof of Lemma E.5. Part 1. To show part 1 we show that for each B ∈ B, T ∗
B satisfies the

Blackwell sufficient conditions. Henceforth, consider B ∈ B given, observe that T ∗
B is of the form

T ∗
B [q](g) = AB(g) + β

∫

G

CB(g′)q(g′)πG(dg′|g) (E.83)

whereAB(·) ≡ λβ
∫
G×∆ a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′|·), and CB(g) ≡ ((1 − λ) + λ

∫
∆(1 − a∗(g′, δ′, B))π∆(dδ′))

is non-negative and less than one. Hence for any g ∈ G and for any q ≤ q′, T ∗
B [q](g) ≤ T ∗

B [q′](g)

and T ∗[q + a](g) = AB(g) + β
∫
G
CB(g′)q(g′)πG(dg′|g) + β

∫
G
CB(g′)q(g′)πG(dg′|g)a ≤ AB(g) +

β
∫
G
CB(g′)q(g′)πG(dg′|g) + βa = T ∗

B [q](g) + βa. Therefore T ∗
B is a contraction by Blackwell suf-

ficient conditions, see Stokey et al. (1989), moreover its modulus is given by β which does not

depend on B.

Part 2. Consider C ≡ βλ
Eπ∆

[δ]

1−β
such that |q(g)| ≤ C, then

|T ∗
B [q](g)| ≤ |AB(g)| + βC ≤ βλEπ∆

[δ] + βC = βλEπ∆
[δ]{1 +

β

1 − β
} = βλEπ∆

[δ]
1

1 − β
, (E.84)

so in fact T ∗
B maps functions bounded by C into themselves; and this holds for any B ∈ B. Thus

the fixed point of T ∗
B also satisfies the inequality.

Part 3. Since πG(·|g) are constant with respect to g it follows that

P∗
0 (g,B) = λβ

∫

G×∆
a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′) + β

∫

G

(
1 − λ

∫

∆
a∗(g′, δ′, B)π∆(dδ′)

)
P∗

0 (g′, B)πG(dg′)

and thus P∗
0 (g,B) is constant with respect to g, abusing notation we denote it as P∗

0 (B). From

the display above it follows that

P∗
0 (B) =

λβ
∫
G×∆ a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′)

1 − β
∫
G

(1 − λ
∫

∆ a∗(g′, δ′, B))π∆(dδ′))πG(dg′)

=
λβ
∫
G×∆ a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′)

1 − β (1 − λ
∫
G

∫
∆ a∗(g′, δ′, B)π∆(dδ′)πG(dg′))

=
λβ
∫
G×∆ a∗(g′, δ′, B)δ′π∆(dδ′)πG(dg′)

1 − β + βλ (
∫
G

∫
∆ a∗(g′, δ′, B)π∆(dδ′)πG(dg′))

.

Since δ ∈ ∆ is such that δ ≤ 1, it is easy to see that |P∗
0 (B)| ≤

λβ(
∫
G

∫
∆

a
∗(g′,δ′,B)π∆(dδ′)πG(dg′))

1−β+βλ(
∫
G

∫
∆

a
∗(g′,δ′,B)π∆(dδ′)πG(dg′))

≤

βλ
1−β+βλ

< 1.

E.2 Derivation of Equation 6.23

By our characterization of the default rule. In this setting, to default or not, boils down to choosing

a T (contingent on ω∞) such that for all t < T (ω∞) there is no default and for t ≥ T (ω∞) there

65



is financial autarky. Recall that under our assumptions u(c, l) = c+H(l) and gt ∼ iidπG, also πG

has a density with respect to Lesbegue, which we denote as fπG
.

For any ωt ∈ Ωt and t ≤ T (ω∞),

V ∗
1 (gt, Bt(ω

t−1)) = max
(n,B′)∈Γ(gt,Bt(ωt−1),1)

n− g +H(1 − n) + β

∫

{g′:g′≤ḡ(B′)}
{V ∗

1 (g′, B′) − V ∗
0 (g′)}πG(dg′)

(E.85)

+ β

∫
V ∗

0 (g′)πG(dg′) (E.86)

and let νt(ω
t) is the lagrange multiplier of the restriction, z(1, n, gt)+P∗

1(B′)B′−Bt(ω
t−1) ≥ 0. By

assumption, the solution of B′ is in the interior. So the optimal choice ((nt(ω
t))∞

t=0, (Bt+1(ωt))∞
t=0)

satisfy

1 −H ′(1 − nt(ω
t)) + νt(ω

t)

(
dz(1, nt(ω

t), gt)

dn

)
= 0

or equivalently

νt(ω
t) ≡ ν(nt(ω

t)) = −
1 − H ′(1 − nt(ω

t))

1 −H ′(1 − nt(ωt)) +H ′′(1 − nt(ωt))nt(ωt)
, (E.87)

and

νt(ω
t)

{
P∗

1 (Bt+1(ωt)) +
dP∗

1 (Bt+1(ωt))

dBt+1
Bt+1(ωt)

}

=β
d
∫

{g′:g′≤ḡ(Bt+1(ωt))}{V ∗
1 (g′, Bt+1(ωt)) − V ∗

0 (g′)}πG(dg′)

dBt+1

=β

∫

{g′:g′≤ḡ(Bt+1(ωt))}

dV ∗
1 (g′, Bt+1(ωt))

dBt+1
πG(dg′)

+ β{V ∗
1 (ḡ(Bt+1(ωt)), Bt+1(ωt)) − V ∗

0 (ḡ(Bt+1(ωt)))}fπG
(ḡ(Bt+1(ωt)))

dḡ(Bt+1(ωt))

dBt+1
.

Since V ∗
1 (ḡ(Bt+1(ωt)), Bt+1(ωt)) − V ∗

0 (ḡ(Bt+1(ωt))) = 0, the last term in the RHS is naught.

Also,
dV ∗

1
(gt,Bt(ωt−1))

dBt
= νt(ω

t) and thus

νt(ω
t)

{
P∗

1 (Bt+1(ωt)) +
dP∗

1 (Bt+1(ωt))

dBt+1
Bt+1(ωt)

}
= β

∫

{g′:g′≤ḡ(Bt+1(ωt))}
νt+1(ωt, g′)πG(dg′)

(E.88)

We now show that ν is decreasing. For this it is easier to first establish that ν
− ≡ 1/ν is

increasing. Observe that

ν
−(n) = −1 −

H ′′(1 − n)n

1 −H ′(1 − n)
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and thus

dν−(n)

dn
= −

−H ′′′(1 − n)n+H ′′(1 − n)

1 −H ′(1 − n)
−

(H ′′(1 − n))2n

(1 −H ′(1 − n))2
.

Since −H ′′′(1 −n)n+H ′′(1 −n) < 0 by assumption and 1 −H ′(1 −n) = τ > 0, then the first

term in the RHS is negative; the second term in the RHS is also negative. Hence ν
− is increasing,

which readily implies that ν is decreasing.
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Supplementary Online Material

F Description of the Data

In this section we describe how we constructed the figures presented in section 2.

The industrialized economies group consists of AUSTRALIA (1990-1999), AUSTRIA (1990-

1999), BELGIUM (1990-2001), CANADA (1990-2003), DENMARK (1990-2003), FINLAND (1994-

1998), FRANCE (1990-2003), GERMANY (1990-1998), GREECE (1990-2001), IRELAND (1995-

2003), ITALY (1990-2003), JAPAN (1990-1993), NETHERLANDS (1990-2001), NEW ZEALAND

(1990-2003), NORWAY (1990-2003), PORTUGAL (1990-2001), SPAIN (1990-2003), SWEDEN

(1990-2003), SWITZERLAND (1990-2003), UNITED KINGDOM (1990-2003) and UNITED STATES

(1990-2003).

The emerging economies group consists of ARGENTINA1 (1998-2003), BOLIVIA1 (2001-

2003), BRAZIL1 (1997-2003), CHILE1 (1993-2003), COLOMBIA1 (1999-2003), ECUADOR1

(1998-2003), EL SALVADOR1 (2000-2003), HONDURAS1 (1990-2003), JAMAICA1 (1990-2003),

MEXICO1 (1990-2003), PANAMA1 (1997-2003), PERU1 (1998-2003), VENEZUELA1 (1997-

2003), ALBANIA (1995-2003), BULGARIA (1991-2003), CYPRUS (1990-2003), CZECH RE-

PUBLIC (1993-2003), HUNGARY (1991-2003), LATVIA (1990-2003), POLAND (1990-2003),

RUSSIA (1993-2003), TURKEY (1998-2003), ALGERIA (1990-2003), CHINA (1997-2003), EGYPT

(1993-2003), JORDAN (1990-2003), KOREA (1990-2003), MALAYSIA (1990-2003), MAURI-

TIUS (1990-2003), MOROCCO (1997-2003), PAKISTAN (1990-2003), PHILIPPINES (1997-

2003), SOUTH AFRICA (1990-2003), THAILAND (1999-2003) and TUNISIA (1994-2003). The

LAC group is conformed by the countries with “1”.

For section 2 we constructed the data as follows. First, for each country, we computed time

average, or time standard deviations or any quantity of interest (in parenthesis is the number of

observations use to construct these). Second, once we computed these averages, we group the

countries in IND, EME and LAC. We do this procedure for (a) central government domestic debt

(as % of output) ; (b) central government expenditure (as % of output) ; (c) central government

revenue (as % of output) , and (d) Real Risk Measure. The data for (a) is taken from Panizza

(2008) ; the data for (b-c) is taken from Kaminsky et al. (2004) ; finally the data for (d) is taken

1



from www.globalfinancialdata.com.70 71 72

70For Greece and Portugal we use central government public debt because central government domestic

debt was not available. For Sweden, Ecuador and Thailand we use general government expenditure

because central government expenditure was not available. For Albania, Bulgaria, Cyprus, Czech Rep.,

Hungary, Latvia, Poland and Russia no measure of government expenditure was available and thus were

excluded from the sample for the calculations of this variable. The same caveats apply to the central

government revenue sample.
71We gratefully acknowledge that Kaminsky et al. (2004) and Panizza (2008) kindly shared the dataset

used in their respective papers (see references).
72For Argentina, Brazil, Colombia, Ecuador, Egypt, Mexico, Morocco, Panama, Peru, Philippines,

Poland, Russia, Turkey and Venezuela we used the real EMBI+ as a measure of real risk. For the rest of

the countries I used government note yields of 1-5 years maturity, depending on availability.
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