1. Suppose that there are three firms. The market demand is \(p(q_1, q_2, q_3) = 120 - q_1 - q_2 - q_3 \). Firm \(i \)'s profit is
\[
 u_i(q_1, q_2, q_3) = q_i p(q_1, q_2, q_3) - q_i^2.
\] Compute the Nash equilibrium quantity for each firm.

2. There are 1, \ldots, \, N players with values \(v_1 > v_2 > \cdots > v_N > 0 \) for some object. Each submits a bid for the object in a second-price auction. The player \(i \) who submits the highest bid wins the object and pays the highest bid among the other \((j \neq i) \) players. In the case of a tie, the lowest-indexed player, i.e. the one with the higher value, wins the object. This can be formalized as the following game:

- \(\mathcal{N} = \{1, \ldots, N\} \).
- \(\mathcal{A} = \mathbb{R}_+ \).
- \(u_i(a_i) = \begin{cases} v_i - \max_{j \neq i} a_j & \text{if } i = \min\left\{ j : a_j \geq a_k, \forall k \in \mathcal{N} \right\} \\ 0 & \text{otherwise} \end{cases} \)

(a) Prove that truth-telling, i.e., the action profile where \(a_i = v_i \) for each player \(i \), is a Nash equilibrium.

(b) Prove that, for every player \(i \), there exists a Nash equilibrium where player \(i \) wins the prize.

(c) Prove that in any equilibrium the payment must be weakly less than \(v_1 \).

Discussion question

Aug 30 Three roommates are sharing a three-bedroom apartment with a $2000 monthly rent. The rooms are of different quality and desirability to the different roommates. How should the rooms be assigned and the rent be divided?