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OPTIMAL INVARIANT INFERENCE
WHEN THE NUMBER OF
INSTRUMENTS IS LARGE
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This paper studies the asymptotic behavior of a Gaussian linear instrumental
variables model in which the number of instruments diverges with the sample
size. Asymptotic efficiency bounds are obtained for rotation invariant inference
procedures and are shown to be attainable by procedures based on the limited infor-
mation maximum likelihood estimator. The bounds are obtained by characterizing
the limiting experiment associated with the model induced by the rotation invariance
restriction.

1. INTRODUCTION

This paper is concerned with asymptotic efficiency in a linear instrumental varia-
ble (IV) regression model with Gaussian errors and a “large” number of IVs.1

A noteworthy feature, which distinguishes models with a large number of IVs
from models with a fixed number of (strong) IVs, is that models of the former
type exhibit the nonstandard property that the two stage least squares (2SLS) and
limited information maximum likelihood (LIML) estimators of structural coeffi-
cients are not asymptotically equivalent, even to first order. On the other hand, the
fact that the LIML estimator is asymptotically normally distributed (albeit with
a nonstandard variance) suggests that the complications faced in models with a
large number of IVs are much less severe than those encountered in models with
a fixed number of weak IVs.2

The overall objective of the present paper is to investigate the extent to which
models with a large numbers of IVs are fundamentally nonstandard (i.e., exhibit
properties qualitatively similar to the properties of models with a fixed number
of weak IVs) and/or amenable to statistical analysis using essentially standard
tools (i.e., exhibit properties qualitatively similar to the properties of models with
a fixed number of strong IVs). More specifically, the purpose of the paper is
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twofold. First, the paper seeks to obtain a characterization of the limiting
experiment associated with a sequence of models in which the number of IVs
tends to infinity with the sample size. Second, the paper will attempt to use
such a characterization of the limiting experiment to obtain attainable asymptotic
efficiency bounds for inference procedures involving the structural parameter of
our model and explore whether these bounds are attained by procedures currently
available in the literature.

Upon imposing a rotation invariance restriction (motivated by an invariance
property of the model under consideration) and employing assumptions that are
standard in the literature, we find that the likelihood ratios of the resulting model
are locally asymptotically normal (LAN). In other words, the limiting experiment
is a Gaussian shift experiment, the statistical properties of which depend solely
on its information matrix. This result constitutes our first main finding. The in-
formation matrix of the limiting experiment is found to depend smoothly on the
parameter that characterizes the asymptotic behavior of the number of IVs.
In relation to the existing literature, an attractive feature of the smooth depen-
dence on the parameter characterizing the number of IVs is that it enables us
to provide a unified treatment of the limiting experiments obtained by employing
many weak instrument (MWI) asymptotics (e.g., Chao and Swanson, 2005; Stock
and Yogo, 2005; Hansen, Hausman, and Newey, 2005) and many instrument (MI)
asymptotics (e.g., Kunitomo, 1980; Morimune, 1983; Bekker, 1994; Hahn, 2002;
Hansen, Hawman, and Newey, 2005), respectively.

Our second main finding is that the efficiency bounds for estimation and testing
implied by the structure of the limiting experiment(s) are sharp, being attained
by procedures based on the LIML estimator and its asymptotic equivalents.3

In particular, the LIML estimator is asymptotically efficient among regular, rota-
tion invariant estimators. Moreover, because of the LAN structure of the model,
estimation and testing are dual problems, and the efficiency result for LIML
furthermore implies that one- and two-sided Wald tests based on LIML enjoy
asymptotic optimality properties.4

In combination, our main findings therefore show that there is a precise sense
in which the problem of doing inference on a structural coefficient is “standard”
in an MI/MWI setting, the only modifications (relative to the conventional strong
IV setting) required being that the class of available asymptotically efficient esti-
mators is smaller and that more care must be exercised when obtaining standard
errors for these estimators. This property is not shared by a model with a fixed
number of weak IVs, and our main findings therefore shed further light on the dif-
ference between the nature of the problems caused by weak IVs and MIs/MWIs,
respectively.

The paper most closely related to the present paper is probably Hahn (2002).
That paper studies a model virtually identical to the model studied herein, obtains
a characterization of the limiting experiment associated with a sequence of mod-
els that do not impose rotation invariance, and uses the limiting experiment to
derive an efficiency bound for regular estimators of the structural parameter.
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The efficiency bound derived by Hahn (2002) is more ambitious than that ob-
tained herein in the sense that it is obtained without imposing rotation invariance.
On the other hand, it remains an open question whether the Hahn (2002) bound
is attainable in the absence of fairly strong prior knowledge about the relative
strength of the available IVs. In contrast, the efficiency bound obtained in this
paper is demonstrably sharp. Another related paper is Anderson, Kunitomo, and
Matsushita (2006), which establishes an efficiency result for LIML that is com-
plementary to ours in the sense that it pertains to a smaller class of estimators
than those considered herein, but is obtained under less restrictive distributional
assumptions (i.e., without assuming normality). Finally, the large-sample distribu-
tional properties of procedures based on LIML and the Fuller (1977) modification
thereof (whose asymptotic optimality properties are established herein under the
assumption of normality) have been shown by Hansen et al. (2005) to be invari-
ant to the underlying error distribution under relatively mild assumptions on the
errors.

Section 2 introduces the model. The main results of the paper are collected in
Section 3 and proved in Section 4.

2. THE MODEL

We consider a model with one endogenous variable, no exogenous variables, and
K nonrandom IVs. The model consists of a structural equation and a reduced
form equation given by

y1 = y2β +u,

y2 = Z�+ v2, (1)

where y1 and y2 are n-dimensional vectors of endogenous variables, Z is an n× K
full column rank matrix of nonrandom IVs, the scalar β and the K -dimensional
vector � are parameters, and each row of the n ×2 matrix of disturbances (u,v2)
is assumed to be independent and identically distributed (i.i.d). Gaussian with
mean zero and a nonsingular covariance matrix.5

The reduced form equations, relating the endogenous variables to the IVs, can
be written as

y1 = Z�β + v1,

y2 = Z�+ v2, (2)

where v1 = u +v2β. We denote the reduced form covariance matrix by �; that is,
� is (implicitly) defined by the assumption that

vec(v1,v2) ∼N (0,�⊗ In) . (3)

Our goal is to obtain attainable asymptotic efficiency bounds for inference pro-
cedures concerning β in the presence of the unknown nuisance parameters � and
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� in a sequence of models (indexed by n, the sample size) in which the number
of IVs is “large” in the sense that K , the dimension of �, tends to infinity with n.

Inference in this setting is potentially problematic for two reasons. First,
although the assumption of Gaussianity implies that the probability model for
Y = (y1, y2) constitutes an exponential family of distributions, this exponential
family is curved (in the terminology of Efron, 1975) whenever K > 1. This is
so because the parameter space is of smaller dimension than the pair of minimal
sufficient statistics

(
Z ′Z
)−1/2

Z ′Y and S⊥ = vech
[
Y ′ (In − PZ )Y

]
, where (·)1/2

denotes the symmetric square root of the argument and PZ = Z
(

Z ′Z
)−1

Z ′ is
the projection matrix onto the column space of Z . (The dimension of the param-
eter space is K + 4, and the minimal sufficient statistic is of dimension 2K + 3.)
Second, under the asymptotics considered herein the dimensions of the sufficient
statistic and of the nuisance parameter tend to infinity as the sample size increases
without bound, potentially introducing an incidental parameter-type problem.

To avoid the latter potential difficulty we follow Andrews, Moreira, and Stock
(2006) and focus on those inference procedures that (a) depend on Y through the
sufficient statistics

(
Z ′Z
)−1/2

Z ′Y and S⊥ and (b) are invariant under transfor-

mations of the form
[(

Z ′Z
)−1/2

Z ′Y, S⊥
]

→
[
O (Z ′Z

)−1/2
Z ′Y, S⊥

]
, for every

orthogonal K × K matrix O.6 The (rotation) invariance restriction (b) and the
sufficiency argument (a) allow us to reduce the data to a six-dimensional statistic
given by the pair of random vectors S = (S11, S12,S22)

′ and S⊥ = (S⊥
11, S⊥

12,S
⊥
22)

′,
whose components are of the form Si j = y′

i PZ yj and S⊥
i j = y′

i (In − PZ ) yj ,
respectively.

The restrictions we impose are satisfied by any procedure based on a member
of the familiar k-class of estimators, provided that the (possibly sample depen-
dent) parameter k is rotation invariant. In particular, inference procedures based
on 2SLS, bias adjusted 2SLS (Nagar, 1959), LIML, and the Fuller (1977) modifi-
cation of LIML are covered by our results, as are procedures based on the random
effects quasi–maximum likelihood estimators of Chamberlain and Imbens (2004).
Furthermore, the restrictions are satisfied by many testing procedures robust to
weak IVs, such as those of Anderson and Rubin (1949), Kleibergen (2002),
Moreira (2003), and Andrews et al. (2006). Excluded from consideration, on the
other hand, are inference procedures that utilize only a subset of the available IVs
(e.g., Donald and Newey, 2001).

The matrices Y ′ PZ Y and Y ′ (In − PZ )Y are independent with (noncentral
Wishart) distributions depending only on K and the parameters β, Q, and �,
where

Q = K −1�′Z ′Z�. (4)

Therefore, the K -dimensional nuisance parameter � affects the distribution of(
S, S⊥) only through the scalar nuisance parameter Q, which itself is propor-

tional to the so-called concentration parameter, a unitless measure of the strength
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of the IVs, which plays an important role in the IV literature (e.g., Rothenberg,
1984; Stock, Wright, and Yogo, 2002).

Although considerable simplification is achieved by imposing rotation invari-
ance, the first potential difficulty remains a possible cause for concern because the
dimension of

(
S, S⊥) exceeds that of the associated parameter space. One of the

main conclusions of this paper is that this discrepancy vanishes asymptotically in
an MI/MWI framework where K and �′Z ′Z� tend to infinity at the same rate.
Indeed, our results show that there is a precise sense in which the problem of
doing inference on β is “standard” in an MI/MWI setting.

3. RESULTS

This section characterizes the limiting experiment(s) associated with the sequence
of probability models for

(
Sn, S⊥

n

)
under MI and MWI asymptotics. The charac-

terization of the limiting experiment(s) will be obtained by studying a sequence
of models in which the dimension of the IVs is a sequence {Kn} satisfying

limn→∞ Kn = ∞ and limn→∞
Kn

n − Kn
= α, (5)

where the scalar α satisfies α ∈ [0,∞). In other words, the ratio Kn/(n − Kn)
of the degrees of freedom parameters associated with Sn and S⊥

n , respectively,
is assumed to be convergent (with limit α). The parameters β and � are mod-
eled as convergent sequences {βn} and {�n} with limits denoted by β0 and �0,
respectively. Finally, in the spirit of Hansen et al. (2005) (and many others), we
model the degree of identification Q as a convergent sequence {Qn} whose limit
is denoted by Q0. Specifically, we employ reparameterizations of the form

βn = β0 + K −1/2
n hβ, (6)

Qn = Q0 + Q0 K −1/2
n hQ, (7)

and

vech(�n) = vech(�0)+
⎛
⎝1 2β0 β2

0
0 1 β0
0 0 1

⎞
⎠(n − Kn)−1/2 h�, (8)

where β0, �0, and Q0 are treated as known, whereas h = (hβ,hQ,h′
�

)′ ∈ R5

is a vector of unknown parameters.7 Accordingly, we index probability distribu-
tions by h and denote the density of

(
Sn, S⊥

n

)
by fn (·|h) . Among the elements of

h, hβ is the parameter of interest, whereas hQ and h� act as nuisance parameters.
Most papers in the existing literature distinguish between MI and MWI asymp-

totics (e.g., Hansen et al., 2005), the key difference between the two arguably
being that the number of IVs is modeled as a vanishing fraction of the sample
size under MWI asymptotics. In models with possibly non-Gaussian errors, a
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further difference between MI and MWI asymptotics is that more stringent regu-
larity conditions appear to be required when developing distribution theory under
the former type of asymptotics. Because of the fact that Gaussianity is assumed
herein, there is no need to distinguish sharply between MI and MWI asymptotics,
and it is sufficient to regard the latter as being the special case of the former in
which α = 0.

Theorem 1, our main result, shows that the likelihood ratios of the sequence of
local experiments for

(
Sn, S⊥

n

)
are LAN. The formulation of the theorem delib-

erately highlights only those features of the limiting experiment that will prove
important when obtaining asymptotic efficiency bounds, relegating to the proof
a complete description of the limiting experiment. Let op0 (1) be shorthand for
“op (1) under the distributions associated with h = 0” and let →d0 abbreviate
“→d under the distributions associated with h = 0.”

THEOREM 1. If (5)–(8) hold, then

log
fn
(

Sn, S⊥
n |h)

fn
(

Sn, S⊥
n |0) = h′V −1

α �n − 1

2
h′V −1

α h +op0 (1) ∀h ∈ R5,

where �n →d0 N (0,Vα) and Vα ∈ R5×5 has first diagonal element equal to

Vα,ββ = Q−1
0 (1,−β0)�0 (1,−β0)

′ + Q−2
0 (1+α) |�0| . (9)

It follows from Theorem 1 that the limiting experiment depends on Kn only
through α. In fact, the limiting experiment depends smoothly on α, implying that
the MWI and MI cases can be treated in a unified way, the former (which has
α = 0) being a limiting case of the latter (which has 0 < α < ∞).

Let

S̃n = Sn −E0 (Sn)

Q0
√

Kn
, S̃⊥

n = S⊥
n −E0

(
S⊥

n

)
√

n − Kn
, (10)

where E0 denotes expectation computed under the distribution associated with
h = 0. The proof of Theorem 1 utilizes the fact that for any h, we have a conver-
gence result of the form

(
S̃n

S̃⊥
n

)
→dh N

[(
hS +√

αQ−1
0 h�

h�

)
,

(
� 0
0 �⊥

)]
, (11)

where hS = (0,hβ,hQ
)′ and →dh abbreviates “→d under the distributions as-

sociated with h.” (The matrices � and �⊥ are defined in the proof of Theorem
1.) The pointwise convergence (11) is not sufficient to prove Theorem 1, though.
Certain uniformity is required.8 We use normality of (v1,v2) to establish such
uniformity.
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An important implication of Theorem 1 is that the asymptotic optimality prob-
lem concerning estimation of β is isomorphic to the optimality problem con-
cerning estimation of hβ in the experiment based on one observation from an
N (h,Vα) distribution. In particular, proceeding as in van der Vaart (1998) it is
possible to conclude that a regular, rotation invariant estimator β̂n of β is asymp-
totically efficient (among regular, rotation invariant estimators) if

√
Kn

(
β̂n −β0

)
→d0 N

(
0,Vα,ββ

)
. (12)

(A rotation invariant estimator β̂n is regular if there exists a random variable B
such that

√
Kn

(
β̂n −βn

)
→dh B for every h ∈ R5.)

This is not the first efficiency bound derived in the MI literature. Employing
distributional assumptions very similar to ours, Hahn (2002) elegantly obtains an
efficiency bound for the structural parameter in a linear simultaneous equations
model under MI asymptotics without imposing a rotation invariance restriction.
The bound derived by Hahn (2002) is strictly smaller than that obtained here, but
we are not aware of any estimators that attain that bound. In contrast, it turns out
that the bound reported in (12) is attainable. Indeed, it follows from Theorem 1 of
Anderson et al. (2006) that the LIML estimator satisfies (12) . As a consequence,
we have the following result.

COROLLARY 2. Under the assumptions of Theorem 1, the LIML estimator
is asymptotically efficient among regular, rotation invariant estimators.

This efficiency property of LIML is not shared by the 2SLS estimator (which
is inconsistent in general), but it follows from Hansen et al. (2005) that the Fuller
(1977) modification of LIML is asymptotically equivalent to LIML (and hence
asymptotically efficient) under the assumptions made herein.

It follows from Bekker (1994) that the LIMLK (i.e., LIML with known �, the
known � being �0) estimator β̂L I M L K ,n satisfies

√
Kn

(
β̂L I M L K ,n −β0

)
→d0 N

(
0,V0,ββ

)
. (13)

The LIMLK estimator is therefore superior to the LIML estimator whenever
α > 0. In fact, Theorem 1 can be used to show that β̂L I M L K ,n is asymptotically
efficient when � is known, and so the quantity V −1

0,ββ − V −1
α,ββ can be interpreted

as the information content of � when α > 0.
Corollary 2 is related to Theorem 2 of Anderson et al. (2006). The latter gives

conditions under which LIML is efficient among consistent estimators that can be
represented as φ

[
Sn/Kn, S⊥

n /(n − Kn)
]

for some smooth function φ (not depend-
ing on n). (In the context of MI asymptotics, a similar result can also be found in
van der Ploeg and Bekker, 1995, and Hahn, 2002.) The class of estimators covered
by Theorem 2 of Anderson et al. (2006) is a strict subset of the class of regular
estimators.9 As a consequence, Corollary 2 is a stronger result than Theorem 2 of
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Anderson et al. (2006) under the assumptions made herein.10 On the other hand,
because Anderson et al. (2006) do not assume normality, their Theorem 2 is not a
special case of Corollary 2.11

In addition to enabling us to generalize the Anderson et al. (2006) efficiency re-
sult to the class of all regular estimators, Theorem 1 and Corollary 2 make it pos-
sible to show that one-sided (two-sided) Wald tests centered around LIML (and
employing Bekker, 1994, standard errors, as in Hansen et al., 2005) are asymptot-
ically uniformly most powerful (unbiased) among rotation invariant testing pro-
cedures. Precise statements can be found in Choi, Hall, and Schick (1996, Sects.
3 and 4); to conserve space, we do not replicate their results here. In other words,
the LAN property implies that estimation and testing are dual problems that do
not require separate treatment.12 In this precise sense, the statistical properties of
the MWI and WI frameworks are “standard” and closely resemble the properties
of the conventional (strong IV) asymptotics framework associated with fixed K
and fixed �.

4. PROOFS

Proof of Theorem 1. The proof proceeds under the assumption that β0 = 0.
This assumption simplifies the algebra but entails no loss of generality, as it sim-
ply corresponds to a model in which y1 and � have been replaced by y1 −β0 y2
and(

1 −β0
0 1

)
�

(
1 −β0
0 1

)′
,

respectively.
We start by establishing (11) for

�⊥ =
⎛
⎝ 2ω2

11,0 2ω12,0ω11,0 2ω2
12,0

2ω12,0ω11,0 ω2
12,0 +ω11,0ω22,0 2ω12,0ω22,0

2ω2
12,0 2ω12,0ω22,0 2ω2

22,0

⎞
⎠

and

� = Q−1
0

⎛
⎝0 0 0

0 ω11,0 2ω12,0
0 2ω12,0 4ω22,0

⎞
⎠+ Q−2

0 �⊥,

where ωi j,0 denotes element (i, j) of �0. Proceeding as in Hahn (2002), it can be
shown that(

S̃n −μn (h)

S̃⊥
n −μ⊥

n (h)

)
→dh N

[(
0
0

)
,

(
� 0
0 �⊥

)]
∀h, (14)

where μn (h) = Eh

(
S̃n

)
− E0

(
S̃n

)
, μ⊥

n (h) = Eh

(
S̃⊥

n

)
− E0

(
S̃⊥

n

)
, and Eh

denotes expectation computed under the distribution associated with h. Moreover,
it follows from simple calculations that
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μn (h) = hS +√
αQ−1

0 h� +o (1) (15)

and

μ⊥
n (h) = h�. (16)

The result (11) follows from (14)–(16) .
Next, to define the objects �n and Vα, let

(
σAA σAB

σB A �B B

)
=
(

� +αQ−2
0 �⊥ −√

αQ−1
0 �⊥

−√
αQ−1

0 �⊥ �⊥
)

,

where the matrix on the left is partitioned after the first row and column. Define

(
δn

�n

)
=
(

1 0
−σB Aσ−1

AA I5

)(
S̃n −√

αQ−1
0 S̃⊥

n
S̃⊥

n

)

and

(
Vα,δδ 0

0 Vα

)
=
(

1 0
−σB Aσ−1

AA I5

)(
σAA σAB

σB A �B B

)(
1 0

−σB Aσ−1
AA I5

)
.

(The objects δn and Vα,δδ are scalars.) It follows from (11) that

(
δn

�n

)
→dh N

[(
0
h

)
,

(
Vα,δδ 0

0 Vα

)]
. (17)

In particular, �n →dh N (h,Vα) . Moreover, because the upper left 2×2 block of
� +αQ−2

0 �⊥ is

Q−1
0

(
0 0
0 ω11,0

)
+ (1+α) Q−2

0

(
2ω2

11,0 2ω12,0ω11,0

2ω12,0ω11,0 ω2
12,0 +ω11,0ω22,0

)
,

the first diagonal element of Vα is given by Vα,ββ .
Because (δn,�n) is obtained from

(
Sn, S⊥

n

)
by a bijective affine transforma-

tion,

log
fn
(

Sn, S⊥
n |h)

fn
(

Sn, S⊥
n |0) = log

gn (δn,�n|h)

gn (δn,�n|0)
,

where gn (·|h) denotes the density of (δn,�n) . In addition, it follows from (17)
that the (continuous and strictly positive) densities g∞ of the limiting distribution



802 LAURA CHIODA AND MICHAEL JANSSON

of (δn,�n) satisfy

log
g∞ (δ,�|h)

g∞ (δ,�|0)
= h′V −1

α �− 1

2
h′V −1

α h.

The proof of Theorem 1 can therefore be completed by showing that gn (·|h)
converges to g∞ (·|h) in the topology of uniform convergence on compacta (for
every h ∈ R5).

To do so, fix h ∈R5 and let ϕn (·|h) denote the characteristic function associated
with gn (·|h) ; that is, let

ϕn (s, t |h) =
∫
R

∫
R5

exp
[
i
(
sδ + t ′�

)]
gn (δ,�|h)d�dδ.

Similarly, let ϕ∞ (·|h) denote the characteristic function associated with g∞ (·|h) .
Using Muirhead (1982, Thm. 10.3.3) and the proof of that theorem, simple bound-
ing arguments can be used to show that there exists a finite integer Nh (the value
of which depends on h) for which

∫
R

∫
R5

supn≥Nh
|ϕn (s, t |h)|dt ds < ∞. (18)

This dominance result implies that

gn (δ,�|h) = 1

(2π)6

∫
R

∫
R5

exp
[−i
(
sδ + t ′�

)]
ϕn (s, t |h)dt ds (19)

for every n ≥ Nh (by the inversion formula for characteristic functions) and
furthermore justifies our subsequent applications of the dominated convergence
theorem.

It follows from (17) that ϕn (·|h) converges pointwise to ϕ∞ (·|h) . This fact,
the dominated convergence theorem, and (18)–(19) can be used to show that (a)
gn (·|h) converges pointwise to g∞ (·|h) and (b) the family {gn (·|h) : n ≥ Nh} is
(uniformly) equicontinuous. By Rudin (1976, Prob. 7.16), these properties imply
that gn (·|h) converges to g∞ (·|h) in the topology of uniform convergence on
compacta. n

Proof of Corollary 2. Because it follows from Theorem 1 of Anderson et al.
(2006) that the LIML estimator satisfies (12) , it suffices to show that a regular,
invariant estimator is asymptotically efficient if it satisfies (12). The latter asser-
tion can be proved in the same way as Theorem 8.8 of van der Vaart (1998).
Specifically, an inspection of the proof of Theorem 8.8 of van der Vaart (1998)
shows that the assumption of differentiability in quadratic mean is used only to
justify the use of a simplified version of the asymptotic representation theorem
(van der Vaart, 1998, Thm. 7.10). Moreover, it follows from van der Vaart (1998,



OPTIMAL INVARIANT INFERENCE 803

Ch. 9) and Theorem 1 that the van der Vaart (1991) version of the asymptotic
representation theorem is valid under the assumptions made herein. n

NOTES

1. Here, and elsewhere in the paper, concepts such as “large,” “strong,” and “weak” are left unde-
fined, but the usage of these adjectives follows the conventions of the existing IV literature.

2. The complications caused by weak IVs are well documented and have been studied intensively
in recent years, important contributions being Dufour (1997), Staiger and Stock (1997), Kleibergen
(2002), Moreira (2003), and Andrews et al. (2006). For reviews, see, for example, Stock et al. (2002),
Dufour (2003), Hahn and Hausman (2003), and Andrews and Stock (2007).

3. As shown by Hansen et al. (2005), the class of estimators that are asymptotically equivalent to
LIML (in the appropriate sense) includes the Fuller (1977) modification of LIML but does not include
the 2SLS estimator.

4. It follows from Hansen et al. (2005) that such Wald tests should employ standard errors that
account for the number of IVs, such as Bekker (1994) standard errors.

5. Throughout Section 2, we simplify the notation by suppressing the dependence of variables,
parameters, and so on, on n.

6. The invariance restriction is motivated by the fact that inference problems concerning β are

invariant under transformations of the form
[(

Z ′ Z
)−1/2 Z ′Y, S⊥]→

[
O (Z ′ Z

)−1/2 Z ′Y, S⊥] , as

the induced transformations [β,π,�] →
[
β,
(

Z ′ Z
)−1/2O (Z ′ Z

)1/2
π,�
]

of the parameters leave β

(and �) unchanged.
7. The reparameterizations employed are chosen in such a way that (a) the distributions associated

with different values of h are mutually absolutely contiguous and (b) the resulting limiting experiment
depends on h in a simple way. Requirement (a) gives rise to the rates

√
Kn ,

√
Kn , and

√
n − Kn

in equations (6) , (7) , and (8) , whereas (b) governs the choice of the multiplicative constants in the
“drift” terms in these equations.

8. Theorem 1 is a statement about the limiting behavior of likelihood ratios. To show that this
limiting behavior coincides with the behavior of the likelihood ratios obtained from the limiting distri-

butions characterized in (11) we use the normality of (v1,v2) to show that the densities of
(

S̃n , S̃⊥
n

)
converge to the densities of the associated limiting distributions in the topology of uniform conver-
gence on compacta.

9. The estimators considered by Anderson et al. (2006) satisfy
√

Kn

(
φ
[

Sn/Kn , S⊥
n /(n − Kn)

]
−

βn) →dh N
(

0,V φ
α,ββ

)
∀h ∈ R5 for some matrix V φ

α,ββ ≥ Vα,ββ . In particular φ
[

Sn/Kn , S⊥
n /

(n − Kn)] is regular, but the class of regular estimators also contains estimators whose associated
normalized estimation error has a limiting distribution that is non-Gaussian and/or has a nonzero
mean.

10. A further difference between our results and those of Anderson et al. (2006) is that Theorem 1
of the present paper makes it possible to establish another optimality property (of the local asymptotic
minimax variety) for LIML that avoids the assumption of regularity altogether. To conserve space, we
omit a precise statement and refer the reader to van der Vaart (1998, Sect. 8.7) for details.

11. Theorem 2 of Anderson et al. (2006) is a corollary of a convergence in distribution result of
the form (11) , whose validity does not require normality. In contrast, the full force of Theorem 1
(a stronger result, the proof of which relies more heavily on normality) is utilized when obtaining
Corollary 2.

12. In contrast, there is no such duality between estimation and testing in the weak IV case, where
Kn is fixed and � is O

(
1/

√
n
)
. As we have argued elsewhere, the weak IV scenario furthermore

has the property that a case can be made for conducting conditional inference. (For details, see Chioda
and Jansson, 2005.) Our argument for doing conditional inference in that setting hinges on the limiting
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experiment not being a Gaussian shift experiment, and so a further implication of the main result of
the present paper is that there does not appear to be any compelling reason to do conditional inference
when the number of instruments is best modeled as a divergent sequence.
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