Microeconomics III

Bargaining I
The strategic approach
(May 13, 2012)

School of Economics
The Interdisciplinary Center (IDC), Herzliya
The strategic approach

The players bargain over a pie of size 1.

An agreement is a pair \((x_1, x_2)\) where \(x_i\) is player \(i\)’s share of the pie. The set of possible agreements is

\[
X = \{(x_1, x_2) \in \mathbb{R}^2_+ : x_1 + x_2 = 1\}
\]

Player \(i\) prefers \(x \in X\) to \(y \in X\) if and only if \(x_i > y_i\).
The bargaining protocol

The players can take actions only at times in the (infinite) set \(T = \{0, 1, 2, \ldots\} \). In each \(t \in T \) player \(i \), proposes an agreement \(x \in X \) and \(j \neq i \) either accepts (\(Y \)) or rejects (\(N \)).

If \(x \) is accepted (\(Y \)) then the bargaining ends and \(x \) is implemented. If \(x \) is rejected (\(N \)) then the play passes to period \(t + 1 \) in which \(j \) proposes an agreement.

At all times players have perfect information. Every path in which all offers are rejected is denoted as disagreement (\(D \)). The only asymmetry is that player 1 is the first to make an offer.
Preferences

Time preferences (toward agreements at different points in time) are the driving force of the model.

A bargaining game of alternating offers is

– an extensive game of perfect information with the structure given above, and

– player i’s preference ordering \lesssim_i over $(X \times T) \cup \{D\}$ is complete and transitive.

Preferences over $X \times T$ are represented by $\delta_i^t u_i(x_i)$ for any $0 < \delta_i < 1$ where u_i is increasing and concave.
Assumptions on preferences

A1 Disagreement is the worst outcome

For any \((x, t) \in X \times T\),

\[(x, t) \succ_i D\]

for each \(i\).

A2 Pie is desirable

– For any \(t \in T, x \in X\) and \(y \in X\)

\[(x, t) \succ_i (y, t)\] if and only if \(x_i > y_i\).
A3 **Time is valuable**

For any $t \in T$, $s \in T$ and $x \in X$

$$(x, t) \succ_i (x, s) \text{ if } t < s$$

and with strict preferences if $x_i > 0$.

A4 **Preference ordering is continuous**

Let $\{(x_n, t)\}_{n=1}^{\infty}$ and $\{(y_n, s)\}_{n=1}^{\infty}$ be members of $X \times T$ for which

$$\lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} y_n = y.$$

Then, $(x, t) \succ_i (y, s)$ whenever $(x_n, t) \succ_i (y_n, s)$ for all n.
A2-A4 imply that for any outcome \((x, t)\) either there is a unique \(y \in X\) such that

\[(y, 0) \sim_i (x, t)\]

or

\[(y, 0) \succ_i (x, t)\]

for every \(y \in X\).

Note \(\succsim_i\) satisfies A2-A4 \textit{iff} it can be represented by a continuous function

\[U_i : [0, 1] \times T \to \mathbb{R}\]

that is increasing (decreasing) in the first (second) argument.
A5 Stationarity

For any $t \in T$, $x \in X$ and $y \in X$

$$(x, t) \succeq_i (y, t + 1) \text{ if and only if } (x, 0) \succeq_i (y, 1).$$

If \succeq_i satisfies A2-A5 then for every $\delta \in (0, 1)$ there exists a continuous increasing function $u_i : [0, 1] \to \mathbb{R}$ (not necessarily concave) such that

$$U_i(x_i, t) = \delta_t^i u_i(x_i).$$
Present value

Define $v_i : [0, 1] \times T \rightarrow [0, 1]$ for $i = 1, 2$ as follows

$$v_i(x_i, t) = \begin{cases} y_i & \text{if } (y, 0) \sim_i (x, t) \\ 0 & \text{if } (y, 0) \succ_i (x, t) \end{cases}$$

for all $y \in X$.

We call $v_i(x_i, t)$ player i’s present value of (x, t) and note that

$$(y, t) \succ_i (x, s) \text{ whenever } v_i(y_i, t) > v_i(x_i, s).$$
If \(\preceq_i \) satisfies \textbf{A2-A4}, then for any \(t \in T \) \(v_i(\cdot, t) \) is continuous, non decreasing and increasing whenever \(v_i(x_i, t) > 0 \).

Further, \(v_i(x_i, t) \leq x_i \) for every \((x, t) \in X \times T \) and with strict whenever \(x_i > 0 \) and \(t \geq 1 \).

With \textbf{A5}, we also have that

\[
v_i(v_i(x_i, 1), 1) = v_i(x_i, 2)
\]

for any \(x \in X \).
Delay

A6 Increasing loss to delay

\[x_i - v_i(x_i, 1) \] is an increasing function of \(x_i \).

If \(u_i \) is differentiable then under A6 in any representation \(\delta_i u_i(x_i) \) of \(\succ_i \)

\[\delta_i u'_i(x_i) < u'_i(v_i(x_i, 1)) \]

whenever \(v_i(x_i, 1) > 0 \).

This assumption is weaker than concavity of \(u_i \) which implies

\[u'_i(x_i) < u'_i(v_i(x_i, 1)). \]
The single crossing property of present values

If \(\preceq_i \) for each \(i \) satisfies A2-A6, then there exist a unique pair \((x^*, y^*) \in X \times X\) such that

\[
y_1^* = v_1(x_1^*, 1) \quad \text{and} \quad x_2^* = v_2(y_2^*, 1).
\]

- For every \(x \in X \), let \(\psi(x) \) be the agreement for which

\[
\psi_1(x) = v_1(x_1, 1)
\]

and define \(H : X \to \mathbb{R} \) by

\[
H(x) = x_2 - v_2(\psi_2(x), 1).
\]
– The pair of agreements \(x \) and \(y = \psi(x) \) satisfies also \(x_2 = v_2(\psi_2(x), 1) \) if \(H(x) = 0. \)

– Note that \(H(0, 1) \geq 0 \) and \(H(1, 0) \leq 0 \), \(H \) is a continuous function, and

\[
H(x) = [v_1(x_1, 1) - x_1] +
+ [1 - v_1(x_1, 1) - v_2(1 - v_1(x_1, 1), 1)].
\]

– Since \(v_1(x_1, 1) \) is non decreasing in \(x_1 \), and both terms are decreasing in \(x_1 \), \(H \) has a unique zero by \textbf{A6}.
Examples

[1] For every \((x, t) \in X \times T\)

\[U_i(x_i, t) = \delta_i^t x_i \]

where \(\delta_i \in (0, 1)\), and \(U_i(D) = 0\).

[2] For every \((x, t) \in X \times T\)

\[U_i(x_i, t) = x_i - c_i t \]

where \(c_i > 0\), and \(U_i(D) = -\infty\) (constant cost of delay).

Although \textbf{A6} is violated, when \(c_1 \neq c_2\) there is a unique pair \((x, y) \in X \times X\) such that \(y_1 = v_1(x_1, 1)\) and \(x_2 = v_2(y_2, 1)\).
Strategies

Let X^t be the set of all sequences $\{x^0, \ldots, x^{t-1}\}$ of members of X.

A strategy of player 1 (2) is a sequence of functions

$$\sigma = \{\sigma^t\}_{t=0}^\infty$$

such that $\sigma^t : X^t \rightarrow X$ if t is even (odd), and $\sigma^t : X^{t+1} \rightarrow \{Y, N\}$ if t is odd (even).

The way of representing a player’s strategy in closely related to the notion of automation.
Nash equilibrium

For any $\bar{x} \in X$, the outcome $(\bar{x}, 0)$ is a NE when players’ preference satisfy $A1$-$A6$.

To see this, consider the stationary strategy profile

<table>
<thead>
<tr>
<th>Player 1</th>
<th>proposes</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>accepts</td>
<td>$x_1 \geq \bar{x}_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
<th>proposes</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>accepts</td>
<td>$x_2 \geq \bar{x}_2$</td>
</tr>
</tbody>
</table>

This is an example for a pair of one-state automata.

The set of outcomes generated in the Nash equilibrium includes also delays (agreements in period 1 or later).
Subgame perfect equilibrium

Any bargaining game of alternating offers in which players’ preferences satisfy A1-A6 has a unique SPE which is the solution of the following equations

\[y_1^* = v_1(x_1^*, 1) \text{ and } x_2^* = v_2(y_2^*, 1). \]

Note that if \(y_1^* > 0 \) and \(x_2^* > 0 \) then

\[(y_1^*, 0) \sim_1 (x_1^*, 1) \text{ and } (x_2^*, 0) \sim_2 (y_2^*, 1). \]
The equilibrium strategy profile is given by

<table>
<thead>
<tr>
<th>Player 1</th>
<th>proposes</th>
<th>(x^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>accepts</td>
<td>(y_1 \geq y_1^*)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
<th>proposes</th>
<th>(y^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>accepts</td>
<td>(x_2 \geq x_2^*)</td>
</tr>
</tbody>
</table>

The unique outcome is that player 1 proposes \(x^* \) in period 0 and player 2 accepts.
Step 1 \((x^*, y^*)\) is a SPE

Player 1:

- proposing \(x^*\) at \(t^*\) leads to an outcome \((x^*, t^*)\). Any other strategy generates either

\[
(x, t) \text{ where } x_1 \leq x_1^* \text{ and } t \geq t^*
\]

or

\[
(y^*, t) \text{ where } t \geq t^* + 1
\]

or \(D\).

- Since \(x_1^* > y_1^*\) it follows from A1-A3 that \((x^*, t^*)\) is a best response.
Player 2:

- accepting x^* at t^* leads to an outcome (x^*, t^*). Any other strategy generates either

\[
(y, t) \text{ where } y_2 \leq y^*_2 \text{ and } t \geq t^* + 1
\]

or

\[
(x^*, t) \text{ where } t \geq t^*
\]

or D.
– By A1-A3 and A5

\[(x^*, t^*) \preceq_2 (y^*, t^* + 1)\]

and thus accepting \(x^*\) at \(t^*\), which leads to the outcome \((x^*, t^*)\), is a best response.

Note that similar arguments apply to a subgame starting with an offer of player 2.
Step 2 \((x^*, y^*)\) is the unique \(SPE\)

Let \(G_i\) be a subgame starting with an offer of player \(i\) and define

\[
M_i = \sup \{v_i(x_i, t) : (x, t) \in SPE(G_i)\},
\]

and

\[
m_i = \inf \{v_i(x_i, t) : (x, t) \in SPE(G_i)\}.
\]

It is suffices to show that

\[
M_1 = m_1 = x_1^* \text{ and } M_2 = m_2 = y_2^*.
\]
First, note that in any SPE the first offer is accepted because
\[v_1(y_1^*, 1) \leq y_1^* < x_1^*. \]
Thus, after a rejection, the present value for player 1 is less than \(x_1^* \).

Then, it remains to show that
\[m_2 \geq 1 - v_1(M_1, 1) \tag{1} \]
and
\[M_1 \leq 1 - v_2(m_2, 1). \tag{2} \]
1 implies that the pair \((M_1, 1 - m_2)\) lies below the line
\[y_1 = v_1(x_1, 1) \]
and 2 implies that the pair \((M_1, 1 - m_2)\) lies to the left the line
\[x_2 = v_2(y_2, 1). \]

Thus,
\[M_1 = x_1^* \text{ and } m_2 = y_2^*, \]
and with the role of the players reversed, the same argument show that
\[M_2 = y_2^* \text{ and } m_1 = x_1^*. \]
With constant discount rates the equilibrium condition implies that

\[y_1^* = \delta_1 x_1^* \text{ and } x_2^* = \delta_2 y_2^* \]

so that

\[x^* = \left(\frac{1 - \delta_2}{1 - \delta_1 \delta_2}, \frac{\delta_2(1 - \delta_1)}{1 - \delta_1 \delta_2} \right) \text{ and } y^* = \left(\frac{\delta_1(1 - \delta_2)}{1 - \delta_1 \delta_2}, \frac{1 - \delta_1}{1 - \delta_1 \delta_2} \right). \]
Thus, if \(\delta_1 = \delta_2 = \delta \) (\(v_1 = v_2 \)) then

\[
x^* = \left(\frac{1}{1 + \delta}, \frac{\delta}{1 + \delta} \right) \quad \text{and} \quad y^* = \left(\frac{\delta}{1 + \delta}, \frac{1}{1 + \delta} \right)
\]

so player 1 obtains more than half of the pie.

But, shrinking the length of a period by considering a sequence of games indexed by \(\Delta \) in which \(u_i = \delta_i^\Delta x_i \) we have

\[
\lim_{\Delta \to 0} x^*(\Delta) = \lim_{\Delta \to 0} y^*(\Delta) = \left(\frac{\log \delta_2}{\log \delta_1 + \log \delta_2}, \frac{\log \delta_1}{\log \delta_1 + \log \delta_2} \right).
\]