Advanced Microeconomics
(Economics 104)
Spring 2011
Introduction

Topics

– Terminology and notations:
 functions,
 preferences,
 utility representation, and
 profiles.

– Games and solutions:
 strategic vs. extensive games, and
 perfect vs. imperfect information.

– Rationality:
 a rational agent, and
 boundedly rational agent.

– Formalities:
 a strategic game of perfect information.
Terminology and notations (OR 1.7)

Sets

- \mathbb{R} is the set of real numbers.
- \mathbb{R}_+ is the set of nonnegative real numbers.
- \mathbb{R}^n is set of vectors on n real numbers.
- \mathbb{R}_+^n is set of vectors of n nonnegative real numbers.

For $x, y \in \mathbb{R}^n$,

$$x \geq y \iff x_i \geq y_i$$

for all i.

$$x > y \iff x_i \geq y_i \text{ and } x_j > y_j$$

for all i and some j.

$$x >> y \iff x_i > y_i$$

for all i.
Functions

A function $f : \mathbb{R} \to \mathbb{R}$ is

- increasing if $f(x) > f(y)$ whenever $x > y$,
- non decreasing if $f(x) \geq f(y)$ whenever $x > y$, and
- concave if

$$f(\alpha x + (1 - \alpha)x') \geq \alpha f(x) + (1 - \alpha)f(x')$$

$\forall x, x' \in \mathbb{R}$ and $\forall \alpha \in [0, 1]$.

Let X be a set. The set of maximizers of a function $f : X \to \mathbb{R}$ is given by $\arg \max_{x \in X} f(x)$.
Preferences

\(\succeq \) - a binary relation on some set of alternatives \(A \subseteq \mathbb{R}^n \). From \(\succeq \) we derive two other relations on \(A \):

- strict performance relation
 \[a \succ b \iff a \succeq b \text{ and not } b \succeq a \]

- indifference relation \(a \sim b \iff a \succeq b \text{ and } b \succeq a \)

\(\succeq \) is said to be
- complete if
 \[a \succeq b \text{ or } b \succeq a \]
 \(\forall a, b \in A. \)

- transitive if
 \[a \succeq b \text{ and } b \succeq c \text{ then } a \succeq c \]
 \(\forall a, b, c \in A. \)
Utility representation

A function \(u : A \to \mathbb{R} \) is a utility function representing \(\succeq \) if for all \(a, b \in A \)

\[
a \succeq b \iff u(a) \geq u(b)
\]

\(\succeq \) can be presented by a utility function only if it is complete and transitive (rational).

\(\succeq \) is said to be

- continuous (preferences cannot jump...) if
 for any sequence of pairs \(\{(a^k, b^k)\}_{k=1}^{\infty} \) with \(a^k \succeq b^k \), and \(a^k \to a \) and \(b^k \to b \), \(a \succeq b \).

- (strictly) quasi-concave if
 for any \(b \in A \) the upper counter set \(\{a \in A : a \succeq b\} \) is (strictly) convex.

These guarantee the existence of continuous well-behaved utility function representation.
Profiles

Let N be a the set of players.

$(x_i)_{i \in N}$ or simply (x_i)

- a profile, i.e., a collection of values of some variable, one for each player.

$(x_j)_{j \in N/\{i\}}$ or simply x_{-i}

- the list of elements of the profile $x = (x_j)_{j \in N}$ for all players except i.

(x_{-i}, x_i)

- a list x_{-i} and an element x_i, which is the profile $(x_i)_{i \in N}$.
Games and solutions (O 1.1; OR 1.1-1.3)

A game is a model of interactive (multi-person) decision-making. We distinguish between:

- noncooperative and cooperative games - the units of analysis are individuals or (sub) groups,
- strategic (normal) form games and extensive form games - players move simultaneously or precede one another, and
- Games with perfect and imperfect information - players are perfectly or imperfectly informed about characteristics, events and actions.

A solution is a systematic description of outcomes in a family of games.

- Nash equilibrium.
- Subgame perfect equilibrium - extensive games with perfect information.
- Perfect Bayesian equilibrium - games with observable actions.
- Sequential equilibrium (and refinements) - extensive games with imperfect information.

The classic references are von Neumann and Morgenstern (1944), Luca and Raiffa (1957) and Schelling (1960) (see R and OR).
Rational behavior and bounded rationality (O 1.2; OR 1.4, 1.6)

Consider

- a set of actions, A
- a set of consequences, C
- a consequence function $g : A \to C$, and
- a preference relation \(\succ \) on the set C.

Given any set $B \subseteq A$ of actions, a rational agent chooses an action $a^* \in B$ such that

$$g(a^*) \succ g(a)$$

for all $a \in B$.

And when \(\succ \) are specified by a utility function $U : C \to \mathbb{R}$

$$a^* \in \arg \max_{a \in B} U(g(a))$$

With uncertainty about

- the environment,
- events in the game, or
- actions of other players and their reasoning,

A rational agent is assumed to have in mind

- a state space Ω,
- a (subjective) probability measure over Ω, and
- a consequence function $g : A \times \Omega \to C$

A rational agent is an expected (vNM) utility $u(g(a, \omega))$ maximizer.
Formalities (O 2.1; OR 2.1)

A strategic game of perfect information:

- a finite set N of players,
- for each player $i \in N$:
 - a non-empty set A_i of actions,
 - a preference relation \succeq_i on the set $A = \times_{j \in N} A_j$ of possible outcomes.

We will denote a strategic game by

$$\langle N, (A_i), (\succeq_i) \rangle$$

or by

$$\langle N, (A_i), (u_i) \rangle$$

when \succeq_i can be represented by a utility function $u_i : A \to \mathbb{R}$.

A two-player finite strategic game can be described conveniently in a bimatrix. For example, consider the 2×2 game

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>A_1, A_2</td>
<td>B_1, B_2</td>
</tr>
<tr>
<td>B</td>
<td>C_1, C_2</td>
<td>D_1, D_2</td>
</tr>
</tbody>
</table>