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1 Introduction 
The nature of price-setting decisions made by firms has long played a pivotal role underlying 

controversies in macroeconomics.  Whereas real business cycle (RBC) models assume that firms 

with full information are free to set prices optimally at all times, New Keynesian models are 

typically defined by departures from the assumption of flexible prices.1  Recent work has also 

emphasized the implications of deviating from the assumption of full-information in price setting.2  

This paper is motivated by the idea that a single assumption about firms’ price-setting decision 

process may be insufficient to adequately capture macroeconomic dynamics by missing potentially 

important interactions among heterogeneous firms.  Indeed, firm-level evidence indicates striking 

heterogeneity in price setting as well as significant information costs.3  We develop and estimate a 

dynamic stochastic general equilibrium model that allows for four commonly assumed price-setting 

sectors to coexist and interact via their price-setting decisions.  Our results indicate that 1) the hybrid 

model fits the data substantially better than any of the models consisting solely of one type of firm; 

2) sticky-price and sticky-information firms account for more than 80% of all firms in the hybrid 

model; 3) neither rule-of-thumb nor flexible-price full-information firms are important to match the 

moments of the data; 4) strategic interaction of different price setting practices is qualitatively and 

quantitatively important.  

To assess the relative importance of heterogeneity in the price-setting behavior of firms, we 

consider a continuum of monopolistic producers of intermediate goods, divided into four segments, 

each of which uses a different price-setting approach.  These include sticky-prices, sticky-

information, rule-of-thumb, and full-information flexible-price firms.4  This setup is nested in an 

otherwise standard New Keynesian model with a representative consumer and a central bank.  The 

                                                 
1 See Kydland and Prescott (1982) for the seminal presentation of a classical RBC model and Woodford (2003) for an in-
depth presentation of New Keynesian models. 
2 Sims’ (2003) rational inattention model, Woodford’s (2001) imperfect common knowledge, and Mankiw and Reis’ 
(2002) sticky-information models are prime examples. 
3 Empirical work typically finds a large amount of heterogeneity in the frequency of price changes by firms, as well as in 
the source of costs to changing prices (information vs menu costs).  Bils and Klenow (2004) and Dhyne et al (2005), for 
example, find that there are large differences in durations between price changes across sectors.  Taylor (1999) cites the 
example of frozen orange juice prices changing every two weeks while magazine prices change every three years. 
Zbaracki et al (2004) and Fabiani et al (2005) report significant information costs.  
4 Sticky-price firms are modeled a la Calvo (1983), sticky-information firms are as in Mankiw and Reis (2002), and rule-
of-thumb firms always update prices by last period’s inflation rate, as in Barsky and Kilian (2001). 
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model also allows for a stochastic trend in technology and non-zero trend inflation.5  The parameters 

of the model, including the share of each type of firm, are estimated jointly using a method of 

moments approach.  This delivers a set of predicted moments for the observable variables that can be 

directly compared to those of the data.   

Because we allow for these four types of firms to coexist, our model nests many price-setting 

models considered in the literature.  For example, sticky-price models are frequently augmented with 

rule-of-thumb firms to better match the inflation inertia observed in the data, but the relative 

importance of forward-looking versus backward-looking behavior has been much debated.6  Our 

result that sticky-price firms account for approximately sixty percent of firms is consistent with the 

findings of much of this literature, but the fact that rule-of-thumb firms are ruled out in favor of 

sticky-information firms implies that the role previously assigned to rule-of-thumb firms in 

explaining backward-looking behavior in the New Keynesian Phillips Curve (NKPC) is instead 

likely due to the presence of sticky-information firms.   

 Flexible-price full-information firms are included to capture the potential importance of 

heterogeneity in rates at which prices and information are updated.  Bouakez et al (2006), Carvalho 

(2006) and Aoki (2001) demonstrate that heterogeneity in price stickiness across sectors affects the 

dynamics and optimal monetary policy of a sticky price model respectively.  By including flexible 

price firms, our model nests a simple case of such heterogeneity.  The fact that these types of firms 

receive an estimated share of only 8% indicates that heterogeneity of this sort is relatively 

unimportant to match the moments of the data. 

The presence of sticky-price, sticky-information, and rule-of-thumb firms also nests 

empirical work to assess the empirical support for the NKPC versus the Sticky Information Phillips 

Curve (SIPC).  While results have been either ambiguous or favored the NKPC (Korenok (2008), 

Kiley (2007) and Coibion (forthcoming)), most of this literature has assumed that either the NKPC 

or SIPC (or their weighted average) form the true models without allowing for coexistence of 

different price setting mechanisms.7  We build on this approach by allowing for both sticky-price 

and sticky-information firms to coexist and interact via strategic complementarities in price-setting.  

                                                 
5 We allow for trend inflation because it has non-trivial effects on the dynamics of the sticky price model (Ascari 2004, 
Coibion and Gorodnichenko 2008).  In addition, we show in section 2.5 that trend inflation has interesting steady state 
effects on the relative price levels of different price setting sectors and therefore plays an important role in our model. 
6 Gali and Gertler (1999), Linde (2005), and Rudd and Whelan (2006) are examples. 
7 Andres et al (2005) is an exception by finding that the sticky-information model is statistically preferred to a sticky-
price model. 
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Our finding that both types of firms are required to best match the data thus calls into question much 

of this previous work focused only on one model or the other.   

By considering a hybrid model with sticky-prices and sticky-information, this paper is most 

closely related to recent work by Dupor et al (forthcoming), Knotek (2008), and Klenow and Willis 

(2007), each of which superimpose delayed information updating as in Mankiw and Reis (2002) 

upon firms already facing nominal rigidities: menu costs in Knotek (2008) and Klenow and Willis 

(2007) and time-dependent updating in Dupor et al (forthcoming).8  Each finds empirical evidence 

for sticky-prices and sticky-information.  Thus, our results complement their findings.  However, our 

approach differs from theirs in three important aspects.  First, whereas each of these papers considers 

models in which all firms are subject to both sticky prices and sticky information, our model allows 

for sticky-price and sticky-information firms to coexist and interact via strategic complementarities 

in price-setting, but does not allow for any firm to have both sticky-prices and sticky-information.  

While we view our approach as a better approximation to the fact that the relative importance of 

pricing and informational rigidities varies across firms, and thus are likely to be best modeled via 

different pricing assumptions, whether sticky-prices and sticky-information are best integrated 

vertically (as in Klenow and Willis (2007), Knotek (2008) and Dupor et al (forthcoming)) or 

horizontally is an as-of-yet unexplored empirical question. Second, our model is more general since 

it nests sticky-price, sticky-information, and rule-of-thumb firms as well as flexible-price full-

information firms, whereas Klenow and Willis (2007), Knotek (2008) and Dupor et al (forthcoming) 

exclude either rule-of-thumb or flexible-price full-information or both types of firms.  Third, neither 

Knotek (2008) nor Dupor et al (forthcoming) use fully-specified DSGE models for their empirical 

results and thus are not able to explore the implications of heterogeneous price-setting for sources of 

business cycles, optimal policy and so on.   

To estimate our DSGE model, we make use of the dynamic auto- and cross-covariances of 

observable variables.  These moments provide important insights about the lead-lag structure of 

economic relationships.  By comparing the ability of the estimated hybrid model and estimated pure 

models to match these moments of the data, one contribution of the paper is being able to assess why 

the data prefer our hybrid model over pure sticky-price or sticky-information models.  For example, 

the moments of the data indicate that inflation leads output growth and interest rates.  This stylized 

                                                 
8 In Knotek (2008), information updates follow a Poisson process as in Mankiw and Reis (2002), but subject to a 
maximum number of periods after which information is automatically updated. 
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fact is the primary reason why sticky-firms account for such a large fraction of firms since sticky-

prices induce more-forward looking behavior than alternative price-setting setups.   

We also consider the implications of our results for optimal monetary policy.  While much 

work has been devoted to studying optimal monetary policy for sticky-price models, and some work 

has extended this type of analysis to sticky-information, Kitamura (2008) is the only other paper 

which considers optimal monetary policy in a hybrid sticky-price and sticky-information model and 

does so using the vertically integrated hybrid model of Dupor et al (forthcoming).9  Based on our 

estimated DSGE model, we find that there could be significant gains in welfare if the central bank 

used policy rules different from the estimated Taylor rule.  In particular, our simulations indicate 

dramatic improvements when the central banker has a more aggressive response to inflation or 

incorporates an element of price level targeting in his or her reaction function.  We show that using 

pure sticky-price or sticky-information models can greatly mislead the central banker about potential 

gains from using alternative policy rules in the presence of heterogeneous price setting.  The fact that 

Kitamura (2008) reaches a similar conclusion using an alternative integration of price and 

informational rigidities supports the notion that accounting for both types of rigidities has important 

monetary policy implications which are not adequately addressed in either pure sticky-price or pure 

sticky-information models.  Finally, we find that there is little penalty from using a policy with a 

response to inflation that is uniform across sectors relative to policy rules with differential responses.  

The structure of the paper is as follows.  In section 2, we present the model.  Section 3 

discusses the empirical methodology.  Our benchmark estimates, discussion, and robustness analysis 

are in section 4.  Section 5 considers the implications of our results for optimal monetary policy 

while section 6 concludes. 

 

2 Model 
The model has three principal types of agents: consumers, firms, and the central bank.  The 

consumer’s problem is modeled as a representative agent with internal habit formation.10  Production 

is broken into final goods and intermediate goods.  Production of the final goods is perfectly 

competitive whereas the intermediate goods are produced by a continuum of monopolistic 

                                                 
9 See Woodford (2003) for optimal monetary policy based on sticky-prices and Ball et al (2005) for the sticky-
information model. 
10 Ravina (2004) and Grishchenko (2005) provide empirical evidence supporting internal habit formation over external 
habit formation. 
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producers.  The latter follow different price-setting rules.  Finally, the central bank sets interest rates 

according to a Taylor (1993) rule. 

 

2.1 Consumer’s Problem 
The representative agent seeks to maximize the present discounted value of current and future utility 

levels  
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where Ct is consumption at time t, Nt(i) is labor supplied to intermediate goods firm i, h is the degree 

of internal habit formation,  is the Frisch labor supply elasticity,  is the discount factor, and gt is a 

shock to the marginal utility of consumption.  We allow for labor to be supplied individually to 

specific firms to generate stronger strategic complementarity in price setting.11  Because 

consumption and labor are separable in the utility function, we impose that consumption enters in a 

logarithmic form to be consistent with a balanced growth path.  Each period, the consumer faces the 

following budget constraint 
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where Ht is the stock of risk-free bonds held at time t and Rt is the gross nominal interest rate earned 

on bonds in the subsequent period.  Wt(i) is the nominal wage earned from labor supplied to 

intermediate goods firm i and Tt consists of profits returned to the consumer.  Finally, Pt is the price 

of the consumption good at time t. 

 Defining t to be the shadow value of wealth, the first-order conditions with respect to each 

control variable are 
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Bonds   1 1( / )t t t t t tE R P P     . (3)  

 

                                                 
11 See Woodford (2003, Chapter 3) for a discussion of why strategic complementarity is needed in New Keynesian 
models. 
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2.2 Production 
The final good is produced by a perfectly competitive industry using a continuum of intermediate 

goods through a Dixit-Stiglitz aggregator 

/( 1)1
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This yields the following price level 
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The demand facing an intermediate producer j is then given by 

 ( ) ( ) /t t t tY j P j P Y
 .  

We assume that intermediate goods producers have a production function that is linear in 

labor ( ) ( )t t tY j A N j .12  Despite the presence of firm-specific labor supply, we assume that firms 

treat wages as exogenously determined.  The optimal frictionless price ( #
tP ) is a markup 

/( 1)     over firm-specific nominal marginal costs, where the latter are given by 

( ) ( ) /t t tMC j W j A .  Eliminating the firm-specific elements of marginal cost by substituting in the 

labor supply condition and the firm-level demand yields the following relationship between real 

firm-specific marginal costs and aggregate marginal costs 
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of the dispersion of prices across firms.  We can then write a firm’s instantaneous optimal desired 

relative price as 
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Since there is no capital in the model, the goods market clearing condition is simply Yt = Ct. 

 

                                                 
12 We omit capital from the model for tractability.  Woodford (2003, p. 372-378) argues that the dynamics of the 
standard pricing model without capital is very similar to the dynamics of the model with capital. 
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2.3 Price-Setting Behavior 
Intermediate good producing firms are assumed to be in one of four price-setting sectors: sticky 

prices, sticky-information, rule-of-thumb, or flexible prices.  We assume, without loss of generality, 

that firms of the same pricing sector are grouped into segments so that the price level can be written 

as 

3 2 11 2 1
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where sp, si, rot, and flex are indices for sticky-price, sticky-information, rule-of-thumb, and flexible 

price firms respectively.  Importantly, firms are otherwise identical in the sense that a firm in a given 

sector is the same competitor to all other firms symmetrically irrespective of whether they are in the 

same sector or not.  The weighting parameters s1, s2, and s3 are the fractions of firms that belong to 

the sticky-price, sticky-information, and rule-of-thumb sectors respectively.  Flexible-price firms are 

assigned the remaining mass of s4=1-s1-s2-s3.  Firms cannot switch sectors.  Defining the price level 

specific to sector k as 
1
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Sticky price firms:  These firms face a constant probability 1 sp of being able to change their price 

each period.  A firm with the ability to change its price at time t will choose a reset price Bt to 

maximize the expected present discounted value of future profits 
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where Qt,t+j is the nominal stochastic discount factor between times t and t+j and firm-specific 

marginal costs and output are as before.  Taking the first-order condition and replacing firm-specific 

marginal costs and output with their corresponding aggregate terms yields the optimality condition 
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so that all firms with the opportunity to reset prices choose the same value of Bt.  The price level for 

sticky price firms obeys 
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Sticky-Information Firms:  These firms face a Poisson process for updating their information sets, 

with the probability of getting new information in each period given by 1 si .  In every period, 

firms set prices freely given their information set.  The profit-maximization problem at time t for 

firm j which last updated its information set at time t-k is then 

 | ( ) arg max [( ( )) ( )]si
t t k P t k t tP j E P MC j Y j      

where firm-specific marginal costs and demand are determined as before.  This yields the solution 

that a firm j that last updated its information k periods ago sets its time-t price equal to 

#( )si
t k tt t kP j E P  .  Hence, the price level for sticky information firms is  

# 1 1/(1 )
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t si si t j tj
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Rule-of-Thumb Firms:  These firms always change their prices by the previous period’s inflation 

rate.13  Hence, the price level for the rule-of-thumb sector follows  

1 1 2( / )rot rot
t t t tP P P P   . (9) 

 

Flexible Price/Information Firms:  These firms are always free to change prices and have complete 

information.  They thus always set prices equal to the instantaneously optimal price.  The price level 

for flexible price firms is then just #flex
t tP P . 

 

2.4 Shocks  
We assume the following shock processes.  First, technology shocks follow a random walk with drift  

1 ,log log logt t a tA a A    ,  

where a,t are independently distributed with mean zero and variance 2
a .  Preference shocks follow 

a stationary AR(1) process  

1 ,t g t g tg g   ,  

                                                 
13 Technically this implies that the relative price level of rule-of-thumb firms is indeterminate in a stationary steady-state.  
This can be avoided by assuming a Poisson probability 1-rot that each firm is allowed to set its price equal to Pt

#.   
Taking the limit as rot goes to one leads to a well-defined relative price level equal to P#/P.  We omit this in the text for 
simplicity but assume it implicitly later when we characterize the steady-state. 
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where g,t are independently distributed shocks with mean zero and variance 2
g . 

 

2.5 Log-Linearizing around the Balanced-Growth Path 
Because technology follows a random walk with drift, output and consumption will inherit the unit 

root component of technology.  To ensure stationarity, we log-linearize the model around the 

balanced growth path in which Y/A is stationary.  Note that equation (1) ensures that tAt is also 

stationary.  Defining yt and t to be the log-deviations of Yt/At and tAt from their balanced growth 

paths respectively, we can rewrite (1) in log-linearized form as 

2
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and the Euler equation as 
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where 1log( / ) log( )t t tP P    and 1/t tP P   along the balanced growth path.  The log-deviation 

of the interest rate rt is defined as log( / )t tr R R .  

 We allow the log of steady-state inflation to differ from zero, as in Cogley and Sbordone 

(2008).  The log-deviation of inflation from its steady-state value is a weighted average of sector 

specific inflation rates 
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where 1log( / ) log( )j j j
t t tP P   , /j jp P P  is the steady-state relative price level of sector j, and 

1
CPI j
j js s p


  is the effective share of sector j in the aggregate price index.14   

Because inflation is not zero on average, sticky-price firms have to take into account the fact 

that prices will tend to rise on average.  Hence, the reset price will generally be greater than the 

average price level to offset the tendency of prices to rise.  From equation (6), we can find the 

steady-state relative reset price to be 

1/(1 ) # #
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2 spaR       .  But the non-zero rate of inflation also affects the 

steady-state level of the optimal relative price.  Specifically, one can show that 

                                                 
14 Note that equation (12) uses the fact that the weighted sum of the log-linearized relative price levels is zero. 
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.  

To the extent that the extra weight attached to s1 will in general not be equal to one, the optimal 

relative price will also then differ from one.  We can show the following result: 

 

Proposition 1: When trend inflation is greater than zero, there exists a unique * ( , , , )sp      such 

that if  > *, the steady state average relative price level of sticky price firms is greater than one 
while the optimal relative price is less than one (and vice versa for  < *). 
Proof: See Appendix 1. 

 

When trend inflation is positive, the relative reset price chosen by sticky-price firms declines over 

time as the aggregate price level rises.  If firms care enough about future profits, then they must 

choose a high reset price today to avoid the relative reset price being too low in the distant future.  

This will cause the average relative price level of sticky-price firms to be greater than one.  

However, if firms care primarily about near-term profits ( is small), then firms will choose a reset 

price that is close to optimal over a short time period.  As this relative price declines over time with 

inflation, the average price level for sticky-price firms will be less than one.   

If the steady-state average relative price level of a sector k is greater than one, then its share 

in the final good will be lower than implied by its mass in the output index.  The final goods price 

index will therefore place a smaller weight on the price of the good of this sector k, that is, CPI
k ks s .  

This implies that, upon log-linearizing around steady-state values, price changes in this sector will 

have a smaller effect on aggregate inflation than would be the case if it had a steady-state relative 

price of one, as can be seen in equation (12).  Because *   in all of our estimates, we have 

1 1
CPIs s . 

From (4) and the definition of the real marginal cost, the log-linearized deviation of the 

instantaneously optimal relative price is given by 

# # # 1log( / ) log( / ) (1 ) ( )t t t t tp P P P P y       . (13) 

To log-linearize the reset price of sticky-price firms, we first rewrite equation (6) in terms of 

stationary variables 
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11 1#

,
1 1

0 1 1 1

0
j j

t jj t s t s t t s
sp t t t j

s s
j t s t s t t j t s

PY P B P
E Q

Y P P P P

  


 


  

  
       

                                         
 . (14) 

Defining bt as the log deviation of /t tB P  from its stationary steady-state value and log-linearizing 

(14) around the balanced growth path leads to the following expression for the reset price15 

#
2 2 2 1 1 2 1

0 1 1

1 1
(1 ) ( ) [ ] [ (1 (1 )) ] ,

1 1
j j j j j

t t t j t t j t j t t j
j j j

b E p E gy r E        
 

  

    
  

        
     

where 1log( / ) logt t tgy Y Y a   is the (stationary) log-deviation of the growth rate of output from its 

mean.   

Denoting the log-deviation of the relative price level in sector k from its steady state value as 

log( / ) log( / )k k k
t t t t tp P P P P  , the log-linearized relative price level of sticky price firms follows 

1
1

1(1 )( / ) ( )sp sp sp
t sp t sp t tp b p b p


   




    ,  

where the steady-state ratio of reset prices to the sticky-price level is given by16 

 1 1/( 1)( / ) [(1 ) / (1 )] .sp
sp spb p          

The stationary relative price level for sticky-information firms is given by 

1/(1 )1/(1 ) 11# #

0 0

( / )
(1 ) (1 ) ,

( ) /

si
t j t t j t tj jt

si si si si
j jt t t j t t

E P E P PP

P P E P P

 

   

 
 

 

  

     
                   

            

which yields the following log-linearized expression 

#
,

0

(1 ) [ ]si j
t si si t j t j t

j

p E p CIFE 





   , (15) 

where the cumulative inflation forecast error is , 1
( )

j

j t t j s t j t j ss
CIFE E     

  .  The latter 

appears because the relative price of sticky information firms depends not only on how firms set 

prices relative to the expected price level but also on how the expected price level differs from the 

                                                 
15 For these sums to be well-defined in the steady-state requires that 2 < 1.  Note that we express the reset price in terms 
of optimal prices rather than real marginal costs.  The reason is that real marginal costs are also a function of the price 
dispersion Dt.  With non-zero trend inflation, this dispersion term has first order effects.  By expressing price setting 
decisions in terms of desired optimal prices, we reduce the state space of the model by eliminating the need to keep track 
of the dynamics of price dispersion. 
16 For the relative reset price to be well-defined in equilibrium requires the additional condition that 1 1sp

    . 
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actual price level.  To condense the set of expectations we need to keep track of, expression (15) can 

be rewritten as 

# #
1 1 1

0

(1 ) (1 ) ( )si si j
t si t si t si si si t j t t t j t

j

p p p E E p      


    


          . (16) 

Since the inflation rate for rule-of-thumb firms is 

1
rot
t t   , (17) 

the log-linearized relative price level of rule-of-thumb firms follows 

1 1 1
rot rot rot
t t t t t tp p p          .  (18) 

Inflation of flexible-price firms is  

# #
1

flex
t t t tp p    . (19) 

 

2.6 Central Bank 
To close the model, we need to describe the central bank’s behavior.  We follow the literature and 

assume that the central bank sets interest rates according to a Taylor (1993) type rule with interest 

smoothing such that  

1 2 1 1 2 2 ,(1 )[ ] ,t t gy t t t r tr gy r r                    (20) 

which allows the central bank to respond to inflation and the growth rate of output.17  The lagged 

interest rate terms capture the central bank’s desire to smooth interest changes.  We include two lags 

of the interest rate in the right-hand side of (20) because in our previous work we document (e.g., 

Gorodnichenko and Shapiro 2007, Coibion and Gorodnichenko 2008) that two lags appear to be the 

appropriate statistical description of serial correlation in the policy rule.  The policy innovations r,t 

are assumed to be independently distributed with mean zero and variance 2
r . 

 

3 Estimation Approach 
As in Ireland (2004), our log-linearized model has three variables that directly correspond to 

observable macroeconomic series: the inflation rate, the growth rate of output, and the nominal 

interest rate.  The advantage of focusing on output growth, rather than the output gap as traditionally 

done, is that output growth is directly observable, whereas the output gap is not.  In addition, the 

                                                 
17 We follow Ireland (2004) and allow for the central bank to respond to output growth rather than some measure of the 
output gap.  Our qualitative results are insensitive to the inclusion of an additional output gap term in the Taylor rule, as 
shown in section 4.4. 
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theoretically motivated output gap would tend to be poorly approximated by standard detrending 

methods (see Andres et al (2005)).18  To estimate the underlying parameters of the model, we use a 

method-of-moments approach that seeks to match the contemporaneous and intertemporal 

covariances of the observable variables from the data to those of the model.  After solving our model 

for the unique rational expectations equilibrium and letting  denote the vector of parameters in the 

model, we can rewrite it in reduced form as 

1( ) ( ) ( )t t t tX A X B C        ,  

where t is the vector of structural shocks, Xt is the vector 1 1[ ... ]t t t t t p t pY Q Y Q Y Q          , 

[ ]t t t tY gy r   is the vector of observable variables, Qt is the vector of all unobservable variables, 

and t  is the vector of serially uncorrelated measurement errors.19  The value of p determines the 

truncation point used for the sticky information sector.  Denoting the variance-covariance matrix of 

the structural and measurement shocks by ( )      and ( )     , the variance-

autocovariance matrix of Xt denoted with ( )X  is  

   1
( ( )) ( ) ( ) ( ) ( ) ( ) ( )Xvec I A A vec B B C C


                .  

Because measurement errors are assumed to be serially and contemporaneously uncorrelated,  Ξ is 

a diagonal matrix whose non-zero elements consist of the variances of measurement errors of the 

growth rate of output ( 2
,me gy ), inflation ( 2

,me  ), and interest rates ( 2
,me r ) respectively. The variance-

autocovariance matrix for observable variables is then ( ) ( )Y X        where   is the 

appropriate selection matrix.  

On the other hand, we can compute the sample autocovariance matrix for the observed 

variables, , ,0 ,1 ,
ˆ ˆ ˆ[ ( ) ( ) ( ) ]Y n Y Y Y nvech vec vec         where ,

ˆ
Y j  is the sample estimate of 

cov( , )t t jY Y   in the data.  We extract the corresponding moments of the model for the observable 

variables and denote the resulting matrix with 

                                                 
18 Gorodnichenko and Ng (2008) also show that using growth rates of variables could lead to better statistical estimate 
than using levels of persistent variables.  
19 Sargent (1989), Watson (1993) and others emphasize the importance of measurement errors in reported 
macroeconomic variables as well as in improving the fit of dynamic stochastic general equilibrium models.  We 
introduce measurement errors to absorb those short-term fluctuations in macroeconomic variables that are unrelated to 
structural shocks.    
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, ,0 ,1 ,( ) [ ( ( )) ( ( )) ( ( )) ]Y n Y Y Y nvech vec vec            .  In summary, our method of moments 

estimator of the parameters is then given by 

 , , , ,
ˆ arg min ( ( ) ) ( ( ) )Y n Y n Y n Y nW                       

where W is a weighting matrix. The resulting ̂  is a consistent estimate, provided that ̂  is 

identified.  Following Abowd and Card (1989), Altonji and Segal (1996) and others, we use the 

identity weighting matrix in the estimation of the covariance structure.20  Note that because , ( )Y n   

is highly non-linear in  , it may be hard to find the global optimum.  To address this problem, we 

use stochastic search optimizers to achieve the global optimum.  

 Most work on estimating DSGE models relies upon maximum likelihood or Bayesian 

approaches.  We follow our alternative method-of-moments approach for several reasons.  First, 

Ruge-Murcia (2003) compares method of moments estimators with other popular methods such as 

maximum likelihood for estimating DGSE models and finds that it performs well in simulations.  

Second, a particularly appealing feature of our method of moments approach is that the moments of 

the data used in the estimation have an economic interpretation.  Comparing the predicted moments 

of the model to those of the data highlights which features of the data the model can and cannot 

match.  As we discuss in section 4.2.2, our method of moments estimator thus allows us to shed light 

on why the pure models are rejected in favor of the hybrid model.  Thus, we interpret our empirical 

approach as one way to get inside the “black box” of estimated DSGE models. Finally, we use 

simulation-based methods to estimate structural parameters without requiring the researcher to take a 

stand on priors. Our simulation-based method illustrates how medium and large scale models can be 

estimated within the classical statistical framework.  

 

4 Results 
We use U.S. data from 1984:Q1 until 2008:Q2.21  The growth of output is measured as 

400×log(RGDPt/RGDPt-1) where RGDP is chained real gross domestic product.  Inflation is 

measured using the Consumer Price Index by 400×log(Pt/Pt-1).  The interest rate is 400×log(1+Rt) 

                                                 
20 These authors find that W equal to the identity matrix performs better than the optimal weighting matrix in the context 
of estimating covariance structures.  The optimal weighting matrix, which contains high order moments, tends to 
correlate with the moments and this correlation undermines the performance of the method of moments estimator.  We 
investigate the robustness of our results to the weighting matrix in section 4.4. 
21 We focus on this period rather than the full sample because of the structural break in the monetary policy reaction 
function as well as trend inflation which occurred in the early 1980s.  
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where Rt is the Effective Federal Funds rate (at a quarterly rate).  We focus on the contemporaneous 

covariances and the first three cross-autocovariances of these series to estimate the parameters of the 

model.  We restrict the number of autocovariances to minimize the computational burden and to 

sharpen inference as the plethora of weakly informative moments tends to deteriorate the estimator’s 

performance.22  

 Our model contains the following set of parameters ={a, ,  R   , , h, , si, sp, s1, s2, s3, 

, gy, 1, 2, g, r, a, me,gy,  me,, me,r}.  We calibrate the balanced-growth inflation rate, 

interest rate, and growth rate of output to those observed in our sample: 1.0077  , 1.0076a  , 

1.0130R  .  Following Ireland (2004), we impose  = 0.99 to guarantee that the consumer’s 

problem is well bounded.  We set ߟ ൌ 1, a fairly typical calibrated value for the Frisch labor supply 

elasticity, and set θ = 10, such that the steady-state markup is about 11%.23  We experiment with 

alternative values of η and θ in robustness checks.  We choose to calibrate these parameters rather 

than estimate them because these parameters have known identification problems.  For example, Del 

Negro and Schorfheide (2008) and Canova and Sala (2007) report that standard monetary models 

have difficulties in distinguishing real (which is governed by η and θ) and nominal (which is 

governed by δsp and δsi) rigidities.  All other parameters are estimated using Markov Chain Monte 

Carlo (MCMC) methods, with details provided in Appendix 2.  We set the truncation of past 

expectations to p = 12.  We restrict the degree of habit formation, the shares of firms, and the 

persistence of the preference shock to be between 0 and 1.  Price and informational rigidities (δsp and 

δsi respectively) are restricted to be between 0.3 and 0.95. 24   

 

                                                 
22 We consider the effect of using more moments in the robustness section 4.4. 
23 See Christiano, Eichembaum, and Evans (2005), for example.   
24 The lower bound on pricing and information rigidities is imposed to avoid identification issues, since when these 
rigidities are low, firms in these sectors behave very much like flexible-price full-information firms, making 
identification of shares of firms tenuous.  In our estimation procedure we also restrict parameters to be consistent with a 
unique determinate rational expectation equilibrium. To assess whether our results are affected by the boundaries, we 
estimated a reparameterized version of the model (e.g., instead of drawing ݄ א ሾ0,1ሿ, we drew ߫ א ሺെ∞. ∞ሻ such that 
݄ ൌ ౛౮౦ሺഒሻ

భశ౛౮౦ሺഒሻ) and found very similar results.  We also calculated that, for the baseline specification, the MCMC chain 

generated less than 0.05% (for the identity weight matrix) and 0.7% (for the diagonal weight matrix) of draws which led 
to non-uniqueness/non-existence.  Thus, most of our draws were away from the indeterminacy region. In addition, when 
we ran multiple long (2 million draws or more) chains, we observed that the averages across chains converged to very 
similar values as our baseline estimates (see Appendix Figure A5), which is consistent with the chains exploring the 
parameter space sufficiently well. Finally, we re-ran chains while fixing close-to-boundary parameters and we found 
very similar point estimates and standard errors for other parameters. 
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4.1 Baseline Estimates 
Table 1 presents our baseline estimates for the hybrid model, as well as estimation results for 

restricted models.  For our baseline model, the degree of habit persistence, at 0.79, is well within the 

range of estimates found in other studies.25  Our Taylor rule estimates imply strong responses by the 

central bank to both inflation and the growth rate of output, with substantial inertia apparent in the 

interest rate.  The weight assigned to sticky-price firms is 62%.  Sticky-information firms receive a 

weight of 21%.  Both are significantly different from zero.  Thus, sticky-prices and sticky-

information jointly account for over 80% of firms in the model.  Rule-of-thumb firms account for 

9% of firms, while flexible price firms receive a share of eight percent.  Note that the share of rule-

of-thumb firms is not statistically different from zero.  If we adjust the shares to reflect the fact that 

sticky-price firms charge higher prices on average than other sectors, the effective share of sticky-

price firms falls to 59% while the effective share of sticky-information firms rises to 23%.  The 

estimated degree of price rigidity is 0.81, which implies that sticky-price firms update their prices 

every five quarters on average.  Note that while this is higher than typical estimates of price rigidities 

(Bils and Klenow (2004) and Nakamura and Steinsson (2007)), the average price duration across all 

firms is on the order of two to three quarters, which is consistent with the literature.  Sticky-

information firms, with an estimated degree of informational rigidity of 0.95, update their 

information sets very infrequently, which is consistent with estimated degrees of informational 

rigidities in Khan and Zhu (2006) and Knotek (2008) over the post-1982 period.  In Appendix 

Figures A1-A5, we provide a variety of diagnostics to verify that our MCMC estimation has 

converged.   

 Because no single firm type receives a share of 100%, the first implication of our results is 

that our nested model best matches the data when more than a single type of firm is present.  

However, sticky-price and sticky-information firms jointly account for most of the firms in the 

economy.  To assess the relative importance of each type of firm, we consider restricted estimates of 

our models in Table 1.  One version eliminates rule-of-thumb firms.  The share of sticky-price firms 

rises to 63%, while that of sticky-information goes to 23% of firms.  The model achieves only a 

slightly higher value of the objective function than the baseline case, indicating that rule-of-thumb 

firms contribute little to the ability of the model to match the data.  When one eliminates sticky-

information firms, on the other hand, the model fares worse in matching moments with a 15% 

                                                 
25 See Fuhrer (2000), Grishchenko (2005), and Edge et al (2005). 
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increase in the value of the objective function.  Thus, while rule-of-thumb firms do not appear to 

play a significant role in matching moments of the data, the sticky-information firms certainly do.  

Finally, we consider a specification in which both rule-of-thumb and flexible firms are set to zero.  

This version of the model yields a distribution of firms of about three-quarters sticky-price firms and 

one-quarter sticky-information firms.  This model does almost as well as the baseline model in terms 

of matching the moments of the data, with only a 2% increase in the objective function. 

Thus, the most striking result from our estimation is that sticky-price and sticky-information 

firms play the most important role in matching the moments of the data.  Once one accounts for 

these two types of firms, there is little need to allow for rule-of-thumb behavior or flexible-price full-

information firms.  This result is particularly noteworthy for two reasons.  First, much of the 

literature on sticky-prices and sticky-information has focused on testing one model against the other 

(Korenok (2008), Kiley (2007), Coibion (forthcoming)).  Our results imply instead that both are 

needed to match the moments of the data.  Second, sticky-price models are commonly augmented 

with rule-of-thumb firms to introduce more inflation inertia (e.g., Gali and Gertler (1999)).  As we 

discuss in section 4.3, in the presence of strategic interaction across sectors rule-of-thumb firms 

behave similarly to sticky-information firms so that the conventional emphasis on rule-of-thumb 

firms could have been misplaced.  When one allows for both rule-of-thumb and sticky-information 

firms, the data favors sticky information as a complement to sticky-price models.   

 

4.2 How Does The Hybrid Model Differ From The Nested Pure Models? 
In this section, we study why the data prefers a hybrid sticky-price sticky-information model over 

the pure models.  To do so, we first re-estimate the structural parameters of the model under the 

assumption that only one type of firm exists and use these estimates to construct variance 

decompositions for each model.  Second, we compare the predicted moments of the hybrid and pure 

models to those of the data.  Third, we contrast the impulse response functions of each estimated 

model. 

 

4.2.1 Estimates of Pure Models 
To get a sense of why the pure models are rejected in favor of a hybrid, we first re-estimate the 

parameters of the model while imposing that the model be entirely composed of sticky-price, sticky-
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information, or flexible-price full-information firms.26  The results are presented in Table 2.  Note 

first that the sticky-price model achieves the lowest value of the objective function after the hybrid 

model, the sticky-information model comes second, while the flexible-price model does much 

worse.  Across models, the estimated degree of habit formation (h) is fairly high, ranging from 0.69 

in the sticky price model to 1.00 in the flexible model.  The coefficients of the Taylor rule also differ 

substantially across models.  The sticky-price model points to somewhat stronger responses by the 

Fed to inflation and output growth than in the hybrid model while the sticky information model 

yields a much larger response to output growth but a smaller response to inflation.  The estimated 

degrees of price and informational rigidities are close to those in the hybrid model.  Turning to 

estimated shock processes, there are important differences in the size of the shocks across models.  

For the sticky-price model and the flexible model, the volatility of interest rate shocks is not 

significantly different from zero.  For the sticky-information model, the standard deviation of 

technology shocks is much lower than in the hybrid model and insignificantly different from zero.  

Measurement errors for estimated sticky-price and sticky-information models are of the same order 

of magnitude as in the hybrid model.  For the flexible model, on the other hand, measurement error 

for the interest rate is much higher than previously found.   

These differences across models have important implications for the relative importance 

attributed to each shock in explaining macroeconomic dynamics.  Table 3 presents the one-year 

ahead variance decompositions of output growth, inflation, and interest rates due to structural shocks 

in each model.27  For output growth, all of the models yield the conclusion that most of the variance 

is due to preference shocks. Note however that the second most important shock is the policy shock 

in the sticky-information model and the technology shock in all other models. For inflation, there is 

much more variation across models.  The hybrid model attributes much of the variance of inflation 

to technology and preference shocks.  The sticky-price model yields a similar decomposition.  The 

sticky-information and flexible models, on the other hand, both attribute much more importance to 

                                                 
26 Because the dynamic responses of each pure model are so different from each other across shocks, as well as the fact 
that all the parameters of the model are estimated jointly, it is misleading to take our estimated values and simply 
consider imposing that the model only consist of one type of firm to determine how each model fares independently. 
27 The share of variance attributed to measurement error is 51%, 68%, and 0.2% for output growth rate, inflation rate, 
and interest rate respectively. Although the measurement errors soak up a relatively large fraction of contemporaneous 
variation, they have no effect on (auto)covariances which the model can match well. The main reason why we have to 
rely on measurement errors is because there is a clear break in the size of the autocovariances of output growth rate and 
inflation rate. Any standard model we experimented with could not simultaneously generate the large variance and 
(relatively) low autocovariances. The measurement error for the interest rate is not as large as it is for other variables 
because the autocovariances are close in magnitude to the variance. 
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monetary policy innovations.  With respect to interest rate fluctuations, all of the models attribute 

much of the variation to preference shocks, although the sticky information model again attributes 

some role (25%) to monetary policy innovations while the flexible model assigns a sizable weight to 

technology shocks.  Thus, overall, the sticky-price model yields a variance decomposition of 

macroeconomic variables that closely mirrors that of the hybrid model, with preference shocks being 

most important but with technology shocks playing a key role in explaining inflation.  The sticky-

information model places little weight on technology shocks, and instead assigns a much larger role 

to monetary policy innovations. 

 

4.2.2 Comparing Predicted Moments 
To further contrast the pure and hybrid models, we consider which features of the data each model 

can match.  Figure 1 presents the autocovariances of the observable variables implied by the models 

and those found in the data, as well as 95% confidence intervals derived from a non-parametric 

bootstrap.28  First and most dramatically, the flexible price model is unable to reproduce the high 

autocovariance of interest rates and output growth rate observed in the data.  Second, all other 

models perform adequately at reproducing the autocorrelation of output growth and interest rates, 

largely because this is driven by the estimates of internal habit formation and high interest rate 

smoothing in the central bank’s reaction function.  Third, the sticky-information model tends to 

somewhat overstate the persistence of inflation.   

Figure 2 presents the cross-covariances of inflation with respect to leads and lags of output 

growth and interest rates, as well as that of output growth to leads and lags of interest rates.  The 

moments of the data indicate that inflation leads output growth and interest rates, such that high 

inflation today is associated with higher interest rates and lower output growth in subsequent 

quarters.  In addition, output growth leads interest rates.  The fully flexible model is largely 

incapable of reproducing these lead-lag characteristics of the data.  The sticky-information model 

has difficulty reproducing the fact that inflation leads output growth and interest rates: in the case of 

output growth, the sticky-information model predicts that the highest covariance (in absolute value) 

is contemporaneous while in the case of interest rates, the sticky-information model predicts that 

inflation should lag interest rates.  The sticky-price model, on the other hand, replicates these lead-

                                                 
28 The boostrap is done by running a VAR(4) on our measures of GDP growth, inflation, and interest rates over the same 
time period as our sample.  We then use the VAR to simulate new data of the same length and calculate the auto and 
cross covariances from the simulated data.  We use 2000 bootstraps to generate the 95% confidence interval. 
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lag patterns more precisely.  This reflects the forward-looking behavior embodied in the reset-price 

decisions of sticky-price firms.  The hybrid model, overall, yields dynamics that are very similar to 

the sticky-price model. 

 

4.2.3 Impulse Responses 
To understand why the sticky-information model places more weight on monetary policy shocks but 

less weight on technology than either the hybrid or pure sticky-price model, it is helpful to consider 

the impulse responses of the observable variables to each shock from the different models.  These 

are presented in Figure 4 for the hybrid, sticky-price and sticky-information models.29  In each case, 

we use the estimated parameters from each model, presented in Table 2, to derive impulse responses 

to one-unit shocks.   

 Consider first the effects of preference shocks, since these shocks account for the brunt of the 

variance decomposition of macroeconomic variables across models.  In response to preference 

shocks, output growth jumps up and returns monotonically back to zero over time.  This response is 

similar across models and is driven by the estimated habit formation parameter and the persistence 

of the shock.  The rapid decline in output growth helps match the autocorrelation function of output 

growth for all models.  In addition, the interest rate rises in response to the positive output growth, 

but does so in a hump-shaped manner, reflecting the strong degree of interest smoothing.  This 

gradual increase in the interest rate helps replicate the observation that output growth leads interest 

rates in the data.  Because inflation is positive after this shock (albeit with a lag for sticky-

information), this shock can also help replicate the positive correlation between inflation and interest 

rates observed in the data.  However, it cannot explain the contemporaneous negative correlation 

between inflation and output growth.  For the sticky-information model, the delayed response of 

inflation to the preference shock causes inflation to lag output growth and interest rates, a result at 

odds with the data. 

 Turning to technology shocks, the key finding for sticky price and hybrid models are the 

contemporaneous decrease in inflation and increase in output growth.  This response allows these 

two models to replicate the unconditional negative correlation between inflation and output growth 

observed in the data.  In addition, because inflation jumps down on impact and returns rapidly to the 

                                                 
29 We omit responses from the flexible price model because a) flexible price and rule-of-thumb firms account for a small 
fraction of firms in the hybrid model and b) the responses of flexible firms are very large on impact and dwarf those of 
the other models. 
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steady-state while output growth converges only slowly after this permanent shock, this shock 

allows the sticky-price and hybrid models to replicate the finding that inflation leads output growth.  

This accounts for the substantial weight assigned to this shock by the sticky-price and hybrid models 

in accounting for inflation dynamics.  For the sticky-information model, the permanent nature of the 

technology shock yields a very delayed response of inflation, which again tends to counterfactually 

imply that inflation lags output growth. 

 In response to monetary policy shocks, the increase in the interest rate leads to a decrease in 

output growth and inflation across models.  Since this tends to imply a negative correlation between 

output growth and interest rates, as well as between inflation and interest rates, the sticky-price and 

hybrid models assign almost no weight to this shock, as the key lead-lag relationships are already 

accounted for by the preference and technology shocks.  However, we can see from this impulse 

response why monetary policy shocks play such an important role for the sticky-information model.  

Note that inflation declines for a number of quarters after a monetary policy shock under the sticky-

information model, a point emphasized by Mankiw and Reis (2002).  The interest rate, on the other 

hand, peaks in the second quarter then returns monotonically back to zero.  Thus, after the first 

period, the correlation between inflation and the interest rate is positive in the sticky information 

model as inflation and interest rates decline simultaneously.  In addition, because inflation falls in 

the first period while the interest rate only starts to decline in the second period, this shock helps 

deliver a lead of inflation over interest rates, which was the feature of the data that the sticky-

information model could not match with preference and policy shocks.  Thus, the sticky-information 

model places much more weight on monetary policy shocks than either the sticky-price or hybrid 

models. 

 

4.3 How Important Is Strategic Interaction Among Different Price-Setting Firms? 
One question that naturally arises with hybrid models is how the behavior of firms within the hybrid 

model compares to their behavior when they are the only type of firm.  For this purpose, Figure 4 

plots the response of inflation in each sector to each shock, as well as the response of aggregate 

inflation in a model consisting only of this type of firm.  For the latter, we use the estimated 
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parameters of the hybrid model and simply alter the share of firms to isolate the strategic interaction 

effect.30   

Focusing first on sticky-price firms, in response to monetary policy, technology, and 

preference shocks, inflation among sticky-price firms within a hybrid model is substantially 

dampened (by about 30% on impact) relative to what it would have been had these been the only 

type of firm in the model.  For sticky-information firms, the effect is reversed: their inflation 

response is more rapid within the hybrid model than in a pure sticky-information model.  This is 

strategic complementarity at work: the resulting inflation responses in each sector are much more 

similar than the inflation responses of the pure models.  The effect of strategic complementarity is 

even more striking in the case of flexible-price full-information firms.  Whereas inflation for these 

firms would be substantial on impact—but virtually nil in subsequent periods—within the hybrid 

model their inflation response is severely dampened.  This reflects how much more sensitive these 

firms are to the behavior of other firms because they are unconstrained in their actions whereas all 

other firms face some kind of constraint, which is similar in spirit to Haltiwanger and Waldman 

(1991).     

In the bottom row of Figure 4 we contrast the dynamics of aggregate inflation in the hybrid 

model and the dynamics of the weighted average of inflation in the pure models. We interpret the 

weighted average dynamics as a case where consumers have a two-tier utility function with very low 

elasticity of substitution across sectors and θ=10 elasticity of substitution within sectors.31  The 

hybrid model exhibits more gradual and persistent dynamics than the weighted average over pure 

models thus suggesting that ignoring strategic interaction between firms with different price setting 

may considerably distort the aggregate dynamics.  Figure 4 also illustrates why previous work could 

readily have mistaken sticky-information firms for rule-of-thumb firms.  The behavior of sticky-

information firms within the hybrid model is quite similar to that of rule-of-thumb firms.  Both 

display delayed responses of inflation to shocks and serve to dampen the response of aggregate 

                                                 
30 With policy responding to endogenous variables, the behavior of firms in pure models should differ from the hybrid 
model even in the absence of pricing complementarities. We are grateful to an anonymous referee for pointing this out.  
To address this issue, we considered a version of the model with exogenous money supply and a money demand curve.  
The results were almost identical to those reported in the paper so we can argue that the dynamics in Figure 4 are driven 
largely by strategic complementarity in price setting rather than by the endogenous response of monetary policy-makers. 
31 In other words, production in the economy is split into four islands, each of which is populated with a single-type of 
price setting firms, there is no direct interaction across islands, aggregate behavior is a (weighted) sum of dynamics 
across islands and then we compare these aggregate dynamics with the dynamics in the hybrid model when different 
types of firms are allowed to interact. 
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inflation in the model.  However, sticky-information firms adjust prices more gradually than rule-of-

thumb firms and, according to our empirical results, the data clearly favor sticky information over 

rule-of-thumb firms within the hybrid model as complements to sticky-price firms. 

 

4.4 Robustness Analysis 
In this section, we consider the robustness of our estimates to several potential issues.  First, we 

consider the use of a larger set of moments in the estimation.  Second, we discuss the use of a non-

identity weighting matrix in the estimation.  Third, we change the labor supply elasticity to 

correspond to indivisible labor.  Fourth, we relax the Taylor rule to allow for the central bank to 

respond to the output gap.  Fifth, we reproduce our estimates using only AR(1) interest smoothing in 

the central bank’s reaction function.32  Sixth, we consider alternative values for the elasticity of 

substitution in intermediate goods. 

The first issue we address is the set of moments used in the estimation.  Our baseline results 

relied on the autocorrelations of our observable variables over three quarters and dynamic cross-

correlations at maximum leads and lags of three quarters as well.  The purpose of focusing on such a 

restricted set of moments was to concentrate on those moments that are most precisely estimated.  

As a robustness check, we consider the use of a larger set of moments, specifically using 

autocovariances over two years, and report results in Table 4.  Most of the parameters are similar to 

baseline estimates.  The estimated levels of price and informational rigidities are almost identical to 

our baseline estimates and the estimated shares of firms continue to imply that more than 80% of 

firms are sticky-price or sticky-information firms.   

An alternative approach to dealing with the precision of the moments used in the estimation 

is to allow for a non-identity weighting matrix.  Although the optimal weighting matrix would seem 

an ideal candidate, many studies report poor performance of this weighting matrix in applications 

(e.g., Boivin and Giannoni 2006) and Monte Carlo simulations (e.g., Altonji and Segal (1996)) that 

involve estimation of covariance structures.33  A practical compromise is a diagonal weighting 

matrix with estimated variances of the moments on the diagonal and zeros for off-diagonal entries.  

Replicating our baseline estimation procedure with the diagonal weighting matrix, we find that 

                                                 
32 All robustness checks are done by using the same starting values and estimation approach as the baseline estimation. 
33 We ran Monte Carlo simulations of our model and found that the identity weighting matrix outperformed the diagonal 
weighting matrix and the optimal weighting matrix in time series of the same length as ours.  These results are available 
upon request. 
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sticky-price firms account for approximately fifty percent of firms (but we cannot reject equality to 

the baseline estimate of sixty percent), while rule-of-thumb and sticky-information firms account for 

18% and 16% respectively.  Neither of these estimates is statistically different from zero or 

statistically different from our original estimates.  Essentially, the use of the diagonal weight matrix 

downplays some informative moments and does not allow us to clearly separate rule-of-thumb and 

sticky-information firms.  Most other parameter estimates are broadly similar to the estimates based 

on the identity weight matrix.  

We also consider sensitivity to the elasticity of labor supply.  While most empirical work has 

found low elasticities of labor supply, some of the RBC literature has focused on the case with 

infinite labor supply (as in Hansen (1985)).  In Table 4, we present estimates of the hybrid model 

under the assumption of indivisible labor ( = ), which implies that  = 0 so that there is no 

strategic complementarity in price setting.  Eliminating strategic complementary has a dramatic 

effect on the results.  Specifically, the shares of sticky-information and flexible price firms both go 

to zero, while that of rule-of-thumb firms rises to 50%.  This change in outcome leads to a 

substantial deterioration in the model’s ability to match the data: the objective function rises by over 

40%.  The reduced share of sticky-information firms reflects the fact that, in the absence of strategic 

complementarity in price setting, sticky-information firms fail to produce inflation inertia.  Because 

sticky-price firms tend to induce excessive forward-looking behavior in inflation, the model needs 

other types of firms to slow down the adjustment of inflation to shocks.  With sticky-information 

firms unable to achieve this role in the absence of strategic complementarity, the estimation instead 

places a significant weight on rule-of-thumb firms.   

Another robustness issue that we consider is allowing for the central bank to respond to the 

output gap.  While this is often included in Taylor rules, our baseline approach instead includes only 

output growth.  This is because output growth is directly observable to the central bank, whereas the 

gap is not.  In addition, Ireland (2004) and Coibion and Gorodnichenko (2008) find little evidence of 

a response to the gap since the early 1980s once output growth is included in the Taylor rule.  As a 

robustness check, we consider the following Taylor rule 

1 2 1 1 2 2 ,(1 )[ ]t t gy t x t t t r tr gy x r r                
 
where x is the log-deviation between actual 

output and the level of output that would occur in the absence of price and informational rigidities.  

The estimated response to the output gap is very low and not statistically different from zero while 

the other parameters are largely unchanged. 
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 We also consider another robustness check with respect to the central bank’s reaction 

function.  Specifically, we integrate the following Taylor rule into our model 

1 1 1 ,(1 )[ ]t t gy t t r tr gy r         
 
which restricts interest smoothing to be an AR(1) process.  

While much of the literature focuses on this specification, recent empirical evidence on the Fed’s 

reaction function has found an AR(2) specification to be preferable (see Blinder and Reis (2005) and 

Coibion and Gorodnichenko (2008)).  The estimated results using the AR(1) specification are 

presented in Table 4.  The results are broadly unchanged, with sticky-price firms accounting for 60% 

of firms and sticky-information firms accounting for 15%.  The share of flexible-price firms rises to 

16%.  However, imposing an AR(1) specification reduces the ability of the model to match the 

moments of the data, and the objective function rises by over 10% relative to our baseline estimates.   

Our final robustness check is with respect to the elasticity of substitution across intermediate 

goods θ.  We fixed this parameter in our baseline estimation because previous work has shown that it 

is difficult to differentiate empirically between nominal and real rigidities, making the joint 

identification of θ and the shares of firms tenuous.  To assess how sensitive our results are to θ, we 

redid our baseline estimation procedure for values of θ ranging from 7 to 15.  Our results for the key 

parameters of interest, shares of firms and the degree of price and information rigidities, are in 

Figure 5.  In Panel A, we can see that lower values of θ have a substantial effect on estimated shares 

of firms.  Specifically, the share of sticky-information firms declines rapidly while that of sticky-

price firms rises.  As lower values of θ reduce strategic complementarity in price setting, we get 

higher estimates of price rigidity to keep the persistence of inflation high (Panel B).  However, the fit 

of the model worsens substantially as strategic complementarity decreases moderately (Panel C).  

With higher values of θ, on the other hand, the estimated shares of firms are very similar to our 

baseline estimates under the assumption of θ = 10.  As θ rises, the degree of strategic 

complementarity increases, as does the inherent persistence of inflation, so this leads to lower 

estimates of price rigidity.  The fit of the model actually improves with higher values of θ, indicating 

that even more strategic complementarity is desirable to match the data.  Thus, one could interpret 

our baseline results as a lower bound on the importance of strategic complementarity in price setting 

across heterogeneous price-setting firms.  
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5 Implications for Optimal Monetary Policy 
The presence of different types of firms in the model raises the issue of what kind of monetary 

policy is optimal in such a setting.  To assess the effect of different policies, we follow much of the 

literature and assume that the central banker has the following loss function 

1 var( ) var( ) var( )t y t r tL x r     , (21) 

where y and r show the weight on output gap and interest rate volatility relative to inflation 

volatility so that the variability in the output gap (and later the output growth rate) and the interest 

rate are converted to their inflation-variance equivalents.  We also consider an alternative loss 

function which penalizes the volatility of output growth instead of the volatility of the output gap:  

2 var( ) var( ) var( )t y t r tL gy r     , (22) 

This alternative loss function may be interesting for our analysis because, as Amato and Laubach 

(2004) show, habit formation introduces a concern for the volatility in the change of consumption 

and, hence, the loss function should include a term that captures the volatility of output growth.  

In principle, parameter y can be derived from the Phillips curve.  However, because we 

have different interacting price-setting mechanisms as well as non-zero steady state inflation, we 

could not find a closed-form solution for the Phillips curve and y and so objective functions (21) 

and (22) are not necessarily model consistent for welfare calculations.  Consequently, we are 

agnostic about the relative weight of output gap variability and we experiment with different values 

of y.  In the baseline scenario, we set y = 1. The last term in the loss function is the penalty for the 

volatility of the policy instrument (interest rate).  Having r greater than zero helps to keep the 

optimal responses to output growth and inflation bounded.  We follow Woodford (2003) and 

calibrate 0.077r  . 

We constrain our analysis to simple rules similar to the estimated interest rate rule (20) for 

reasons highlighted in Williams (2003). First, simple rules can often closely approximate fully 

optimal rules. Second, simple rules tend to be more robust. Third, with many sectors and 

complicated structure of the model, we could not find a closed form solution of the objective 

function and hence could not derive fully optimal rules.  

The first question we pose is whether the central bank could have achieved lower losses by 

responding differently to aggregate inflation and output growth than what is implied by our estimates 

of the Taylor rule.  Panel A in Figure 6 presents the isoloss maps for different combinations of  
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and gy in the Taylor rule.34 Generally, there are substantial gains from increasing the response to 

inflation which reduces the volatility of inflation, the interest rate and the output gap.  Holding 

everything else constant, a more aggressive response to inflation decreases the volatility of inflation, 

the interest rate, and the output gap and weakly increases the volatility of output growth (see 

Appendix Figure A6).  In contrast, a stronger response to the output growth rate has the opposite 

effect on the volatility of relevant macroeconomic variables. Since the volatility of output growth is 

fairly insensitive to changes in  and gy in the Taylor rule, social welfare generally improves with 

larger   and somewhat smaller gy irrespective of what values we use for y in the loss functions 

(see Appendix Figure A9). 

The second question we ask is whether the optimal policies in pure sticky-price and sticky-

information models are similar to those found in the hybrid model.  In particular, one may be 

concerned that using pure models to design policy rules can misguide the policymaker about his or 

her tradeoffs.  Because scales of the social loss maps vary across models, we compute isoloss maps 

for pure sticky price (PSP) and pure sticky information (PSI) models and normalize these maps by 

the corresponding values of the loss function evaluated at the estimated Taylor rule parameters. 

These rescaled isoloss maps, which we call relative welfare maps, can be interpreted as losses 

relative to the loss incurred when the policymaker uses the estimated Taylor rule. We also scale the 

isoloss map for the hybrid model and then divide the relative welfare for the PSP and PSI models by 

the relative welfare map for the hybrid model. In summary, we consider maps  

ˆ ˆ ˆ ˆ( , ) / ( , ) ( , ) / ( , )
and , 1,2,

ˆ ˆ ˆ ˆ( , ) / ( , ) ( , ) / ( , )

PSP PSP PSI PSI
k gy k gy k gy k gy

HYBR HYBR HYBR HYBR
k gy k gy k gy k gy

L L L L
k

L L L L
   

   

       
       

   
   

      
 (23) 

where ˆ ˆ( , )gy  are estimated values of the policy reaction function reported in Table 1.  

The resulting maps (23) show to what extent using PSP and PSI models misinforms the 

policymaker about tradeoffs relative to the hybrid model.35 Specifically, if the ratio of relative 

welfare maps for PSP or PSI  to the relative welfare map for the hybrid model is close to one 

uniformly in (,gy) space, there is no distortion in the tradeoffs. If the ratio is greater than one 

(smaller than one) with deviations of (,gy) from ˆ ˆ( , )gy  , then using the PSP or PSI model 

                                                 
34 In this and subsequent exercises, we hold the interest rate smoothing parameters of the Taylor rule fixed at their 
estimated values. 
35 Alternatively, one can interpret the ratio of the relative welfare maps as the difference-in-difference estimator for the 
changes in the welfare changes when the policymaker considers alternative values of  and gy in the Taylor rule. 
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understates (overstates) the gain in welfare.  Panels B and C in Figure 6 show the ratio of relative 

welfare maps (23) for PSP and PSI models respectively.  These maps demonstrate that using pure 

models instead of the hybrid model can greatly mislead the policymaker about potential gains from 

using alternative policy rules.  For example, when the policymaker uses the PSI model to design 

policy, he or she underestimates the benefits from stronger responses to inflation relative to gains 

implied by the hybrid model because the ratio of relative welfare maps rapidly falls as  increases.  

Hence, we conclude that using pure models can provide a distorted picture of tradeoffs actually 

faced when price-setting is heterogeneous.  

Given that PSP and PSI models have different implications for whether the central bank 

should target the price level or inflation, the third question we ask is whether our hybrid model 

predicts an important role for price level targeting.  To answer this, we augment the Taylor rule with 

a term that corresponds to price level targeting (PLT):  

1, 2, 1, 2, 1, 2, 1, 1 2, 2 ,(1 ) (1 ) (1 )t r r t r r PLT t r r gy t r t r t r tr p gy r r                         , 

where pt is the price level linearized around *
0

t
tp p  .  In this exercise, we fix gy at the estimated 

value, vary  and PLT and plot the resulting isoloss amps in Panel D of Figure 6 and the associated 

volatilities of the growth rate of output, the output gap, inflation and the interest rate in Appendix 

Figure A7.  In general, there are significant welfare gains from having an element of PLT in the 

Taylor rule.  In fact, even small positive responses to deviations from the price level target 

dramatically reduce the volatility of the output gap, the interest rate and inflation.  At the same time, 

similar to the inflation response, a more aggressive PLT response tends to weakly increase the 

volatility of output growth. However, because this increase is very small, the changes in welfare are 

strongly dominated by declines in var( )tx , var( )t , and var( )ti  so that PLT is generally desirable 

for all reasonable values of y (see Appendix Figure A7).  Importantly, introducing PLT in the 

policy reaction function eliminates a region of equilibrium indeterminacy (compare with Panel A, 

Figure 6) and therefore PLT could be useful in ways other than reducing the volatility of 

macroeconomic variables.  

Finally, having the central bank respond to aggregate inflation imposes the restriction that a 

one percent increase in inflation in a sector leads to an increase in the interest rate proportional to 

that sector’s effective share of inflation dynamics, as defined in equation (20).  The fourth question 
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we ask is whether there are gains to be had by responding differently to inflation in each sector.  For 

this purpose, we compute optimal policy rules using 

( ) ( ) ( ) ( )
1, 2, 1, 2,

1, 2, 1, 1 2, 2 ,

(1 ) (1 )

(1 ) ,

SP SP SI ROT FLEX SI ROT FLEX
t r r t r r t

r r gy t r t r t r t

r

gy r r
        

     

   

 

     

     
 

where we assume that the central banker can differentiate between sectors that have prices fixed for 

some time (SP) and those that have prices changing every period (SI, ROT and FLEX). Here, we 

again fix gy at the estimated value, vary ( )SP
  and ( )SI ROT FLEX


   and plot the resulting isoloss maps 

in Panel E of Figure 6 and associated volatilities of the growth rate of output, the output gap, 

inflation and the interest rate in Appendix Figure A8.36  We find a striking result: the isoloss maps 

are approximately linear in ( )SP
  and ( )SI ROT FLEX


   in the neighborhood of the estimated response to 

inflation. Hence, the policymaker does not face an increasing marginal penalty for targeting only one 

of the sectors.  In addition, we find that only responding to inflation in the sticky-price sector is 

generally more stabilizing than only responding to inflation in the other sectors, which is consistent 

with Aoki (2001) and with the notion that sticky-price firms play a disproportionally large role in 

governing inflation dynamics through strategic complementarity in pricing setting, as demonstrated 

in section 4.3.  At the same time, the policymaker can generally achieve a lower level of social loss 

by having a less aggressive response to inflation when he or she targets inflation in all sectors rather 

than in just one sector. Although the slope of the isoloss curves is not equal to one and hence there is 

a possibility to improve welfare by making the response to inflation more aggressive in one sector 

and less aggressive in another sector, the gains from the differentiated response to sector-specific 

inflation appear to be rather small.  

 

6 Conclusion   
Empirical work has documented a striking amount of heterogeneity in pricing practices: both in the 

frequency at which firms update prices as well as in the source of costs underlying firm decision-

making processes.  We present a model in which four commonly used representations of how firms 

set prices are allowed to coexist and interact via their price-setting decisions.  This model nests many 

specifications previously considered in the literature.  We find that the two most important types of 

price-setting behavior are described by sticky prices and sticky information while rule-of-thumb and 
                                                 
36 Note that moving along the 45 line in Panel E corresponds to moving along the vertical line that passes the estimated 
Taylor rule parameter combination in Panel A. 
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flexible pricing are quantitatively unimportant. This finding suggests that sticky-information firms 

may be more important than previously thought.  

In addition, because the dynamic cross-covariances reveal important insights about the lead-

lag structure of economic relationships, we can provide intuitive explanations for how the hybrid 

model outperforms pure sticky-price or sticky-information models.  For example, we argue that a 

pure sticky information model tends to under-predict the degree of forward-looking behavior in 

inflation.  In contrast, previous work that emphasized the time series representation of the data could 

not readily provide an economic rationale for why one model is preferred to others.   

Heterogeneity in price-setting poses important issues for policymakers.  We demonstrate that 

focusing on models with a single price-setting mechanism can misinform central bankers about 

trade-offs they face.  Our simulations suggest that a more aggressive response to inflation, which 

may include an element of price level targeting, could substantially improve social welfare 

functions.  At the same time, we do not find large benefits from targeting sectors with some 

particular form of price setting so that targeting aggregate inflation is a reasonable strategy for 

policymakers.  

While we focus on the possibility of important differences in how firms set prices, this 

approach could be naturally extended to wage-setting decisions.  Christiano, Eichembaum and Evans 

(2005), for example, argue that sticky wages with indexation are a particularly important element in 

matching macroeconomic dynamics.  Yet, as with prices, allowing for indexation cannot reproduce 

the fact that wages often do not change for extended periods of time.  A more natural approach could 

be to allow for heterogeneity in wage-setting assumptions for different sectors of the economy.  This 

would capture the fact that some sectors have highly flexible wages, others have sticky wages 

without indexation, and some sectors, particularly those under union contracts, choose time paths for 

future wages infrequently.  Even with relatively small sticky-wage or union-wage sectors, the 

behavior of the flexible-wage sector could be substantially altered if there is strategic 

complementarity in wage-setting decisions. 
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APPENDIX 1: Proof of Proposition 1 

Note first that, rewriting equation (7)  in terms of relative price ratios in the steady-state yields 
1 1
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so that if the relative optimal price is less than one, the sticky-price relative price ratio must be 
greater than one.  The steady-state relative optimal price is given by 
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Note first that 
1

1X
 

 , so without trend inflation the average relative price of sticky-price firms is 

1 in the steady-state.  A well-defined steady-state requires 1<1, 2<1, and 1 1sp
    .  Thus,  
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APPENDIX 2: Technical Details on Estimation 

To estimate the model, we use a Markov Chain Monte Carlo (MCMC) method developed in 

Chernozhukov and Hong (2003; henceforth CH).  CH show that, under certain conditions, the 

parameter estimates as well as their standard errors can be computed directly from the generated 

chains. Specifically, the average value for a parameter in a chain will provide a consistent estimate if 

this parameter is globally identified and other conditions standard for GMM estimation are satisfied. 

Likewise, standard errors can be calculated as (appropriately adjusted if necessary) standard 

deviation of parameter draws in the generated chain.  

We employ the Hastings-Metropolis algorithm to implement CH’s estimation method. 

Specifically our procedure to construct chains of length N can be summarized as follows:  

Step 1: Draw ( )n , a candidate vector of parameter values for the chain’s n+1 state, as 

( ) ( ) ( )n n n     where ( )n  is the current n state of the vector of parameter values in the 

chain, ( )n  is a vector of i.i.d. shocks taken from (0, )N  ,   is a diagonal matrix.  

Step 2: Take the n+1 state of the chain as 

( ) ( ) ( )
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otherwise

n n n
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where ( )( )nJ  is the value of the objective function at the current state of the chain and 

( )( )nJ   is the value of the objective function using the candidate vector of parameter values.  

Our choices for initial values (0)  and size of the shocks ( )n  described by   are summarized in 

Appendix Table A1.  The initial values for most variables are chosen to more rapidly approach the 

global minimum, while   is calibrated to about one percent of the parameter value and then 

adjusted on the fly for the first 100,000 draws to generate 0.3 acceptance rates of candidate draws, as 

proposed in Gelman et al (2004).   

CH show that ( )1
1

N n
N n

    is a consistent estimate of   under standard regularity 

assumptions of GMM estimators. CH also prove that if the optimal weight matrix is used in the 

GMM objective function, then ( ) 2 ( )1
1
( ) var( )

N n n
N n

V


      is a consistent estimate of the 

asymptotic covariance matrix of the parameter estimates. In a more general case with a given weight 

matrix W in the GMM objective function, the covariance matrix for the parameter estimates is given 

by  1T V V    where DW WD   , D is the Jacobian of the moment conditions, T is sample size, 

and   is the covariance of moment conditions.37 CH show that these estimates of sampling 

                                                 
37 Although one may use Newey-West estimate of Γ, we found, in line with Horowitz (1998), that bootstrap-based 
estimates of Γ improve the finite sample properties of the covariance estimators. 
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uncertainty recover asymptotic standard errors well. However, in highly nonlinear models and in 

short samples, one may be inclined to employ bootstrap-based standard errors to have better 

coverage. Given that our sample is fairly short, we prefer the latter approach. Our bootstrap 

procedure can be summarized as follows: a) we estimate a VAR; b) resample the residuals; c) 

construct new series using the resampled residuals and estimated VAR; d) estimate the parameters 

on newly created data;38 e) repeat steps b)-d) many times; f) compute standard errors based on 

bootstrap replications. We found in simulations that this procedure works very well. 

We use 500,000 draws for our baseline and robustness estimates, and drop the first 100,000 

draws (“burn-in” period).  We run a series of diagnostics to check the properties of the resulting 

distributions from the generated chains. We present results only for the baseline specification. 

Diagnostics for other specifications are similar and hence not reported. First, Appendix Figure A1 

shows the histograms of parameter values in the generated chain. The distributions are single peaked 

and generally bell-shaped although the distributions are not symmetric for some parameters. The 

three exceptions are s3, δsi, and σme,r which converge to the boundary.  Second, well-identified 

parameters should exhibit a U-shaped pattern for the lower envelope of the draws against the value 

of the objective function. Appendix Figure A2 plots the distribution of parameter draws against the 

value of the objective function and we clearly observe the desired pattern. Third, we diagnose 

whether our chain converges to a stationary distribution. We use the approach developed in Gelman 

and Rubin (1992) which examines convergence across multiple chains. Appendix Figure A3 shows 

the dynamics of between variation of generated chains 21
( )1

( )
M

N mM m
B


    and within 

variation across chains ( ) 21
( ) ( )1 1
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M N n

N m mMN m n
W

 
     as a function of chain length N where 
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( ) ( )1

N n
m mN n

    is the average of parameter values in chain m, 1
( )1

M

mM m
    is the average 

of parameter values across chains, ( )
( )
n
m  is the parameter value in chain m in draw n, M is the 

number of chains Consistent with convergence, NB  shrinks to zero and NW  stabilizes as the chain 

length N increases. Likewise, Appendix Figure A4 shows that 1( ) /N
N N N NNR W B W  , the 

convergence statistic suggested by Gelman and Rubin (1992), converges to one. Although Appendix 

Figures A3 and A4 suggest that the required chain length is about one million draws, Appendix 

Figure A5 demonstrates that a chain with 500,000 draws yields estimates very close to estimates 

generated from longer chains and hence in our simulations we use only 500,000-draw chains.    

                                                 
38 Note that we did not use the MCMC procedure to estimate the parameters, but rather a built-in minimizing function 
starting at our estimated values. 
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Table 1: Estimation Results:  

 
Note: The table presents estimates of the baseline model, using a truncation of past expectations for sticky-information firms of 12, as well as estimates of restricted 
models.  We use contemporaneous covariances and cross-autocovariances up to three lags.  Data are from 1984:Q1 to 2008:Q2.  Relative value of the objective function is 
relative to the hybrid model. Standard errors are constructed using non-parametric bootstrap.  Bootstraps are done by running a 4-lag VAR on our data, and using the 
VAR coefficients and residuals to generate 2000 replications of the data which are used to re-estimate the model in each bootstrap replication.  See text and appendix for 
details on estimation approach. 

estimate (s.e.) estimate (s.e.) estimate (s.e.) estimate (s.e.)

Fundamentals

Labor Supply Elasticity ( ) 1 1 1 1

Elasticity of Substitution across Goods ( ) 10 10 10 10

Habit formation (h ) 0.79 (0.09) 0.80 (0.16) 0.75 (0.23) 0.77 (0.16)

Taylor Rule

Inflation Response (  ) 2.80 (0.66) 3.15 (0.93) 3.30 (0.92) 2.92 (0.84)

Output Growth Response ( gy ) 2.61 (0.77) 3.38 (1.18) 2.45 (1.06) 2.88 (0.97)

Interest Smoothing ( 1 ) 1.52 (0.09) 1.33 (0.15) 1.32 (0.28) 1.46 (0.16)

Interest Smoothing ( 2 ) -0.59 (0.08) -0.40 (0.13) -0.42 (0.21) -0.53 (0.14)

Price-Setting 

Sticky-Price Sector (s 1 ) 0.62 (0.12) 0.63 (0.15) 0.66 (0.22) 0.75 (0.13)

Sticky-Information Sector (s 2 ) 0.21 (0.10) 0.23 (0.11) 0.00 0.25 (0.13)

Rule-of-Thumb Sector (s 3 ) 0.09 (0.06) 0.00 0.32 (0.18) 0.00

Price Rigidity ( sp ) 0.81 (0.07) 0.81 (0.08) 0.80 (0.14) 0.80 (0.10)

Information Rigidity ( si ) 0.95 (0.13) 0.95 (0.13) 0.75 0.95 (0.14)

Shocks

Persistence Preference Shock ( g ) 0.85 (0.15) 0.88 (0.13) 0.87 (0.12) 0.87 (0.12)

Standard Deviation: Policy Shocks ( r ) 0.21 (0.05) 0.25 (0.12) 0.30 (0.21) 0.23 (0.10)

Standard Deviation: Preference Shocks ( g ) 9.26 (3.19) 10.33 (3.06) 9.33 (3.70) 9.54 (3.06)

Standard Deviation: Technology Shocks ( a ) 3.26 (1.35) 2.92 (1.12) 2.84 (1.45) 3.20 (1.09)

Measurement Error

 Standard Deviation: Output Growth (me,gy ) 1.44 (0.38) 1.47 (0.31) 1.43 (0.52) 1.44 (0.31)

 Standard Deviation: Inflation (me,  ) 1.23 (0.12) 1.22 (0.16) 1.27 (0.34) 1.22 (0.14)

Standard Deviation: Interest Rate ( me,r ) 0.09 (0.07) 0.11 (0.07) 0.09 (0.07) 0.10 (0.05)

Value of Objective Function 51.2  52.4 59.0 52.3

Relative Value of Objective Function 1.00 1.02 1.15 1.02

Hybrid Model No ROT Firms No SI Firms Only SP and SI Firms
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Table 2: Estimates of the Pure Models:  

 
Note: The table presents estimates of the pure models where firms use only one pricing mechanism. We use contemporaneous covariances and cross-autocovariances up 
to three lags.  Data are from 1984:Q1 to 2008:Q2.  Relative value of the objective function is relative to the hybrid model. Standard errors are constructed using non-
parametric bootstrap.  Bootstraps are done by running a 4-lag VAR on our data, and using the VAR coefficients and residuals to generate 2000 replications of the data 
which are used to re-estimate the model in each bootstrap replication.  See text and appendix for details on estimation approach. 
 

estimate (s.e.) estimate (s.e.) estimate (s.e.)

Fundamentals
Labor Supply Elasticity ( ) 1 1 1
Elasticity of Substitution across Goods ( ) 10 10 10
Habit formation (h ) 0.69 (0.21) 0.82 1.00 (0.03)

Taylor Rule

Inflation Response (  ) 3.46 (0.92) 1.70 (0.85) 1.74 (0.71)

Output Growth Response ( gy ) 2.44 (1.19) 4.52 (1.31) 0.76 (0.44)

Interest Smoothing ( 1 ) 1.29 (0.22) 1.45 (0.14) 1.15 (0.46)

Interest Smoothing ( 2 ) -0.39 (0.19) -0.50 (0.14) -0.67 (0.24)

Price-Setting 

Sticky-Price Sector (s 1 ) 1.00 0.00 0.00

Sticky-Information Sector (s 2 ) 0.00 1.00 0.00

Rule-of-Thumb Sector (s 3 ) 0.00 0.00 0.00

Price Rigidity ( sp ) 0.80 (0.09)

Information Rigidity ( si ) 0.90 (0.07)

Shocks

Persistence Preference Shock ( g ) 0.88 (0.11) 0.86 (0.14) 1.00 (0.28)

Standard Deviation: Policy Shocks ( r ) 0.27 (0.17) 0.34 (0.15) 0.29 (0.20)

Standard Deviation: Preference Shocks ( g ) 9.54 (3.08) 9.29 (4.25) 9.87 (4.68)

Standard Deviation: Technology Shocks ( a ) 3.05 (1.27) 0.57 (0.42) 3.54 (1.65)

Measurement Error

 Standard Deviation: Output Growth (me,gy ) 1.37 (0.43) 1.44 (0.40) 1.91 (0.25)

 Standard Deviation: Inflation (me,  ) 1.24 (0.14) 1.17 (0.16) 0.93 (0.49)

Standard Deviation: Interest Rate ( me,r ) 0.09 (0.07) 0.12 (0.09) 1.52 (0.15)

Value of Objective Function 60.0 92.3 1431.3

Relative Value of Objective Function 1.17 1.80 27.96

Sticky-Price Model Sticky-Info Model Fully Flexible Model
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Table 3: Variance Decomposition 

 
 

Note: Table presents variance decompositions given the parameter estimates for the hybrid model from Table 1 and the pure 
models from Table 2. Horizon is four quarters.  

 

 

 

Policy Preference Technology

Hybrid 5 85 10

Sticky-Price 5 72 23

Sticky-Info 20 80 0

Flexible 0 67 33

Policy Preference Technology

Hybrid 5 25 70

Sticky-Price 5 41 54

Sticky-Info 50 44 7

Flexible 57 29 14

Policy Preference Technology

Hybrid 10 90 0

Sticky-Price 5 95 0

Sticky-Info 25 75 0

Flexible 0 67 33

Model
Source of Variance of Growth in Output

Model
Source of Variance of Inflation

Model
Source of Variance of Interest Rates
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Table 4: Robustness of Estimates:  

 
Note: The table presents robustness estimates of the baseline model.  The truncation of past expectations for sticky-information firms is 12.  We use 
contemporaneous covariances and cross-autocovariances up to three lags unless otherwise specified.  Data are from 1984:Q1 to 2008:Q2.  Relative value of the 
objective function, wherever relevant, is relative to the hybrid model.  In the scenario “More moments”, we use contemporaneous covariances and cross-
autocovariances up to eight lags.  Standard errors are constructed using non-parametric bootstrap.  Bootstraps are done by running a 4-lag VAR on our data, and 
using the VAR coefficients and residuals to generate 2000 replications of the data which are used to re-estimate the model in each bootstrap replication.  See text and 
appendix for details on estimation approach. 

estimate (s.e.) estimate (s.e.) estimate (s.e.) estimate (s.e.) estimate (s.e.)

Fundamentals

Labor Supply Elasticity ( ) 1 1 ∞ 1 1

Elasticity of Substitution across Goods ( ) 10 10 10 10 10

Habit formation (h ) 0.87 (0.09) 0.75 (0.18) 0.81 (0.06) 0.81 (0.12) 0.81 (0.19)

Taylor Rule

Inflation Response (  ) 2.58 (0.93) 3.04 (0.80) 2.13 (0.52) 2.67 (0.73) 3.48 (0.98)

Output Growth Response ( gy ) 1.87 (0.87) 2.75 (1.09) 2.83 (0.86) 2.73 (0.90) 4.05 (1.18)

Output Gap Response ( x ) 0.00 0.00 0.00 0.02 (0.01) 0.00

Interest Smoothing ( 1 ) 1.74 (0.09) 0.66 (0.16) 1.50 (0.20) 1.60 (0.17) 0.91 (0.11)

Interest Smoothing ( 2 ) -0.79 (0.08) 0.14 (0.09) -0.57 (0.17) -0.66 (0.15) 0.00

Price-Setting 

Sticky-Price Sector (s 1 ) 0.57 (0.17) 0.48 (0.18) 0.49 (0.14) 0.61 (0.15) 0.60 (0.14)

Sticky-Information Sector (s 2 ) 0.24 (0.12) 0.16 (0.10) 0.00 (0.00) 0.23 (0.10) 0.15 (0.07)

Rule-of-Thumb Sector (s 3 ) 0.11 (0.07) 0.18 (0.12) 0.51 (0.14) 0.08 (0.05) 0.09 (0.05)

Price Rigidity ( sp ) 0.82 (0.11) 0.76 (0.15) 0.85 (0.02) 0.80 (0.12) 0.81 (0.09)

Information Rigidity ( si ) 0.95 (0.15) 0.65 (0.24) 0.52 (0.16) 0.95 (0.15) 0.94 (0.16)

Shocks

Persistence Preference Shock ( g ) 0.79 (0.15) 0.85 (0.11) 0.85 (0.23) 0.84 (0.15) 0.89 (0.08)

Standard Deviation: Policy Shocks ( r ) 0.02 (0.01) 0.89 (0.49) 0.39 (0.13) 0.15 (0.08) 0.47 (0.22)

Standard Deviation: Preference Shocks ( g ) 11.70 (4.31) 10.61 (3.75) 8.66 (3.25) 9.52 (3.99) 10.63 (3.35)

Standard Deviation: Technology Shocks ( a ) 3.46 (1.54) 1.56 (0.95) 0.85 (0.39) 3.32 (1.32) 2.49 (1.00)

Measurement Error

 Standard Deviation: Output Growth (me,gy ) 1.28 (0.48) 1.30 (0.47) 1.42 (0.53) 1.45 (0.37) 1.50 (0.32)

 Standard Deviation: Inflation (me,  ) 1.33 (0.19) 1.19 (0.20) 1.20 (0.44) 1.24 (0.15) 1.20 (0.18)

Standard Deviation: Interest Rate ( me,r ) 0.20 (0.13) 0.51 (0.29) 0.10 (0.04) 0.12 (0.08) 0.10 (0.06)

Value of Objective Function 123.4 4.3 73.1 50.9 56.8

Relative Value of Objective Function NA NA 1.43 0.99 1.11

AR(1) Interest 
Smoothing

More moments
Diagonal 

Weighting Matrix
Indivisible Labor

Response to      
Output Gap
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Figure 1: Autocorrelations of Observable Variables 

 
Note: The figure plots autocovariances of the observable variables in the data (1984:Q1-2008:Q2), as the black bold lines, as well as those predicted by the hybrid 
model and pure models (using estimates in Tables 1 and 2), as the bold black dashed lines.  The grey shaded areas are bootstrapped 95% confidence intervals. 
Bootstraps are done by running a 4-lag VAR on our data, and using the VAR coefficients and residuals to generate 2000 replications of the data, from which we 
generate a distribution of autocovariances.  The horizontal axis indicates the timing in quarters of the lagged variable used in the autocovariance. 
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Figure 2: Cross-Correlations of Observable Variables 

 
Note: The figure plots cross-autocovariances of the observable variables: output growth (gy), inflation (), and interest rates (r) in the data (1984:Q1-2008:Q2) and 
those predicted by the hybrid model as well as those predicted by the pure models (using estimates in Table 1).  Black solid lines are from datawhile the bold dashed 
black lines are those of each model.  The grey shaded areas are bootstrapped 95% confidence intervals.  Bootstraps are done by running a 4-lag VAR on our data, 
and using the VAR coefficients and residuals to generate 2000 replications of the data, from which we generate a distribution of cross-autocovariances.  The 
horizontal axis indicates the timing of the variable used in the cross-autocovariances (negative numbers indicate lags, positive numbers are leads). 
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Figure 3. Impulse response functions 

 
Note: The figure plots impulse responses (percent deviation from steady-state) of baseline (hybrid), pure sticky-price and pure sticky-information models (based on 
estimates reported in Tables 1 and 2) to a 1-unit innovation to monetary policy, preference shock, and technology.  Time is in quarters on the horizontal axis. 
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Figure 4: Sector-Specific vs. Pure Model Inflation 

 
Note: The figure displays the response of inflation (percent deviation from steady-state) to shocks (labeled on top).  Black solid lines indicate the response of 
inflation in each sector (labeled at left) within the hybrid model (using estimates of Table 1) while the red dash lines indicate the response of a pure model consisting 
only of that sector’s type of firms (i.e., sj = 1 for sector j).  The bottom row compares the response of aggregate inflation in the hybrid model (in black solid lines) to 
a weighted average of inflation rates from the pure models (red dashed lines), where the weights are the effective weights (sCPI) of each sector from the baseline 
estimates.  Baseline parameter estimates are used in each case.    Time is in quarters on the horizontal axis. 
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Figure 5: Robustness of Estimates to Elasticity of Substitution (θ)  
Panel A: Share of firms    Panel B: price and information stickiness 

  
Panel C: fit of the model 

 
 

Note: The panels display estimation results of the baseline model for different values of θ, as indicated on the horizontal axis of each 
panel.  For each value of θ, we ran a chain of 500,000 iterations, dropping the first 100,000 iterations.  Panel A presents the estimated 
shares of sticky price (s1), sticky-information (s2), and rule-of-thumb firms (s3) for different values of θ.  Panel B presents the 
estimated levels of price rigidity (δsp) and informational rigidity (δsi) for different values of θ.  Panel C presents values of the objective 
function (averaged across chains) for each value of θ. 
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Figure 6. Welfare isoloss maps.  

 Loss function L1  Loss function L2 
Panel A: Baseline hybrid model. 

 
Panel B: Ratio of the relative map for pure sticky-price model to the relative map for the hybrid model. 

 
Panel C: Ratio of the relative map for pure sticky-information model to the relative map for the hybrid model. 

  
(continued on next page)
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Panel D. Price level targeting.  

 
Panel E. Differential responses to sector-specific inflation.  

 
 

Notes: The figure plots isoloss maps for two welfare functions L1 and L2 for various combinations of the policy reaction 
function (Taylor rule).  Volatilities of the variables are computed using the parameter estimates of the hybrid model. The 
red star indicates the position of the estimated Taylor rule. In panels A, B and C, gy on the horizontal axis shows the long-
run response of the policy instrument (interest rate) to a unit increase in the output growth rate. On the vertical axis,  
shows the long-run response of the policy instrument (interest rate) to a unit increase in inflation. Other parameters in the 
Taylor rule (interest rate smoothing, volatility of the interest rate shock) are held constant. In panel D, the figures in 
square parentheses show the value of the social loss function evaluated at the estimated Taylor rule. On the horizontal 
axis, PLT  shows the long-run response of the policy instrument (interest rate) to a unit increase in the deviation of the 
price level from its target.  On the vertical axis,  shows the long-run response of the policy instrument (interest rate) to a 
unit increase in inflation. Other parameters in the Taylor rule (interest rate smoothing, volatility of the interest rate shock, 
output growth rate response) are held constant. In panel E, :SP+ROT+FLEX on the horizontal axis shows the long-run 
response of the policy instrument (interest rate) to a unit increase in aggregate inflation in the sticky-information, rule-of-
thumb and flexible price sectors.  On the vertical axis, :SP  shows the long-run response of the policy instrument (interest 
rate) to a unit increase in inflation in the sticky-price sector. Other parameters in the Taylor rule (interest rate smoothing, 
volatility of the interest rate shock, output growth rate response) are held constant. The shaded region shows the Taylor 
rule parameter combinations associated with equilibrium indeterminacy.  
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Appendix Table A1: Initial Parameter Values and Standard Deviations of Shocks 

   h  gy 1 2 
Initial Value 10 0.9 3 1 1.4 -0.5  
St.D. Shocks  0.005 0.15 0.03 0.005 0.005  

  s1 s2 s3 sp si g  

Initial Value 0.25 0.25 0.25 0.75 0.75 0.8  
St.D. Shocks 0.01 0.01 0.01 0.005 0.005 0.004  

  r g a me,gy me, me,r 

Initial Value 0.5 10.0 3.0 1 0.5 0.5  
St.D. Shocks 0.0035 0.07 0.021 0.007 0.0035 0.0035  
 

 

Note: The table displays the initial values used in MCMC algorithm, as well as the initial standard deviations of shocks used in 
generating distribution of parameter estimates. 
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Appendix Figure A1. Histograms of Baseline Parameters from MCMC.   

 
 
Note: The figure plots the distribution of the last MCMC 400,000 draws of baseline estimation of the hybrid model from Table 1. 
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Appendix Figure A2: Shape of Objective Function with respect to each Parameter 

 
Note: This figure presents scatter plots of values of the objective function associated with parameter values for different draws from the Markov Chain of the 
baseline estimation of the hybrid model from Table 1.  We drop the first 100,000 iterations, then plot every one-hundredth draw from the chain. 
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Appendix Figure A3: Between and Within Variances across chains. 

 
Note: This figure shows the dynamics of between variation of generated chains ܤே ൌ

ଵ

ெ
∑ ሺΨഥ ሺ୫ሻ െ Ψഥሻଶெ
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M
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is the average of parameter values across chains, Ψሺ୫ሻ
ሺ୬ሻ  is the parameter value in chain m in draw n. In these simulations, M=4. The horizontal axis shows the 

length of the chain in 5000 increments (i.e., 100 corresponds to 500,000 draws).   
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Appendix Figure A4: Convergence Statistic RT 

 
Note: This figure shows the dynamics of ܴே ൌ ටሺ

ேିଵ
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Appendix Figure A5: Mean Values across Chains 

 
Note: The figure plots our baseline estimate of the hybrid model from Table 1 using 500,000 iterations (solid black line) and two standard error bands (dashed 
black lines) along with the mean values of parameter estimates across four additional chains (red dotted line), each run for 2 million iterations, dropping the first 
100,000 of each. The horizontal axis shows the length of the chain in 5000 increments (i.e., 100 corresponds to 500,000 draws). 
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Appendix Figure A6. Baselines volatility maps for key macroeconomic variables.   

 
 
 
Notes: The figure plot iso-curves for volatility of output growth rate (gy), output gap (x), inflation () and 
interest rate (i).  On the horizontal axis, gy shows the long-run response of the policy instrument (interest rate) 
to a unit increase in the output growth rate. On the vertical axis,  shows the long-run response of the policy 
instrument (interest rate) to a unit increase in the inflation. Other parameters in the Taylor rule (interest rate 
smoothing, volatility of the interest rate shock) are held constant. The red star denotes the combination of gy 
and   corresponding to the estimated Taylor rule. Volatilities of the variables are computed using the 
parameter estimates of the hybrid model.   
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Appendix Figure A7. Price level targeting and volatility maps for key macroeconomic variables. 
 

 
 
Notes: The figure plot iso-curves for volatility of output growth rate (gy), output gap (x), inflation () and 
interest rate (i).  On the horizontal axis, PLT shows the long-run response of the policy instrument (interest 
rate) to a unit increase in the deviation of the price level from its target.  On the vertical axis,  shows the 
long-run response of the policy instrument (interest rate) to a unit increase in the inflation. Other parameters 
in the Taylor rule (interest rate smoothing, volatility of the interest rate shock, output growth rate response) 
are held constant. The red star denotes the combination of PLT  and  corresponding to the estimated Taylor 
rule. The value in squared parentheses shows the level of volatility at the estimated Taylor rule.  Volatilities 
of the variables are computed using the parameter estimates of the hybrid model.   
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Appendix Figure A8. Differentiated inflation response and volatility maps for key macroeconomic variables. 
 

 
 
 
Notes: The figure plot iso-curves for volatility of output growth rate (gy), output gap (x), inflation () and 
interest rate (i).  On the horizontal axis, :SI+ROT+FLEX  shows the long-run response of the policy instrument 
(interest rate) to a unit increase in the aggregate inflation in the sticky-information, rule-of-thumb and 
flexible price sectors.  On the vertical axis, :SP shows the long-run response of the policy instrument 
(interest rate) to a unit increase in the inflation in the sticky-price sector. Other parameters in the Taylor rule 
(interest rate smoothing, volatility of the interest rate shock, output growth rate response) are held constant. 
The red star denotes the combination of :SI+ROT+FLEX and :SP corresponding to the estimated Taylor rule 
where :SI+ROT+FLEX = :SP. Volatilities of the variables are computed using the parameter estimates of the 
hybrid model.   
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Appendix Figure A9. Welfare isoloss maps for alternative values for the weight on output volatility. 
 Loss function L1 Loss function L2 

 

 

 


