Blinder-Oaxaca as a Reweighting Estimator

Patrick Kline

UC Berkeley

ASSA Meetings, 2011
Several common approaches to adjusting for covariates:

- Regression based approaches (OLS, Blinder-Oaxaca)
- Propensity score methods (matching, reweighting)
- Doubly robust methods (Robins, Rotnitzky, and Zhao, 1994; Egel, Graham, and Pinto, 2009)
Study estimators of counterfactual mean

\[\mu_0^1 \equiv E \left[Y_i^0 | D_i = 1 \right] \]

Key input to identification of

\[ATT \equiv E \left[Y_i^1 - Y_i^0 | D_i = 1 \right] \]

Show that a classic regression based approach, Blinder-Oaxaca estimation, is a DR estimator.

Under misspecification B-O provides MMSE approximation to appropriate propensity score based weights.
Exogenous regime switching setup:

\[Y_i = Y_i^1 D_i + (1 - D_i) Y_i^0 \]
\[Y_i^1 = X_i' \beta^1 + \epsilon_i^1 \]
\[Y_i^0 = X_i' \beta^0 + \epsilon_i^0 \]

\[E[\epsilon_i^1 | X_i, D_i] = 0, \ E[\epsilon_i^0 | X_i, D_i] = 0 \]

Original application (Oaxaca, 1973): \((Y_i^1, Y_i^0)\) male/female wages and \((\beta^1, \beta^0)\) latent skill prices. Different prices imply discrimination.
Blinder-Oaxaca

B-O model allows identification of counterfactual means but not (without further assumptions) distributions. Mean independence of errors implies:

\[\mu_0^1 \equiv E \left[Y_i^0 | D_i = 1 \right] \]
\[= E \left[X | D_i = 1 \right]' \beta^0 \]

Likewise,

\[\beta^0 = E \left[X_i X'_i | D_i = 0 \right]^{-1} E \left[X_i Y_i | D_i = 0 \right] \]
given that \(E \left[X_i X'_i | D_i = 0 \right] \) is full rank. Hence,

\[\mu_0^1 = E \left[X | D_i = 1 \right]' \times E \left[X_i X'_i | D_i = 0 \right]^{-1} E \left[X_i Y_i | D_i = 0 \right] \equiv \delta^{BO} \]
Blinder-Oaxaca

B-O estimator simply replaces population quantity δ^{BO} with sample analogue – predicted values from a regression among the controls. Several advantages of this approach:

- Estimation simply requires less than perfect multicollinearity among X_i in the $D_i = 0$ sample. Useful in a number of evaluation designs where many more controls are available than treated units.
- Easy to conduct inference.
- Weakness: linear model may provide a poor fit at points far from $E[X_i]$.
Alternative approach: reweight controls by

\[
\frac{dF_{X|D=1}(x)}{dF_{X|D=0}(x)}
\]

so that distribution of covariates among two samples is identical.

By balancing distribution, the influence of these covariates will be removed.

Then form estimate of counterfactual mean as

\[
\int E[Y|X = x, D = 0] dF_{X|D=1}(x).
\]
Unconfoundedness:

\[Y_i^1, Y_i^0 \perp D_i | X_i \]

Stronger than earlier mean independence, but nonparametric about dependence of \((Y_i^1, Y_i^0)\) on \(X_i\).

Unconfoundedness in B-O framework would require

\[E \left[g \left(\varepsilon_i^d \right) | X_i, D_i \right] = 0 \quad d \in \{0, 1\} \]

for any continuous function \(g(.)\) not vanishing outside a finite interval.
Propensity Score

Propensity score (Rosenbaum and Rubin, 1983):

\[e(X_i) \equiv P(D_i = 1|X_i) \]

Overlap condition

\[e(X_i) < 1 \]

Not directly testable without further assumptions.
Define

\[\pi \equiv P(D_i = 1) \]

\[w(X_i) \equiv \frac{1 - \pi}{\pi} \frac{e(X_i)}{1 - e(X_i)} \]

By Bayes’ Rule

\[w(x) = \frac{dF_{X|D=1}(x)}{dF_{X|D=0}(x)} \]
Although $w(X_i)$ is distributed on $[0, \infty)$, refer to $w(X_i)$ as propensity score “weights” because

$$E \left[w(X_i) \mid D_i = 0 \right] = \int w(x) dF_{X \mid D = 0}(x)$$

$$= \int dF_{X \mid D = 1}(x)$$

$$= 1$$
A useful result

Unconfoundedness and overlap imply:

\[\mu_0^1 = E \left[\frac{e(X_i)}{\pi} \frac{1 - D_i}{1 - e(X_i)} Y_i \right] \]

\[= E \left[w(X_i) \frac{1 - D_i}{1 - \pi} Y_i \right] \]

\[= E \left[w(X_i) Y_i | D_i = 0 \right] \]

Hence, a weighted average of untreated outcomes identifies the counterfactual mean of interest \(\mu_0^1 \).
Identification result motivates plug-in estimators where, typically, $e(X_i)$ is estimated via a flexible logit or probit model and π is chosen to ensure $E[w(X_i)|D_i = 0] = 1$ (Imbens, 2004; Hirano, Imbens, and Ridder, 2003).

Useful in cases where researcher knows more about assignment mechanism than process generating outcomes.

May be difficult to estimate propensity score in small samples or with unbalanced design (perfect prediction problem).

Problems may arise when estimated $e(X_i)$ is near one since lots of weight given to a few observations. (e.g. Kang and Schaeffer, 2007; Huber, Lechner, and Wunsch, 2010)
Equivalence

Given the overlap condition, it is straightforward to show that
\(E [X|D_i = 1] = E [w(X_i)X|D_i = 0] \) and hence that:

\[
\delta^{BO} = E [w(X_i)X|D_i = 0]'
\times E [X_iX'|D_i = 0]^{-1} E [X_iY_i|D_i = 0]
= E [\tilde{w}(X_i)Y_i]
\]

\(\tilde{w} (X_i) \equiv X'_i E [X_iX'|D_i = 0]^{-1} E \left[X_i \frac{1 - \pi}{\pi} \frac{e(X_i)}{1 - e(X_i)} | D_i = 0 \right] \)

Interpretation:

- B-O weights provide MMSE approximation to true nonparametric weights \(w(X_i) \)
- Approximation is exact if \(\frac{e(X_i)}{1 - e(X_i)} = X'\gamma \) (log-logistic) as opposed to logistic model which assumes \(\frac{e(X_i)}{1 - e(X_i)} = \exp(X'\gamma) \)
Double Robustness

- Result implies B-O estimator is “doubly robust” (Robins, Rotnitzky, and Zhao, 1994) – consistent if either log-logistic model for propensity score or linear model for \(E[Y_i^0|X_i] \) is correct.

- Propensity score model justified by latent variable model of the form

\[
D_i = 1 \left[X_i' \gamma + v_i \right]
\]

where \(v_i \sim F_v(.) \) and \(F_v(z) = \frac{z}{1+z} \).
In practice, neither the outcome nor the propensity score model is likely to hold globally. Simply convenient local approximations.

Bias in B-O estimator is:

$$\mu_0^1 - \delta^{BO} = E[(w(X_i) - \tilde{w}(X_i)) Y_i | D_i = 0]$$

Can show that $E[w(X_i) - \tilde{w}(X_i)] = 0$, so bias emerges from correlation of specification errors with $E[Y_i^0 | X_i]$.
B-O approximates the weights $w(X_i)$ directly, while typical plugin estimators approximate $e(X_i)$ and then form implied weights. Best approximation to $e(X_i)$ will not guarantee best approximation to $w(X_i)$.

A very poor approximation to the weights will avoid bias provided the approximation errors are uncorrelated with control outcomes.

Conversely, a very good approximation may perform poorly if the errors are strongly correlated with outcomes.

Relative performance of the two approaches will ultimately depend on process generating outcomes.
Blinder-Oaxaca estimator:

\[
\hat{\delta}^{BO} = \frac{1}{N_1} D'X (X'WX)^{-1} X'WY \\
= \omega Y
\]

where \(W = diag \{1 - D_i\} \) and \(N_1 = \sum D_i \).
Sample weight vector ω has some interesting properties:

- Weights sum to one – potentially important (Busso, Dinardo, McCrary, 2010)
- Weights are zero for treated observations
- Weights may be negative for some observations (when estimated odds of treatment go negative)
Revisit Dehejia and Wahba (1999)’s reanalysis of LaLonde’s classic 1986 analysis of the National Supported Work (NSW) program.

Compare three estimators (OLS, B-O, and Logistic reweighting) to experimental benchmark.

Sample consists of experimental NSW data and observational control sample (CPS-3) of poor and recently unemployed men from the CPS with nonmissing 1975 and 1976 earnings.

In all cases Y_i is 1978 earnings and X_i contains: an intercept, age, age squared, years of schooling, black, hispanic, married, no degree, 1975 earnings, and 1976 earnings.
Figure 1: Blinder-Oaxaca vs. Logit Weights
Table 1 - Estimated Impact of NSW on Men’s 1978 Earnings

<table>
<thead>
<tr>
<th>Estimator/Control Group</th>
<th>CPS-3</th>
<th>NSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Difference</td>
<td>-635</td>
<td>1794</td>
</tr>
<tr>
<td></td>
<td>(677)</td>
<td>(671)</td>
</tr>
<tr>
<td>OLS</td>
<td>1369</td>
<td>1676</td>
</tr>
<tr>
<td></td>
<td>(739)</td>
<td>(677)</td>
</tr>
<tr>
<td>Logistic Reweighting*</td>
<td>1440</td>
<td>1808</td>
</tr>
<tr>
<td></td>
<td>(863)</td>
<td>(705)</td>
</tr>
<tr>
<td>Blinder-Oaxaca</td>
<td>1701</td>
<td>1785</td>
</tr>
<tr>
<td></td>
<td>(841)</td>
<td>(677)</td>
</tr>
<tr>
<td>Sample Size</td>
<td>614</td>
<td>445</td>
</tr>
</tbody>
</table>

Note: Heteroscedasticity robust standard errors in parentheses.

*Reweighting standard errors computed from 1,000 bootstrap replications.
Blinder-Oaxaca has dual interpretation as propensity score reweighting estimator

Provides MMSE approximation to weights without imposing side restriction that weights must be non-negative.

Performance of B-O relative to conventional reweighting estimators will depend on DGP

- B-O likely to be of most use in situations with unbalanced design (few treated, many controls) and lots of covariates.
- Or where estimated propensity scores imply very large weight on a few observations. (Kang and Schaeffer, 2007)
If true propensity score is LPM, OLS can be shown to identify

$$\frac{E[e(X_i)(1 - e(X_i))(Y^1_i - Y^0_i)]}{E[e(X_i)(1 - e(X_i))]}$$

even even if outcome means are not linear in X_i.

- Two-sided B-O is DR for ATE.
- DR B-O decompositions?
Other Extensions

- Dual interpretation to IV-BO?
 - Semiparametric doubly robust estimators of LATE already exist (Tan, 2006; Uysal, 2010)
 - Does IV estimation among the controls provide predictions with a dual interpretation?

- Nonlinear estimators?