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Abstract

We propose a generalization of the linear quantile regression model to accommodate
possibilities afforded by panel data. Specifically, we extend the correlated random coeffi-
cients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We
show that panel data allows the econometrician to (i) introduce dependence between the
regressors and the random coefficients and (ii) weaken the assumption of comonotonic-
ity across them (i.e., to enrich the structure of allowable dependence between different
coefficients). We adopt a “fixed effects” approach, leaving any dependence between the
regressors and the random coefficients unmodelled. We motivate different notions of
quantile partial effects in our model and study their identification.

For the case of discretely-valued covariates we present analog estimators and charac-
terize their large sample properties. When the number of time periods (T ) exceeds the
number of random coefficients (P ), identification is regular, and our estimates are

√
N

- consistent. When T = P , our identification results make special use of the subpopu-
lation of stayers - units whose regressor values change little over time - in a way which
builds on the approach of Graham and Powell (2012). In this just-identified case we
study asymptotic sequences which allow the frequency of stayers in the population to
shrink with the sample size. One purpose of these “discrete bandwidth asymptotics” is
to approximate settings where covariates are continuously-valued and, as such, there
is only an infinitesimal fraction of exact stayers, while keeping the convenience of an
analysis based on discrete covariates. When the mass of stayers shrinks with N , identi-
fication is irregular and our estimates converge at a slower than

√
N rate, but continue

to have limiting normal distributions.

We apply our methods to study the effects of collective bargaining coverage on earnings
using the National Longitudinal Survey of Youth 1979 (NLSY79). Consistent with
prior work (e.g., Chamberlain, 1982; Vella and Verbeek, 1998), we find that using panel
data to control for unobserved worker heterogeneity results in sharply lower estimates
of union wage premia. We estimate a median union wage premium of about 9 percent,
but with, in a more novel finding, substantial heterogeneity across workers. The 0.1
quantile of union effects is insignificantly different from zero, whereas the 0.9 quantile
effect is of over 30 percent. Our empirical analysis further suggests that, on net, unions
have an equalizing effect on the distribution of wages.

Key Words: Panel Data, Quantile Regression, Fixed Effects, Difference-in-Differences,
Union Wage Premium, Discrete Bandwidth Asymptotics, Decomposition Analysis
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Linear quantile regression analysis is a proven complement to least squares methods (Koenker

and Bassett, 1978). Chamberlain (1994) and Buchinsky (1994) represent important appli-

cations of these methods to the analysis of earnings distributions, an area where continued

application has proved especially fruitful (e.g., Angrist, Chernozhukov and Fernández-Val,

2006; Kline and Santos, 2013). Recent work has applied quantile regression methods to

counterfactual and decomposition analysis (e.g., Machado and Mata, 2005; Firpo, Fortin

and Lemieux, 2009; Chernozhukov, Fernández-Val and Melly, 2013), program evaluation

(Athey and Imbens, 2006; Firpo, 2007) and triangular systems with endogenous regressors

(e.g., Ma and Koenker, 2006; Chernozhukov and Hansen, 2007; Imbens and Newey, 2009).

The application of quantile regression methods to panel data analysis has proven to be espe-

cially challenging (e.g., Koenker, 2005, Section 8.7). The non-linearity and non-smoothness

of the quantile regression criterion function in its parameters is a key obstacle. In an impor-

tant paper, Kato, Galvao and Montes-Rojas (2012) show that a linear quantile regression

model with individual and quantile-specific intercepts is consistent and asymptotically nor-

mal in an asymptotic sequence where both N and T grow. Unfortunately T must grow

quickly relative to rates required in other large-N , large-T panel data analyses (e.g., Hahn

and Newey, 2004). In a recent working paper, Arellano and Bonhomme (2013), develop cor-

related random effects estimators for panel data quantile regression. They extend a method

of Wei and Carroll (2009), developed for mismeasured regressors, to operationalize their

identification results. Other recent attempts to integrate quantile regression and panel data

include Abrevaya and Dahl (2008), Rosen (2012), Chernozhukov, Fernández-Val, Hahn and

Newey (2013) and Chernozhukov, Fernandez-Val, Hoderlein, Holzmann and Newey (2014).

We return to the relationship between our own and prior work at the conclusion of the paper.

Our contribution is a quantile regression method that accommodates some of the possibilities

afforded by panel data. A key attraction of panel data for empirical researchers is in its

ability to control for unobserved correlated heterogeneity (e.g., Chamberlain, 1984). A key

attraction of quantile regression, in turn, is its ability to accommodate heterogeneous effects

(e.g., Abrevaya, 2001). Our method incorporates both of these attractions. Our approach

is a “fixed effects” one: it leaves the structure of dependence between the regressors and

unobserved heterogeneity unrestricted. We further study identification and estimation in

settings where T is small and N is large.

The starting point of our analysis is the textbook linear quantile regression model of Koenker

and Bassett (1978). This model admits a (one-factor) random coefficients representation

(e.g., Koenker, 2005, Section 2.6). While this representation provides a structural interpre-

tation for the slope coefficients associated with different regression quantiles, it also requires
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strong maintained assumptions. We show how panel data may be used to substantially

weaken these assumptions in ways likely to be attractive to empirical researchers. In evalu-

ating the strengths and weakness of our approach, we emphasize that our model is a strict

generalization of the textbook quantile regression model.

In the next section we introduce our notation and model. Section 2 motivates several quantile

partial effects associated with our model and discusses their identification. Section 3 presents

our estimation results. Our formal results are confined to the case of discretely-valued

regressors. This is an important special case, accommodating our empirical application,

as well as applications in, for example, program evaluation as we describe below. The

assumption of discrete regressors simplifies our asymptotic analysis, allowing us to present

rigorous results in a relatively direct way.1 Each of our estimators begins by estimating the

conditional quantiles of the dependent variable in each period given all leads and lags of

the regressors. This is a high-dimensional regression function and our asymptotic analysis

needs to properly account for sampling error in our estimate of it. With discretely-valued

regressors, we do not need to worry about the effects of bias in this first stage of estimation.

This is convenient, and substantially simplifies what nevertheless remains a complicated

analysis of the asymptotic properties of our estimators.

While our theorems only apply to the discrete regressor case, we conjecture that our rates-

of-convergence calculations and asymptotic variance expressions, would continue to hold in

the continuous regressor case. This would, of course, require additional regularity conditions

and assumptions on the first stage estimator. We elaborate on this argument in Section 5

below.

We present large sample results for two key cases. First, the regular case, where the number

of time periods (T ) exceeds the number of regressors (P ). Our analysis in this case parallels

that given by Chamberlain (1992) for average effects with panel data. Second, the irregular

case, where T = P . This is an important special case, arising, for example, in a two

period analysis with a single policy variable. Our analysis in this case makes use of so-called

‘stayers’, units whose regressor values to not change over time. Stayer units serve as a type

of control group, allowing the econometrician to identify aggregate time trends (as in the

textbook difference-in-differences research design).

With continuously-valued regressors there will generally be only an infinitesimal fraction of

stayers in the population. Graham and Powell (2012) show that this results in slower than√
N rates of convergence for average effects. We mimic this continuous case in our quantile

1Chernozhukov, Fernandez-Val, Han and Newey (2013) study identification in discrete choice panel data
models with discrete regressors.
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effects context by considering asymptotic sequences which place a shrinking mass on stayer

regressor realizations as the sample size grows. We argue that these “discrete bandwidth

asymptotics” approximate settings where covariates are continuously-valued and, as such,

there is only an infinitesimal fraction of exact stayers, while keeping the convenience of an

analysis based on discrete covariates. This tool may be of independent interest to researchers

interested in studying identification and estimation in irregularly identified semiparametric

models.2 Our approach is similar in spirit to Chamberlain’s (1987, 1992) use of multinomial

approximations in the context of semiparametric efficiency bound analysis.

Section 4 illustrates our methods in a study of the effect of collective bargaining coverage on

the distribution of wages using an extract from the National Longitudinal Survey of Youth

1979 (NLSY79). The relationship between unions and wage inequality is a long-standing area

of analysis in labor economics. Card, Lemieux and Riddell (2004) provide a recent survey of

research. Like prior researchers we find that allowing a worker’s unobserved characteristics

to be correlated with their union status sharply reduces the estimated union wage premium

(e.g., Chamberlain, 1982; Jakubson, 1991; Card, 1995; Vella and Verbeek, 1998). This work

has focused on models admitting intercept heterogeneity in earnings functions. Our model

incorporates slope heterogeneity as well. It further allows for the recovery of quantiles of

these slope coefficients. We find a median union wage effect of 9 percent, close to the mean

effect found by, for example, Chamberlain (1982). In a more novel finding, however, we

find substantial heterogeneity in this effect across workers. For many workers the returns to

collective bargaining coverage are close to, and insignificantly different from, zero. While,

for a smaller proportion of workers, the returns to coverage are quite high, in excess of 20

percent.

We are only able to identify quantile effects for the subpopulation of workers that move

in and/or out of the union sector during our sample period (i.e., “mover” units). Movers

constitute just over 25 percent of our sample. For this group we can study inequality in a

world of universal collective bargaining coverage versus one with no such coverage. We find

that the average conditional 90-10 log earnings gap would be over 20 percent lower in the

universal coverage counterfactual. Our results are consistent with unions having a substantial

compressing effect on the distribution of wages (at least within the subpopulation of movers).

While the asymptotic analysis of our estimators is non-trivial, their computation is straight-

forward.3 The first two steps of our procedure are similar to those outlined in Chamberlain

2Examples include sample selection models with “identification at infinity”, (smoothed) maximum score
and regression discontinuity models.

3A short STATA script which replicates our empirical application is available for download from the first
authors’ website.
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(1994), consisting of sorting and weighted least squares operations. The final step of our

procedures consist of either averaging, or a second sorting step, depending on the target

estimand. While we do not provide a formal justification for doing so, we recommend the

use of the bootstrap as a convenient tool for inference (the results of, for example, Cher-

nozhukov, Fernández-Val and Melly (2013), suggest that the use of the bootstrap is valid in

our setting).

Section 5 outlines a few simple extensions of our basic approach. Section 6 concludes with

some suggestions for further research and application. We also develop some additional

connections between our approach and prior work in the conclusion.

1 Setup and model

The econometrician observes N independently and identically distributed random draws of

the T × 1 outcome vector Y = (Y1, . . . , YT )
′ and T ×P regressor matrix X = (X1, . . . , XT )

′ .

Here Yt corresponds to a random unit’s period t outcome and Xt ∈ XtN ⊂ RP to a corre-

sponding vector of period t regressors.4 The outcome is continuously-valued with a condi-

tional cumulative distribution function (CDF), given the entire regressor sequence X = x,

of FYt|X(yt|x). This CDF is invertible in yt, yielding the conditional quantile function

QYt|X(τ |x) = F−1
Yt|X

(y|x).

Let QY|X(τ |x) =
(
QY1|X (τ |x) , ..., QYT |X (τ |x)

)′
be the T ×1 stacked vector of period-specific

conditional quantile functions. Let W = w (X) denote a T × R matrix of deterministic

functions of X (and w = w (x)). We assume that QY|X(τ |x) takes the semiparametric form

QY|X (τ |x) = xβ (τ ;x) +wδ (τ) (1)

for all x ∈ XT
N = ×t∈{1,...,T}XtN and all τ ∈ (0, 1).5 While a subset of our estimands

only require (1) to hold for a single (known) τ , for convenience, we maintain the stronger

requirement that (1) hold for all τ ∈ (0, 1).

A key feature of (1) is that the coefficients multiplying the elements of Xt, the vector β (τ ;x),

are nonparametric functions of x, while those multiplying the elements ofWt, the vector δ (τ),

4The first element of this vector is a constant unless noted otherwise.
5The notation XT

N reflects the fact that, for some of our results, we allow the support of X to vary with
the sample size N in a way that is detailed below. For arguments based on a fixed support we omit this
subscript.
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are constant in x (Wt corresponds to the transpose of the tth row of W). In what follows we

will refer to δ (τ) as the common coefficients and β (τ ;x) as, depending on the context, the

correlated, heterogenous or individual-specific coefficients.

Model (1), with conditional expectations replacing conditional quantiles, was introduced by

Chamberlain (1992) and further analyzed by Graham and Powell (2012) and Arellano and

Bonhomme (2012). The quantile formulation is new.

A direct justification for (1) is provided by the one-factor random coefficients model

Yt = X ′
tBt +W ′

tDt (2)

with

Bt = β (Ut;X) , Dt = δ(Ut), Ut|X ∼ U [0, 1] , t = 1, . . . , T.

Validity of the resulting linear quantile representation (1), which must be nondecreasing in

the argument τ almost surely in X, requires further restrictions on the functions β (τ ;x) and

δ (τ) and the regressors Xt and Wt = wt(X), which we implicitly assume throughout (cf.,

Koenker (2005)).

Under (2) a natural target estimand is the τ th quantile of the pth component Bt, which is

constant in t = 1, . . . , T (i.e., F−1
Bps

(τ) = F−1
Bpt

(τ) for s 6= t). Let βp (τ) denote this object,

which we call the τ th unconditional quantile effect (UQE) of Xpt. Ignoring, for the moment,

any dependence between Xt and Wt (i.e., temporarily assume that ∂Wt/∂Xt = 0), the UQE

has a simple interpretation: the “return” to a unit increase in the pth component of Xt is

smaller than βp (τ) for 100τ percent of units, and greater than βp (τ) for 100(1− τ) percent

of units.

We provide two, more primitive, derivations of (1) immediately below. The first follows from

a generalization of the linear quantile regression model for cross sectional data (e.g., Koenker

and Bassett, 1978; Koenker, 2005). The second from a generalization of the textbook linear

panel data model (e.g., Chamberlain, 1984).

Generalizing the linear quantile regression model

The strongest interpretation of the estimands we introduce below, and the one we primarily

maintain throughout, occurs when we can characterize the relationship between the quantile

regression coefficients in (1) and quantiles of the individual components of Bt in the random

coefficients model:

Yt = X ′
tBt, t = 1, . . . , T. (3)
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We discuss the time series properties of Bt, as well as its relationship with Xt, shortly.

In the cross-section setting (T = 1) we can construct a mapping between quantiles of the

individual elements of B1 in (3) and their corresponding quantile regression coefficients in

the linear quantile regression of Y1 onto X1 if (i) X1 is independent of B1, (ii) there exists

a non-singular rotation B∗
1 = A−1B1 such that the elements of B∗

1 are comonotonic (i.e.,

perfectly concordant) and (iii) the elements of x′1A are non-negative for all x1 ∈ X1.

Under (i) through (iii) we have

QY1|X1 (τ | x1) = x′1b (τ)

for all x1 ∈ X1 and τ ∈ (0, 1) and, critically, that

bp (U) ∼ Bp1, U ∼ U [0, 1] . (4)

Under (4) quantiles of Bp1 (i.e, the UQE of a unit change in Xp1) are identified by the

rearranged quantile regression coefficients on Xp1:

βp (τ) = inf {c ∈ R : Pr (Bp1 ≤ c) ≥ τ}
= inf {c ∈ R : Pr (bp (U) ≤ c) ≥ τ} ,

where βp (τ) equals the τ th unconditional quantile effect (UQE) of a unit change in Xp1.
6

Requirement (iii) is related to the quality of the linear approximation of the quantile regres-

sion process. Requirements (i) and (ii) are economic in nature and restrictive.7 Assuming

independence of X1 and B1 is very strong outside of particular settings (e.g., randomized

control trials), but the issues involved, and how to reason about them, are familiar. The

requirement of comonotonicity of the random coefficients, possibly after rotation, is more

subtle and less familiar. It too has strong economic content.

To illustrate some of the issues associated with the comonotonicity requirement, as well as

how panel data may be used to weaken it (as well as the assumption of independence), it

is helpful to consider, as we do in the empirical application below, the relationship between

the distribution of wages and collective bargaining coverage.

If we let Yt equal the logarithm of period t wages, and UNIONt be a binary variable indicating

whether a worker’s wages are covered by a collective bargaining agreement in period t or

6See Chernozhukov, Fernandez-Val and Galichon (2010) for results on re-arranging quantiles.
7The requirement that comonotonicity of the random coefficients needs to hold for only a single rotation

is an implication of equivariance of quantile regression to reparameterization of design (e.g., Koenker and
Bassett, 1978).
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not, we can write, without loss of generality,

Yt = B1t +B2tUNIONt, t = 1, . . . , T. (5)

The the τ th quantile of B2t – F−1
B2t

(τ) – has a simple economic interpretation: the “return”

to collective bargaining coverage is smaller for 100τ percent of workers, and greater for

100(1− τ) percent of workers.

Now consider the coefficient on UNION1 in the τ th linear quantile regression of log wages in

period 1 onto a constant and UNION1. This coefficient, b2 (τ), equals

b2 (τ) = F−1

B11+B21|UNION1
(τ |UNION1 = 1)− F−1

B11|UNION1
(τ |UNION1 = 0) ,

which, without further assumptions, is not a quantile effect.

Requirement (i) – independence – yields the simplification

b2 (τ) = F−1
B11+B21

(τ)− F−1
B11

(τ) .

Requirement (ii) – comonotonicity – implies that there exists at least one rotation B∗
1 =

A−1B1 such that B∗
11 and B∗

21 are comonotonic. Different rotations have different economic

content. For example if B11 and B11 + B21 are comonotonic, then the workers with the

highest potential earnings in the union sector coincide with those with the highest potential

earning in the non-union sector and vice versa. This rules out comparative advantage.

If, instead, B11 and B21 are comonotonic, then those workers which benefit the most from

collective bargaining coverage are also those who earn the most in its absence. Either of these

comonotonicity assumptions imply (4). As a final example, if B1t and -B2t are comonotonic,

such that low earners in the absence of coverage gain the most from acquiring it, then

b2 (τ) = F−1
B11

(τ) + F−1
B21

(1− τ)− F−1
B11

(τ)

= F−1
B21

(1− τ) ,

which also implies (4).

These examples illustrate both the flexibility and restrictiveness of the comonotonicity re-

quirement. Depending on the setting, it may be reasonable to assume comonotonicity of

B∗
t = A−1Bt for some non-singular rotation A. Certain rotations may be more plausible

than others. Nevertheless the assumption is often difficult to justify. Even in the program

evaluation context, where independence of X1 and B1 may hold by design, researchers are
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often reluctant to interpret quantile treatment effects as anything more than the difference

in two marginal survival functions (e.g., Koenker, 2005, pp. 30 - 31; Firpo, 2007).

At the same time, it is worth noting that textbook linear models with additive heterogeneity

imply stronger rank invariance properties. For example, the basic models fitted by Cham-

berlain (1982), Jakubson (1991) and Card (1995) all have the implication that those workers

with the highest potential earnings in the union sector coincide with those with the highest

potential earnings in the non-union sector (cf., Vella and Verbeek (1998) for discussion).

The availability of panel data may be used to substantially weaken the assumptions of both

comonotonicity and independence of the random coefficients. In particular we can replace (i)

and (ii) above, with the requirement that the elements of B∗
t = A (x)−1Bt are comonotonic

within the subpopulation of workers with common history X = x:8

A (x)−1Bt

∣∣X = x
D
=
(
F−1
B1t|X

(Ut|x) , . . . , F−1
BPt|X

(Ut|x)
)
, U ∼ U [0, 1] , (6)

for some non-singular A (x). Under (5) and (6) we have

QYt|X (τ |x) = x′tβt (τ ;x)

and, critically, also that

βpt (U ;x) ∼ Bpt|X = x, U ∼ U [0, 1] .

Note that the rotation of Bt that ensures conditional comonotonicity can vary with X = x.9

In addition to conditional comonotonicity, we also, as is typical in panel data models, need

to impose some form of stationarity in the distribution of Bt over time. A convenient, but

flexible, assumption is to require that the distribution of Bp1 and Bpt, for t > 1, are related

according to

FBp1|X (b|x) = FBpt|X (b+∆pt (b)|x) , t = 2, . . . , T, p = 1, . . . , P. (7)

Restriction (7) corresponds to a “common trends” assumption. To see this solve for ∆pt (b)

∆pt (b) = F−1
Bpt|X

(
FBp1|X (b|x)

∣∣x
)
− b,

8We also require that x′
tA (x) is non-negative for all xt ∈ Xt.

9Clotilde and Napp (2004) present basic results on conditionally comonotonic random variables.
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which after changing variables to τ = FBp1|X (b|x) gives

βpt (τ ;x)− βp1 (τ ;x) ≡ δpt (τ) ,

for βpt (τ ;x) = QBpt|X (τ |x). Under assumption (7) it is convenient to define, in a small

abuse of notation, βp (τ ;x) = βp1 (τ ;x).

Under restriction (7) differences in the conditional quantile functions of Bpt and Bps for t 6= s

do not depend on X. Under (3), (6) and (7) the conditional quantiles for Y given X satisfy

(1) with

W =




0′P · · · 0′P

X
′
2 · · · 0′P

...
. . .

...

0′P · · · X
′
T



, δ (τ) =




δ2 (τ)
...

δT (τ)


 ,

where 0P denotes a P ×1 vector of zeroes. Here dim (δ (τ)) = R = (T − 1)P , since we allow

the entire coefficient vector multiplying Xt to vary across periods. In practice, additional

exclusion restrictions might be imposed or tested. For example one could impose the restric-

tion that all components of δt(τ) corresponding to the non-constant components of Xt are

zero. In that case we could set W =
(

0T−1, IT−1

)′
with dim (δ (τ)) = R now equal to

T − 1.

To understand the generality embodied in (5), (6) and (7) relative to the cross-section case,

it is again helpful to return to our empirical example. Suppose that Xt = (1,UNIONt)
′ with

T = 2, so that there are just four possible sequences of collective bargaining coverage:

(UNION1,UNION2) ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)} .

With panel data we can assume, for example, that B1t and B1t + B2t are comonotonic

within the subpopulation of union joiners (i.e., (UNION1,UNION2) = (0, 1)), while B1t and

−B2t are comonotonic within the subpopulation of union leavers (i.e., (UNION1,UNION2) =

(1, 0)). There may be no rotation of B1 in which comonotonicity holds unconditionally on

X = x. Other than the assumption of conditional comonotonicity, all other features of the

joint distribution of Bt and X are unrestricted. This allows for dependence between Xt and

Bt. For example it may be that the distribution of B2t, the returns to collective bargaining

coverage, across workers in the union sector both periods, stochastically dominates that

across workers not in the union sector both periods (cf., Card, Lemieux and Riddell, 2004).

Equations (5), (6) and (7) show how our semiparametric model arises as a strict general-

ization of the textbook linear quantile regression model. Here, relative to the cross section
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case, the presence of panel data allows for (i) a relaxation of comonotonicity of the random

coefficients, (ii) the introduction of correlated heterogeneity and (iii) a structured form of

non-stationarity over time.

Generalizing the linear panel data model

In our exposition, for reasons of clarity, we emphasize an interpretation of (1) based on the

data generating process defined by (3), (6) and (7). However it is also straightforward to

derive (variants of) (1) from a generalization of the textbook linear panel data model (e.g.,

Chamberlain, 1984):

Yt = X ′
tηt + A+ Vt, E [Vt|X, A] = 0, t = 1, . . . , T. (8)

Specifically consider the the location-scale model (cf., Arellano and Bonhomme, 2011)

Yt = X ′
tηt +X ′

tg (A + Vt) , (9)

with x′tg (a+ vt) strictly increasing in a+ vt for all a+ vt ∈ A+ Vt and all xt ∈ XtN and Vt

obeying the marginal stationarity restriction of Manski (1987):

V1|X D
= Vt|X, t = 2, . . . , T. (10)

Relative to the textbook model, (9) allows for the marginal effect of a unit change inXtp to be

heterogenous across units and dependent on X. The textbook model imposes homogeneity of

marginal effects. Equations (9) and (10) generate the period t conditional quantile function

QYt|X (τ |x) = x′t (β (τ ;x) + δt)

for β (τ ;x) = η1 + g
(
QA+V1|X (τ |x)

)
and δt = ηt − η1. This model implies that the time

effects take a pure location-shift form, which is not a implication of (1).

Our semiparametric model (1) therefore nests both the textbook quantile regression and

linear panel data models as special cases. It also strictly generalizes those models, introducing

heterogenous effects and/or the dependence of these effects on the regressors.
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2 Estimands and identification

In this section we introduce three estimands based on (1). We motivate these estimands vis-

a-vis the correlated random coefficients model defined by (3), (6) and (7) above, although

this is not essential to our formal results (i.e., one could make reference to (2) directly). A

subset of our estimands only require that (1) hold for a single known τ .

Our first estimand is the R × 1 vector of common coefficients δ (τ). Recall that in our

motivating data generating process the elements of δ (τ) coincide with time effects.

Our second estimand is the P × 1 vector of average conditional quantile effects (ACQEs):

β̄ (τ) = E [β (τ ;X)] . (11)

Equation (11) coincides with an average of the conditional quantiles of B1 in (5) over X.

It is similar to the average derivative quantile regression coefficients studied in Chaudhuri,

Doksum and Samarov (1997).

The ACQE is also closely related to a measure of conditional inequality used by labor

economists. Angrist, Chernozhukov and Fernández-Val (2006; Table 1) report estimates

of the average E [X1]
′ (β (0.9)− β (0.1)), with β (τ) the coefficient on X1 in the τ th linear

quantile regression of log earnings Y1 on worker characteristics X1. They interpret this as

a measure of average conditional earnings inequality or ‘residual’ wage inequality.10 In our

panel data set-up the analogous measure of period t conditional earnings inequality would

be

E [X ′
t (β (0.9;X)− β (0.1;X))] + E [Wt]

′ (δ (0.9)− δ (0.1)) . (12)

Equation (12) measures the average period t conditional 90-10 earnings gap across all sub-

populations of workers defined in terms of their covariate histories X. It is a “residual”

inequality measure because it is an average of earnings dispersion measures which condition

on observed covariates. Under our assumptions (12) has counterfactual content. To see

this consider the average conditional period t 90-10 earnings gap that we would observe if,

contrary to fact, worker characteristics remained fixed at their base year values:

E [X ′
1 (β (0.9;X)− β (0.1;X))] + E [W1]

′ (δt (0.9)− δt (0.1)) . (13)

The difference between (12) and (13) is a measure of the increase in ‘residual’ earnings

10This measure captures a notion of ‘residual’ wage inequality in that it measures the average amount of
inequality in earnings that is left-over after first conditioning on covariates (cf., Autor, Katz and Kearney,
2008).
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inequality due to changes in worker characteristics between periods 1 and t. Similar reasoning

leads to more complicated decomposition estimands.

Our final estimand is the unconditional quantile effect (UQE), defined implicitly by, for

p = 1, . . . , P,

βp (τ) = QB1p (τ)

= inf {b ∈ R : Pr (B1p ≤ b) ≥ τ}
= inf {b ∈ R : Pr (βp (U1,X) ≤ b) ≥ τ}

where U1 ∼ U [0, 1], independent of X. The UQE βp (τ) corresponds to the τ th quantile of

the pth component of the random coefficient vector B1. If we took a random draw from the

population and increased her pth regressor value by one unit, then with probability τ the

effect on Y1 would be less than or equal to βp (τ), while with probability 1 − τ it would be

greater. To get the total effect for a tth period intervention, we would need to take into

account the effect on W
′
tδ(τ) of the change in regressor Wt (as a function of Xt).

The UQE is the quantile analog of an average partial effect (APE).

Identification

We present two sets of identification results. The first requires that the time dimension of the

panel (T ) strictly exceed the number of regressors (P ). We refer to this as the “regular” case.

Chamberlain (1992) studied identification of average partial effects in this setting. Second

we study identification when T = P . This is the case studied in Graham and Powell (2012).

We refer to this case as “irregular”. Both are empirically relevant (cf., Graham and Powell,

2012). Throughout this section we assume that the joint distribution of the observable data

matrix (Y,X) is known – in particular, that the T × 1 vector QY|X (τ |X) is known for all

τ ∈ (0, 1) and X ∈ XT
N .

Regular case (T > P )

Let A (X) be any T × T positive definite matrix, possibly a function of X, and define the

residual-maker matrix

MA (X) = IT −X (X′A (X)X)
−1

X
′A (X) . (14)

12



If E [‖X‖2 + ‖W‖2] <∞ and E [W′MA(X)W] is invertible we can recover δ (τ) by

δ (τ) = E [W′MA (X)W]
−1 × E

[
W

′MA (X)QY|X (τ |X)
]
. (15)

Equation (15) shows that δ (τ) indexes a (generalized) within-unit, double residual, linear

regression function. The dependent variable associated with this regression is QYt|X (τ |X)

deviated from its unit-specific “mean” and the independent variable the deviation of Wt

about its corresponding “mean” . Chamberlain (1992, Section 4) introduced transformations

of this type in the panel context (cf., Graham and Powell (2012)). Bajari, Hahn, Hong and

Ridder (2011) use a similar transformation to study identification in incomplete information

games.

Once δ(τ) is identified, we can also identify the τ th conditional quantile of the random

coefficient, for X realizations with full rank, through the relation

β(τ ;X) = (X′A (X)X)
−1

X
′A (X) (QY|X(τ |X)−Wδ(τ)). (16)

If all realizations of X are of full rank, we can directly recover the average conditional quantile

effect (ACQE) from (16) by

β̄(τ) = E [β(τ ;X)]

= E

[
(X′A (X)X)

−1
X

′A (X) (QY|X(τ |X)−Wδ(τ))
]
, (17)

while the unconditional quantile βp(τ) of the pth component of B1 is identified as the solution

to the equation

E [1(βp(U ;X) ≤ βp(τ))− τ ] = 0, (18)

with U uniformly distributed on (0, 1), independently from X. The UQE βp(τ) will be

uniquely identified if the distribution of β(U ;X) is continuous around its τ th quantile with

positive density.

Equations (17) and (18) do not follow if the probability π0 that X is rank deficient is strictly

positive. Denote by XM the region of the support of X where its rank is full, and denote

by π0 the probability that the rank of X is less than P . When π0 > 0 it is still possible to

identify δ(τ), by using the observations where X ∈ XM , via

δ(τ) = E
[
W

′MA(X)W|X ∈ X
M
]−1 × E

[
W

′MA(X)QY|X(τ |X)|X ∈ X
M
]
,

if we now assume that E
[
W

′MA(X)W|X ∈ XM
]

is invertible and under the same moments
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existence requirements. It is also possible to identify β(τ ;X) through the same argument,

but only for the subpopulation of units where X has full rank. These full rank units represent

fraction 1 − π0 of the population, as opposed to its entirety. Despite the non-identification

of β(τ ;X) for units with non-full rank, it is clearly possible to point identify the “movers’

ACQE” and the “movers’ UQE”, defined as

β̄M(τ) = E
[
β(τ ;X)|X ∈ X

M
]

= E

[
(X′A (X)X)

−1
X

′A (X) (QY|X(τ |X)−Wδ(τ))|X ∈ X
M
]

(19)

and the solution βMp (τ) to the equation

E
[
1(βp(U ;X) ≤ βMp (τ))− τ |X ∈ X

M
]
= 0. (20)

Although β̄(τ) and βp(τ), the full population average and unconditional quantile effects, are

not point identified when π0 > 0, it is possible to construct bounds for them. The Law of

Total Probability gives

β̄(τ) = β̄M(τ) Pr(X ∈ X
M) + E[β(τ ;X)|X ∈ X

S] Pr(X ∈ X
S)

where X
S = X \ XM denotes the region of the support of X where its rank is deficient. Let

[bp, b̄p] denote bounds on the support of βp(τ ;X). The existence of such bounds, although

not their magnitude, is implied by Assumption 5 below. The identified set for β̄p(τ) is then

[
β̄Mp (τ) Pr(X ∈ X

M) + bp Pr(X ∈ X
S), β̄Mp (τ) Pr(X ∈ X

M) + b̄p Pr(X ∈ X
S)
]

for any p = 1, . . . , P . This result requires us to assume that b̄p and bp are known.

A somewhat more satisfying result is available for βp(τ). We give this result as a Theorem,

although the required assumptions are not stated until the next section.

Theorem 1. (Partial Identification of βp (τ)) Under Assumptions 1 through 5 stated

below and E
[
W

′MA(X)W|X ∈ XM
]

invertible, the UQE for the pth coefficient is partially

identified with identification region:

βp(τ) ∈
[
βMp

(
τ − Pr(X ∈ XS)

Pr(X ∈ XM)

)
, βMp

(
τ

Pr(X ∈ XM)

)]
. (21)

where βMp (τ) ≡ bp for τ < 0 and βMp (τ) ≡ b̄p for τ > 1.
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Proof. See Appendix B.

Since the movers’ UQE is identified, as well as Pr(X ∈ X
M) and Pr(X ∈ X

S) = 1− Pr(X ∈
XM), the analog estimators for the lower and upper bounds of the identified set given in

(21) are easy to compute.11 If prior bounds on the random coefficient are unknown, these

bounds are only meaningful for τ in a subset of (0, 1). The width of this subset depends on

the fraction of stayers. When τ is close to either 0 or 1, we must rely on prior bounds b̄p and

bp to set identify the UQE, as is the case for the ACQE.

Irregular case (T = P )

We now consider the T = P case. Our approach builds on that of Graham and Powell (2012)

for average effects in a conditional mean variant of (1). While identification in the regular

case is based solely on the subpopulation of movers, the irregular case utilizes both movers

and stayers. The role of stayers is to identify the common parameter δ (τ), which in our

motivating data generating process, captures aggregate time effects. Stayers, as we detail

below, serve as a type of control group, allowing the econometrician to identify “common

trends” affecting all units.

Let D = det(X), X∗ denote the adjugate (or adjoint) matrix of X (i.e., the matrix such that

X
−1 = 1

D
X

∗ when D 6= 0), and W
∗ = X

∗
W. Premultiplying equation (1) by X

∗ gives

X
∗QY|X(τ |X) = W

∗δ(τ) +Dβ(τ ;X). (22)

Assuming that zero is in the support of the determinant, D, E [‖W∗‖2] < ∞ and that

E[W∗′
W

∗|D = 0] is of full rank, we can identify δ(τ), using only stayer (i.e., D = 0)

observations, by:

δ(τ) = E [W∗′
W

∗D = 0]
−1 × E

[
W

∗′
X

∗QY|X(τ |X)|D = 0
]
. (23)

Given identification of δ(τ), we can then recover β(τ ;X) by

β(τ ;X) = X
−1(QY|X(τ |X)−Wδ(τ)) (24)

for all X where X
−1 = 1

D
X

∗ is well-defined (i.e., for “mover” realizations of X).

11The endpoints’ joint asymptotic distribution can be readily inferred from the process convergence of the
UQE process established below.
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As long as Pr (D = 0) = 0 it follows that the conditional effect β(τ ;X) will be identified

with probability one. However, the identification of the ACQE and UQE estimands is more

delicate than in the regular case, due to the fact that if the density of D is positive in

a neighborhood of 0 (which we require for identification of δ(τ)), expectations involving

X
−1 = 1

D
X

∗ will not exist in general (e.g., Khan and Tamer (2010) and Graham and Powell

(2012)). In order to identify the ACQE, β̄(τ), we write it as the limit of a sequence of

“trimmed” expectations

β̄(τ) = E[β(τ ;X)]

= lim
h↓0

E[β(τ ;X)1(|D| > h)]

= lim
h↓0

E[X−1(QY|X(τ |X)−Wδ(τ))1(|D| > h)], (25)

where the second equality holds because

β̄(τ)− E[β(τ ;X)1(|D| > h)] = E[β(τ ;X)1(|D| ≤ h)] = O(h)

under sufficient smoothness conditions. This trimming is not strictly necessary at the iden-

tification stage, under the maintained assumption that β̄(τ) exists, but is introduced in

anticipation of its estimation. In particular, replacing QY|X(τ |X) with a nonparametric esti-

mate introduces noise into the numerator of the sample analog of (25). This sampling error

may cause the expectation of the estimated conditional effect

β̂(τ ;X) = X
−1(Q̂Y|X(τ |X)−Wδ̂(τ))

to be undefined due to a lack of moments of the remainder term

β̂(τ ;X)− β(τ ;X) = X
−1
(
Q̂Y|X(τ |X)−QY|X(τ |X)−W(δ̂(τ)− δ(τ))

)
.

We can also characterize the identification of βp(τ), the UQE associated with the pth regres-

sor, in terms of a sequence of trimmed means. Assuming that the distribution of β(U ;X)

given D = t is continuously differentiable in a neighborhood of t = 0, we can write βp(τ) as

the solution to

0 = E [1(βp(U ;X) ≤ βp(τ))− τ ]

= lim
h↓0

E [(1(βp(U ;X) ≤ βp(τ))− τ)1(|D| > h)] .
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Our approach to estimation exploits this characterization.

If there is a point mass of stayer units with D = 0 (i.e. π0 > 0), the same identification

issues arise here as in the regular (T > P ) case. In this case we can continue to identify δ(τ)

as before, but β(τ ;X) will be unidentified for a set of X values with positive probability. It

is still possible identify the movers’ ACQE and UQE using straightforward modifications of

the arguments given for the regular case in the previous subsection.

As a simple example of irregular identification consider a two period version of (1) with a

single time-varying regressor (X2t) and an intercept time shift.12 This setup yields conditional

quantiles for each period of

QY1|X(τ |x) = β1 (τ ;x) + β2 (τ ;x)X21

QY2|X(τ |x) = δ (τ) + β1 (τ ;x) + β2 (τ ;x)X22.

Here X2t might be a policy variable, such as an individuals’ workers compensation benefit

level, which depends on own earnings as well as state-specific benefit schedules, and Yt an

outcome of interest to a policymaker, such as time out of work following an injury.

Evaluating (23) we get

δ (τ) = E
[
ω (X21)

{
QY2|X(τ |X)−QY1|X(τ |X)

}∣∣D = 0
]
, ω (X1) =

1 +X2
21

E [1 +X2
21|D = 0]

,

so that δ (τ) is identified by a weighted average of changes in the τ th quantile of Yt between

periods 1 and 2 across the subpopulation of stayers. Stayer units, who in this case correspond

to units where X21 = X22 (i.e., the nonconstant regressor stays fixed over time), serve as a

type of “control group”, identifying aggregate time effects or “common trends”.

The conditional quantile effect of a unit change in X2t is given by the second element of (24),

which evaluates to

βp (τ ;x) =
QY2|X(τ |x)−QY1|X(τ |x)− δ (τ)

△x2
,

for all x with x22−x22 = △x2 6= 0. Hence βp (τ ;x) is identified by a “difference-in-differences”.

12This corresponds to (1) with T = P = 2 and W and X equal to

W =

(
0
1

)
, X =

(
1 X21

1 X22

)

so that D = X22 −X21 = △X2.
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3 Estimation

In this section we present analog estimators based on the identification results presented

above. Our estimators utilize preliminary nonparametric estimates of the conditional quan-

tiles of Yt given X for t = 1, . . . , T. Our formal results cover the case where X is discretely

valued with M points of support: X ∈ X
T
N = {x1N , . . . ,xMN}. This case covers many em-

pirical applications of interest, including the one developed below. It is also, as described in

the introduction, technically simpler, allowing analysis to proceed conditional on discrete,

non-overlapping, cells. However, by considering asymptotic sequences where the location

and probability mass attached to the different support points of X changes with N , we show

how our results would extend to the case of continuously-valued regressors (albeit under

additional, stronger, regularity conditions).

After stating our main assumption we discuss estimation in the regular case (T > P ) and

irregular case (T = P ).

Assumptions

Assumption 1. (Data Generating Process) The conditional quantiles of Y1, . . . , YT

given X are of the form (1) for all X ∈ XT
N and τ ∈ (0, 1) .

For estimation of the common parameter, δ (τ), and the ACQE, β̄p(τ), we only require that

(1) hold at τ . The stronger implications of Assumption 1 are required for estimation of the

UQE, βp(τ), p = 1, . . . , P .

Assumption 2. (Support and Support Convergence) (i) X ∈ X
T
N = {x1N , . . . ,xMN}

with plN = Pr (X = xlN) for l = 1, . . . , N ; (ii) as N → ∞, we have xlN → xl, plN → pl

and NplN → ∞ for any l = 1, . . . ,M for some well defined xl and pl; (iii) the elements of

X = {x1, . . . ,xM} are bounded.

Assumption 2 has two non-standard features. First, while it restricts the number of support

points of X, the location of these points is allowed to vary with N . Second, the probability

mass attached to each support point may also vary with N . Both of these sequences have

well-defined limits. An important feature of Assumption 2 is that it allows the probability

mass attached to some points of support to shrink to zero. The rate at which this occurs is

limited by the requirement that NplN → ∞. This assumption ensures that the conditional

quantile of Yt given X = xl is consistently estimable for all l = 1, . . . ,M . However the rate of
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convergence of these estimates will be slower for points of support with shrinking probability

mass as N grows large.13

For the analysis which follows it is convenient to partition the support of X as follows.

1. Units with X = xmN for m = 1, . . . , L1 < M correspond to movers. Movers cor-

respond to units where, recalling that xmN → xm, xm and xmN are of full rank.

Intuitively movers are units whose covariate values “vary a lot” over time.

2. Units with X = xmN for m = L1 + 1, . . . , L < M correspond to near stayers. Near

stayers correspond to units where xmN is of full rank, but its limit xm is not. We will

be more precise about the behavior of these units’ design matrices along the path to

the limit below. Intuitively near stayers are units who covariate values change “very

little” over time.

3. Units with X = xmN for m = L + 1, . . . ,M correspond to stayers. Stayers are units

where xmN is neither of full rank along the path nor in the limit. Stayers correspond

to units where the number of distinct rows of X is less than P (i.e., whose regressor

sequences display substantial persistence).

We let XM
N = {x1N , . . .xLN} denote the set of mover support points (including near stayers).

The set of stayer support points is denoted by XS
N = {xL+1N , . . .xMN}. We introduce more

structure to this basic set-up (as needed) below.

Assumption 3. (Random Sampling) {Yi,Xi}Ni=1 is a random (i.i.d.) sample from the

population of interest.

Assumption 4. (Bounded and Continuous Densities) The conditional distribution

FYt|X (yt|x) has density fYt|X (yt|x) such that ψ (τ ;x) = fYt|X

(
F−1
Yt|X

(τ |x)
∣∣∣x
)

and ∂ψ(τ ;x)
∂τ

are uniformly bounded and bounded away from zero for all τ ∈ (0, 1), all x ∈ XT
N , and

all t = 1, . . . , T. Also, this conditional distribution does not vary with the sample size N .

Finally, fYt|X (yt|x), FYt|X (yt|x) and F−1
Yt|X

(yt|x) are all continuous in x.

Assumption 5. (Bounded Coefficients) The support of Btp is compact and its density

is bounded away from 0 for any p = 1, . . . , P and t = 1, . . . , T .

Assumptions 3 is standard, as is Assumption 4 is the quantile regression context. Assumption

5, in conjunction with Assumption 2 ensures that Y has bounded support.

13Also note that, since W is a function of X alone, it too has M points of support: W ∈ WT
N =

{w1N , . . . ,wMN} .
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First step of estimation

The first step of our estimation procedure, which is identical for both the regular (T > P )

and irregular (T = P ) cases, involves computing estimates of the conditional quantiles of Yt

given X for all X ∈ XT
N and all t = 1, . . . , T . This must must be done for a single τ in the

case of the common coefficients, δ (τ) and the movers’ Average Conditional Quantile Effect

(ACQE), β̄M (τ), and for a uniform grid of τ ∈ (0, 1) in the case of the movers’ Unconditional

Quantile Effect (UQE), βMp (τ).

Under Assumption 2 preliminary estimation of the conditional quantiles of Yt given X is

straightforward. Let

F̂Yt|X (yt|xmN ) =
[

N∑

i=1

1 (Xi = xmN )

]−1

×
[

N∑

i=1

1 (Xi = xmN ) 1 (Yit ≤ yt)

]
,

be the empirical cumulative distribution function of Yt for the subsample of units with

X = xmN . Our estimate of the τ th conditional quantile of Yt equals

Q̂Yt|X (τ |xmN ) = F̂−1
Yt|X

(yt|xmN ) = inf
{
yt : F̂Yt|X (yt|xmN ) ≥ τ

}
.

Note that Q̂Y|X (τ ;xlN) and Q̂Y|X (τ |xmN ) for l 6= m are conditionally uncorrelated given

{X}Ni=1.

In practice estimation of Q̂Y|X (τ ;xmN ) is very simple (cf., Chamberlain, 1994). Let Nm =
∑N

i=1 1 (Xi = xmN ) equal the number of units in cell X = xmN . Let Y
(j,m)
t denote the jth

order statistic of Yt in the X = xmN subsample. We estimate QYt|X (τ |xmN ) by Y
(j,m)
t where

j satisfies
j

Nm + 1
< τ ≤ j + 1

Nm + 1
.

Alternatively we could use (Y
(j,m)
t + Y

(j+1,m)
t )/2 as our estimate.

To characterize the large sample properties of Q̂Y|X (τ ;xmN ) we require some additional

notation. Let

ρst (τ, τ
′;X) =

Pr
(
Ys ≤ QYs|X (τ |X) , Yt ≤ QYt|X (τ |X)

)
− ττ ′

min (τ, τ ′)− ττ ′
, s, t = 1, . . . , T (26)
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and Λ (τ, τ ′;X) equal




1

fY1|X(QY1|X
(τ |X)|X)fY1|X(QY1|X

(τ |X)|X)
· · · ρ1T (τ,τ ′;X)

fY1|X(QY1|X
(τ |X)|X)fYT |X(QYT |X(τ |X)|X)

...
. . .

...
ρ1T (τ,τ ′;X)

fY1|X(QY1|X
(τ |X)|X)fYT |X(QYT |X(τ |X)|X)

· · · 1

f
YT |X(QYT |X(τ |X)|X)fYT |X(QYT |X(τ |X)|X)


 . (27)

Using this notation, an adaptation of standard results on quantile processes in the cross

sectional context, to allow for both moving support points and probabilities, gives our first

result:

Lemma 1. Suppose that Assumptions 1 through 5 are satisfied, then

√
NpmN

(
Q̂Y|X (τ |xmN )−QY|X (τ |xmN )

)

converges in distribution to a mean zero Gaussian process ZQ (·, ·) on τ ∈ (0, 1) and xm ∈ X,

where ZQ (·, ·) is defined by its covariance function ΣQ (τ,xl,τ
′,xm) = E

[
ZQ (τ,xl)ZQ (τ ′,xm)

′]

with

ΣQ (τ,xl,τ
′,xm) = (min (τ, τ ′)− ττ ′)Λ (τ, τ ′;xl) · 1 (l = m) (28)

for l, m = 1, . . . ,M.

Proof. See Appendix B.

Lemma 1 generalizes textbook process convergence results for unconditional quantiles. Con-

sider a support point with pmN = hN with hN → 0 and NhN → ∞. The rate-of-convergence

for such support points will be order
√
NhN , since the effective sample size used for esti-

mation is proportional to NhN rather than N . Convergence here is on τ ∈ (0, 1) since Yt

has compact support (by Assumptions 2 and 5 and that Yt is the product of Xt and Bt). If

Yt’s support was unbounded, Lemma 1 would instead hold uniformly for τ ∈ [ǫ, 1 − ǫ] with

arbitrary ǫ satisfying 0 < ǫ < 1/2.

Regular case (T > P )

We initially develop results for the fixed support case with xmN = xm for all m = 1, . . . , L.

In this setting there are no near stayers so that L1 = L. There may or may not be pure

stayers in this case. This changes the identified effect, but not our approach to estimation –

which utilizes movers alone – as explained below.
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Let Π(τ) = (QY|X(τ |x1)
′, . . . , QY|X(τ |xL)′)′ be a TL × 1 vector with movers’ conditional

quantiles and notice that, under (1),

Π(τ) = Gγ(τ)

for τ ∈ (0, 1) with

γ (τ)
(R+PL)×1

=




δ (τ)

β (τ ;x1)
...

β (τ ;xL)



, G

TL×(R+PL)
=




w1 x1 · · · 0T0
′
P

...
...

. . .
...

wL 0T0
′
P · · · xL


 . (29)

Since rank (G) = dim (γ (τ)) we have

γ (τ) = (G′AG)
−1
G′AΠ (τ) , (30)

for any TL× TL positive-definite weight matrix A.

When A is block diagonal with mth T × T block pmA (xm) , it is straightforward to demon-

strate that the first R elements of γ(τ) in (30) can be expressed as

δ(τ) = E
[
W

′MA(X)W|X ∈ X
M
]−1 × E

[
W

′MA(X)QY|X(τ |X)|X ∈ X
M
]
,

which coincides with (15) above. Manipulation of (30) also yields, for all X ∈XM ,

β (τ ;X) = [X′A (X)X]
−1

X
′A (X)

(
QY|X(τ |X)−Wδ (τ)

)
,

which coincides with (16) above.

Our analog estimator is

γ̂(τ) = (G′ÂG)−1G′ÂΠ̂(τ) (31)

where Â is a consistent estimator of a positive definite weight matrix and Π̂(τ) is as defined

above. To get precise results we make the following assumption on the weight matrix.

Assumption 6. (Weight Matrix) Â = diag{p̂1N , . . . , p̂LN}⊗IT where p̂l =
1
N

∑N
i=1 1(Xi =

xlN).

This assumption is made to simplify the analysis and because weighting each support point

by its relative frequency is often a reasonable choice. Although we do not develop this point
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here, it is straightforward to show, by adapting the argument given by Chamberlain (1994),

that this choice of weight matrix also allows for easy characterization of the large sample

properties of γ̂(τ) under misspecification (i.e., when (1) does not hold).

Define

W =MI (X)W, MI (X) = IT −X (X′
X)

−1
X

′

K (X) = (X′
X)

−1
X

′
W, Γ = E

[
W

′
W

∣∣∣X ∈ X
M
]
.

Theorem 2. Suppose that Assumptions 1 through 6 are satisfied, the distribution of X is

fixed, and E

[
W

′
W|X ∈ XM

]
is invertible, then (i)

√
N
(
δ̂ (·)− δ (·)

)
converges in distribu-

tion to a mean zero Gaussian process Zδ (·), where Zδ (·) is defined by its covariance function

Σδ(τ, τ
′) = E[Zδ (τ)Zδ (τ

′)
′
] = (min (τ, τ ′)− ττ ′)

Γ−1E

[
W

′
Λ (τ, τ ′;X)W

∣∣∣X ∈ XM
]
Γ−1

P(X ∈ XM)
,

(32)

and (ii)
√
N
(
β̂ (·; ·)− β (·; ·)

)
also converges in distribution to a mean zero Gaussian process

Z (·, ·), where Z (·, ·) is defined by its covariance function

Σ(τ,xl, τ
′,xm) = E

[
Z (τ,xl)Z (τ ′,xm)

′]

= (min (τ, τ ′)− ττ ′)
(x′

lxl)
−1

x
′
lΛ (τ, τ ′;xl)xl (x

′
lxl)

−1

pl
· 1 (l = m)

+K (xl) Σδ(τ, τ
′)K (xm)

′ , (33)

for l, m = 1, . . . , L.

Proof. See Appendix B.

When X has finite support and, as maintained here, the location and probability mass

attached to this support does not change with N , the rate of convergence of β̂ (τ ;xm) and

δ̂ (τ) is
√
N . At the same time it is not possible to identify β(τ ;xm) for the stayer realizations

m = L+1, . . . ,M . Hence under the fixed support assumption β̄(τ), the average conditional

quantile effect, is not point identified. However, the movers’ ACQE, defined as β̄M(τ) =

E[β(τ ;X)|X ∈ XM ], is consistently estimable by

β̂
M

(τ) =

∑N
i=1 1

(
Xi ∈ XM

)
β̂ (τ ;Xi)∑N

i=1 1 (Xi ∈ XM)
. (34)
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Theorem 3. Under the assumptions maintained in Theorem 2 above,
√
N(β̂

M

(·)− β
M
(·))

converges in distribution to a mean zero Gaussian process Zβ̄ (·), where Zβ̄ (·) is defined by

its covariance function

Σβ̄(τ, τ
′) = E

[
Zβ̄ (τ)Zβ̄ (τ

′)
′]

=
C
(
β (τ ;X) , β (τ ′;X)′

∣∣X ∈ XM
)

P (X ∈ XM)
+ Υ1(τ, τ

′) +KMΣδ(τ, τ
′)KM ′ (35)

where

Υ1 (τ, τ
′) =

(min (τ, τ ′)− ττ ′)

P(X ∈ XM)
E

[
(X′

X)
−1

X
′Λ (τ, τ ′;X)X (X′

X)
−1 |X ∈ X

M
]
,

KM = E[K(X)|X ∈ X
M ].

Proof. See Appendix B.

The first term in the asymptotic distribution of β̂
M

(τ) arises from variation in the random

coefficients across the subpopulation of movers. The second and third terms reflect sampling

uncertainty in β̂(τ ;x) and δ̂(τ) respectively (which arises because the conditional distribution

of Y given X is unknown). The form of Σβ̄(τ, τ
′) mirrors that derived by Chamberlain (1992)

for averages of random coefficients.

As with the ACQE, unconditional quantile effects are only identified across the subpopulation

of movers. Our estimate of βMp (τ) is given by the solution to the empirical counterpart of

(20) above

N∑

i=1

1
(
Xi ∈ X

M
){ˆ u=1

u=0

[
1(β̂p(u;Xi) ≤ β̂Mp (τ))− τ

]
du

}
= 0. (36)

The integral in (36) can be calculated exactly since β̂p(u;xl) is piecewise linear for each

xl with finitely many pieces. Alternatively it may be approximated by a finite sum of the

integrand evaluated at H evenly spaced points u1, . . . , uH between zero and one. In that case

β̂Mp (τ) has a simple order statistic representation. Let NMOVER =
∑N

i=1 1
(
Xi ∈ XM

)
equal

the number of movers in the sample and construct the list

{{
β̂p(uh;Xi)

}H
h=1

}NMOVER

i=1

.14 The

14We assume, without loss of generality, that the sample is ordered such that mover realizations appear
first with indices i = 1, . . . , NMOVER.
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jth order statistic of this list is our estimate of βMp (τ) where j satisfies

j

HNMOVER + 1
< τ ≤ j + 1

HNMOVER + 1
.

Theorem 4. Under the assumptions maintained in Theorem 2 above
√
N
(
β̂Mp (·)− βMp (·)

)

converges in distribution to a mean zero Gaussian process Zβp (·), where Zβp (·) is defined by

its covariance function, Σβp(τ, τ
′)

Σβp(τ, τ
′) =

1

P (X ∈ XM)

Υ2 (τ, τ
′) + Υ3 (τ, τ

′) + Υ4 (τ, τ
′)

fBp|X∈XM

(
βMp (τ)

∣∣X ∈ XM
)
fBp|X∈XM

(
βMp (τ ′)

∣∣X ∈ XM
) , (37)

where

Υ2(τ, τ
′) =

C
(
FBp|X(β

M
p (τ)|X), FBp|X(β

M
p (τ ′)|X)|X ∈ XM

)

P (X ∈ XM)
, (38)

Υ3(τ, τ
′) = P

(
X ∈ X

M
)−1

E
[(
min

(
FBp|X(β

M
p (τ)|X), FBp|X(β

M
p (τ ′)|X)

)

−FBp|X(β
M
p (τ)|X)FBp|X(β

M
p (τ ′)|X)

)

× e′p (X
′
X)

−1
X

′Λ
(
FBp|X(β

M
p (τ)|X), FBp|X(β

M
p (τ ′)|X);X

)
X (X′

X)
−1
ep

×fBp|X(β
M
p (τ)|X)fBp|X(β

M
p (τ ′)|X)

∣∣X ∈ X
M
]
, (39)

and

Υ4(τ, τ
′) = e′p

(
ˆ ˆ [

fBp|X(β
M
p (τ)|x)fBp|X(β

M
p (τ ′)|x̃)

×K (x) Σδ
(
FBp|X(β

M
p (τ)|x), FBp|X(β

M
p (τ ′)|x̃)

)
K (x̃)′

]

×fX|X∈XM

(
x|x ∈ X

M
)
fX|X∈XM

(
x̃| x̃ ∈ X

M
)
dm(x)dm(x̃)

)
ep (40)

with ep a P × 1 vector with a 1 in its pth row and zeros elsewhere.

Proof. See Appendix B.

While the form of the covariance function Σβp(τ, τ
′) is complicated, each term in it has

a straightforward interpretation. The Υ2(·) term reflects sampling variability arising from

the econometrician’s lack of knowledge of the marginal distribution of X. It would also be

zero if the distribution of Bp|X = x were constant across all x ∈ X
M (i.e., no correlated

heterogeneity). This term is analogous to the first term appearing the covariance expression
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for the ACQE in Theorem 3 above. The Υ3(·) term measures estimation error associated with

a lack of knowledge of the distribution of Y given X; specifically it captures the influence

of sampling error in conditional quantiles of Yt on the sampling variability of the estimated

UQE. The Υ4(·) term is due to the estimation of the common coefficient δ(·).15

Irregular case (T = P )

Our estimation procedure for the regular T > P case only utilizes information on movers.

Our analysis of the irregular T = P case additionally utilizes information on stayers and near

stayers, making full use of the possibilities implied by Assumption 2. In the irregular case,

similar to Graham and Powell (2012), estimation of the common coefficient, δ (τ), requires

the availability of stayers and/or near stayers.

We introduce the presence of near stayers to illustrate how the population-wide ACQE and

UQE, not just their movers’ counterparts, may be consistently estimated.

Our analysis relies on “discrete bandwidth asymptotics”, we argue that our approach, in

addition to being of value on its own terms, approximates many features of an analysis with

continuously-valued covariates. To motivate this claim we begin by reproducing the results

of Graham and Powell (2012) (which used a linear model for conditional expectations instead

of quantiles and imposed continuity of some components of X).

Discrete bandwidth framework

We first outline the discrete bandwidth framework we use for the T = P case; adding

maintained details to the basic set-up outlined in Assumption 2. With T = P , the X matrix

is square, with full rank if and only if detX 6= 0. Recall that D = detX and suppose that

D ∈ DN = {d1, . . . , dK ,−hN , hN , 0}, the support of the determinant of X. The first K

elements of DN correspond to the L1 mover support points of X. The next two elements

of DN correspond to the L−L1 near stayer support points of X. The final element of DN

corresponds to the M − L stayer support points of X.

We set Pr(D = hN ) = Pr(D = −hN ) = φ0hN for some φ0 ≥ 0, defining dK+1,N = −hN ,

dK+2,N = hN and dK+3 = 0. The mover support points dk for 1 ≤ k ≤ K are bounded away

from 0 for all N .

15Note the measure in Υ4 (·) is the counting measure.
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We also set the probability of observing a singular X be Pr(D = 0) = 2φ0hN . Finally,

Pr(D = dk) = πNk for k = 1, . . . , K with
∑K

k=1 π
N
k = 1 − 4φ0hN , with 4φ0hN < 1 for all N .

We also let πk = limN→∞ πNk , so that
∑K

k=1 πk = 1.16

In this setup, observations with D = 0 are stayers, D = ±hN are near-stayers, while those

with D = dk for k = 1, . . . , K correspond to movers. The inclusion of near-stayers is a way

to approximate a continuous distribution of D, letting near stayers (those with D = ±hN )

have characteristics very similar to those of stayers (D = 0).

Let qmN |k = Pr(X = xmN |D = dk), qmN |−h = Pr(X = xmN |D = −hN ), qmN |h = Pr(X =

xmN |D = hN) and qmN |0 = Pr(X = xmN |D = 0). For simplicity, we assume that qmN |· does

not vary with N , so that conditional on the value of the determinant, which has varying

support, the distribution of X does not depend on the sample size. We also assume that

lim
N→∞

qm|h = lim
N→∞

qm|−h = qm|0 for all m = 1, . . . ,M . This is a smoothness assumption.

In what follows recall that X∗ = adj (X) denotes the adjoint of X such that X−1 = 1
D
X

∗,when

X
−1 exists and also that Y∗ = X

∗
Y and W

∗ = X
∗
W.

Average partial effects under discrete bandwidth asymptotics

To illustrate the operation of our discrete bandwidth framework in a familiar setting we

revisit the conditional mean model studied by Graham and Powell (2012):

E[Y|X] = Wδ0 +Xβ0(X).

For the case where Xt is continuously-valued, T = P , and other maintained assumptions,

Graham and Powell (2012) estimate δ0 and the average β0 = E[β(X)] by (cf., equations (24)

and (25) in their paper).

δ̂ =

(
1

Nh

N∑

i=1

W
∗′
i W

∗
i1(|Di| < hN )

)−1(
1

Nh

N∑

i=1

W
∗′
i Y

∗
i 1(|Di| < hN )

)
(41)

β̂ =
1
N

∑N
i=1X

−1
i (Yi −Wiδ̂)1(|Di| ≥ hN)

1
N

∑N
i=1 1(|Di| ≥ hN )

(42)

where Y
∗
i = X

∗
iYi.

17

16The πk are well defined limits by Assumption 2.
17Note that, relative to their expressions, we have changed the definition of stayers from units with

|Di| ≤ hN to units with |Di| < hN and conversely for movers. This change has no impact when D is
continuously distributed, and is made here to allow the near-stayers in our framework to be categorized as
movers rather than stayers.
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We now compute the asymptotic distribution of δ̂ and β̂ under discrete bandwidth asymp-

totics. First, the numerator of term (41) is equal to 1
hN

∑M
l=L+1w

∗′
lNw

∗
lN p̂lN

p→∑M
l=L+1w

∗′
l w

∗
l ql|02φ0 =

2E[W∗′
W

∗|D = 0]φ0.

Let U
∗
i = X

∗
i (Yi − Wiδ0 −Xiβ0(Xi)). As in equation (46) of Graham and Powell (2012),

the numerator of δ̂ − δ0 is equal to

1

NhN

N∑

i=1

W
∗′
i (Diβ0(Xi) +U

∗
i )1(|Di| < hN) =

1

NhN

N∑

i=1

W
∗′
i U

∗
i1(Di = 0).

This expression has mean zero since E[U∗|X] = 0, and, letting Σ(X) denote V(U|X), we can

verify its asymptotic variance when premultiplied by
√
NhN is 2E [W∗′

X
∗Σ(X)X∗′

W
∗|D = 0]φ0

through a simple analysis. Therefore, we have that

√
NhN (δ̂ − δ0)

d→ N

(
0,

Λ0

2φ0

)

where Λ0 = E[W∗′
W

∗|D = 0]−1 × E [W∗′
X

∗Σ(X)X∗′
W

∗|D = 0]× E[W∗′
W

∗|D = 0]−1.

In an analogy to Graham and Powell (2012), we see that φ0 in this setup plays the exact

same role as the density function of the determinant evaluated at 0. When a larger fraction

of the sample is concentrated near or at D = 0, we can obtain more precision in our estimate

of the common coefficient δ0. We now decompose β̂ into an infeasible version

β̂I =
1
N

∑N
i=1X

−1
i (Yi −Wiδ0)1(|Di| ≥ hN)

1
N

∑N
i=1 1(|Di| ≥ hN)

and a second term that contains the estimate of the common coefficient δ0:

β̂ = β̂I + Ξ̂N (δ̂ − δ0)

where Ξ̂N =
1
N

∑N
i=1D

−1
i X∗

iWi1(|Di|≥h)
1
N

∑N
i=1 1(|Di|≥h)

. Since they are computed with different subsamples, β̂I

and δ̂ are conditionally independent.

The denominator of Ξ̂N converges in probability to 1 since hN → 0. The numerator can be

decomposed in two separate terms:
∑L1

l=1 x
−1
lNwlN p̂lN , which converges to

∑L1

l=1 x
−1
l wlpl and∑L

l=L1+1D
−1
lNw

∗
lN p̂lN which converges to a finite limit since D−1

lN is either (±h)−1
N and p̂lN is

Op(hN ), and these two orders will cancel out. Therefore, as in Graham and Powell (2012),

Ξ̂N converges to well defined probability limit we denote by Ξ0.
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Finally, we see that

β̂I − β0 =
1
N

∑N
i=1(β0(Xi)− β0)1(|Di| ≥ hN )

1
N

∑N
i=1 1(|Di| ≥ hN)

+
1
N

∑N
i=1D

−1
i U

∗
i1(|Di| > hN)

1
N

∑N
i=1 1(|Di| ≥ hN)

+
1
N

∑N
i=1D

−1
i U

∗
i1(|Di| = hN)

1
N

∑N
i=1 1(|Di| ≥ hN)

.

The denominators of both terms above, 1
N

∑N
i=1 1(|Di| ≥ h), converge to 1 since the fraction

of movers converges to 1. The numerator of the first term is equal to
∑L

l=1(β0(xlN)−β0)plN .

This term will be of order
√
N since

√
N(p̂lN − plN) = Op(1) for l = 1, . . . , L1 and Op(

√
hN)

for l = L1 + 1, . . . , L by equation (95) in the Appendix B.

The numerator of the second term will be of order
√
N since it concerns strict movers only,

which have non-shrinking probabilities and Di bounded away from 0. For these reasons, the

usual limit theorem can be applied to show this term exhibits a standard rate of convergence.

The numerator of the third term’s convergence is more delicate. Premultiplying this term

by
√
NhN , its variance is equal to

EN

[
X

∗Σ(X)X∗′h1(|D| = hN)

D2

]
= EN

[
X

∗Σ(X)X∗′1(|D| = hN )

hN

]

= EN [X∗Σ(X)X∗′||D| = hN ]
Pr(|D| = hN )

hN

→ 2E [X∗Σ(X)X∗′|D = 0]φ0

= 2Υ0φ0

since Pr(|D| = hN) = 2φ0hN and by the continuity of the conditional distribution of X|D in

D near 0. Combining results for these terms, we get that

√
NhN (β̂

I − β0)
d→ N (0, 2Υ0φ0) ,

and using the independence of β̂I and δ̂, we see that

√
NhN (β̂ − β0)

d→
(
0, 2Υ0φ0 +

Ξ0Λ0Ξ
′
0

2φ0

)
,

exactly as in Graham and Powell (2012, Theorem 2.1).

To make these results coincide, it is important to let Pr(|D| = hN) = Pr(D = 0). We

make this assumption for the following reason: in the continuous setup, the fraction of the

sample considered as stayers is approximately 2φ0hN , and these stayers solely determine the
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asymptotic distribution of δ̂ − δ0. For the estimation of β0, we consider individuals with

|D| ≥ hN , but the asymptotic behavior of β̂ − β0 is solely driven by individuals with |D|
arbitrarily close to hN . This is due to the D−1 term which diverges for individuals where

|D| = hN . In both cases, the set of individuals considered converges to the infinitesimal set

of individuals with D = 0, since hN → 0 as N → ∞, therefore, in a sense, the subsamples

that generate the asymptotic variation in δ̂ − δ0 and β̂ − β0 are the same. This is why we

place the same discrete probabilities on |D| = hN and on D = 0.

Quantile effects under discrete bandwidth asymptotics

We now study the estimation of the various quantile estimands introduced in Section 2 in the

irregular T = P case. To begin, we estimate δ(τ), proceeding in analogy to the identification

analysis given above, by

δ̂(τ) =

[
1

N

N∑

i=1

W
∗′
iW

∗
i1(Di < hN)

]−1

×
[
1

N

N∑

i=1

W
∗′
iX

∗
i Q̂Y|X (τ |Xi) 1(Di < hN )

]
. (43)

With δ̂(τ) in hand, we estimate the conditional quantiles of the random coefficients for all

mover and near stayer support points by18

β̂(τ ;xlN ) = x
−1
lN

(
Q̂Y|X (τ |xlN )−wlN δ̂ (τ)

)
for l = 1, . . . , L.

To develop a formal result on the sampling properties of these two estimates we add the

following assumption.

Assumption 7. (Irregular Case) (i) E[W∗′
W

∗|D = 0] is invertible, (ii) ‖EN [β(τ ;X)|D =

hN ] − |EN [β(τ ;X)|D = 0]‖ converges to 0 as N → ∞, (iii) NhN → ∞ and hN → 0 as

N → ∞.

The second part of Assumption 7 implies that we can learn about the conditional distribu-

tion of random coefficients across stayers by studying that observed across near stayers, a

smoothness condition.

Our first result for the irregular case is:

18Note that, in our set-up, 1(|Di| < hN ) = 1(Di = 0). We use the former representation to highlight
how our results would extend to settings with continuously-valued covariates. Since (43) conditions on a
subpopulation with mass shrinking to zero, estimation of δ(τ) will not be possible at the regular rate of

√
N .
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Theorem 5. Suppose that Assumptions 1 through 5 and 7 are satisfied, then under the

discrete bandwidth framework

(i)
√
NhN

(
δ̂ (·)− δ (·)

)
converges in distribution to a mean zero Gaussian process Zδ (·),

where Zδ (·) is defined by its covariance function

Σδ(τ, τ
′) = E[Zδ (τ)Zδ (τ

′)
′
]

=
(min(τ, τ ′)− ττ ′)

2φ0
E
[
W

∗′
W

∗|D = 0
]−1×

E
[
W

∗′
X

∗Λ(τ, τ ′;X)X∗′
W

∗|D = 0
]
E
[
W

∗′
W

∗|D = 0
]−1

, (44)

(ii)
√
NhN

(
β̂ (·;xlN)− β (·;xlN)

)
also converges in distribution for each l = 1, . . . , L1 to a

mean zero Gaussian process Z (·,xl), where Z (·,xl) is defined by its covariance function

Σ(τ,xl, τ
′,xm) = E

[
Z (τ,xl)Z (τ ′,xm)

′]
= x

−1
l wlΣδ(τ, τ

′)w′
mx

−1′
m (45)

for l, m = 1, . . . , L1 and

(iii)
√
Nh3N

(
β̂ (·;xlN)− β (·;xlN)

)
also converges in distribution for each l = L1 +1, . . . , L

to a mean zero Gaussian process Z (·,xl), where Z (·,xl) is defined by its covariance function

Σ(τ,xl, τ
′,xm) = E

[
Z (τ,xl)Z (τ ′,xm)

′]
(46)

= (min (τ, τ ′)− ττ ′)
x
∗
lΛ (τ, τ ′;xl)x

∗′
l

ql|02φ0

· 1 (l = m)

+w
∗
lΣδ(τ, τ

′)w∗′
m

for l, m = L1 + 1, . . . , L.

Proof. See Appendix B.

The rate of convergence for δ̂(τ) coincide with that which would be expected when X has

a continuous distribution, as in Graham and Powell (2012). The δ(τ) estimator relies on

the sample with D = 0, which has fraction equal to 2φ0hN giving an effective sample size

of approximately 2Nφ0hN for estimation. As φ0 increases, more effective observations are

available for estimation, and therefore the asymptotic precision increases. The influence of

the preliminary quantile estimator appears through the Λ(τ, τ ′;X) matrix.

The conditional coefficient estimates, β̂ (τ ;xlN), converge at different rates depending on

whether xlN has shrinking mass or not. Since these estimates depend linearly on δ̂(τ), their

fastest possible rate of convergence is
√
NhN , the rate of convergence of δ̂(τ). This rate
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is achieved for (strict) movers, whose population frequencies are bounded away from zero.

In fact, for movers, the only component of the asymptotic variance of β̂ (τ ;xlN) is due to

sampling variability in δ̂(τ), since the other ingredient to the estimator, the conditional

quantiles of Yt, are estimated at rate
√
N .

For units whose covariate sequences have shrinking mass, that is, for near-stayers, the rate

of convergence of β̂ (τ ;xlN) is
√
Nh3N . For near stayers, X−1 = X

∗D−1, which diverges since

D = hN → 0 as N → ∞. To account for, and cancel, this shrinking denominator term, the

extra hN term is present. Note that we do not require that Nh3N → ∞ as N → ∞, and

in fact these conditional betas will not be consistently estimated if Nh3N → 0. This is not

a problem, since their consistent estimation is not the goal. Rather, we will show that the

ACQE and UQE estimators can incorporate these inconsistent estimates and still deliver a

consistent and asymptotically normal estimator for these functionals.

We now turn to the estimation of the average conditional quantile effect (ACQE). The

ACQE is consistently estimable under our discrete bandwidth setup because the mass of

stayers shrinks to zero as N → ∞. Specifically, the ACQE is identified by the limit β̄(τ) =

limN→∞ EN

[
β(τ ;X)|X ∈ XM

N

]
since β(τ ;X) is identified on XM

N and the probability mass of

stayers vanishes as N goes to infinity. Our estimate of the ACQE in the T = P case is

̂̄βN (τ) =
1
N

∑N
i=1X

−1
i

(
Q̂Y|X (τ |Xi)−Wiδ̂(τ)

)
1(Xi ∈ XM

N )

1
N

∑N
i=1 1(Xi ∈ XM

N )
.

Theorem 6. Under Assumptions 1 through 5, Assumption 7, and Nh3N → 0, we have that,

under the discrete bandwidth framework:

√
NhN

(̂̄βN(τ)− β̄N(τ)
)

d→ Zβ̄(τ),

a zero mean Gaussian process, on τ ∈ (0, 1). The variance of the Gaussian process Zβ̄(·) is

defined as

E
[
Zβ̄(τ)Zβ̄(τ

′)′
]
= Υ1(τ, τ

′) + Ξ0Σδ(τ, τ
′)Ξ′

0 (47)

with

Υ1(τ, τ
′) = 2φ0 (min (τ, τ ′)− ττ ′)E [X∗Λ(τ, τ ′,X)X∗′|D = 0]

Ξ0 = lim
N→∞

EN

[
X

−1
W| |D| ≥ hN

]
.

Proof. See Appendix B.
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The rate of convergence of ̂̄βN(τ) is
√
NhN , as is the case for the average effect studied by

Graham and Powell (2012). The asymptotic variance depends only on terms with D = 0,

since only stayers and near stayers contribute to the asymptotic distribution of the estimator.

If φ0 increases, it is possible to estimate the term Ξ0Σδ(τ, τ
′)Ξ′

0 with more precision since

δ̂(τ) is more precisely determined when there are many units with D = 0. On the other

hand, term Υ1(τ, τ
′) increases with φ0. The intuition behind this increase is that there are

more near-stayers when φ0 is large, and their contributions to ̂̄βN(τ) are estimated at a

slower rate than those of movers.

Finally we turn to the unconditional quantile effect, βp(τ), the τ th quantile of Bp. As in the

regular case our estimate is the solution to (36). The only difference between the regular

and irregular case is the method used to estimate the conditional quantile effects βp(τ,x).

Theorem 7. Fix p ∈ {1, . . . , P}. Under the assumptions maintained in Theorem 6 we have

that

√
NhN

(
β̂p(τ)− βp(τ)

)
d→ Zβp(τ)

on τ ∈ (0, 1) with Zβp(·) being a zero mean Gaussian process. The covariance of this Gaussian

process is equal to:

E
[
Zβp(τ)Zβp(τ

′)′
]
=

Υ3(τ, τ
′) + Υ4(τ, τ

′)

fBp
(βp(τ))fBp

(βp(τ ′))

where

Υ3(τ, τ
′) = 2φ0E

[
e′pX

−1Λ(FBp|X(βp(τ)|X), FBp|X(βp(τ
′)|X),X)X−1′ep

× (min(FBp|X(βp(τ)|X), FBp|X(βp(τ
′)|X))− FBp|X(βp(τ)|X)FBp|X(βp(τ

′)|X))

×fBp|X(βp(τ)|X)fBp|X(βp(τ
′)|X)|D = 0

]

Υ4(τ, τ
′) =

L∑

l=1

L∑

l′=1

e′p(x
−1
l wlpl1(l ≤ L1)

+w
∗
l ql|02φ01(l > L1))Σδ(FBp|X(βp(τ)|xl), FBp|X(βp(τ

′)|Xl′))

× (x−1
l′ wl′pl′1(l

′ ≤ L1) +w
∗
l′ql′|02φ01(l

′ > L1))
′epfBp|X(βp(τ)|xl)fBp|X(βp(τ

′)|xl′).

Proof. See Appendix B.

The asymptotic distribution of the UQE depends on the conditional density of Bp|X evalu-

ated at βp(τ). The term Υ3(·) reflects the estimation error for the near-stayers’ conditional

33



quantile effects. The overall rate of convergence is (NhN )
−1/2. Although the conditional

quantile effects of near stayers converge at rate (Nh3N )
−1/2 , they enter the UQE with a

weight which is of order O(hN), leading to the (NhN)
−1/2 rate. The Υ4(·) term reflects

the influence of estimation error in δ̂(τ). Both these terms are divided by the density of

Bp evaluated at βp(τ), meaning that a larger density of the random coefficient around the

estimated quantile will lead to a smaller asymptotic variance. How the constant φ0 enters

these equation tells us that a smaller density of stayers and near-stayers will lead to smaller

asymptotic contribution of term Υ3(·) since there are less stayers excluded from the UQE

estimator. On the other hand, a lower φ0 can increase Υ4(·) since it reduces the precision of

the estimator of δ(τ), due to a lower relative sample size.

4 Union wage premium

The effect of collective bargaining coverage on the distribution of earnings is a question of

longstanding interest to labor economists (e.g., Card, Lemieux and Riddell, 2004). This is

also an area where both panel data and quantile regression methods have played important

roles in empirical work (e.g., Chamberlain, 1982; Jakubson, 1991; Card, 1995; Chamberlain,

1994), making an analysis which combines both approaches of particular interest.

We begin with a target sample consisting of the 4,837 male NLSY79 respondents in the cross-

sectional and supplemental Black and Hispanic subsamples. Our frame excludes respondents

in the supplementary samples of poor whites and military personnel (cf., MaCurdy, Mroz

and Gritz, 1998). We constructed a balanced panel of respondents who were (i) engaged

in paid private sector or government employment in each of the years 1988 to 1992 and (ii)

had complete wage and union coverage information. Exclusion from the estimation sample

occurred for several reasons. We excluded all self-employed individuals, individuals with

stated hourly wages less than $1, or greater than $1,000, in 2010 prices, and individuals who

were not surveyed in all five calendar years. We use the hourly wage measure associated with

each respondent’s “CPS” job. Our measure of collective bargaining coverage is also defined

vis-a-vis the CPS job.19 Respondents were between the ages of 24 and 33 in 1988 and hence

past the normal school-leaving age.

Our estimation sample is similar to that used by Chernozhukov, Fernandez-Val, Hahn and

Newey (2013), who also study the union wage premia using the NLSY79. Our subsample

19The “CPS” job coincides with a respondents primary employment as determined by the same criteria
used in the Current Population Survey (CPS).
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Table 1: Union wage premium
Full Stayers Movers

Sample Never Always

Black (N=2,444) 0.1168 0.0864 0.1510 0.1868
Hispanic (N=2,444) 0.0602 0.0568 0.0616 0.0692

Years of Schooling (N=2,437)
12.99
(2.17)

13.24
(2.31)

12.59
(1.50)

12.50
(1.92)

AFQT percentile (N=2,351)
52.00
(29.88)

56.57
(29.91)

47.72
(25.86)

40.87
(28.34)

Source: National Longitudinal Survey of Youth 1979 and authors’ calculations.
Notes: Analysis based of the balanced panel of NLSY79 2,444 male respondents (in 2,104
households) described in the main text. AFQT corresponds to Armed Force Qualification
Test. Stayers consist of workers who are never covered by a collective bargaining agreement
as well as those who are always covered. Movers consist of individuals who move in and/or
out of coverage during the sample period. Sample sizes are smaller for some covariates due
to item non-response.

includes slightly more individuals, primarily by virtue of the fact that we follow respondents

for five instead of eight years, reducing attrition.

Table 1 reports a selection of worker attributes known to be predictive of wages by collec-

tive bargaining coverage status. Column 1 reports the mean of these characteristics across

all individuals in our sample (standard deviations are in parentheses for non-binary-valued

variables). Column 2 reports the corresponding statistics for workers who are never covered

by a collective bargaining agreement during the sample period, column 3 for those who are

always covered, and column 4 for those who mover in and/or out of coverage during the

sample period. Movers are more likely to be minority and have lower years of completed

school and AFQT scores. Workers who are never covered, have the lowest minority share,

the greatest years of completed schooling, and highest AFQT scores.

Table 2 reports out main results. All specifications allow for shifts in the intercept over time,

but maintain homogeneity of slope coefficients across time. Column 1 reports the coefficient

on the union dummy in a simple pooled least squares fit of log wages onto the union dummy

and a vector of year dummies. Column 2 reports the union coefficient in a specification

that additionally adds a vector of covariates for race, education and AFQT (see the notes to

Table (2) for details). Column 3 reports the union wage premium in a specification which

includes worker-specific intercepts. The estimator is as described by Arellano and Bover

(1995), which is a GMM variant of Chamberlain’s (1984) minimum distance estimator for

linear panel data models. Column 4 reports an estimate of the movers’ average union wage

premium using the variant of Chamberlain’s (1992) correlated random coefficients estimator
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described in Graham and Powell (2012, Section 3.3). The movers average union effect is

between one-half and two-thirds of the OLS estimates of Columns 1 and 2. It is also very

close the Column 3 effect which allows for intercept heterogeneity in the earnings function,

but assumes a homogenous union effect.

A researcher studying Columns 1 through 4 might conclude that, while the incorporation

of correlated intercept heterogeneity into earnings functions is important, allowing for slope

heterogeneity is less so. Our quantile analysis suggests that such a conclusion is unwarranted.

In column 5 we report movers’ unconditional quantile partial effects of collective bargaining

coverage for τ = 0.25, 0.5, 0.75 . Here we find evidence of substantial heterogeneity in the

effect of collective bargaining coverage on wages. For over 25 percent of workers, the effect

of coverage is estimated to be less than 5 percent, whereas it is in excess of 15 percent for

a similar proportion of workers. Our movers’ UQE are relatively precisely determined, with

estimated standard errors only modestly larger than the Column 3 model which assumes a

homogenous effect.

Figure 1 plots our estimated movers’ unconditional quantile effects as well as 95 percent

point-wise confidence bands. The figure also includes quantile effects associated with a

model which does not incorporate correlated heterogeneity. These effects are estimated by a

linear quantile regression of wages onto a constant, the union dummy and four time dummies.

The coefficients on the union dummy, rearranged to be monotonic, are plotted as the dashed

red line. As is the case for mean effects, quantile partial effects of union coverage are severely

overstated in models which do not allow unobserved worker attributes to covary with union

status.

Our empirical analysis also allows for assessment of the impact of collective bargaining

coverage on inequality, at least within the subpopulation of movers. The counterfactual

1992 average 90-10 log wage gap in a world with no collective bargaining coverage is given

by

E

[(
1

0

)′

([β (0.9;X) + δ92 (0.9)]− [β (0.1;X) + δ92 (0.9)])

∣∣∣∣∣X ∈ X
M

]
.

The corresponding gap in a world of universal coverage is given by

E

[(
1

1

)′

([β (0.9;X) + δ92 (0.9)]− [β (0.1;X) + δ92 (0.9)])

∣∣∣∣∣X ∈ X
M

]
.

We estimate an average 90-10 gap in the no coverage counterfactual of 1.28. The corre-

sponding gap in the universal coverage case is 1.07. The difference is 0.22 with a standard

error of 0.08. Our analysis implies that unions have a substantially compressing effect on
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Table 2: Union wage premium
(1) (2) (3) (4) (5)

Pooled Pooled GMM CRC CRC
OLS OLS Ch/AB Avg. τ = 0.25 τ = 0.5 τ = 0.75

Union
0.1566
(0.0186)

0.2225
(0.0180)

0.0982
(0.0134)

0.0936
(0.0169)

0.0460
(0.0141)

0.0891
(0.0135)

0.1778
(0.0186)

Covariates? No Yes No No No
J(df) 22.31(19)

Source: National Longitudinal Survey of Youth 1979 and authors’ calculations.
Notes: All specifications include four time dummies capturing intercept shifts across periods.
Column 2 additionally conditions on respondent’s race (Black, Hispanic or non-Black, non-
Hispanic), years of completed schooling at age 24, and AFQT percentile. Due to item
non-response, this specification uses 2,348 respondents (in 2,023 households). Column 3
reports the union coefficient from a two-step GMM “fixed effects” specification where each
respondent’s individual-specific intercept is projected onto their entire union history and
this history (plus a constant) are used as instruments for each time period. This generates
T (T + 1) = 30 moment restrictions for 2T+1 = 11 parameters (and hence T (T − 1)−1 = 19
over-identifying restrictions). See Arellano and Bover (1995) for estimation details. The
Sargan-Hansen test statistic for this specification is reported in the last row of the table.
Columns 4 and 5 report correlated random coefficients specifications. Column 4 reports
the movers’ average union wage premium using Chamberlain’s (1992) estimator following
the specific implementation described in Graham and Powell (2012). Column 5 reports the
movers unconditional quantile effect (UQE) using the estimator introduced here for τ =
0.25, 0.5, 0.75. Standard errors reported in parentheses. For Columns 1 - 3 standard errors
were analytically computed. For Columns 4 and 5 they were computed using the Bayesian
Bootstrap. To be specific let β̂ be the parameter estimate and β̂(b) its bth bootstrap value. Let

T
(b)
N = β̂(b)−β̂. A 1−α bootstrap confidence interval is

[
β̂ − F−1

T
(b)
N

(1− α/2) , β̂ − F−1

T
(b)
N

(α/2)

]

(e.g., Hansen, 2014). The length of this interval divided by 2Φ (1− α/2) is the reported
standard error estimate. We set α = 0.10. Reported Column 4 and 5 point estimates were
also biased corrected using the bootstrap.
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Figure 1:

−
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Quantile

UQE
95% CI

w/o heterogeneity

Quantile Partial Effect of Union Coverage

Source: National Longitudinal Survey of Youth 1979 and authors’ calculations.
Notes: Blue line corresponds to the movers’ unconditional quantile effect for τ ∈ (0.1, 0.9).
Dashed grey lines are 95 percent point wise confidence intervals based on the Bayesian
Bootstrap as described in the notes to Table 2 above. The dashed red line corresponds
to the UQE associated with a simple pooled linear quantile regression of log wages onto a
constant, the union dummy and four time dummies. The horizontal line corresponds to the
average effect reported in column 4 of Table 2
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the distribution of wages, at least within the movers subpopulation.

5 Extensions

Using stayers to identify time effects when T > P

When identification is regular, as outlined above, δ (τ) is estimable using mover units alone.

However, it may nevertheless be advantageous to incorporate stayer units into the estimation

procedure. This can improve the precision of δ̂ (τ). It can also increase the precision with

which the movers’ ACQE and UQE are estimated, through the influence of sampling error

in δ̂ (τ) on the asymptotic variance of both of these objects (see Theorems 3 and 4 above).

Let xl denote a stayer realization of X and consider the full rank decomposition xl = ulvl.

Let mul
= IT − ul (u

′
lul)

−1
ul and observe that mul

x = ulvl − ul (u
′
lul)

−1
ulvl = 0. We

therefore have

mul
QY|X (τ |x) = mul

wδ (τ)

for l = L+1, . . . ,M . If we define Π̄ (τ) =
(
Π (τ)′ ,muL+1

QY|X (τ |x)′ , . . . ,muM
QY|X (τ |x)′

)′

and Ḡ = (G′, (G∗)′)′, with G as defined in (29) and G∗ equal to

G∗

T (M−L)×(R+PL)
=




muL+1
w 0T0

′
P · · · 0T0

′
P

...
...

. . .
...

muM
w 0T0

′
P · · · 0T0

′
P


 ,

we have the relationship Π̄ (τ) = Ḡγ (τ), upon which the obvious analog estimator may be

based. In fact we incorporate stayers in this way in the empirical analysis reported in Section

4.

Non-shrinking mass of stayers in the irregular case

In some applications, it is common to observe a positive mass of stayers at D = 0 along with

a small number of near-stayers. We can model this in our discrete bandwidth framework by

letting Pr(D = 0) = π0 + 2φ0hN where π0 > 0 and keeping Pr(D = hN ) = Pr(D = −hN) =
φ0hN .

In this case, it will be possible to estimate δ(τ) at a
√
N rate since the mass of stayers is

bounded away from 0. On the other hand, the conditional beta for near-stayer realizations
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will still be estimated at rate
√
Nh3N since the slowest rate of convergence prevails. Their

asymptotic variance will be reduced since the term associated with the estimation of δ(τ)

vanishes. Estimation of conditional betas for strict-mover realizations can now be performed

at the
√
N rate rather than

√
NhN .

Despite these improvements, the movers’ ACQE now becomes inconsistent since the fraction

of stayers does not vanish asymptotically. We can modify the estimator and include the

near-stayers’ coefficients as an approximation to the stayers’ coefficients in the following

way:

ˆ̄βN (τ) =
L∑

l=1

β(τ ;xlN)q̂
M
lN

{
1

N

N∑

i=1

1(Di 6= 0)

}
+

L∑

l=L1+1

β(τ ;xlN)q̂l|±h

{
1

N

N∑

i=1

1(Di = 0)

}
,

where q̂l|±h =
1
N

∑N
i=1 1(Xi=xlN )

1
N

∑N
i=1 1(|Di|=hN )

. The term
∑L

l=L1+1 β(τ ;xlN)q̂l|±h approximates E[β(τ ;X)|X ∈
XS
N ] using the near-stayers. The conditional beta for near-stayers is estimated at rate

√
Nh3N

but their contribution is now of order Op(1) rather than Op(hN) in the previous case. There-

fore, the convergence rate of the ACQE estimator will be
√
Nh3N as well.

The same concern applies in the UQE estimation where the share of stayers does not vanish

asymptotically. It is also possible to show that the rate of convergence will deteriorate

from
√
NhN to

√
Nh3N . The result in this case is analogous to that in Graham and Powell

(2012) where the mass at D = 0 simplifies the estimation of the common coefficients while

complicating the estimation of average partial effects.

In the case when there is a mass of stayers but no near-stayers, i.e. Pr(D = 0) = π0 and

Pr(|D| = hN) = 0, it is not possible to identify the ACQE and UQE. This is a result similar

to that found in the overidentified case, which does not contain near-stayers as well. Rates of

convergence for the movers’ ACQE and the movers’ UQE will be of order N−1/2, since there

is no shrinking mass of near-stayers involved in the rate calculations. It is also possible to

show the set identification of the ACQE and the UQE in a way similar to the overidentified

case. We present the results for the just-identified case with no near-stayers in detail in

Appendix A.

Continuous regressors

The identification results in the previous section are all based on the conditional quantiles

of Yt given X = x for t = 1, . . . , T . There are different methods of estimating these condi-

tional quantiles depending on the structure of the support of X. When the support of X
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is discrete, as is assumed in this paper, we can write by standard arguments the following

linear representation of our first step conditional quantile estimator:

Q̂Yt|X (τ |x)−QYt|X (τ |x) = 1

N

N∑

i=1

(
1
(
Yit ≤ QYt|X(τ |x)

)
− τ
)
1(Xi = x)

fYt|X(QYt|X(τ |x)|x)pN
+ RN(τ ;x) (48)

where pN is the probability associated with support point x and the residual RN(τ ;x) goes

to 0 in probability as N → ∞.

A kernel based estimator can be used to compute the analog estimator when X has continuous

support. Examples include local linear regression (Qu and Yoon, forthcoming), or inversion

of conditional CDF estimates (Lee, 2013). The Bahadur representation of these estimators

is the following:

Q̂Yt|X (τ |x)−QYt|X (τ |x)

=
1

NbTP

N∑

i=1

(
1
(
Yit ≤ QYt|X(τ |x)

)
− τ
)
K (B−1 (vec(Xi)− vec(x)))

fYt|X(QYt|X(τ |x)|x)fX(x)
+RN(τ ;x) (49)

where K(·) is a kernel function, and B = bITP where b is a bandwidth converging to 0.

These representations contain just two differences. The first difference is the presence of the

kernel in the continuous case. We note that this kernel function converges to an indicator

for {Xi = x} whenever K(0) = 1. This restriction is satisfied by different kernels, including

a uniform kernel with support [−1/2, 1/2].

The second difference is the density of X versus its probability that it is equal to x. The

bandwidth term bTP also is present with the density. These two terms can be reconciled

if we consider the probability that X is included in a TP -dimensional neighborhood of x

with diameter equal to b. For exposition, consider T = P = 1. Then, the probability

that X ∈ [x − b/2, x + b/2] is approximately equal to fX(x)b. This probability can be

approximated with the mass pN if this mass depends on the sample size through b such that

pN = O(b). That way, discrete probabilities will behave like probabilities for continuous

densities, and NpN will be the approximate sample size for the support point, similar to the

Nb in traditional nonparametric density estimation.

We see that there is no substantial difference between the asymptotic representations, except

that it is much simpler to impose conditions on the asymptotic convergence of Π̂t (τ ;x) −
Πt (τ ;x) in the discrete case than in the continuous case. For this reason, we conjecture

that our rates of convergence and limit distribution results will generalize to the case of
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continuous regressors (under additional regularity conditions). Such an extension, however,

is likely to be difficult and non-trivial.

Choice of Bandwidth

In this spirit of the argument given immediately above, we can use our discrete bandwidth

asymptotics to gain some insight into bandwidth selection. As discussed earlier, we need that

hN → 0, NhN → ∞, and Nh3N → 0 as N → ∞. These conditions allow us to put shrinking

mass on some support points (hN → 0), while allowing for consistent estimation of objects

conditional on these shrinking mass support points (NhN → ∞). The third condition is

required to eliminate the bias in our estimators for the ACQE and UQE. Let a be a P × 1

vector of constants. The fastest rate of convergence in mean square for either a′ ˆ̄β(τ) to

a′β̄(τ) or β̂p(τ) to βp(τ) is N−2/3 with bandwidth sequences of the form h∗N = C0N
−1/3 for

some constant C0. Consider first the MSE for the estimator a′ ˆ̄β(τ). Using the results of

Theorem 6, the asymptotic bias will be equal to

bias = 2a′(E[β(τ ;X)]− E[β(τ ;X)|D = 0])φ0hN

and therefore the asymptotic MSE minimizing bandwidth constant is

C0 =
1

2

(
1

φ2
0

)1/3(
a′ (Υ1(τ, τ) + Ξ0Σδ(τ, τ)Ξ

′
0) a

a′(E[β(τ ;X)]− E[β(τ ;X)|D = 0])(E[β(τ ;X)]− E[β(τ ;X)|D = 0])′a

)1/3

which is similar to the one found in Graham and Powell (2012) for average partial effects.

Since choosing bandwidth with order exactly equal to N−1/3 leads to an asymptotic bias,

we can choose a slightly faster bandwidth sequence, say, of order o(N−1/3) such that the

asymptotic bias disappears. An alternative is to use a plug-in bandwidth using an estimate

of C0 and then bias correct. This approach preserves the rate of convergence of N−1/3.

We now consider the bias associated with the estimation of βp(τ), the UQE associated with

the pth regressor. The leading term of the asymptotic bias of β̂p(τ) is equal to

bias = 2φ0hN
FBp

(βp(τ))− FBp|D=0(βp(τ))

fBp
(βp(τ))

.

Once again, the MSE minimizing rate for the bandwidth is N−1/3 and the mean squared
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error minimizing choice of constant is

C0 =
1

2

(
1

φ2
0

)1/3
(

Υ3(τ, τ) + Υ4(τ, τ)[
FBp

(βp(τ))− FBp|D=0(βp(τ))
]
2

)1/3

.

Trimming Extremal Quantiles

Estimation of quantiles can become problematic when the quantile considered is close to 0 or

1. As an example, the estimation of unconditional quantiles of a scalar random variable does

not converge in process over τ ∈ (0, 1) when the support of the random variable is unbounded.

On the other hand, it does converge when considering τ ∈ [ǫ, 1 − ǫ] for any 0 < ǫ < 1/2.

Whether the support is bounded or not, trimming extremal quantiles is common practice

since estimators for them may be poorly approximated by the same asymptotic distribution

as non-extremal quantiles. This could lead to a problem for the identification of β(τ) since

it requires the use of β(τ ;X) for all τ ∈ (0, 1). Trimming any fixed amount of quantiles will

result in a loss of point identification.

Suppose that the researcher proceeds with the estimation of conditional quantiles ranging

from τ = ǫ to τ = 1 − ǫ so that only these conditional quantiles are identified. We can

decompose the moment condition used for the estimation of βp(τ) for p = 1, . . . , P in three

parts:

τ = m(b)

= E

[
ˆ 1

0

1(βp(u;X) ≤ b)du

]

= E

[
ˆ ǫ

0

1(βp(u;X) ≤ b)du

]
+ E

[
ˆ 1−ǫ

ǫ

1(βp(u;X) ≤ b)du

]
+ E

[
ˆ 1

1−ǫ

1(βp(u;X) ≤ b)du

]
.

The first and third term are uniformly bounded below and above by 0 and ǫ respectively.

Therefore,

τ − 2ǫ ≤ E

[
ˆ 1−ǫ

ǫ

1(βp(u;X) ≤ b)du

]
≤ τ.

Let V be uniformly distributed on [ǫ, 1 − ǫ] independently from X. We can think of this V

as the trimmed version of the unobserved heterogeneity U . Then, we see that

τ − 2ǫ

1− 2ǫ
≤ Fβp(V ;X)(b) ≤

τ

1− 2ǫ
,
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and therefore, the UQE for the pth regressor is partially identified with bounds equal to

βp(τ) ∈
[
F−1
βp(V ;X)

(
τ − 2ǫ

1− 2ǫ

)
, F−1

βp(V ;X)

(
τ

1− 2ǫ

)]
.

These lower and upper bounds are identified since we can identify β(τ ;X) when τ ∈ [ǫ, 1−ǫ].
We also see that this identification region collapses to a point as ǫ approaches zero. These

bounds may be used instead of the point estimates if it is believed that a significant portion

of the conditional quantiles need to be trimmed. The researcher may also compare the lower

and upper bounds’ estimates to get a rough sense of the contribution of these extremal

quantiles to identification.

6 Conclusion

The extension of quantile regression methods to panel data has proved to be especially

challenging due to the non-linearity of quantiles. Our approach to this challenge generalizes

both the textbook linear quantile regression and linear panel data models. Relative to these

benchmarks our set-up allows for richer types of correlated (unobserved) heterogeneity, while

still offering positive identification results. While the large sample theory of our estimators

is non-trivial, their computation is not, requiring only sorting and weighted least squares

operations. Our empirical analysis illustrates some of the possibilities of our approach.

One area of application where our methods may be especially attractive to researchers is for

program and policy evaluation. As a concrete example consider a researcher who wishes to

study the effect of minimum wage laws on the distribution of earnings using several waves of

the Current Population Survey (CPS). Here X would encode the minimum wage level over

time within a state. Since we observe many workers per state in each period, and hence

per realization of X, our discrete covariate results apply. Specifically FYt|X (y|x) may be

estimated by the empirical distribution function of period t wages in states with minimum

wage sequence X = x. Applications in educational policy, where the entire distribution of

test scores may be of interest, are also natural.

Our paper is not the first to explore the intersection of quantile regression and panel data.

Here we briefly touch on the relationship between our work and two very recent contributions.

Chernozhukov, Fernandez-Val, Hahn and Newey (2013), CFHN for short, includes some

results on quantile effects in the context of a wide-ranging analysis of identification in non-

separable panel data models. The simplest case allowing for interesting comparisons between

their results and our own is when P = 2 with the non-constant covariate binary-valued (i.e.,
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Xt = (1, X2t)
′ with X2t ∈ {0, 1}). For simplicity we ignore time effects in what follows so

that the conditional distribution of Yt given X = x is stationary over time and, if (3) is also

being maintained, so is the distribution of random coefficients.

Following the notation of CFHN let Ti (x) =
∑T

t=1 1 (Xit = x) and define

Ḡi (y, x) =

{
Ti (x)

−1∑T
t=1 1 (Xit = x) 1 (Yit ≤ y) , Ti (x) > 0

0, Ti (x) = 0

and also

ĜM (y, x) =

∑N
i=1 Ḡi (y, x)1

(
Xi ∈ XM

)
∑N

i=1 1 (Xi ∈ XM)
.

Their quantile treatment effect (QTE) estimate is

λ̂ (τ) = Ĝ−1
M (τ, 1)− Ĝ−1

M (τ, 0) .

To understand the relationship between λ̂ (τ) and our unconditional quantile effect (UQE)

estimand further, we simplify to the case where T = 2. Let

π01 = Pr
(
X21 = 0, X22 = 1|X ∈ X

M
)

and π10 = Pr
(
X21 = 1, X22 = 0|X ∈ X

M
)
. Let

ĜM (y, x)
p→ GM (y, x), under the random coefficients data generating process (3) we have

that

GM (y, 1) = π01FB1+B2

(
y|X22 = 1,X ∈ X

M
)
+ π10FB1+B2

(
y|X21 = 1,X ∈ X

M
)

GM (y, 0) = π01FB1

(
y|X21 = 0,X ∈ X

M
)
+ π10FB1

(
y|X22 = 0,X ∈ X

M
)
,

so that λ (τ) = G−1
M (τ, 1)−G−1

M (τ, 0) does not correspond to any quantile of B2, even if

our conditional monotonicity assumption holds. Indeed if we set

FB1+B2

(
y|X22 = 1,X ∈ XM

)
= FB1

(
y|X22 = 0,X ∈ XM

)
and

FB1+B2

(
y|X21 = 1,X ∈ XM

)
= FB1

(
y|X21 = 0,X ∈ XM

)
for all y ∈ Yt we will have λ (τ)

identically equal to zero for all τ ∈ (0, 1) and our movers’ UQE, βM2 (τ), possibly different

from zero for all τ ∈ (0, 1). The difference between CFHN’s estimand and our movers’

UQE arises from how marginalization over X occurs. CFHN marginalize over X before

inverting to recover quantile effects, we first recover quantile effects for each possible

x ∈ XM and then ‘marginalize’. Under our correlated random coefficients structure the

CFHN estimand will, in general, not recover quantiles of B2.
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Arellano and Bonhomme (2013) study identification and estimation of the model

QYt|X,A (τ |X, A) = X ′
tβ (τ) + Aγ (τ)

for all τ ∈ (0, 1) . Here A corresponds to an unobserved time-invariant regressor. Arel-

lano and Bonhomme (2013) also allow for a particular form of dependence between X

and A, hence their model is a correlated random effects one. If A were observed, then

θ (τ) =
(
β (τ)′ , γ (τ)

)′
could be estimated by the τ th linear pooled quantile regression of Yt

onto Xt and A (here the pooling is across all periods of data t = 1, . . . , T ). This set-up

represents an alternative generalization of the linear panel model of Chamberlain (1984) to

the quantile regression setting. The Arellano and Bonhomme (2013) approach and ours are

non-nested. Their model effectively includes two-dimensional unobserved heterogeneity. The

first component of this heterogeneity vector is A, this component is allowed to covary with

X is a reasonably flexible way. The second component corresponds to the common factor

in the random coefficients on Xt and A. This component is independent of both X and A.

Hence input “returns” and input choices are independent in their model. Relatedly their

set-up also requires a comonotonicity assumption on the random coefficients.

Our model, effectively, includes only a single dimension of unobserved heterogeneity. However

we impose weaker comonotonicity assumptions and leave the dependence structure between

the random coefficients and X nonparametric, allowing input ‘returns’ and input choices to

correlate. Our view is that both approaches are attractive, with the merits of each being

context specific.

References

[1] Abrevaya, Jason. (2001). “The effects of demographics and maternal behavior on the

distribution of birth outcomes,” Empirical Economics 26 (1): 247 - 257.

[2] Abrevaya, Jason and Christian M. Dahl. (2008). “The effects of birth inputs on birth-

weight,” Journal of Business & Economic Statistics 26 (4): 379 - 397.

[3] Angrist, Joshua, Victor Chernozhukov, and Iván Fernández-Val. (2006). “Quantile re-

gression under misspecification, with an application to the U.S. wage structure,” Econo-

metrica 74 (2): 539 - 563.

[4] Arellano, Manuel and Stéphane Bonhomme. (2011). “Nonlinear panel data analysis,”

Annual Review of Economics 3: 395 - 424.

46



[5] Arellano, Manuel and Stéphane Bonhomme. (2012). “Identifying Distributional Char-

acteristics in Random Coefficients Panel Data Models,” Review of Economic Studies 79

(3): 987 - 1020.

[6] Arellano, Manuel and Stéphane Bonhomme. (2013). “Random-effects quantile regres-

sions,” Mimeo, CEMFI.

[7] Arellano, Manuel and Olympia Bover. (1995). “Another look at the instrumental variable

estimation of error-components models,” Journal of Econometrics 68 (1): 29 - 51.

[8] Athey, Susan and Guido W. Imbens. (2006). “Identification and inference in nonlinear

difference-in-differences models,” Econometrica 74 (2): 431 - 497.

[9] Autor David H. ,Lawrence F. Katz and Melissa S. Kearney. (2008). “Trends in U.S.

wage inequality: revising the revisionists,” Review of Economics and Statistics 90 (2):

300 - 323.

[10] Bajari, Patrick, Jinyong Hahn, Han Hong and Geert Ridder. (2011). “A note on semi-

parametric estimation of finite mixtures of discrete choice models with applications to

game theoretic models,” International Economic Review 52 (3): 807 - 824.

[11] Buchinsky, Moshe. (1994). “Changes in the U.S. wage structure 1963-1987: application

of quantile regression,” Econometrica 62 (2): 405 - 458.

[12] Card, David. (1995). “The effects of unions on the structure of wages: a longitudinal

analysis,” Econometrica 64 (4): 957 - 979.

[13] Card, David, Thomas Lemieux and W. Craig Riddell. (2004). “Unions and wage in-

equality,” Journal of Labor Research 25 (4): 519 - 559.

[14] Chamberlain, Gary. (1982). “Multivariate regression models for panel data,” Journal of

Econometrics 18 (1): 5 - 46.

[15] Chamberlain, Gary. (1984). “Panel data,” Handbook of Economics 2: 1247 - 1318 (Z.

Griliches & M. Intriligator, Eds.). Amsterdam: North-Holland.

[16] Chamberlain, Gary. (1987). “Asymptotic efficiency in estimation with conditional mo-

ment restrictions,” Journal of Econometrics 34 (3): 305 - 334.

[17] Chamberlain, Gary. (1992). “Efficiency bounds for semiparametric regression,” Econo-

metrica 60 (3): 567 – 596.

47



[18] Chamberlain, Gary. (1994). “Quantile regression, censoring, and the structure of wages,”

Advances in Econometrics, Sixth World Congress I : 171 - 209. (C. Sims, Ed.). Cam-

bridge: Cambridge University Press.

[19] Chaudhuri, Probal, Kjell Doksum and Alexander Samarov. (1997). “On average deriva-

tive quantile regression,” Annals of Statistics 25 (2): 715 - 744.

[20] Chernozhukov, Victor, Ivan Fernández-Val and Alfred Galichon. (2010). “Quantile and

probability curves without crossing,” Econometrica 78 (3): 1093 - 1125.

[21] Chernozhukov, Victor, Ivan Fernandez-Val and Blaise Melly. (2013). “Inference on Coun-

terfactual Distributions,” Econometrica 81 (6): 2205 - 2268.

[22] Chernozhukov, Victor, Ivan Fernandez-Val, Jinyong Hahn and Whitney Newey. (2013).

“Average and quantile effects in nonseparable panel models,” Econometrica 81 (2): 535

- 580.

[23] Chernozhukov, Victor, Ivan Fernandez-Val, Stefan Hoderlein, Hajo Holzmann and

Whitney K. Newey. (2014). “Nonparametric identification in panels using quantiles,”

Mimeo.

[24] Chernozhukov, Victor and Christian Hansen. (2007). “Instrumental variable quantile

regression: a robust inference approach,” Journal of Econometrics 142 (1): 379 - 398.

[25] Clotilde, Elyès and Jouini Napp. (2004). “Conditional comonotonicity,” Decisions in

Economics and Finance 27 (2): 153 - 166.

[26] Firpo, Sergio. (2007). “Efficient semiparametric estimation of quantile treatment effects,”

Econometrica 75 (1): 259 – 276.

[27] Firpo, Sergio, Nicole M. Fortin and Thomas Lemieux. (2009). “Unconditional quantile

regressions,” Econometrica 77 (3): 953 – 973.

[28] Graham, Bryan S. and James L. Powell. (2012). "Identification and estimation of av-

erage partial effects in ‘irregular’ correlated random coefficient panel data models,"

Econometrica 80 (5): 2105 - 2152.

[29] Hahn, Jingyong and Whitney K. Newey. (2004). “Jackknife and analytical bias reduction

for nonlinear panel models,” Econometrica 72 (4): 1295 – 1319.

[30] Hansen, Bruce E. (2014). Econometrics. Mimeo, University of Wisconsin.

48



[31] Imbens, Guido. W. and Whitney K. Newey. (2009). “Identification and estimation of

triangular simultaneous equations models without additivity,” Econometrica 77 (5):

1481 – 1512.

[32] Jakubson, George. (1991). “Estimation and testing of the union wage effect using panel

data,” Review of Economic Studies 58 (5): 971 - 991.

[33] Kato, Kenjo, Antonio F. Galvao Jr., Gabriel V. Montes-Rojas. (2012). “Asymptotics for

panel quantile regression models with individual effects,” Journal of Econometrics 170

(1): 76 - 91.

[34] Khan, Shakeeb and Elie Tamer. (2010). “Irregular identification, support conditions,

and inverse weight estimation,” Econometrica 78 (6): 2021 – 2042.

[35] Kline, Patrick and Andres Santos. (2013). “Sensitivity to missing data assumptions:

Theory and an evaluation of the U.S. wage structure,” Quantitative Economics 4 (2):

231 – 267.

[36] Koenker, Roger. (2005). Quantile Regression. Cambridge: Cambridge University Press.

[37] Koenker, Roger and Gilbert Bassett, Jr. (1978). “Regression quantiles,” Econometrica

46 (1): 33 - 50.

[38] Lee, Ying-Ying. (2013). “Nonparametric weighted average quantile derivative,” Mimeo,

Nuffield College, Oxford University.

[39] Lemieux, Thomas. (2006). “Postsecondary education and increasing wage inequality,”

American Economic Review 96 (2): 195 - 199.

[40] Ma, Lingjie and Roger Koenker. (2006). “Quantile regression methods for recursive

structural equation models,” Journal of Econometrics 134 (2): 471 - 506.

[41] MaCurdy, Thomas, Thomas Mroz and R. Mark Gritz. (1998). “An evaluation of the

National Longitudinal Survey on Youth,” Journal of Human Resources 33 (2): 345 -

436.

[42] Machado, Jose. A. F. and Jose Mata. (2005). “Counterfactual decomposition of changes

in wage distributions using quantile regression,” Journal of Applied Econometrics 20

(4): 445 – 465.

[43] Manski, Charles F. (1987). “Semiparametric analysis of random effects linear models

from binary panel data,” Econometrica 55 (2): 357 - 362.

49



[44] Qu, Zhongjun and Jungmo Yoon. (forthcoming), “Nonparametric estimation and infer-

ence on conditional quantile processes,” Journal of Econometrics.

[45] Rosen, Adam. (2012). “Set identification via quantile restrictions in short panels,” Jour-

nal of Econometrics 166 (1):127 - 137.

[46] Vella, Francis and Marno Verbeek. (1998). “Whose wages do unions raise? A dynamic

model of unionism and wage rate determination for young men?” Journal of Applied

Econometrics 13 (2): 163 - 183.

[47] Wei, Ying and Raymond J. Carroll. (2009). “Quantile regression with measurement

error,” Journal of the American Statistical Association 104 (487): 1129 - 1143.

A Analysis of T = P case with no “near-stayers”

Consider an alternative setup, where there is a non-shrinking point mass of stayers, and no near-stayers.

For simplicity, we will assume that all probabilities and support points are fixed. This allows us to satisfy

assumption 2 trivially. Let π0 = P(D = 0) be strictly positive. The estimation of δ(τ) will proceed as in

the previous case, with a different rate of convergence since there is a point mass of stayers that is bounded

away from zero.

We add the following assumption to guarantee identification.

Assumption 8. (INVERTIBILITY) E[W∗′
W

∗|D = 0] is invertible.

Theorem 8. Suppose that Assumptions 1 through 6 and 8 are satisfied, then in the T = P case (i)√
N
(
δ̂ (·)− δ (·)

)
converges in distribution to a mean zero Gaussian process Zδ (·), where Zδ (·) is defined

by its covariance function

Σδ(τ, τ
′) = E[Zδ (τ)Zδ (τ

′)
′
]

=
(min(τ, τ ′)− ττ ′)

π0
E
[
W

∗′
W

∗|D = 0
]−1

E
[
W

∗′
X

∗Λ(τ, τ ′;X)X∗′
W

∗|D = 0
]
×

E
[
W

∗′
W

∗|D = 0
]−1

, (50)

and (ii)
√
N
(
β̂ (·; ·)− β (·; ·)

)
also converges in distribution to a mean zero Gaussian process Z (·, ·), where

Z (·, ·) is defined by its covariance function

Σ(τ,xl, τ
′,xm) = E

[
Z (τ,xl)Z (τ ′,xm)

′
]
= (min (τ, τ ′)− ττ ′)

x
−1
l Λ (τ, τ ′;xl)x

−1′
l

pl
· 1 (l = m)

+ x
−1
l wlΣδ(τ, τ

′)w′
mx

−1′
m , (51)

for l,m = 1, . . . , L.
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Proof. See the Supplemental Web Appendix.

The main difference between this result and the one in the just identified case is that only stayer realizations

must be used for estimation of δ(τ) in the T = P case, while we chose to use the movers’ realizations only

for its estimation in the overidentified, T > P case. This is reflected in the Σδ(·) term.

It is also possible to estimate the movers’ ACQE in the just-identified setup, as in the overidentified case.

Theorem 9. Let

̂̄β
M

(τ) =

1
N

∑N
i=1 X

−1
i

(
Q̂Y|X (τ |Xi)−Wiδ̂(τ)

)
1(Xi ∈ XM )

1
N

∑N
i=1 1(Xi ∈ XM )

(52)

=
L∑

l=1

β̂(τ ;xl)q̂
M
l

be the movers’ ACQE, where q̂Ml =
1
N

∑N
i=1 1(Xi=xl)

1
N

∑
N
i=1 1(Xi∈XM )

. Under Assumptions 1 through 6 and 8 we have that:

√
N

(
̂̄β
M

(τ)− β̄M (τ)

)
D→ Zβ̄(τ),

a mean zero Gaussian process, on τ ∈ (0, 1). The variance of the Gaussian process Zβ̄(·) is defined as

E
[
Zβ̄(τ)Zβ̄(τ

′)′
]
=

C
(
β(τ,X), β(τ ′,X)|X ∈ XM

)

P (X ∈ XM )
+ Υ1(τ, τ

′) + Ξ0Σδ(τ, τ
′)Ξ′

0 (53)

with

Υ1(τ, τ
′) =

min (τ, τ ′)− ττ ′

P (X ∈ XM )
E
[
X

−1Λ(τ, τ ′;X)X−1′|X ∈ X
M
]

(54)

Ξ0 = E
[
X

−1
W|X ∈ X

M
]
. (55)

Proof. See the Supplemental Web Appendix.

Finally, we can also recover estimates of the movers’ UQE in a similar way to the irregular bandwidth setup.

Theorem 10. Fix p ∈ {1, . . . , P}. Under Assumptions 1 through 6 and 8 we have that

√
N
(
β̂M
p (τ) − βM

p (τ)
)

D→ Zβp
(τ)

on τ ∈ (0, 1) with Zβp
(·) being a Gaussian process. The covariance of this Gaussian process is equal to:

E
[
Zβp

(τ)Zβp
(τ ′)′

]
=

Υ2(τ, τ
′) + Υ3(τ, τ

′) + Υ4(τ, τ
′)

fBp|X∈XM (βM
p (τ))fBp|X∈XM (βM

p (τ ′))
(56)
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with

Υ2(τ, τ
′) =

C
(
FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X)|X ∈ X

M
)

P(X ∈ XM )
(57)

Υ3(τ, τ
′) = E

[
(min(FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X))− FBp|X(βM

p (τ)|X)FBp |X(βM
p (τ ′)|X))×

e′pX
−1Λ(FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X),X)X−1′ep×

fBp|X(βM
p (τ)|X)fBp|X(βM

p (τ ′)|X)|X ∈ X
M
]

(58)

Υ4(τ, τ
′) =

1

π0
E

[
fBp|X(βM

p (τ)|X)fBp |X(βM
p (τ ′)|X̃)epX

−1
WΣδ(FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X̃))×

W̃
′
X̃

−1′ep|X ∈ X
M , X̃ ∈ X

M
]

(59)

where X and X̃ are independent copies.

Proof. See the Supplemental Web Appendix.

Since in this case the UQE is not point identified, we can recover bounds using the movers’ UQE as in

Theorem 1.

B Proofs of Theorems

Proof of Lemma 1

First consider the asymptotic distribution of the conditional CDF estimate

F̂Yt|X(c|xmN ) =
1
N

∑N
i=1 1(Yit ≤ c,Xi = xmN )
1
N

∑N
i=1 1(Xi = xmN )

. (60)

We have that 1
N

∑N
i=1 1(Xi = xmN ) − pmN = Op

(
1√

NpmN

)
and 1

N

∑N
i=1 1(Yit ≤ c,Xi = xmN ) − Pr(Yit ≤

c,X = xmN ) = Op

(
1√

NpmN

)
. Using the delta method we get

F̂Yt|X(c|xmN )− FYt|X(c|xmN ) =
1

N

N∑

i=1

(
1(Yit ≤ c,Xi = xmN )

pmN

− PN (Yt ≤ c|X = xmN )

pmN

1(Xi = xmN )

)

(61)

+Op

(
1

NpmN

)
.

By Lyapunov’s Central Limit Theorem, and Assumptions 2 to 5, we have that, for fixed c, the normalized

difference
√
NpmN

(
F̂Yt|X(c|xmN )− FYt|X(c|xmN )

)
is asymptotically normal with limiting variance equal
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to

lim
N→∞

Pr(Yt ≤ c|X = xmN )(1 − Pr(Yt ≤ c|X = xmN ))

= Pr(Yt ≤ c|X = xm)(1 − Pr(Yt ≤ c|X = xm)).

Note that continuity of the conditional CDF of Yit given X, a component of Assumption 4, is important for

this result.

The next step is to show that the convergence of the normalized difference is uniform in c ∈ R and that

the limiting process is Gaussian. The normalized summand 1(Yit≤c,Xi=xmN )√
pmN

− Pr(Yt≤c|X=xmN)√
pmN

1(Xi = xmN )

can be shown to have a finite bracketing integral for any N (since indicator functions have finite bracketing

integrals) and Pr(Yt ≤ c|X = xmN ) has bounded derivatives in c since the conditional density of Yt given X

is uniformly bounded in all arguments by Assumption 4. Consider the function GN = 1(Xi=xmN )√
pmN

and notice

it is an envelope function for

1(Yit ≤ c,Xi = xmN )√
pmN

− Pr(Yt ≤ c|X = xmN )√
pmN

1(Xi = xmN ). (62)

This envelope function has the following properties: E[G2
N ] = 1 and for ε > 0, E[G2

N1(GN > ε
√
N)] → 0 as

long as
√
NpmN → ∞, which is assumed (Assumption 2). Therefore, this estimator satisfies the conditions

of Theorem 19.28 in van der Vaart (1998) and
√
NpmN

(
F̂Yt|X(c|xmN )− FYt|X(c|xmN )

)
is P-Donsker and

therefore converges in process over c ∈ R for any t = 1, . . . , T and any m = 1, . . . ,M .

Next we use the fact that Yt is bounded, its positive density, and Corollary 21.5 in van der Vaart (1998) (or

Lemma 12.8 (ii) in Kosorok (2007)) to show that the inverse of the conditional CDF process, i.e. the condi-

tional quantile process, converges over τ ∈ (0, 1) to a mean zero Gaussian process with the asymptotically

linear representation:

√
NpmN (Q̂Yt|X(τ |xmN )−QYt|X(τ |xmN ))

=
−1√
NpmN

N∑

i=1

(
1(Yit ≤ QYt|X(τ |xmN ))− τ

)
1(Xi = xmN )

fYt|X(QYt|X(τ |xmN )|xmN )
+Op

(
1√

NpmN

)
.

Since both t and m have finite range, the convergence of this process is uniform over all values of t and

m (as well as on τ ∈ (0, 1)). Using the continuity of fYt|X(QYt|X(τ |xmN )|xmN ) and the boundedness of

indicator functions, we apply Lyapunov’s Central Limit Theorem to show that the covariance kernel of the

limiting process of
√
NpmN (Q̂Yt|X(τ |xmN ) − QYt|X(τ |xmN )) is equal to ΣQ(τ,xl, τ

′,xm) = (min(τ, τ ′) −
ττ ′)Λ(τ, τ ′;xl)1(l = m) as claimed.

Proof of Theorem 1

By the Law of Total Probability

τ = P(Bp ≤ βp(τ)) = P(Bp ≤ βp(τ)|X ∈ X
M )P(X ∈ X

M ) + P(Bp ≤ βp(τ)|X ∈ X
S)P(X ∈ X

S).
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The quantities P(X ∈ X
M ), P(X ∈ X

S) and the conditional distribution of Bp given X ∈ X
M are identified

by arguments detailed above. The quantity P(Bp ≤ βp(τ)|X ∈ XS) can take arbitrary values in the [0, 1]

interval. Therefore, the identified set of βp(τ) is defined by:

{
bp(τ) : P(Bp ≤ bp(τ)|X ∈ X

M )P(X ∈ X
M ) + qP(X ∈ X

S) = τ, q ∈ [0, 1]
}
.

Since P(Bp ≤ bp(τ)|X ∈ XM ) is monotone in bp(τ), we can get bounds on βp(τ) by inverting this region at

q = 0 and q = 1:

P(Bp ≤ βp(τ)|X ∈ X
M ) ∈

[
τ − 1× P(X ∈ XS)

P(X ∈ XM )
,
τ − 0× P(X ∈ XS)

P(X ∈ XM )

]

⇒ βp(τ) ∈
[
βM
p

(
τ − P(X ∈ XS)

P(X ∈ XM )

)
, βM

p

(
τ

P(X ∈ XM )

)]
.

Finally observe that if τ−P(X∈X
S)

P(X∈XM)
< 0 or if, τ

P(X∈XM)
> 1, the quantiles of Bp|X ∈ XM are not defined. For

these cases, the inversion leads to bounds of bp and b̄p respectively.

Proof of Theorem 2

Recall that γ(τ) = (δ(τ)′, β(τ ;x1)
′, . . . , β(τ ;xL)

′)′, manipulating (31) of the main text yields

√
N(γ̂(τ) − γ(τ)) = (G′ÂG)−1G′Â

√
N(Π̂(τ) −Π(τ)). (63)

By a Law of Large Numbers, Â
p→ A = diag{p1, . . . , pL} ⊗ IT and by the Continuous Mapping Theorem

(G′ÂG)−1 p→ (G′AG)−1 which can be shown to be equal to

(G′AG)−1 =




Γ−1

Pr(X∈XM )
−Γ−1

Pr(X∈XM )K
′

−K Γ−1

P(X∈XM )
diag

{
(x′

1x1)
−1

p1
, . . . ,

(x′

LxL)−1

pL

}
+K Γ−1

Pr(X∈XM )
K′


 (64)

where K = (K(x1)
′, . . . ,K(xL)

′)′.

The numerator, G′Â
√
N(Π̂(·) −Π(·)), converges in distribution, by Slutsky’s theorem, to G′AZ̃Q(·) where

Z̃Q(·) =
(

ZQ(·,x1)√
p1

′
, . . . ,

ZQ(·,xL)√
pL

′)′
with ZQ(·,xl) as defined in the statement of Lemma 1. The variance-

covariance matrix of Z̃Q(·) is

ΣQ(τ, τ
′) = (min(τ, τ ′)− ττ ′)diag

{
Λ(τ, τ ′;x1)

p1
, . . . ,

Λ(τ, τ ′;xL)

pL

}
. (65)

This gives an asymptotic covariance of
√
N(γ̂(τ) − γ(τ)) and

√
N(γ̂(τ ′)− γ(τ ′)) equal to

(G′AG)−1G′AΣ̃Q(τ, τ
′)AG(G′AG)−1. (66)
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Partitioning this matrix yields an asymptotic covariance of
√
N(δ̂(τ) − δ(τ)) and

√
N(δ̂(τ ′)− δ(τ ′)) equal

Σδ(τ, τ
′) = (min (τ, τ ′)− ττ ′)

Γ−1E

[
W

′
Λ (τ, τ ′;X)W

∣∣∣X ∈ XM
]
Γ−1

Pr(X ∈ XM )
, (67)

as claimed in the statement of the theorem.

The asymptotic covariance of
√
N(β̂(τ,xl)− β(τ,xl)) and

√
N(β̂(τ ′,xm)− β(τ ′,xm)) is

E

[
Z (τ,xl)Z (τ ′,xm)

′
]

= (min (τ, τ ′)− ττ ′)
(x′

lxl)
−1

x
′
lΛ (τ, τ ′;xl)xl (x

′
lxl)

−1

pl
· 1 (l = m)

+K (xl)Σδ(τ, τ
′)K (xm)′ ,

as claimed.

Proof of Theorem 3

Manipulating (34) of the main text yields

̂̄β
M

(τ) − β̄M (τ) =
1
N

∑N
i=1(β̂(τ ;Xi)− β(τ ;Xi))1(Xi ∈ XM )

1
N

∑N
i=1 1(Xi ∈ XM )

(68)

+
1
N

∑N
i=1 β(τ ;Xi)1(Xi ∈ XM )
1
N

∑N
i=1 1(Xi ∈ XM )

− E[β(τ ;X)|X ∈ X
M ]. (69)

First consider term (68) in this expansion. Its denominator 1
N

∑N
i=1(Xi ∈ XM ) converges, by a Law of Large

Numbers to Pr(X ∈ XM ). The numerator will converge when normalized by
√
N to the following Gaussian

process:

1

N

N∑

i=1

√
N(β̂(τ ;Xi)− β(τ ;Xi))1(Xi ∈ X

M ) =

L∑

l=1

√
N(β̂(τ ;xl)− β(τ ;Xl))p̂l

d→
L∑

l=1

Z(τ,xl)pl. (70)

The asymptotic covariance of (70) equals

L∑

l=1

L∑

l′=1

E [Z(τ,xl)Z(τ
′,x′

l)] plpl′

=

L∑

l=1

L∑

l′=1

(min (τ, τ ′)− ττ ′)
(x′

lxl)
−1

x
′
lΛ (τ, τ ′;xl)xl (x

′
lxl)

−1

pl
· 1 (l = l′) plpl′

+
L∑

l=1

L∑

l′=1

K (xl)Σδ(τ, τ
′)K (xl′ )

′ plpl′

= (min (τ, τ ′)− ττ ′)E
[
(X′

X)
−1

X
′Λ (τ, τ ′;X)X (X′

X)
−1 |X ∈ X

M
]
Pr(X ∈ X

M )

+KMΣδ(τ, τ
′)KM′ Pr(X ∈ X

M )2.
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Now consider term (69). Replacing the sample average by empirical probabilities yields

√
N

(
1
N

∑N
i=1 β(τ ;Xi)1(Xi ∈ XM )
1
N

∑N
i=1 1(Xi ∈ XM )

− E[β(τ ;X)|X ∈ X
M ]

)
=

√
N

(
L∑

l=1

β(τ ;xl)q̂
M
l −

L∑

l=1

β(τ ;xl)q
M
l

)

=

L∑

l=1

β(τ ;xl)
√
N
(
q̂Ml − qMl

)
(71)

where qMl denotes the conditional probability Pr(X = xl|X ∈ XM ) and q̂Ml =
1
N

∑
N
i=1 1(Xi=xl)

1
N

∑
N
i=1 1(Xi∈XM )

its estimate.

To derive the asymptotic distribution of this term, we must first derive the asymptotic distribution of

q̂Ml − qMl . Begin with the fact that

√
N




1
N

∑N
i=1 1(Xi = x1)− p1

...
1
N

∑N
i=1 1(Xi = xL)− pL

1
N

∑N
i=1 1(Xi ∈ XM )− Pr(Xi ∈ XM )




d→ N







0
...

0

0




,




p1(1− p1) · · · −p1pL p1(1− Pr(X ∈ XM ))
...

. . .
...

...

−p1pL · · · pL(1− pL) pL(1− Pr(X ∈ XM ))

p1(1− Pr(X ∈ X
M )) · · · pL(1 − Pr(X ∈ X

M )) Pr(X ∈ X
M )(1 − Pr(X ∈ X

M ))







(72)

and use the delta method to show

√
N




q̂M1 − qM1
...

q̂ML − qML




d→ N
(
0L,ΣqM

)
(73)

where

ΣqM =
1

Pr(X ∈ XM )




qM1 (1− qM1 ) · · · −qM1 qML
...

. . .
...

−qM1 qML · · · qML (1− qML )


 . (74)
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Note that some of these limiting variance matrices are singular. Putting things together yields an asymptotic

variance-covariance for (71) of

L∑

l=1

L∑

l′=1

β(τ ;xl)ΣqM (l, l′)β(τ ′;xl′ )
′ (75)

=
1

Pr(Xi ∈ XM )

L∑

l=1

L∑

l′=1

β(τ ;xl)(q
M
l 1(l = l′)− qMl qMl′ )β(τ

′;xl′)
′

=
1

Pr(X ∈ XM )

(
E
[
β(τ ;X)β(τ ′;X)′|X ∈ X

M
]
− E

[
β(τ ;X)|X ∈ X

M
]
E
[
β(τ ′;X)|X ∈ X

M
]′)

=
C(β(τ ;X), β(τ ′;X)|X ∈ XM )

P(X ∈ XM )
. (76)

Terms (70) and (71) are asymptotically independent, since the variation of (70) is conditional on X, while

the variation of (71) depends on X alone. Therefore, the limiting covariance of ̂̄β
M

(τ) is the sum of the

covariances of its two components, which yields the claimed result.

Proof of Theorem 4

There are two main steps to the proof. The first is to recover an estimate of the distribution function of

the random coefficient Bp (within the subpopulation of movers). The second is to invert this distribution

function to recover the quantile function of the movers’ random coefficients.

For the first step, let c ∈ R and consider the asymptotic distribution of the estimated distribution function

evaluated at c, denoted by F̂β̂p(U ;X)|X∈XM (c) =
∑L

l=1

[
´ 1

0
1(β̂p(u;xl) ≤ c)du

]
q̂Ml :

√
N
(
F̂β̂p(U ;X)|X∈XM (c)− FBp|X∈XM (c)

)

=

L∑

l=1

√
N

(
ˆ 1

0

1(β̂p(u;xl) ≤ c)du −
ˆ 1

0

1(βp(u;xl) ≤ c)du

)
q̂Ml (77)

+

L∑

l=1

[
ˆ 1

0

1(βp(u;xl) ≤ c)du

]√
N
(
q̂Ml − qMl

)
. (78)

Both of these two terms converge uniformly over c ∈ R. For the first term, we have that

√
N
(
β̂p(τ ;xl)− β̂p(τ ;xl)

)
d→ (Z(τ,xl))p = Zp(τ,xl)

over τ ∈ (0, 1) and all l = 1, . . . , L (here Zp(τ,xl) is as defined in the statement of Theorem 4 and (·)p
denotes the pth element of the vector). Let F c

p (·) : C[0, 1] → R be a functional such that Fc(β(·,x)) =
´ 1

0
1(βp(u;x) ≤ c)du. By Lemma 8 of Chernozhukov, Fernandez-Val and Melly (2012), this functional is
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Hadamard differentiable and we can apply the functional delta method, yielding

√
N

(
ˆ 1

0

1(β̂p(u;xl) ≤ c)du−
ˆ 1

0

1(βp(u;xl) ≤ c)du

)

=
√
N
(
β̂p(FBp|X(c|xl);xl)− β̂p(FBp|X(c|xl);xl)

)
fBp|X(c|xl) + op(1)

d→ Zp(FBp|X(c|xl),xl)fBp|X(c|xl). (79)

This convergence is uniform in c ∈ R since FBp|X(c|xl) ranges between 0 and 1, and uniformly in xl (since

there are finitely many possible values for xl). Therefore,

L∑

l=1

√
N

(
ˆ 1

0

1(β̂p(u;xl) ≤ c)du−
ˆ 1

0

1(βp(u;xl) ≤ c)du

)
q̂Ml

d→
L∑

l=1

Zp(FBp|X(c|xl),xl)fBp|X(c|xl)q
M
l

for c ∈ R. Also, similar to (76) above,
∑L

l=1

´ 1

0
1(βp(u;xl) ≤ c)du

√
N
(
q̂Ml − qMl

)
will converge over c ∈ R

to a mean zero Gaussian process Z2p(c) with asymptotic covariance

E [Z2p(c)Z2p(c
′)′] =

C
(
FBp|X(c|X), FBp|X(c′|X)|X ∈ X

M
)

Pr (X ∈ XM )
. (80)

Note that Z2p(c) and
∑L

l=1 Zp(FBp|X(c|xl),xl)fBp|X(c|xl)q
M
l are uncorrelated since the variation in the

latter is conditional on X while that in the former depends on X only. Therefore,

√
N
(
F̂β̂p(U ;X)|X∈XM (c)− FBp|X∈XM (c)

)
d→

L∑

l=1

Zp(FBp|X(c|xl),xl)fBp|X(c|xl)q
M
l + Z2p(c) (81)

over c ∈ R.

We now turn to step two of the proof: inverting the distribution of the random coefficient to recover the

distribution of its quantiles. By assumption 5, Bp is assumed to have bounded support and fBp|X∈XM (c)

is strictly positive for all c ∈ R. Therefore by Kosorok (2007, Lemma 12.8 part (ii)) the inverse func-

tional is Hadamard differentiable into D̃(0, 1), the space of left-continuous functions with right-hand limits.

Evaluating this inverse at c = βM
p (τ) yields

√
N
(
β̂M
p (τ) − βM

p (τ)
)

d→
∑L

l=1 Zp(FBp|X(βM
p (τ)|xl),xl)fBp|X(βM

p (τ)|xl)q
M
l + Z2p(β

M
p (τ))

fBp|X∈XM (βM
p (τ))

(82)

= Zβp
(τ) (83)

uniformly over τ ∈ (0, 1). To conclude the proof, we evaluate E
[
Zβp

(τ)Zβp
(τ ′)′

]
, the asymptotic covariance
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of this Gaussian process:

E

[
Zβp

(τ)Zβp
(τ ′)

′
]

=

∑L
l=1

∑L
l′=1 fBp|X(βM

p (τ)|xl)e
′
pΣ(τ, FBp|X(βM

p (τ)|xl),xl), τ
′, FBp|X(βM

p (τ ′)|xl′ ),xl′))epfBp|X(βM
p (τ ′)|xl′ )q

M
l qMl′

fBp|X∈XM (βM
p (τ))fBp|X∈XM (βM

p (τ ′))

+
E
[
Z2p(β

M
p (τ))Z2p(β

M
p (τ ′))

]

fBp|X∈XM (βM
p (τ))fBp|X∈XM (βM

p (τ ′))

where

∑L
l=1

∑L
l′=1 fBp|X(βM

p (τ)|xl)q
M
l e′pΣ(τ, FBp|X(βM

p (τ)|xl),xl), τ
′, FBp|X(βM

p (τ ′)|xl′ ),xl′ )epfBp|X(βM
p (τ ′)|xl′ )q

M
l′

fBp|X∈XM (βM
p (τ))fBp|X∈XM (βM

p (τ ′))

=
1

Pr (X ∈ XM )
E
[(
min

(
FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X)

)
− FBp|X(βM

p (τ)|X)FBp |X(βM
p (τ ′)|X)

)

× e′p (X
′
X)

−1
X

′Λ
(
FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X);X

)
X (X′

X)
−1

ep

fBp|X(βM
p (τ)|X)fBp|X(βM

p (τ ′)|X)
∣∣X ∈ X

M
]

(84)

+ E

[
fBp|X(βM

p (τ)|X)fBp|X(βM
p (τ ′)|X̃)

e′pK (X) Σδ

(
FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X̃)

)
K
(
X̃

)′
ep

∣∣∣∣X ∈ X
M , X̃ ∈ X

M

]
(85)

= Υ3(τ, τ
′) + Υ4(τ, τ

′),

where X̃ is an independent copy of X. Also,

E
[
Z2p(β

M
p (τ))Z2p(β

M
p (τ ′))

]
=

C
(
FBp|X(βM

p (τ)|X), FBp |X(βM
p (τ ′)|X)|X ∈ XM

)

Pr (X ∈ XM )
(86)

= Υ2(τ, τ
′),

which agrees with the expressions in the statement of the Theorem.

Proof of Theorem 5

From (41) we get the following asymptotically linear representation

√
NhN

(
δ̂(τ)− δ(τ)

)
=

(
1

NhN

N∑

i=1

W
∗′
i W

∗
i 1(Di = 0)

)−1

× 1

NhN

N∑

i=1

W
∗′
i X

∗
i

√
NhN

(
Q̂Y|X(τ |Xi)−QY|X(τ |Xi)

)
1(Di = 0)

=

(
M∑

l=L+1

w
∗′
lNw

∗
lN

p̂lN
hN

)−1 M∑

l=L+1

w
∗′
lNx

∗
lN

p̂lN√
hNplN

×
√
NplN

(
Q̂Y|X(τ |xlN )−QY|X(τ |xlN )

)
.
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with
M∑

l=L+1

w
∗′
lNw

∗
lN

p̂lN
hN

p→ E [W∗′
W

∗|D = 0] 2φ0

since w
∗
lN → w

∗
l and p̂lN

hN

p→ ql|02φ0 as N → ∞. Similarly we get

M∑

l=L+1

w
∗′
lNx

∗
lN

p̂lN√
hNplN

√
NplN

(
Q̂Y|X(τ |xlN )−QY|X(τ |xlN )

)
p→
√
2φ0

M∑

l=L+1

w
∗′
l x

∗
l

√
ql|0ZQ(τ,xl) (87)

by Slutsky’s theorem since p̂lN√
hNplN

p→ √
2φ0ql|0. The limiting distribution (87) has asymptotic covariance

equal to

E


√2φ0

M∑

l=L+1

w
∗′
l x

∗
l

√
ql|0ZQ(τ,xl)

(
√
2φ0

M∑

l′=L+1

w
∗′
l′ x

∗
l′
√
ql′|0pZQ(τ

′,xl′ )

)′


= 2φ0

M∑

l=L+1

M∑

l′=L+1

w
∗′
l x

∗
l (min (τ, τ ′)− ττ ′)Λ (τ, τ ′;xl) · 1 (l = l′)x∗′

l w
∗
l ql|0

= 2φ0(min (τ, τ ′)− ττ ′)E
[
W

∗′
X

∗Λ(τ, τ ′;X)X∗′
W

∗|D = 0
]
. (88)

To derive the asymptotic distribution of
√
NhN

(
β̂ (·; ·)− β (·; ·)

)
for strict movers (l = 1, . . . , L1), we note

that

√
NhN

(
β̂ (τ ;xlN )− β (τ ;xlN )

)
= x

−1
lN

√
NhN

(
Q̂Y|X(τ |xlN )−QY|X(τ |xlN )

)
+ x

−1
lNwlN

√
NhN

(
δ̂(τ) − δ(τ)

)

= x
−1
lN

√
hN

plN

√
NplN

(
Q̂Y|X(τ |xlN )−QY|X(τ |xlN )

)

+ x
−1
lNwlN

√
NhN

(
δ̂(τ) − δ(τ)

)

p→ x
−1
l wlZδ(τ) (89)

since hN

plN
→ 0 for strict mover realizations. Finally, for near-stayers (l = L1 + 1, . . . , L) with DlN = hN :

√
Nh3

N

(
β̂ (τ ;xlN )− β (τ ;xlN )

)
= x

−1
lN

√
h3
N

plN

√
NplN

(
Q̂Y|X(τ |xlN )−QY|X(τ |xlN )

)

+ x
−1
lNwlNhN

√
NhN

(
δ̂(τ) − δ(τ)

)

= x
∗
lN

hN

DlN

√
hN

plN

√
NplN

(
Q̂Y|X(τ |xlN )−QY|X(τ |xlN )

)

+w
∗
lN

hN

DlN

√
NhN

(
δ̂(τ)− δ(τ)

)

D→ x
∗
l ZQ(τ,xl)√
ql|02φ0

+w
∗
l Zδ(τ) (90)
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since hN/DlN = 1 and by Slutsky’s Theorem. For near-stayers with DlN = −hN ,

√
Nh3

N

(
β̂ (τ ;xlN )− β (τ ;xlN )

)
D→ −x

∗
l ZQ(τ,xl)√
ql|02φ0

−w
∗
l Zδ(τ). (91)

Since ZQ(·,xl) and Zδ (·) are independent for l = 1, . . . , L, we can add the individual covariances of these

processes and get the desired result.

Proof of Theorem 6

We begin with the decomposition

√
NhN

(̂̄βN (τ) − β̄N (τ)
)
=
√
NhN

(̂̄βN (τ) − E
[
β(τ ;X)|X ∈ X

M
N

])
+
√
NhN

(
E
[
β(τ ;X)|X ∈ X

M
N

]
− E [β(τ ;X)]

)

=

L∑

l=1

β(τ ;xlN )
√
NhN

(
q̂MlN − qMlN

)
(92)

+

L∑

l=1

√
NhN

(
β̂(τ ;xlN )− β(τ ;xlN )

)
q̂MlN (93)

+
√
NhN

(
E
[
β(τ ;X)|X ∈ X

M
N

]
− E [β(τ ;X)]

)
. (94)

We first consider the joint asymptotic distribution of
√
NhN

(
q̂MlN − qMlN

)
for all l = 1, . . . , L. We start by

considering the asymptotic distribution of unconditional probabilities, which are normalized differently for
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near-stayers and strict-movers:

( √
NIL1 0L1

0′L−L1+1

0L−L1+10
′
L1

√
N
hN

IL−L1+1

)




1
N

∑N
i=1 1(Xi = x1N )− p1N

...
1
N

∑N
i=1 1(Xi = xL1N )− pL1N

1
N

∑N
i=1 1(Xi = x(L1+1)N )− p(L1+1)N

...
1
N

∑N
i=1 1(Xi = xLN )− pLN

1
N

∑N
i=1 1(Xi ∈ XM

N )− P(X ∈ XM
N )




=
√
N




1
N

∑N
i=1 1(Xi = x1N )− p1N

...
1
N

∑N
i=1 1(Xi = xL1N )− pL1N

1
N

∑N
i=1

1(Xi=x(L1+1)N )−p(L1+1)N√
hN

...
1
N

∑N
i=1

1(Xi=xLN )−pLN√
hN

1
N

∑N
i=1

1(Xi∈X
M
N )−P(X∈X

M
N )√

hN




D→ N




0L+1,




p1(1 − p1) · · · −p1pL1 0 · · · 0 0
...

. . .
...

...
. . .

...
...

−p1pL1 · · · pL1(1− pL1) 0 · · · 0 0

0 · · · 0 qL1+1|02φ0 · · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · qL|02φ0 0

0 · · · 0 0 · · · 0 2φ0







(95)

by the Lyapunov’s Multivariate Central Limit Theorem. The conditions of the theorem are trivially satisfied

since indicator functions have bounded moments. Note that the top left L1 ×L1 submatrix is singular since

it contains probabilities that sum to 1. This is not a problem here since we do not invert that matrix later

on. By the Delta method, we get that q̂MlN − qMlN = Op

(
1√
N

)
for any l = 1, . . . , L1 and Op

(√
hN

N

)
for

l = L1 +1, . . . , L. Therefore, the term
∑L

l=1 β(τ ;xlN )
√
NhN

(
q̂MlN − qMlN

)
is of order Op(

√
hN ) and therefore

converges to 0.

Term (93) can be decomposed into its strict-movers and near-stayers components:

L∑

l=1

√
NhN

(
β̂(τ ;xlN )− β(τ ;xlN )

)
q̂MlN =

L1∑

l=1

√
NhN

(
β̂(τ ;xlN )− β(τ ;xlN )

)
q̂MlN (96)

+

L∑

l=L1+1

√
Nh3

N

(
β̂(τ ;xlN )− β(τ ;xlN )

) q̂MlN
hN

. (97)

For term (96), we can see that
∑L1

l=1

√
NhN

(
β̂(τ ;xlN )− β(τ ;xlN )

)
q̂MlN

D→∑L1

l=1 x
−1
l wlZδ(τ)pl. This asymp-

totic distribution is due to the presence of δ̂(τ). Term ((97)) will also have a non-degenerate limiting distri-
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bution:

L∑

l=L1+1

√
Nh3

N

(
β̂(τ ;xlN )− β(τ ;xlN )

) q̂MlN
hN

D→
L∑

l=L1+1

Z(τ,xl)ql|02φ0 (98)

since
q̂MlN
h

p→ 2φ0ql|0. The asymptotic covariance of (93) will then be

= (min (τ, τ ′)− ττ ′)
L∑

l=L1+1

L∑

l′=L1+1

x
∗
lΛ (τ, τ ′;xl)x

∗′
l · 1 (l = l′) ql|02φ0

+

(
L∑

l=L1+1

w
∗
l ql|02φ0 +

L1∑

l=1

x
−1
l wlpl

)
Σδ(τ, τ

′)

(
L∑

l′=L1+1

w
∗
l′ql′|02φ0 +

L1∑

l′=1

x
−1
l′ wl′pl′

)
.

We now show that Ξ0 = lim
N→∞

EN

[
X

−1
W||D| ≥ hN

]
=
∑L

l=L1+1 w
∗
l ql|02φ0 +

∑L1

l=1 x
−1
l wlpl:

lim
N→∞

EN

[
X

−1
W||D| ≥ hN

]
= lim

N→∞

L∑

l=1

x
−1
lNwlNqMlN

= lim
N→∞

L∑

l=L1+1

w
∗
lN

Pr(X = xlN |D = |hN |)
1− 2φ0hN

2φ0 + lim
N→∞

L1∑

l=1

x
−1
lNwlN

plN
1− 2bhN

=

L∑

l=L1+1

w
∗
l ql|02φ0 +

L1∑

l=1

x
−1
l wlpl

by continuity in N .

Finally, we consider the bias term (94). We see that

√
NhN

(
EN

[
β(τ ;X)|X ∈ X

M
N

]
− EN [β(τ ;X)]

)
=
√
NhN

(
L∑

l=1

β(τ ;xlN )qMlN −
M∑

l=1

β(τ ;xlN )plN

)

=
L∑

l=1

β(τ ;xlN )
√
NhN

(
qMlN − plN

)
−

M∑

l=L+1

β(τ ;xlN )
√
NhNplN .

We see that for l = 1, . . . , L,
√
Nh

(
qMlN − plN

)
= plN

2φ0

√
Nh3

N

1−2φ0hN
→ 0 since plN = O(1) and Nh3

N → 0. For

stayer realizations l = L + 1, . . . ,M , we have
√
NhNplN → 0 since

∑M
l=L+1 plN = 2φ0hN and Nh3

N → 0.

Therefore, term (94) converges to 0.

Proof of Theorem 7

We start by deriving the asymptotic distribution of the empirical cumulative distribution function of β̂p(U ;X)

with U distributed uniformly on [0, 1] independently of X, while conditioning on X ∈ XM
N . The CDF estimand
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at c ∈ R is denoted as FBp
(c) and the estimator is

F̂
β̂p(U ;X)|X∈X

M
N

(c) =
1
N

∑N
i=1

´ 1

0 1(β̂p(u,Xi) ≤ c)du1(Xi ∈ X
M
N )

1
N

∑N
i=1 1(Xi ∈ XM

N )

=
L∑

l=1

(
ˆ 1

0

1(β̂p(u,xlN ) ≤ c)du

)
q̂MlN .

The integration over u ∈ (0, 1) can be done exactly since β̂p(u,xlN ) is piecewise linear for each l ∈ {1, . . . , L}
with finitely many pieces. This asymptotic distribution can be written as the sum of four terms:

F̂
β̂p(U ;X)|X∈X

M
N

(c)− FBp|X∈XN
(c) =

L1∑

l=1

(
ˆ 1

0

1(β̂p(u,xlN ) ≤ c)du−
ˆ 1

0

1(βp(u,xlN ) ≤ c)du

)
q̂MlN (99)

+

L∑

l=L1+1

(
ˆ 1

0

1(β̂p(u,xlN ) ≤ c)du−
ˆ 1

0

1(βp(u,xlN ) ≤ c)du

)
q̂MlN (100)

+

L∑

l=1

ˆ 1

0

1(βp(u,xl) ≤ c)du
(
q̂MlN − qMlN

)
(101)

+ FBp|X∈X
M
N
(c)− FBp

(c). (102)

The first two terms represent the contribution of the estimation of the conditional coefficients for strict-

movers and near-stayers respectively, while term three is due to the randomness of the coefficient across

subpopulations defined in terms of X. Term four is the bias term, which we will show vanishes asymptotically.

Term (101) will be of order Op

(
1√
N

)
and therefore vanishes when premultiplied by

√
NhN .

Using Hadamard differentiability and the functional delta method discussed more fully in the proof of

Theorem 4, we see that:

√
Nh3

N

(
ˆ 1

0

1(β̂p(u;xlN ) ≤ c)du−
ˆ 1

0

1(βp(u;xlN ) ≤ c)du

)
D→ Zp(FBp|X(c|xl),xl)fBp|X(c|xl). (103)

for l = L1 + 1, . . . , L.

This convergence is uniform in c ∈ R since FBp|X(c|xl) ranges between 0 and 1, and also uniform in xl since

there are finitely many possible values for xl. Therefore, term (100) will converge in process to the following

limit when normalized by
√
NhN :

L∑

l=L1+1

√
Nh3

N

(
ˆ 1

0

1(β̂p(u;xlN ) ≤ c)du−
ˆ 1

0

1(βp(u;xlN ) ≤ c)du

)
q̂MlN
hN

D→
L∑

l=L1+1

Zp(FBp|X(c|xl),xl)fBp|X(c|xl)ql|02φ0

for c ∈ R since
q̂MlN
hN

D→ ql|02φ0 as N → ∞. Term (99) will converge in distribution to:

L1∑

l=1

√
NhN

(
ˆ 1

0

1(β̂p(u,xlN ) ≤ c)du−
ˆ 1

0

1(βp(u,xlN ) ≤ c)du

)
q̂MlN

D→
L1∑

l=1

Zp(FBp|X(c|xl),xl)fBp|X(c|xl)pl.
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We also verify that
√
NhN times term (102), the bias term, asymptotically vanishes. We see that

∣∣∣FBp|X∈X
M
N
(c)− FBp

(c)
∣∣∣ =

∣∣∣∣∣

L∑

l=1

ˆ 1

0

1(βp(u,xlN ) ≤ c)duqMlN −
M∑

l=1

ˆ 1

0

1(βp(u,xlN ) ≤ c)duplN

∣∣∣∣∣

≤
L∑

l=1

ˆ 1

0

1(βp(u,xlN ) ≤ c)du
∣∣qMlN − plN

∣∣+
∣∣∣∣∣

M∑

l=L+1

1(βp(u,xlN ) ≤ c)duplN

∣∣∣∣∣

≤
L∑

l=1

plN
2φ0hN

1− 2φ0hN

+

M∑

l=L+1

plN

= 2φ0hN + 2φ0hN = op

(
1√
NhN

)

since Nh3
N → 0. We can conclude this proof in a manner similar to that of Theorem 4.
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