Long-Run Economic Growth, Part 2

Agenda

• Fundamental Determinants of Living Standards.
• Endogenous Growth Theory.
• Policies to Raise Long-Run Living Standards.

The Solow Model

• Fundamental determinants of living standards:
 ➢ The saving rate.
 ➢ Population growth.
 ➢ Productivity growth.

The Solow Model

• Fundamental determinants of living standards:
 ➢ Increasing the saving rate:
The Solow Model

- The adjustment mechanism:
 - A higher saving rate shifts the saving function up.
 - At the original \(K/N \), at \((K/N)_A \), \(S/N \) is now greater than \(I_b/N \).
 - Consequently, \(K/N \) will increase, causing:
 - \(Y/N \) to increase along the production function,
 - \(S/N \) to increase along the new saving function, and
 - \(I_b/N \) to increase along the balanced investment function.

- The Solow Model (continued):
 - A higher saving rate shifts the saving function up.
 - At the original \(K/N \), at \((K/N)_A \), \(S/N \) is now greater than \(I_b/N \).
 - Consequently, \(K/N \) will increase, causing:
 - \(Y/N \) to increase along the production function,
 - \(S/N \) to increase along the new saving function, and
 - \(I_b/N \) to increase along the balanced investment function.

- The Solow Model (continued):
 - Because of diminishing marginal product of capital, the increase in \(S/N \) is smaller than the increase in \(I_b/N \) for every increase in \(K/N \).
 - Eventually \(S/N \) will equal \(I_b/N \) at a new, higher steady state at B.

- The Solow Model (continued):
 - At B, \(Y/N \) has increased, \(K/N \) has increased, \(S/N \) has increased, and \(I_b/N \) has increased.
 - At steady state B, \(\Delta Y/Y = \Delta N/N = \Delta K/K \).
 - During the transition period from steady state A to steady state B:
 - \(\Delta Y/Y > \Delta N/N \) because \(Y/N \) was increasing, and
 - \(\Delta Y/Y > \Delta K/K \) because \(K/N \) was increasing.
The Solow Model

- Fundamental determinants of living standards:
 - Increasing the saving rate means:
 - A higher capital-labor ratio, K/N,
 - A higher output per worker, Y/N, and
 - A higher consumption per worker, C/N.

- Slowing the population growth rate:

Effect of a faster population growth rate

- $Y/N = A^*(K/N)$
- $I_t/N = (s + d)K/N$
- $S/N = sA^*(K/N)$
- $(S/N) = (I_t/N)$
- (K/N)
The Solow Model

- The adjustment mechanism:
 - A slower population growth rate rotates the balanced investment function down.
 - At the original K/N, at $(K/N)_A$, S/N is now greater than I_b/N.
 - Consequently, K/N will increase, causing:
 - Y/N to increase along the production function,
 - S/N to increase along the saving function, and
 - I_b/N to increase along the new I_b/N function.

- The adjustment mechanism (continued):
 - Because of diminishing marginal product of capital, the increase in S/N is smaller than the increase in I_b/N for every increase in K/N.
 - Eventually S/N will equal I_b/N at a new, higher steady state at B.

- Fundamental determinants of living standards:
 - Slowing the population growth rate means:
 - A higher capital-labor ratio, K/N,
 - A higher output per worker, Y/N, and
 - A higher consumption per worker, C/N.

- The adjustment mechanism (continued):
 - At B, Y/N has increased, K/N has increased, S/N has increased, and I_b/N has increased.
 - At steady state B, $\Delta Y/Y = \Delta N/N = \Delta K/K$.
 - During the transition period from steady state A to steady state B:
 - $\Delta Y/Y > \Delta N/N$ because Y/N was increasing, and
 - $\Delta Y/Y > \Delta K/K$ because K/N was increasing.
The Solow Model

• Fundamental determinants of living standards:
 - Slowing the population growth rate:
 - Should reducing population growth be a policy goal?
 - Doing so will raise consumption per worker but it will reduce total output and consumption.
 - We have also assumed that the proportion of the population of working age is fixed which may not be true.

• Increasing the productivity growth rate:
 - An improvement in productivity shifts both the production and saving functions up.
 - At the original K/N, at $(K/N)_A$, Y/N is now higher.
 - Also at the original K/N, at $(K/N)_A$, S/N is now greater than I_y/N.

Effect of a productivity improvement

$$\frac{Y}{N} = \frac{A^* f(\frac{K}{N})}{Y/N}$$
$$I_y/N = (n + d)K/N$$
$$S/N = \frac{s^*A^*f(K/N)}{S/N}$$
The Solow Model

• The adjustment mechanism:

 ➢ Consequently, \(K/N \) will increase, causing:
 • \(Y/N \) to increase along the new production function,
 • \(S/N \) to increase along the new saving function, and
 • \(I_b/N \) to increase along the balanced investment function.

• The adjustment mechanism (continued):

 ➢ Because of diminishing marginal product of capital, the increase in \(S/N \) is smaller than the increase in \(I_b/N \) for every increase in \(K/N \).

 ➢ Eventually \(S/N \) will equal \(I_b/N \) at a new, higher steady state at B.

• The adjustment mechanism (continued):

 ➢ At B, \(Y/N \) has increased, \(K/N \) has increased, \(S/N \) has increased, and \(I_b/N \) has increased.

 ➢ At steady state B, \(\Delta Y/Y = \Delta N/N = \Delta K/K \).

 ➢ During the transition period from steady state A to steady state B:
 • \(\Delta Y/Y > \Delta N/N \) because \(Y/N \) was increasing, and
 • \(\Delta Y/Y > \Delta K/K \) because \(K/N \) was increasing.

The Solow Model

• Fundamental determinants of living standards:

 ➢ An improvement in productivity means:
 • A higher capital-labor ratio, \(K/N \),
 • Higher output per worker, \(Y/N \), and
 • Higher consumption per worker, \(C/N \).
The Solow Model

• Fundamental determinants of living standards:
 - An improvement in productivity means:
 - Productivity improvement *directly* improves the amount that can be produced at any capital-labor ratio.
 - The increase in output per worker also increases the supply of saving, and *indirectly* causes the long-run capital-labor ratio to rise.

Application: The growth of China

• Population of 1.3 billion people.
 - A huge labor force with a comparative advantage in labor-intensive industries where wages are low.
• A low, but rapidly growing, level of GDP.
 - About 1/7 of US GDP per capita in 2007.
Real GDP growth in China and the US

Application: The growth of China

• Rapid output growth attributable to:
 - Saving is very high.
 - Current consumption is very low.
 - Huge increases in capital investment.
 - Productivity growth is very rapid.
 - Due in part from changing to a market economy.
 - Due to adopting foreign technologies through FDI, etc.
 - Population growth has slowed.

Application: The growth of China

• Will China ever catch up to the U.S.?
 - Problems China faces:
 - Weak banking system.
 - Rapidly aging population.
 - Increasing income inequality.
 - Much unemployment in rural areas.
Endogenous Growth Theory

- **Endogenous growth theory** attempts to explain the sources of productivity growth.
 - Assume the aggregate production function is:
 \[Y = AK \]
 - which implies constant MPK.

Endogenous Growth Theory

- How can the MPK be constant?:
 - The existence of **human capital**:
 - Human capital is the knowledge, skills, and training of the labor force.
 - Human capital tends to increase in the same proportion as physical capital.

Endogenous Growth Theory

- How can the MPK be constant?:
 - The presence of research and development.
 - Increases in capital and output generate increased technical knowledge, which offsets decline in MPK from having more capital.

Endogenous Growth Theory

- Implications of a constant MPK:
 - Assume saving is a constant fraction of output:
 - \(S = sY = sAK \)
 - Investment = net investment + depreciation,
 - \(I = \Delta K + dK \).
Endogenous Growth Theory

- Implications of a constant MPK:

 - In equilibrium, saving equals investment so:

 $$sAK = \Delta K + dK$$

 - or

 $$\Delta K/K = sA - d$$

- Summary:

 - Endogenous growth theory attempts to explain, rather than assume, changes in productivity.

 - The growth rate depends on many things which can be affected by government policies, including the saving rate.

Endogenous Growth Theory

- Implications of a constant MPK:

 - If Y is proportional to K, then $\Delta Y/Y = \Delta K/K$, so

 $$\Delta K/K = sA - d \Rightarrow \Delta Y/Y = sA - d$$

 - And the saving rate does affect long-run growth.

 - Which is not true in Solow model.

Policies to Raise Long-Run Living Standards

- Policies to increase the saving rate:

 - If private markets are efficient, the government should not try to change the saving rate.

 - The private markets’ saving rate represents its optimal trade-off of present for future consumption.

 - However, if tax laws or myopia cause an inefficiently low level of saving, government policy to raise the saving rate may be justified.
Policies to Raise Long-Run Living Standards

• Policies to increase the saving rate:
 ➢ Increase private saving.
 • Raise the real interest rate to encourage saving.
 – The response of saving to changes in the real interest rate seems to be small.
 • Provide tax incentives to encourage saving.
 – The response of saving to changes in tax incentives also seems to be small.

• Policies to increase the saving rate:
 ➢ Increase government saving.
 • Reduce the government deficit or run a surplus.
 – Through reduced government purchases or higher taxes.
 » But under Ricardian equivalence, tax increases to reduce the deficit won’t affect national saving.

Policies to Raise Long-Run Living Standards

• Policies to raise the productivity growth rate:
 ➢ Improve the infrastructure:
 • Infrastructure is the highways, bridges, utilities, dams, airports, etc.
 – Research suggests a link between the amount and quality of infrastructure and productivity growth.

• Policies to raise the productivity growth rate:
 ➢ Build human capital:
 • Research shows a strong connection between productivity and human capital.
 • Government can encourage human capital formation through educational policies, worker training and relocation programs, and health programs.
 • Another form of human capital is entrepreneurial skill.
 – Government could help by removing barriers like red tape.
Policies to Raise Long-Run Living Standards

- Policies to raise the **productivity growth rate**:
 - Encourage research and development:
 - Encourage R & D through direct and/or indirect means:
 - Government funding of R & D efforts.
 - Government tax incentives for R & D activities.
 - Enforcement of patents, trademarks, etc.

Summary

- Fundamental determinants of living standards:
 - The saving rate,
 - The population growth rate, and
 - Productivity growth.
- The productivity growth rate is the **dominant factor** in determining how quickly living standards increase.

Summary

- Endogenous growth theory is an explicit attempt to explain changes in productivity.
 - If improvements in human capital and research and development programs can keep the **MPK** constant (as \(K \) increases), then saving will also be an important factor in determining living standards.

Summary

- Government can influence living standards with policies designed to:
 - Increase the saving rate,
 - Slow the population growth rate, and/or
 - Raise the productivity growth rate.