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Abstract

The aim of this study is to provide a test for the specification of a

structural model without identifying assumptions. We show the equiva-

lence of three natural definitions of correct specification, which we take

as our null hypothesis. Using a representation of the null hypothesis as a

Monge-Kantorovich optimal mass transportation, we show that the nat-

ural test statistic is a form of Kolmogorov-Smirnov statistic for Choquet

capacities. When the model is given in parametric form, the test can be

inverted to yield confidence regions for the identified parameter set. The

approach can be applied to areas as diverse as the estimation of models

with sample selection, censored observables and to games with multiple

equilibria.
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Introduction

In many contexts, the ability of econometric models to identify, hence estimate

from observed frequencies, the distribution of residual uncertainty often rests

on strong prior assumption that are difficult to substantiate and even to analyze

within the economic decision problem.

A recent approach, pioneered by Manski has been to forego such prior as-

sumptions, thus giving up the ability to identify a single probability distribution

for residual uncertainty, and allow instead for a set of distributions compatible

with the empirical setup. A variety of models have been analyzed in this way,

whether partial identification stems from incompletely specified models (typ-

ically models with multiple equilibria) or from structural data insufficiencies

(typically cases of data censoring). See Manski (2005) for an up-to-date survey

on the topic.

All these models with incomplete identification share the basic fundamental

structure that the residual uncertainty and the relevant observable quantities

are linked by a one-to-many mapping instead of a one-to-one mapping as in the

case of identification.

In this paper, we propose a general framework for conducting inference with-

out additional assumptions such as equilibrium selection mechanisms necessary

to identify the model (i.e. to ensure that the one-to-many mapping is actu-

ally one-to-one). The usual terminology for such models is “incomplete” or

“partially identified.”

In a parametric setting, the objective of inference in partially identified mod-

els is the estimation of the set of parameters (hereafter called identified set)

which are compatible with the distribution of the observed data and an assess-

ment of the quality of that estimation. For the latter objective, two routes have

been taken.

Chernozhukov, Hong, and Tamer (2002) initiated research to obtain regions

that cover the identified set with a prescribed probability. They propose an

M-estimation approach with a sub-sampling procedure to approximate quan-

tiles of the supremum of the criterion function over the identified set. Shaikh

(2005) proposes an alternative M-estimation with subsampling procedure that

nests the Chernozhukov, Hong, and Tamer (2002) proposal. M-estimation with
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subsampling is the only general proposal to date that does not rely on a conserv-

ative testing procedure, but the choice of criterion function in the M-estimation

procedure is arbitrary, and may have a large effect on the confidence regions.

In related research, a more direct application of random set methods has been

taken to achieve the goal of constructing confidence regions for the identified

set: Shaikh and Vytlacil (2005) consider a special model where the identified

set is a deterministic mapping of a collection of expectations, and base inference

on the sample analogs of these expectations. Beresteanu and Molinari (2006)

propose the use of central limit theorems for random sets to conduct inference

in models with set valued data. However, the adaptation of delta theorems for

random sets (as in King (1989)) is required for this approach to attain its full

potential.

The second route was initiated by Imbens and Manski (2004) who consid-

ered the different problem of covering each element of the identified set, and

demanded uniform coverage. Shaikh (2005) shows that the M-estimation with

subsampling procedure can also be applied to uniform coverage of elements of

the identified set. Pakes, Porter, Ho, and Ishii (2004) consider models that are

defined by moment inequalities and propose a conservative procedure to form

a confidence region for all parameters in the identified set based on inequalities

testing ideas put forward by Gouriéroux, Holly, and Monfort (1982). The proce-

dure is conservative since the limiting distribution of the test statistic depends

on the number of constraints that are actually binding, and unlike in the spe-

cial one dimensional treatment response case analyzed by Imbens and Manski

(2004), no superefficient pre-test is available.

Still in the latter spirit, Andrews, Berry, and Jia (2004) consider entry games

(and more generally games with discrete strategies) and propose a conservative

procedure to form a confidence region for all parameters in the identified set

based on the idea that the probability of a certain outcome is no larger than

the probability that necessary conditions (such as Nash rationality constraints)

are met.

The inference procedure proposed here is in the same spirit as this latter con-

tribution, but it gives a full formalization of the idea in a very general framework,

does not restrict the class of distributions of observables (hence allows estima-

tion of games with continuous strategies as well as entry games), does not rely
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on resampling procedures (though they may be used as alternative quantile ap-

proximation devices), and provides an exact test as opposed to the conservative

procedures considered above.

The general set-up comprises a model specification with observable and un-

observable variables (unobservable to the analyst but not necessarily to the

economic agents) related by a one-to-many mapping as opposed to the one-to-

one mapping required for identification. The model is defined by the one-to-

many mapping (which can comprise rationality constraints as before, as well

as any constraints that are plausible within the theory) and a family of hy-

pothesized distributions for the unobserved variables. To fix ideas, we call Γ

the one-to-many mapping defining the model, ν a hypothesized distribution of

unobservables and P the true distribution of observables.

First, a characterization is given of what we mean by correct specification,

viz. compatibility of the model with the distribution of the observable variables,

and it is shown that several natural ways of defining compatibility are in fact

equivalent. They include a compatibility notion based on selections γ of Γ (i.e.

functions such that γ ∈ Γ), a notion based on the existence of a joint probability

that admits ν and P as marginals and is supported on the region where the

constraints implied by model Γ are satisfied, and finally the notion of maximum

plausibility introduced by Dempster (1967). It is the topic of section 1.

Second, we show that the characterizations of correct specification of the

model are equivalent to the existence of a zero cost solution to a Monge-

Kantorovich mass transportation problem, where mass is transported between

distribution P and distribution ν with zero-one cost associated with violation of

the constraints implied by the model Γ. This is the topic of section 2. Note that

a special case of Monge-Kantorovich transportation problem is the well-know

matching problem.

Third, still in section 2, this observation allows us to conduct inference using

the empirical version of the mass transportation problem (with the unknown P

replaced by the empirical distribution Pn). It turns out that the dual of the

empirical problem yields a statistic that reduces to the familiar Kolmogorov-

Smirnov specification test statistic in the identified case where Γ is one-to-one.

The Kolmogorov-Smirnov statistic tests the equality of two probability measures

by checking their difference on a good class of sets (large enough to be value-
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determining, but small enough to make things tractable). Here our test statistic

checks that P (A) is no larger than ν(Γ(A)) for all A in a similar class of sets.

Since ν(Γ(A)) is the probability of the sufficient conditions implied by A, we see

the strong similarity with the Andrews, Berry, and Jia (2004) approach. Hence

the dual empirical problem provides us with an easy to compute test statistic,

and a distribution to compare it to, and a parallel with the classical case.

Finally, the last section shows simple implementation procedures, and the

inversion of the test to construct a confidence region for the elements of the

identified set of parameters when both Γ and ν are specified in parametric form.

We argue, hence that our approach answers the relevant questions pertaining

to both the research programs described above: if one is interested in testing

structural hypotheses such as extra constraints implied by theory, within the

framework of a partially identified model, the constraints should be rejected if

the region they imply on the parameter set does not intersect with the identified

set, hence coverage of the identified set as a whole is what matters. Here the

question can be answered directly by incorporating the extra constraints in the

model and testing the restricted specification. If, on the other hand, one is

interested in reporting parameter value estimates with confidence bounds for

policy analysis, the specification test can be inverted to that end.

Proofs and additional results are collected in the appendix.

Prelude: complete model benchmark

Before we define incomplete model specifications, we give a short heuristic uni-

variate description of the benchmark that we use and discuss the Kolmogorov-

Smirnov specification test statistic that we are effectively generalizing in this

paper.

We consider observables y ∈ R and unobservables u ∈ R (also called “un-

observed shocks”, “latent variables”, etc...). Abstracting from dependence on

an unknown deterministic parameter, we define a “complete” model as a pair

(ν, γ), where ν is a data generating process for the unobservables, and γ is a

bijection from the set of observables to the set of unobservables.

If we call P the true data-generating process for the observables, we say

that the complete model is well specified if P (A) = ν(γ(A)) for all Borel set A,
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which, by Dynkin’s lemma, is equivalent to P (A) = ν(γ(A)) for all cells A of

the form (−∞, y], y ∈ R, which is immediately seen to be equivalent to

sup
A∈S

(P (A)− ν(γ(A))) = 0 (1)

where S = {(−∞, y1], (y2,∞) : (y1, y2) ∈ R2}.
(1) is a programming problem, and it will turn out to be very fruitful to

consider its dual formulation

inf
π

∫

R2
{u 6= γ(y)} π(dy, du) = 0, (2)

where {x ∈ A} denotes the indicator function of the set A, and the supremum

is taken over all joint probability measures with marginals P and ν. The latter

is a mass transportation (or “generalized matching”) problem, where mass is

transported from the set of observables to the set of unobservables with zero-

one cost of transportation associated with violations of the model constraint

u = γ(y).

This formulation can be interpreted as the existence of a probability that

is “concentrated on the model”, or alternatively, to the existence of a strong

coupling between the random variable Y with law P and the random variable

U with law ν, i.e. the existence of π with marginals P and ν such that

π(U 6= γ(Y )) = 0. (3)

We shall show that this dual representation of the hypothesis of correct specifi-

cation has a natural generalization to the case of incomplete models.

Turning to empirical versions of the problem, we can consider the statis-

tic obtained by replacing P by the empirical distribution Pn of a sample of

independent and identically distributed variables with law P , we obtain

inf
π

∫

R2
{u 6= γ(y)} π(dy, du), (4)

where the infimum is taken over probabilities π with marginals Pn and ν. By

the above mentioned duality, the latter is equal to

sup
A∈B

(Pn(A)− ν(γ(A))),

with B the class of Borel sets.
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The last step is to determine a class of sets that is small enough to allow

determination of the limiting behaviour of the statistic, i.e. we need to class of

sets to be P -Donsker, and large enough that the values of ν(Γ(.)) over all Borel

sets are determined by the latter’s values on the restricted class. The class S
satisfies both requirements, and the resulting test statistic is

sup
A∈S

(Pn(A)− ν(γ(A))), (5)

which is exactly the Kolmogorov-Smirnov specification test statistic.

We shall essentially follow these same steps to show equivalence between

formulations of the hypothesis of correct specification and to derive a test of

specification when the bijection γ is replaced by a correspondence Γ. Then we

shall consider parameterized versions of the model where both Γ and ν depend

on a parameter θ, and form confidence regions with all values of θ such that the

specification of model (Γθ, νθ) is not rejected.

1 Incomplete model specifications

We consider a very general econometric model specification, thereby posing the

problem exactly as in Jovanovic (1989) which was an inspiration for this work.

Variables under consideration are divided into two groups.

• Latent variables, u ∈ U . The vector u is not observed by the analyst, but

some of its components may be observed by the economic actors. U is a

complete, metrizable and separable topological space (i.e. a Polish space).

• Observable variables, y ∈ Y = Rdy . The vector y is observed by the

analyst1.

The Borel sigma-algebras of Y and U will be respectively denoted BY and BU .

Call P the Borel probability measure that represents the true data generating

process for the observable variables, and V a family of Borel probability measures

that are hypothesized to be possible data generating processes for the latent

variables. Finally, the economic model is given by a relation between observable

and latent variables, i.e. a subset of Y × U , which we shall write as a multi-

valued mapping from Y to U denoted by Γ. Finally, the set of Borel probability
1Theorem 1 holds more generally when Y is a convex metrizable subset of a locally convex

topological vector space.
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measures on (Y×U , σ(BY×BU )) with marginals P and ν is denoted byM(P, ν).

Whenever there is no ambiguity, we shall adopt the de Finetti notation µf to

denote the integral of f with respect to µ.

1.1 Examples

Example 1: Sample selection and other models with missing counter-

factuals. The typical Heckman sample selection models require very strong and

often implausible assumptions to guarantee identification. Weaker assumptions,

such as certain forms of monotonicity are plausible and restrict significantly the

identified set without reducing it to a singleton. As an illustration of our model

formulation in this case, consider for instance the classical set-up in Heckman

and Vytlacil (2001). We observe (Y, D,W ), where Y is the outcome variable, D

is an indicator variable for the receipt of treatment, and Z is a vector of instru-

ments (we implicitly condition the model on exogenous observable covariates).

The outcome variable is generated as follows:

Y = DY1 + (1−D)Y2,

where Y0 is the binary potential outcome if the individual does not receive

treatment, and Y1 is the binary potential outcome if the individual does receive

treatment. The model is completed with the specification of D as follows:

D = 1{g(Z)≥U},

where g is a measurable function and U is uniformly distributed on [0, 1] (with-

out loss of generality). The model can be written in the form of a multi-valued

mapping Γ from observable to unobservables in the following way:

(y, d, z) 7−→ {(u, y1, y0) ∈ Γ(y, d, z)}
(1, 1, z) 7−→ [ 0, g(z)]× {1} × {0, 1}
(1, 0, z) 7−→ (g(z), 1]× {0, 1} × {1}
(0, 1, z) 7−→ [ 0, g(z)]× {0} × {0, 1}
(1, 1, z) 7−→ (g(z), 1]× {0, 1} × {0}

Example 2: Returns to schooling. Consider a general specification for

the returns to education, where income Y is a function of years of education E,
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other observable characteristics X and unobserved ability U as Y = G(E, X, U).

G can be inverted as a multi-valued mapping to yield a correspondence U =

Γ(Y, E, X).

Example 3: Censored data structures. Models with top-censoring or pos-

itive censoring such as Tobit models fall in this class. A classic problem where

identification fails is regression with interval censored outcomes: the observables

variables are the pairs (Y∗, Y ∗, X) of upper and lower values for the dependent

variable, and the explanatory variables. The model correspondence is

Γθ(y∗, y∗, x) = [y∗ − x′θ, y∗ + x′θ].

Example 4: Games with multiple equilibria. Very large classes of eco-

nomic models become estimable with this approach, when one allows the object

of interest to be the identified set of parameters as opposed to single parameter

values. A simple class of examples is that of models defined by a set of Nash

rationality constraints. Suppose the payoff function for player j, j = 1, . . . , J is

given by

Πj(Sj , S−j , Xj , Uj ; θ),

where Sj is player j’s strategy and S−j is their opponents’ strategies. Xj is a

vector of observable characteristics of player j and Uj a vector of unobservable

determinents of the payoff. Finally θ is a vector of parameters. Pure strategy

Nash equilibrium conditions

Πj(Sj , S−j , Xj , Uj ; θ) ≥ Πj(S, S−j , Xj , Uj ; θ), for all S

define a correspondence Γθ from unobservable player characteristics to observ-

able variables (S, X), and if the unobservable player characteristics, interpreted

as types of the players are supposed uniformly distributed on the relevant do-

main, then V is a singleton.

Example 5: Entry models. Consider the special case of example 3 proposed

by Jovanovic (1989). The payoff functions are

Π1(x1, x2, u) = (λx2 − u)I{x1=1},

Π2(x1, x2, u) = (λx1 − u)I{x2=1},
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where xi ∈ {0, 1} is firm i’s action, and u is an exogenous cost. The firms

know their cost; the analyst, however, knows only that u ∈ [0, 1], and that the

structural parameter λ is in (0, 1]. There are two pure strategy Nash equilibria.

The first is x1 = x2 = 0 for all u ∈ [0, 1]. The second is x1 = x2 = 1 for

all u ∈ [0, λ] and zero otherwise. Since the two firms’ actions are perfectly

correlated, we shall denote them by a single binary variable y = x1 = x2.

Hence the model is described by the multi-valued mapping: Γ(1) = [0, λ] and

Γ(0) = [0, 1]. In this case, since y is Bernoulli, we can write P = (1− p, p) with

p the probability of a 1. For the distribution of u, we consider a parametric

exponential family on [0, 1].

1.2 Null hypothesis of correct specification

We wish to develop a procedure to detect whether the model and the distribu-

tion of observables are compatible. First we explain what we mean by compat-

ible. We start by taking P , Γ and ν as given and by considering three natural

formalizations of compatibility, a first representation based on measurable selec-

tions of Γ, the second based on the existence of a suitable probability measure

with marginals P and ν and a third based on Dempster’s notion of maximal

plausibility.

1.2.1 Equilibrium selections

It is very easily understood in the simple case where the link Γ between latent

and observable variables is parametric and Γ is measurable and single valued.

Defining the image measure of P by Γ by

PΓ−1(A) = P{y ∈ Y| Γ(y) ∈ A}, (6)

for all A ∈ BU , we say that the model is well specified if and only if ν = PΓ−1.

In the general case considered here, Γ may not be single valued, and its images

may not even be disjoint (which would be the case if it was the inverse image of

a single valued mapping from U to Y, i.e. a traditional function from latent to

observable variables). However, under a measurability assumption on Γ, we can

construct an analogue of the image measure, which will now be a set Core(Γ, P )

of Borel probability measures on U (to be defined below), and the hypothesis

of compatibility of the restrictions on latent variable distributions and on the
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models linking latent and observable variables will naturally take the form

H0 : ν ∈ Core(Γ, P ). (7)

Assumption 1: Γ has non-empty and closed values, and for each open set

O ⊆ U , Γ−1(O) = {y ∈ Y | Γ(y) ∩ O 6= ∅} ∈ BY .

To relate the present case to the intuition of the single-valued case, it is

useful to think in terms of single-valued selections of the multi-valued mapping

Γ. A measurable selection γ of Γ is a measurable function such that γ(y) ∈ Γ(y)

for all y ∈ Y. The set of measurable selections of a multi-valued mapping Γ

that satisfies Assumption 1 is denoted Sel(Γ)2. To each selection γ of Γ, we can

associate the image measure of P , denoted Pγ−1, defined as in (6).

It would be tempting to reformulate the compatibility condition as the re-

quirement that at least one selection γ in Sel(Γ) is such that ν = Pγ−1. How-

ever, such a requirement implies that γ corresponds to the equilibrium that

is always selected. Under such a requirement, if for a given observable value

the model does not specify which value of the latent variables gave rise to it,

the latter is nonetheless fixed. Hence two identical observed realizations in the

sample of observations necessarily arose from the same realization of the latent

variables. We argue, however, that if the model does not specify an equilib-

rium selection mechanism, there is no reason to assume that each observation

is drawn from the same equilibrium.

Allowing endogenous equilibrium selection of unknown form is equivalent

to allowing the existence of an arbitrary distribution on the set of Pγ−1 when

γ spans Sel(Γ) (as opposed to a mass on one particular Pγ−1). A Bayesian

formulation of the problem would entail a specification of this distribution. Here,

we stick to the given model specification in leaving it completely unspecified3.

Hence, we argue that the correct reformulation of the compatibility condition

is that ν can be written as a mixture of probability measures of the form Pγ−1,

where γ ranges over Sel(Γ). However, as the following example show, even for

2It is known to be non-empty since Rokhlin (1949) Part I, §2, No 9, Lemma 2. The

commentary at the end of chapter 14 of Rockafellar and Wets (1998) sheds light on the

controversy surrounding this attribution.
3See the first paragraph of section 5.A. of Jovanovic (1989) for a discussion of this issue.
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the simplest multi-valued mapping, the set of measurable selections is very rich,

let alone the set of their mixtures.

Example: Consider the multi-valued mapping

Γ : [0, 1] ⇒ [0, 1]

defined by Γ(x) = {0, x} for all x. The collection of measurable selections of

Γ is indexed by the class of Borel subsets of [0, 1]. Indeed, a representative

measurable selection of Γ is γB , such that γB(x) = x{x ∈ B} for any Borel

subset B of [0, 1], where {x ∈ B} denotes the indicator function which equals

one when x ∈ B and zero otherwise.

Hence, it will be imperative to give manageable equivalent representations

of such a mixture, as is done in Theorem 1 below.

1.2.2 Existence of a suitable joint probability

The second natural representation of compatibility of the distribution P of ob-

servables and the model (Γ, ν) is based on the existence of probability measures

on the product Y × U that admit P and ν as marginals.

In the benchmark case of Γ = γ one-to-one, the model imposes a stringent

constraint on pairs (y, u), namely that u = γ(y). So the admissible region of

the product space is the graph of γ, i.e. the set

Graph γ = {(y, u) ∈ Y × U : u ∈ γ(y)}.

The compatibility condition described above, namely Pγ−1 = ν is equivalent to

the existence of a probability measure on the product space that is supported by

Graph γ (i.e. that gives probability zero outside the constrained region defined

by the model) and admits P and ν as marginals.

This generalizes immediately to the case of Γ multi-valued, as the existence of

a probability measure that admits P and ν as marginals, and that is supported

on the constrained region

Graph Γ = {(y, u) ∈ Y × U : u ∈ Γ(y)},

in other words, a probability measure that admits P and ν as marginals and

gives probability zero to the event U /∈ Γ(Y ), where U and Y are random

elements with probability law ν and P respectively.
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1.2.3 Dempster plausibility

Dempster (1967) suggests to consider the smallest reliability that can be asso-

ciated with the event B ∈ BU as the belief function

P (A) = P{y ∈ Y | Γ(y) ⊆ B}

and the largest plausibility that can be associated with the event B as the

plausibility function

P (A) = P{y ∈ Y | Γ(y) ∩B 6= ∅}

the two being linked by the relation

P (A) = 1− P (Ac), (8)

which prompted some authors to call them conjugates or dual of each other4.

A natural way to construct a set of probability measures is to consider all

probability measures that do not exceed the largest plausibility that can be

associated with a set, and that, as a result of (8), are larger than the smallest

reliability associated with a set. We thus form the core of the belief function5:

Core(Γ, P ) = {µ ∈ ∆(U) | ∀B ∈ BU , µ(B) ≥ P (B)}
= {µ ∈ ∆(U) | ∀B ∈ BU , µ(B) ≤ P (B)}

where the first equality can be taken as a definition, and the second follows

immediately from (8). It is well known that Core(Γ, P ) is non-empty, and

another natural representation of the compatibility of the distribution P of

observables with the model (Γ, ν) is that ν belongs to Core(Γ, P ), in other

words, that ν satisfies ν(B) ≤ P ({y ∈ Y : Γ(y) ∩B 6= ∅}) for all B ∈ BU .

4Matheron (1975) gave the first full formalization of the objects introduced by Dempster

(1967).
5The name Core is standard in the literature to denote the set of probability measures

satisfying (11). It seems to originate from D. Gillies’ 1953 Princeton PhD thesis on “some

theorems on n-person games.” For finite sets, the core is non-empty by the Bondareva-Shapley

theorem. In the present more general context, the non-emptiness of the core will follow from

the equivalence of (i) and (iv) of Theorem 1 below, and the existence of measurable selections

of Γ under assumption 1.
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1.2.4 Equivalence of compatibility representations

The following theorem shows that the three representations discussed above are,

in fact, equivalent. In addition, two more equivalent formulations are presented

that will be used in the empirical formulations in the next section.

Theorem 1: Under assumption 1, the following statements are equivalent:

(i) ν is a mixture of images of P by measurable selections of Γ, (i.e. ν is in

the weak closed convex hull of {Pγ−1; γ ∈ Sel(Γ)}).

(ii) There exists for P -almost all y ∈ Y a probability measure πν(y, .) on U
with support Γ(y), such that

ν(B) =
∫

Y
πν(y, B) P (dy), all B ∈ BU . (9)

(iii) If U and Y are random elements with respective distributions P and ν,

there exists a probability measure π ∈ M(P, ν) that is supported on the

admissible region, i.e. such that

π(U /∈ Γ(Y )) = 0. (10)

(iv) The probability assigned by ν to an event in B ∈ BU is no greater than

the largest plausibility associated with B given P and Γ, i.e.

ν(B) ≤ P ({y ∈ Y : Γ(y) ∩B 6= ∅}) (11)

(v) For all A ∈ BY , we have

P (A) ≤ ν(Γ(A)). (12)

Remark 1: The weak topology on ∆(U), the set of probability measures on U ,

is the topology of convergence in distribution. ∆(U) is also Polish, and the weak

closed convex hull of {Pγ−1; γ ∈ Sel(Γ)} is indeed the collection of arbitrary

mixtures of elements of {Pγ−1; γ ∈ Sel(Γ)}. This is a continuous version of the

Birkhoff-von Neumann theorem on doubly stochastic matrices.

Remark 2: A version of representation (ii) is used in Wasserman (1990) to

construct prior envelopes. Notice that (9) looks like a disintegration of ν6,
6See section 3 page 116 of Pollard (2002)
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and indeed, when Γ is the inverse image of a single-valued measurable function

(i.e. when the model is given by a single-valued measurable function from

latent to observable variables), the probability kernel πν is exactly the (P, Γ−1)-

disintegration of ν, in other words, πν(y, .) is the conditional probability measure

on U under the condition Γ−1(u) = {y}. Hence (9) has the interpretation that

a random element with distribution ν can be generated as a draw from πν(y, .)

where y is a realization of a random element with distribution P .

Remark 3: We define Core(Γ, P ) as the weak convex-hull of {Pγ−1; γ ∈
Sel(Γ)}, or equivalently as the set of all mixtures of images of P by measurable

selections of Γ. So our null hypothesis (7) is well defined.

Remark 4: Representations (iii) and (iv) are alternative natural formulations

of the compatibility of the model with the observations. Representation (iii) is

the existence of a probability that “lives” in the admissible region of Y × U ,

and representation (iv) is a formulation of the Dempster plausibility condition

(see Dempster (1967)). Hence the equivalence with representation (i) is a very

desirable result.

Remark 5: As will be explained later, our test statistic will be based on

violations of representation (v), which is the dual formulation of (iii) seen as a

Monge-Kantorovich optimal mass transportation solution7.

Remark 6: Equivalence of (i) and (iii) is a generalization of proposition 1 of

Jovanovic (1989) to the case where P is not necessarily atomless and U not

necessarily compact. Notice that relative to Jovanovic (1989), the roles of Y
and U are reversed for the purposes of specification testing. As discussed in

the second remark following proposition 1 mentioned above, atomlessness of

the distribution of latent variables is innocuous as long as U is rich enough.

However, atomlessness of the distribution of observables isn’t innocuous, since

it rules out many of the relevant applications.
7νΓ is a capacity functional, and hence is alternating of order ∞ (see Choquet (1953)).
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2 Empirical formulations

2.1 Empirical Monge-Kantorovich problem

In view of representation (iii) of Theorem 1, i.e. equation (10), the null can be

reformulated as the following Monge-Kantorovich mass transportation problem

min
π∈M(P,ν)

∫

Y×U
{u /∈ Γ(y)} π(dy, du) = 0, (13)

where the transportation cost function is an indicator penalty for violation of

the model (we adopt the Pollard convention and use the same notation for a set

and its indicator function -see Pollard (2002)).

We now consider the empirical version of this Monge-Kantorovich problem,

replacing P by the empirical distribution Pn to yield the functional

T ∗(Pn, Γ, ν) = min
π∈M(Pn,ν)

∫

Y×U
{u /∈ Γ(y)} π(dy, du). (14)

Next, we show a dual representation of the Monge-Kantorovich problem

which will be instrumental in deriving our test statistic and its asymptotic

properties:

Theorem 2: The following equalities hold:

T ∗(Pn,Γ, ν) = max
f⊕g≤ϕ

(Pnf + νg) (15)

= sup (Pn(A)− ν(Γ(A))) , (16)

where A ∈ BY , ϕ(y, u) = {u /∈ Γ(y)}, and f⊕g ≤ ϕ signifies that the supremum

is taken over all measureable functions f on Y and g on U such that for all (y, u),

f(y) + g(u) ≤ ϕ(y, u).

2.2 Specification test statistic

We propose to adopt a test statistic based on the dual Monge-Kantorovich

formulation (16), in other words a statistic that penalizes large values of (16).

However, T ∗(Pn,Γ, ν) seemingly involves checking condition (12) on all sets in

BY , which renders computations infeasible, be it computation of the distribution

of T ∗(Pn,Γ, ν), or the computation of T ∗(Pn,Γ, ν) itself. The objective of this

section, therefore, is to elicit a reduced class of sets on which to check condition

(12). Our test statistic is

T (Pn,Γ, ν) = sup
A∈C

(Pn(A)− ν(Γ(A))) (17)
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and the class C needs to satisfy the following requirements:

(CD) C must be convergence determining, which in this case is equivalent to the

property that the Choquet capacity A → ν(Γ(A)) is characterized by its

values on all sets A ∈ C. This ensures that we avoid

limsup T (Pn, Γ, ν) ≤ 0 (18)

when actually P (A) > ν(Γ(A)) for some A ∈ BY\C.

(DP) C must be P -Donsker, so that

limsup
√

nT (Pn, Γ, ν) ≤ sup
A∈C

G(A), (19)

with G a P -Brownian bridge, provides us with a rejection region.

To be P -Donsker, the class C may not be too large, whereas it needs to be large

enough to be convergence determining, so that the two requirements involve a

formal trade-off.

We summarize the discussion above in the following theorem on asymptotic

behaviour of the test statistic. First we need a definition:

Definition: (Γ, ν)-unambiguous sets: We call a set A ∈ BY unambiguous

with respect to Γ and ν when it satisfies

ν(Γ(A)) = ν({u ∈ U : Γ−1(u) ⊆ A}).

It is shown in the appendix that the class B0 of (Γ, ν)-unambiguous sets is a

σ-algebra. Hence, the definition above singles out the region of Y where the

set function A → ν(Γ(A)) is actually a probability measure. Whatever the

value of P , for any A in this class of sets B0, the null hypothesis will reduce to

P (A) = ν(Γ(A)). For any class C of subsets of BY , we denote C0 the class of

unambiguous sets in C, hence C0 = C ∩ B0.

We are now in a position to state our first result on the asymptotic behaviour

of our test statistic.

Theorem 3: If C satisfies (DP) and the the null hypothesis H0 holds, then the

following hold almost surely:

limsup
√

n T (Pn, Γ, ν) ≤ sup
A∈C

G(A)

liminf
√

n T (Pn, Γ, ν) ≥ sup
A∈Cb

G(A)
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where G is a P -Brownian bridge and C0 ⊆ Cb ⊆ C. If C satisfies (CD) and the

the alternative hypothesis Ha holds, then:

√
n T (Pn,Γ, ν) →∞

Theorem 4 gives bounds for the asymptotic behaviour of our test statistic.

The upper bound is the supremum of a Brownian bridge on the whole class

of sets C, and the lower bound is the supremum of the same Brownian bridge

over the unambiguous sets in C. The reason is the following: The rescaled test

statistic can be rewritten

√
nT (Pn, Γ, ν) =

√
n sup

A∈C
(Pn(A)− ν(Γ(A)))

= sup
A∈C

(
Gn(A) +

√
n(P (A)− ν(Γ(A)))

)
.

Define Cb the class of sets A in C such that P (A) = ν(Γ(A)). For all A ∈ C\Cb, we

have a strict inequality, i.e. P (A)−ν(Γ(A)) < 0, so that
√

n(P (A)−ν(Γ(A)) →
−∞, and those sets are not included in the supremum in the asymptotic ex-

pression. The only sets we are sure are included in Cb without knowledge of P

are the unambiguous sets.

Obtaining an exact test requires taking the supremum over the class of sets

Cb as opposed to C. We propose a feasible version of this procedure using the

estimator Ĉb for Cb defined as follows:

Ĉb = {A ∈ C : Pn(A) > ν(Γ(A))− hn}

and hn is a deterministic bandwidth sequence satisfying

hn

√
n +

1
hn

→∞.

Note that for a given A, there is a δ > 0 such that

P(A ∈ (Cb\Ĉb) ∪ (Ĉb\Cb))

≤ P(Pn(A) ≤ P (A)− hn or Pn(A) > P (A) + δ − hn),

so that the latter display converges to zero, justifying the approximation of Cb

by Ĉb.
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2.3 Finding (CD) and (DP) classes:

We now discuss the determination of classes of sets that satisfy the requirements

(CD) and (DP) discussed above. The following lemma (lemma 1.14 of Salinetti

and Wets (1986)) provides a convergence determining class which, though still

falling short of requirement (DP), allows us to restrict attention to the class of

finite unions of balls with rational midpoints and positive rational radii. Define

CSW as the class of compact subsets of Y with the following two properties:

(C1) Elements of CSW are finite unions of non-singleton rectangles with rational

endpoints,

(C2) Elements of CSW are continuity sets for the Choquet capacity

A → ν(Γ(A)),

in other words, if A ∈ CSW, then ν(Γ(cl(A))) = ν(Γ(int(A))).

Then we have:

Lemma SW: The class CSW is convergence determining.

Remark 1: The class CSW is not a Vapnik-C̆ervonenkis class of sets (hereafter

VC-class) since for any finite collection of points, there is a collection of finite

union of balls that shatters it (see section 2.6.1 page 134 of van der Vaart and

Wellner (1996)). Though it does not follow that CSW doesn’t satisfy (DP), it

seems unlikely.

2.3.1 Identified case (Γ is one-to-one):

In the identified case, where Γ = γ is single-valued and one-to-one, consider the

following classes of cells in Rdy :

C = {(−∞, y], (z,∞) : (y, z) ∈ R2dy}
C̃ = {(−∞, y] : y ∈ Rdy}.

Notice that

sup
A∈C

(Pn(A)− ν(γ(A))) = sup
A∈C̃

|Pn(A)− ν(γ(A))|

and the latter is the classical Kolmogorov-Smirnov specification test statistic.
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2.3.2 Discrete observable distribution:

In case of observations taking values in a discrete subset Y0 of Y (as in the

large class of entry models), it is immediately seen that the class 2Y0 of all

subsets of the set of observable values satisfies (CD) and (DP). In view of the

limiting behaviour of the test statistic, it will be seen below that in practice,

the supremum is taken on a far smaller class of sets.

2.3.3 Γ is convex-valued:

Suppose U is a convex compact subset of Rdu (or more generally that it has

a vector structure compatible with its Polish topology) and ν is the uniform

distribution. Define Graph Γ as follows:

Graph Γ = {(y, u) ∈ Y × U : u ∈ Γ(y)}.

The class C defined above satisfies (DP) (see for instance example 2.5.4 page 129

of van der Vaart and Wellner (1996)). We show below that it is also (CD) when

Γ has convex values and Graph Γ has monotone upper and lower envelopes, or

when Graph Γ is convex.

Notice that the class C so defined is the same as the class on which the

supremum is taken to form the Kolmogorov-Smirnov statistic in the identified

case as described above. It will be shown below that this case extends to when

Graph Γ is the union of an arbitrary collection of bi-separated convex elements

(Gi)i∈I , by which we mean that for all i, j ∈ I, GYi ∩ GYj and GUi ∩ GUj are

singletons, where

GY = {y ∈ Y : (y, Γ(y)) ∈ G}
GU = {u ∈ U : (Γ−1(u), u) ∈ G}

are the traces on Y and U respectively.

2.3.4 Γ has a connected graph:

In case Graph Γ is connected, C defined above does not satisfy (CD) any more,

but we show below that the class of rectangles

S = { [y, z] : (y, z) ∈ R2dy}
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does. In addition, it satisfies (DP). Indeed, if dy = 1, its VC-index is three,

since S can pick out the two elements of a set of cardinality 2, but can never

pick out the subset {x, z} of a set of three elements {x, y, z}. More generally, it

can be shown that the VC-index of S is 2dy + 1 (see Example 2.6.1 page 135 of

van der Vaart and Wellner (1996)).

2.3.5 Graph Γ has a finite number of connected components:

Let K be the number of connected components G1, . . . , GK of Graph Γ, so that

graph Γ =
⋃

k=1,...,K Gk, and call GY
k the trace of Gk on Y, i.e.

GY
k = {y ∈ Y : (y, Γ(y)) ∈ Gk}.

We show below that the class

SK = {
⋃

k≤K

[yk, zk] : (yk, zk) ∈ (GY
k )2}

satisfies (CD). That it satisfies (DP) follows from lemma 2.6.17(iii) page 147

of van der Vaart and Wellner (1996) and the fact that it is contained in the

K-iterated union S t . . .tS, where the “square union” of two classes of sets S1

and S2 is defined by S1 t S2 = {A1 ∪A2 : A1 ∈ S1, A2 ∈ S2}.

2.3.6 Summary of the results:

We collect the results presented above in the following theorem:

Theorem 4: If U is a convex compact metrizable subset of Rdu , the following

hold:

• 2Y0 satisfies (CD) and (DP) when P is supported on the finite set Y0.

• C satisfies (CD) and (DP) when Graph Γ is an arbitrary union of bi-

separated convex sets and ν is uniform.

• ***CONJECTURE*** SK satisfies (CD) and (DP) when Graph Γ is the

union of K connected components.

2.3.7 Examples:

We consider the following parametric model specifications

Γθ : [0, 1] ⇒ [0, 1]
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with θ a parameter in (0, 1], νθ is U [0, 1].

• Γθ(y) = [θy, y]

This a case with convex graph. Notice that if we check the condition

P (A) ≤ νθ(Γθ(A)) on the cells of the form [0, y], for all y ∈ [0, 1], we obtain

P ([0, y]) ≤ y for all y and if we check the condition P (A) ≤ νθ(Γθ(A)) on

the cells of the form [y, 1], for all y ∈ [0, 1], we obtain P ([y, 1]) ≥ θy for

all y.

• Γθ(y) = y if y > θ and [0, θ] otherwise.

This is a case where Graph Γ has two bi-separated convex components.

Notice that if we check the condition P (A) ≤ νθ(Γθ(A)) on the cells of

the form [0, y], for all y ∈ [0, 1], we obtain P ([0, y]) ≤ θ for all y ≤ θ

and P ([0, y]) ≤ y for all y ≥ θ. Now if we check the condition P (A) ≤
νθ(Γθ(A)) on the cells of the form [y, 1], for all y ∈ [0, 1], we obtain

P ([y, 1]) = 1 for all y ≤ θ and P ([y, 1]) ≥ y for all y ≥ θ. Hence, the

proposed test is equivalent to a Kolmogorov-Smirnov test restricted to

[θ, 1].

• Γθ(y) = {θy, y}

This is a case where Graph Γ is connected. The image of an interval [a, b]

is [θa, θb] ∪ [a, b]. For any (a, b) such that θb ≤ a ≤ b, we need to check

P ([a, b]) ≤ (1 + θ)(b− a) and for each (a, b) such that a ≤ θb, we need to

check P ([a, b]) ≤ b− θa.

• Γθ(y) = 0 if θ/2 < y < θ and [θy, y] otherwise.

This is a case where Graph Γ has three connected components. For

(a, b, c, d, e, f) such that a ≤ b ≤ θ/2 ≤ c ≤ d ≤ θ ≤ e ≤ f , we need

to check that P ([a, b]) + P ([c, d]) + P ([e, f ]) ≤ b− θa + f − θe.
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3 Implementation of the test

Conclusion

Appendix: Proofs of the results in the main text

Proof of Theorem 1:

(i) ⇐⇒ (iv) ⇐⇒ (ii)

Call ∆(B) the set of all Borel probability measures with support B. Under

Assumption 1, the map y 7→ ∆(Γ(y)) is a map from Y to the set of all non-

empty convex sets of Borel probability measures on U which are closed with

respect to the weak topology. Moreover, for any f ∈ Cb(U), the set of all

continuous bounded real functions on U , the map

y 7−→ sup
{∫

fdµ : µ ∈ ∆(Γ(y))
}

= max
u∈Γ(y)

f(u)

is BY -measurable, so that, by Theorem 3 of Strassen (1965), for a given ν ∈
∆(U), there exists π satisfying (9) with π(y, .) ∈ ∆(Γ(y)) for P -almost all y if

and only if
∫

U
f(u)ν(du) ≤

∫

U
sup

u∈Γ(y)

f(u)P (dy) (20)

for all f ∈ Cb(U). Now, defining P as the set function

P : B → P ({y ∈ Y : Γ(y) ∩B 6= ∅}),

the right-hand side of (20) is shown in the following sequence of equalities to be

equal to the integral of f with respect to P in the sense of Choquet (line (21)

below can be taken as a definition).
∫

Y

sup
u∈Γ(y)

{f(u)} dP (y)

=
∫ ∞

0

P
{
y ∈ Y : sup

u∈Γ(y)

{f(u)} ≥ x
}

dx

+
∫ 0

−∞
(P

{
y ∈ Y : sup

u∈Γ(y)

{f(u)} ≥ x
}− 1) dx

=
∫ ∞

0

P
{
y ∈ Y : Γ(y) ⊆ {f ≥ x}} dx
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+
∫ 0

−∞
(P

{
y ∈ Y : Γ(y) ⊆ {f ≥ x}}− 1) dx

=
∫ ∞

0

P ({f ≥ x}) dx +
∫ 0

−∞
(P ({f ≥ x})− 1) dx =

∫

Ch

f dP . (21)

By Theorem 1 of Castaldo, Maccheroni, and Marinacci (2004), for any f ∈
Cb(U),

∫

Ch

f dP = max
γ∈Sel(Γ)

∫

U
f(u)Pγ−1(du),

so that (20) is equivalent to

max
γ∈Sel(Γ)

∫

U
f(u)Pγ−1(du) ≥

∫

U
f(u)ν(du) (22)

for any f ∈ Cb(U). If ν is in the weak closure of the set of convex combinations

of elements of {Pγ−1 : γ ∈ Sel(Γ)}, then by linearity of the integral and the

definition of weak convergence, (22) holds. Conversely, if ν satisfies (22), then

it satisfies
∫

Ch

f dP ≥
∫

U
f(u)ν(du)

and by monotone continuity, we have for all A ∈ BU , and IA the indicator

function,
∫

U
IA(u)ν(du) ≤

∫

Ch

IAdP .

Hence ν(A) ≤ P (A) for all A ∈ BU , which by Corollary 1 of Castaldo, Mac-

cheroni, and Marinacci (2004) implies that ν is the weak limit of a sequence of

convex combinations of elements of {Pγ−1 : γ ∈ Sel(Γ)}, hence it is a mixture

in the desired sense and the proof is complete.

(iii) ⇐⇒ (iv) ⇐⇒ (v)

Using theorem 2 below, it suffices to show that (11) is equivalent to ν(Γ(A)) ≥
P (A) for all A ∈ BY . As previously, define P as the set function on BU

P : B → P ({y ∈ Y : Γ(y) ∩B 6= ∅}).

Define also P as the set function

P : B → P ({y ∈ Y : Γ(y) ⊆ B}).
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Since P (B) = 1− P (Bc), we have the well known equivalence between ν(B) ≤
P (B) for all B ∈ BU and ν(B) ≥ P (B) for all B ∈ BU . In particular, for

B = Γ(A) for any A ∈ BY , we have ν(B) ⊆ {y ∈ Y : Γ(y) ⊆ Γ(A)}. As

A ⊆ {y ∈ Y : Γ(y) ⊆ Γ(A)}, we have ν(Γ(A)) ≥ P (B). Conversely, for some

B ∈ BU , call B∗ = {y ∈ Y : Γ(y) ⊆ B}. Then, we have P (B∗) ≤ ν(Γ(B∗)).

The result follows from the observation that Γ(B∗) ⊆ B.

Lemma 1:

If ϕ : Y × U → R is bounded, non-negative and lower semicontinuous, then

inf
π∈M(P,ν)

πϕ = sup
f⊕g≤ϕ

(Pf + νg)

Proof of Lemma 1:

It can be shown to be a special case of corollary (2.18) of Kellerer (1984);

however, a direct proof is more transparent, so we give it here for completeness.

The left-hand side is immediately seen to be always larger than the right-hand

side, so we show the reverse inequality.

[a] case where ϕ is continuous and U and Y are compact8.

Call G the set of functions on Y ×U strictly dominated by ϕ and call H the set

of functions of the form f + g with f and g continuous functions on Y and U
respectively. Call s(c) = Pf +νg for c ∈ H. It is a well defined linear functional,

and is not identically zero on H. G is convex and sup-norm open. Since ϕ is

continuous on the compact Y × U , we have

s(c) ≤ sup f + sup g < supϕ

for all c ∈ G ∩ H, which is non empty and convex. Hence, by the Hahn-

Banach theorem, there exists a linear functional η that extends s on the space

of continuous functions such that

sup
G

η = sup
G∩H

s.

By the Riesz representation theorem, there exists a unique finite non-negative

measure π on Y × U such that η(c) = πc for all continuous c. Since η = s on

8This is lemma 11.8.5 of Dudley (2003). R. Dudley credits it to a private communication

from J. Neveu in 1974. The proof given here fort completeness is due to N. Belili.
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H, we have
∫

Y×U
f(y) dπ(y, u) =

∫

Y
f(y) dP (y)

∫

Y×U
g(u) dπ(y, u) =

∫

Y
g(u) dν(y),

so that π ∈M(P, ν) and

sup
f⊕g≤ϕ

(Pf + νg) = sup
G∩H

s = sup
H

η = πϕ.

[b] Y and U are not necessarily compact, and ϕ is continuous.

For all n > 0, there exists compact sets Kn and Ln such that

max (P (Y\Kn), ν(U\Ln)) ≤ 1
n

.

Let (a, b) be an element of Y × U and define two probability measures µn and

νn with compact support by

µn(A) = P (A ∩Kn) + P (A\Kn)δa(A)

νn(B) = ν(B ∩ Ln) + ν(B\Ln)δb(B),

where δ denotes the Dirac measure. By [a] above, there exists πn with marginals

µn and νn such that

πnϕ ≤ sup
f⊕g≤ϕ

(Pf + νg) +
ϕ(a, b)

n
.

Since (πn) has weakly converging marginals, it is weakly relatively compact.

Hence it contains a weakly converging subsequence with limit π ∈ M(P, ν).

By Skorohod’s almost sure representation (see for instance theorem 11.7.2 page

415 of Dudley (2003)), there exists a sequence of random variables Xn on a

probability space (Ω,A,P) with law πn and a random variable X0 on the same

probability space with law π such that X0 is the almost sure limit of (Xn). By

Fatou’s lemma, we then have

liminf πnϕ = liminfEϕ(Xn)

≥ Eliminfϕ(Xn)

= Eϕ(X0)

= πϕ.
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Hence we have the desired result.

[c] General case.

ϕ is the pointwise supremum of a sequence of continuous bounded func-

tions, so the result follows from upward σ-continuity of both infπ∈M(P,ν) πϕ

and supf⊕g≤ϕ(Pf + νg) on the space of lower semicontinuous functions, shown

in propositions (1.21) and (1.28) of Kellerer (1984).9

Proof of Theorem 2:

Under assumption 1, Γ is closed valued, hence ϕ(y, u) = {u /∈ Γ(y)} is lower

semicontinuous and (15) is a direct application of lemma 1 above. Proposition

(3.3) page 424 of Kellerer (1984) shows that in the case where ϕ is the indicator

function of a set D, the right-and side of (15) specializes to

sup
A×B⊆D

(P (A)− 1 + ν(B)).

For D = {(y, u) : u /∈ Γ(y)}, A × B ⊆ D means that if y ∈ A and u ∈ B,

then u /∈ Γ(y). In other words u ∈ B implies u /∈ Γ(B1), which can be written

B ⊆ Γ(A)c. Hence, the dual problem can be written

sup
Γ(A)⊆Bc

(P (A)− 1 + ν(B)) = sup
Γ(A)⊆B

(P (A)− ν(B)).

and (16) follows immediately.

Proof of Theorem 3:

The convergence of the empirical process Gn to the P -Brownian bridge uni-

formely in l∞(F), where F is the class of indicator functions of sets in C follows

immediately from property (CD), so the convergence of the supremum of G
follows from the continuous mapping theorem.

Proof of Theorem 4:

• Proof of property (DP):

We have already shown in the main text that any finite class of sets, C and

SK are Vapnik-C̆ervonenkis classes of sets (for a definition, see 2.6.1 page
9The duality result can be extended to Borel functions using Choquet’s capacitability

theorem (Choquet (1959)).
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134 of van der Vaart and Wellner (1996)10. Call F the class of indicator

functions of sets in C or SK , and call V (F) the Vapnik-C̆ervonenkis index

of the corresponding class of sets. By Theorem 2.6.4 page 136, there exists

a constant C such that for all probability measure Q and all 0 < ε < 1,

the covering number (see definition 2.2.3 page 98 of van der Vaart and

Wellner (1996)) of F in L2(Q) metric, N(ε,F ,L2(Q)) satisfy

N(ε,F ,L2(Q)) ≤ C(V (F))(4e)V (F)(1/ε)2(V (F)−1).

Hence, we have
∫ ∞

0

sup
Q

√
lnN(ε,F ,L2(Q)) dε < ∞.

Since F is a class of indicator functions, the above suffices to satisfy con-

ditions of Theorem 2.5.2 page 127 of van der Vaart and Wellner (1996),

and F is P -Donsker, i.e. C and SK satisfy (DP).

• Proof of property (CD): to be added.
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