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This paper proposes a notion of near cointegration and generalizes several exist-
ing results from the cointegration literature to the case of near cointegration+ In
particular, the properties of conventional cointegration methods under near co-
integration are characterized, thereby investigating the robustness of cointegra-
tion methods+ In addition, we obtain local asymptotic power functions of five
cointegration tests that take cointegration as the null hypothesis+

1. INTRODUCTION

In a highly influential Monte Carlo study, Granger and Newbold~1974! con-
sidered regressions of independent random walks on each other and found that
the usual significance test based on the regressionF-statistic tends to over-
reject the null+ To describe this phenomenon, the termspurious regressionwas
coined+1 The numerical findings of Granger and Newbold are given an analyt-
ical explanation by Phillips~1986!, whereas Park, Ouliaris, and Choi~1988!
and Park~1990! provide further clarification+ These authors consider regres-
sions involving quite general integrated processes and show that the asymp-
totic properties of the appropriateF-statistic depend crucially onr2, the squared
multiple correlation coefficient computed from the long-run covariance matrix
of the underlying innovation sequence+ If r2 , 1, the F-statistic diverges at
rateT ~whereT is the sample size! whereasT21 3 F has a nondegenerate lim-
iting distribution, which only depends on the dimension of the system+ In other
words, the regression is spurious whenever the coefficient of correlation is less
than unity+ In contrast, whenr2 5 1 the series are cointegrated andF 5 Op~1!
with a complicated limiting distribution+ Conventional asymptotic results there-
fore depend discontinuously onr2+
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On the other hand, it is quite obvious that the finite sample distribution of
the F-statistic depends continuously onr2+ As a consequence, there is reason
to believe that spurious regression asymptotics provide a poor approximation
to the finite sample behavior of theF-statistic when the processes are “nearly”
cointegrated in the sense thatr2 is “close” to unity+ More generally, finite sam-
ple approximations based on spurious regression theory are likely to be of lim-
ited usefulness whenever the limiting behavior of the object of interest~e+g+, an
estimator or a test statistic! exhibits a discontinuity atr2 5 1 and values ofr2

close to unity are of particular interest+ In contrast, a model of near cointegra-
tion in whichr2 is a sequence of parameters lying in a shrinking neighborhood
of unity asT tends to infinity is much more appealing in such situations+

Motivated by these considerations, the present paper introduces a model in
which r2 is a primitive parameter and uses this model to propose a notion of
near cointegration+2 By construction, the limiting behavior of theF-statistic de-
pends continuously onr2 in our setup, and the model of near cointegration can
therefore be used to bridge the gap between spurious regression and cointegra-
tion with respect to the limiting behavior of theF-statistic+3 We use the model
of near cointegration to generalize several existing results from the cointegra-
tion literature to the case of near cointegration+ In particular, the robustness of
cointegration methods is investigated+We characterize the limiting behavior un-
der near cointegration of the usual Wald statistic devised to test hypotheses on
a cointegrating vector and show that the limiting distribution obtained under
near cointegration stochastically dominates thex2 distribution applicable un-
der cointegration+ This result complements Elliott’s recent study~1998!, where
the implications of near integration in exactly cointegrated models are exam-
ined+ In addition to studying the robustness of cointegration methods, we char-
acterize the behavior of five regression based cointegration tests under local
alternatives and compute the corresponding local asymptotic power functions+
Among the tests under study, three are found to have virtually identical local
asymptotic power properties, whereas the remaining two are significantly infe-
rior in terms of local asymptotic power+

The paper proceeds as follows+ In Section 2, we introduce our model+ Sec-
tion 3 discusses the behavior of regression estimators under near cointegration,
and Section 4 contains the corresponding results for inference procedures based
on these estimators+ In Section 5, we report the behavior of several cointegra-
tion tests under near cointegration+ Finally, Section 6 offers a few concluding
remarks+ Proofs of all results of the paper are outlined in the Appendix+

Before we begin, a word on notation+ The inequality. 0 signifies positive
definiteness when applied to square matrices, and 7{7 is the Euclidean norm+
For any symmetricA . 0, A2102 5 ~A102!21 and A102 is the upper triangular
matrix with positive diagonal elements such thatA102A102' 5 A+ The symbols
5
L, rd, andrp signify equality in law, convergence in distribution, and con-

vergence in probability, respectively+ Finally, to simplify the notation integrals
such as*0

1 W~r ! dr and stochastic integrals such as*0
1 W~r ! dW~r !' are typi-

cally written as*W and*WdW', respectively+
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2. THE MODEL AND ASSUMPTIONS

Suppose$zTt : 0 # t # T,T $ 1% is anm-vector triangular array generated by

DzTt 5 CT~L!et , (1)

where eachCT~L! 5 (i50
` CTi L

i is anm 3 m matrix lag polynomial, whereas
$et : t [ Z% is independent and identically distributed~i+i+d+! with E~et ! 5 0 and
E~et et

'! . 0+ Triangular arrays are considered to be able to define a notion of
near cointegration similar to those of Tanaka~1993, 1996!+ Our objective is to
do so by means of a parameterization of$CT~L! : T $ 1% andE~et et

'! that in-
volves minimal loss of generality for any fixedT and depends onT in the sim-
plest possible fashion+

Applying the BN ~Beveridge and Nelson, 1981! decomposition4 to CT~L!,
we can writezTt as

zTt 5 CT~1!jt 1 DCT~L!et 1 zT0 2 DCT~L!e0,

wherejt 5 (s51
t es+ We assume thatCT~1! is upper triangular~with nonnega-

tive diagonal elements! andE~et et
'! 5 Im+ For any fixedT, these assumptions

entail no loss of generality+5 PartitionzTt into my 5 1 andmx 5 m 2 1 compo-
nents aszTt 5 ~ yTt , xTt

' !'+ Conformably, partitionCT~1! and DCT~L! after the first
row asCT~1! 5 ~CT

y~1!',CT
x~1!' !' and DCT~L! 5 ~ DCT

y~L!', DCT
x~L!' !', respectively+

AssumingCT
y~1! andCT

x~1! have full row rank, CT~1! can be written as

CT~1! 5 Svyy,T
102 ~12 rT

2!102 ~ rT Vxx,T
2102 Tvxy,T !'

0 Vxx,T
102 D, (2)

wherevyy,T . 0 is a scalar, Vxx,T . 0 is anmx 3 mx matrix, Tvxy is an mx-
vector such that Tvxy,T

' Vxx,T
21 Tvxy,T 5 vyy,T and 0# rT # 1+ Under this param-

eterization, the rank ofCT~1! depends solely on the scalarrT + Indeed, CT~1!
has full rank whenever 0# rT , 1, whereasCT~1! has~deficient! rank m 2 1
if rT 5 1+ This feature is very convenient for our purposes, as it enables us to
define a notion of near cointegration by modeling$ rT% as a sequence lying in
a shrinking neighborhood of unity asT increases without bound+

In recognition of the fact that our main emphasis is on the cointegration prop-
erties of$zTt%, we henceforth make the simplifying assumption thatrT is the
only parameter of the model that varies withT+ To make this assumption ex-
plicit, the redundant subscriptT will be omitted in expressions involving the
parametersCT

x~L!, DCT~L!, vyy,T , Vxx,T , and Tvxy,T that do not vary withT+ Like-
wise, xTt will be written asxt +

Let ut 5 Cu~L!et , whereCu~L! 5 ~1,2b '! DC~L! and b 5 Vxx
21 Tvxy+ Define

wt 5 ~ut ,Dxt
'! and letVww be the long-run covariance matrix ofwt , namely,

Vww 5 Svuu vxu
'

vxu Vxx
D 5 lim

Tr`
T21 (

t51

T

(
s51

T

E~wt ws
'!,
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where the partitioning is in conformity withwt + The development of formal
results will proceed under the following assumptions+

A1+ CT~L! 5 CT~1! 1 DC~L!~1 2 L!, where DC~L! 5 (i50
` DCi L

i is a lag poly-
nomial with(i50

` i 7 DCi 7 , `, andCT~1! is defined as in~2! with vyy, Tvxy, and
Vxx fixed and 12 rT

2 5 T22l2vuu+x0vyy for somel $ 0, wherevuu+x 5 vuu 2
vxu
' Vxx

21vxu . 0 andCu~1!~1,0'!' . 0+

A2+ $et % is i+i+d+ with E~et ! 5 0 andE~et et
'! 5 Im+

A3+ zT0 5 DC~L!e0+

The long-run covariance matrix ofDzTt is Vzz 5 limTr` T21 (t51
T

(s51
T E~DzTt DzTs

' !+ In view of the relation

Vzz5 lim
Tr`

CT~1!CT~1!' 5 lim
Tr`

S vyy rT Tvxy
'

rT Tvxy Vxx
D5Svyy Tvxy

'

Tvxy Vxx
D,

the parametersrT , vyy, Vxx, and Tvxy in A1 all have natural interpretations+ In-
deed, it is apparent thatCT~1! is parameterized directly in terms of the ele-
ments ofVzzand the scalarrT + In turn, rT

2 is the squared coefficient of multiple
correlation computed fromCT~1!CT~1!'+

Under A1, $zTt% is nearly cointegrated in the sense thatrT
2 lies in a shrinking

neighborhood of unity asT increases+ Of course, near cointegration reduces to
cointegration whenl 5 0 in A1+ In that case, the assumptionvuu+x . 0 states
that the cointegration is regular in the sense of Park~1992!+ On the other hand,
whenl Þ 0, the conditionCu~1!~1,0'!' . 0 can be interpreted as an identifi-
cation assumption+6 The assumptionVxx . 0 implies that$xt % is a noncointe-
grated integrated process+ Although somewhat restrictive, the assumption of
noncointegrated regressors is fairly standard in the related literature,7 so to fa-
cilitate comparisons with existing results we shall maintain this assumption
throughout+ Assumption A3 is introduced to avoid any complications that might
arise as a result of a nonzero mean inzTt and0or a “remote past” initialization
of the $zTt% process~e+g+, Canjels and Watson, 1997!+

The parameterl introduced in A1 will play a prominent role in the sequel+
Because

l 5
T{vyy

102~12 rT
2!102

vuu+x
102 , (3)

l can be interpreted as a signal-to-noise ratio+ Specifically, the numerator in
~3! is proportional tovyy

102~1 2 rT
2!102, which is the long-run standard deviation

of DyTt conditional onDxt in the case whererT does not vary withT+ The
denominator, vuu+x

102 , is the long-run standard deviation ofut conditional onDxt +
Under cointegration, the former is zero andl 5 0+ Under spurious regression
~whenrT , 1 is fixed!, on the other hand, the right-hand side of~3! diverges+
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Near cointegration corresponds to the intermediate case where the numerator
and denominator of~3! are of the same order of magnitude+

Our model can be written in triangular form as

yTt 5 b 'xt 1 dT
' jt 1 Cu~L!et ,

Dxt 5 Cx~L!et , (4)

wheredT 5 ~vyy
102~1 2 rT

2!102, ~ rT 2 1! Tvxy
' Vxx

2102'!'+ As it turns out, the pres-
ence of the additional “error term”dT

' jt on the right-hand side of~4! leads
to an increase in the asymptotic variance of estimators ofb+ On the other
hand, becausedT

' jt is asymptotically uncorrelated with “the regressor”xt in
~4! in the sense that the long-run covariance betweenDxt andTdT

' et , namely,
limTr`T{Cx~1!dT , equals zero,8 the presence ofdT

' jt does not affect the as-
ymptotic bias of estimators ofb+

Notions of near cointegration that are closely related to ours have been pro-
posed by Tanaka~1993, 1996!+9,10 The near cointegration model of Tanaka~1993,
equation~20!! can be written in triangular form as

yTt 5 b 'xt 1 dT
' jt 1 CT

u~L!et ,

Dxt 5 Cx~L!et ,

where jt 5 (s51
t es, $et % satisfies A2, CT

u~L! 5 Cu~L! 1 T21Ĉu~L!, and
limTr`T{Cx~1!dT 5 0+ The asymptotic distributions of interest are unaffected
by the presence of the termT21Ĉu~L!et , and Tanaka’s model~1993! yields
results that coincide with the results of the present paper+

Tanaka’s near cointegration model~1996, equations~11+68! and~11+70!! can
be written as

yTt 5 bT
' xt 1 dT

' jt 1 CT
u~L!et ,

Dxt 5 Cx~L!et ,

where jt 5 (s51
t es, $et % satisfies A2, bT 5 b 1 T21b̂, CT

u~L! 5 Cu~L! 1
T21Ĉu~L!, and limTr`T{Cx~1!dT 5 0+ The termb̂ 5 T~bT 2 b! is nonzero
in general and gives rise to a drift term in the limiting distribution of estima-
tors of b ~such as ZbT and ZbT

† defined in Section 3! but does not affect the
limiting distribution of cointegration tests, the objects of interest in Tanaka
~1996!+

Unlike the parameterizations employed by Tanaka~1993, 1996!, the param-
eterization of near cointegration proposed here is explicitly one-dimensional
~involving only the scalar parameterl! and therefore leads to simpler represen-
tations of the limiting distributions of interest, which facilitates the interpreta-
tion of the results+
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3. BEHAVIOR OF REGRESSION ESTIMATORS

Let [aT and ZbT be the ordinary least squares~OLS! estimators in the multiple
regression

yTt 5 [aT
' dt 1 ZbT

' xt 1 [uTt ~t 5 1, + + + ,T !, (5)

where dt 5 ~1, + + + , t md21!' for some md $ 1+ Let CT 5 diag~T 102,
+ + + ,T md2102,T{imx

' !, whereimx
is anmx-vector of ones+ As is well known~e+g+,

Phillips and Durlauf, 1986!, the limiting distribution ofCT~ [aT
' , ~ ZbT 2 b!'!' un-

der cointegration is rather complicated and depends on the parametersVww and
Gww, whereVww was defined in Section 2, whereas

Gww 5 ~G{u G{x! 5Sguu gux

gxu Gxx
D5 lim

Tr`
T21 (

t51

T

(
s51

t

E~wt ws
'!+

A similar situation occurs under near cointegration+

LEMMA 1 + Suppose$zTt% is generated by (1) and suppose A1–A3 hold. Then

CTS [aT

ZbT 2 bDrd SEQxQx
'D21Svuu+x

102 EQx dUl 1EQx dX'Vxx
21vxu 1S 0

gux
' DD,

where Qx~r !' 5 ~D~r !',X~r !'!, D~r ! 5 ~1, r, + + + , r md21!', X~r ! 5 Vxx
102V~r !,

and Ul~r ! 5 l *0
r U~s! ds 1 U~r !, whereas V and U are independent Wiener

processes of dimension mx and 1, respectively.

In addition to ~ [aT
' , ZbT

' !' , we want to study an estimator that has a com-
pound normal limiting distribution under cointegration+ For concreteness, we
consider the canonical cointegration regression~CCR! estimator proposed
by Park ~1992!+11 To construct this estimator, we need consistent estimators
of Vww, Gww, and Sww 5 limTr` T21 (t51

T E~wt wt
'!+ Let [wTt

' 5 ~ [uTt ,Dxt
'!,

where $ [uTt% are the residuals from~5!+ We can estimateSww by ZSww 5
T21 (t51

T [wTt [wTt
' , whereasVww andGww can be estimated by kernel estimators

of the form

ZVww 5 T21 (
t51

T

(
s51

T

kS 6 t 2 s6

ZbT
D [wTt [wTs

'

and

ZGww 5 T21 (
t51

T

(
s51

t

kS 6 t 2 s6

ZbT
D [wTt [wTs

' ,

wherek~{! is a kernel function and$ ZbT% is a sequence of~possibly sample-
dependent! bandwidth parameters+12 As shown in Lemma 5 in the Appendix,
the estimators ZVww, ZGww, and ZSww are consistent under A1–A4, where
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A4+

~i! k~0! 5 1, k~{! is continuous at zero, sups$06k~s!6 , `, and *0
` Ok~r ! dr , `,

where Ok~r ! 5 sups$r 6k~s!6 ~ for all r $ 0!
~ii ! ZbT 5 [aT bT , where [aT and bT are positive with [aT 1 [aT

21 5 Op~1! and bT
21 1

T2102bT 5 o~1!+

The CCR estimator~ [aT
†' , ZbT

†'!' is the OLS estimator obtained from the mul-
tiple regression

yTt
† 5 [aT

†'dt 1 ZbT
†'xTt

† 1 [uTt
† ~t 5 1, + + + ,T !, (6)

whereyTt
† 5 yTt 2 ZbT

' ZG{x
' ZSww

21 [wTt 2 [vxu
' ZVxx

21Dxt , xTt
† 5 xt 2 ZG{x

' ZSww
21 [wTt , and ZbT is

the OLS estimator from~5!+

LEMMA 2 + Suppose$zTt% is generated by (1) and suppose A1–A4 hold. Then

CTS [aT
†

ZbT
† 2 b

Drd SEQxQx
'D21Svuu+x

102 EQx dUlD,
whereCT , Qx, and Ul are defined as in Lemma 1. The limiting distribution is
compound normal:

SEQxQx
'D21Svuu+x

102 EQx dUlD*FV

5
L NS0,vuu+xSEQxQx

'D21SEQx,l Qx,l
' DSEQxQx

'D21D,
where Qx,l~r ! 5 l *r

1 Qx~s! ds1 Qx~r ! and{8FV
signifies the conditional distri-

bution relative toFV 5 s~V~r ! : 0 # r # 1!.

Tanaka~1993! obtains a result equivalent to the first half of Lemma 2+13 In
important respects, the near cointegration case closely resembles the cointegra-
tion case+ For instance, ZbT and ZbT

† are superconsistent estimators ofb+ More-
over, the limiting distribution ofT~ ZbT

† 2 b! is compound normal+ The mean of
this compound normal distribution is zero even under near cointegration, and
the presence ofdT

' jt on the right-hand side of~4! therefore does not introduce
a bias term in the limiting distribution ofZbT

†+ Under cointegration~i+e+, when
l 5 0!, * Qx,l Qx,l

' 5 * QxQx
' and the covariance matrix in the mixture rep-

resentation in Lemma 2 reduces tovuu+x~* QxQx
' !21+ Otherwise, if l Þ 0, the

covariance matrix is of “sandwich” form+ As pointed out by the co-editor,
this suggests that OLS-type inference~based on the CCR estimates! will be
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misleading under near cointegration+ Indeed, definingQx~r ! 5 *r
1 Qx~s! ds, we

have

EQx,l Qx,l
' 2EQxQx

' 5 lQx~0!Qx~0!' 1 l2EQxQx
' . 0+

The presence ofdT
' jt on the right-hand side of~4! therefore leads to an in-

crease in the asymptotic variance ofZbT
†, suggesting that overrejection of true

null hypotheses~on b! is likely to occur under near cointegration+ A more pre-
cise statement corroborating this conjecture will be provided in the next section+

4. INFERENCE ON REGRESSION COEFFICIENTS

This section is concerned with inference on regression coefficients+ Particular
attention is given to the robustness of conventional cointegration procedures
under near cointegration+ Consider a general linear hypothesis of the form
H0 :Fb b 5 fb, whereFb is a p 3 mx matrix of rankp andfb is a p-vector+14

Define

GT 5 [vuu+x
21 ~Fb ZbT

† 2 fb!'FFbS(
t51

T

xTt,d
† xTt,d

†' D21

Fb
' G21

~Fb ZbT
† 2 fb!, (7)

where [vuu+x 5 [vuu2 [vxu
' ZVxx

21 [vxu andxTt,d
† 5 xTt

† 2 ~(s51
T xTs

† ds
'!~(s51

T dsds
'!21dt +

THEOREM 3+ Suppose$zTt% is generated by (1) and suppose A1–A4 hold.

(a) When H0 :Fb b 5 fb is true,

GT rd **E HVD
pdUl**

2

,

where HVD
p~r ! 5 ~* VD

pVD
p'!2102VD

p~r !, VD
p~r ! 5 V1D~r ! 2 ~* V1DV2D

' ! 3
~* V2DV2D

' !21V2D~r !, and VD~r ! 5 ~V1D~r !',V2D~r !'!' 5 V~r ! 2 ~* VD'! 3
~* DD '!21D~r !, where the partitioning is after the pth row, whereas V, D, and Ul

are defined as in Lemma 1.
(b) The limiting distribution in part (a) satisfies

**E HVD
pdUl**

2

*FV

5
L (

i51

p

~11 l2{m i !xi
2~1!,

where$xi
2~1!%i51

p are i.i.d. x2~1! variates and0 # m1 #{{{# mp are the eigen-

values of the matrix*0
1 HVD

p~r ! HVD
p~r !'dr, where HVD

p~r ! 5 *r
1 HVD

p~s! ds. In particu-
lar, the family$L~7* HVD

pdUl72! : l $ 0% is stochastically increasing inl, where

L~{! denotes the probability law of the argument.

Under cointegration, the limiting distribution ofGT is x2~ p! whenH0 is true+
In a recent paper, Elliott ~1998! investigates the robustness of this remarkable
result by considering a model in which the regressors are nearly integrated
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whereas some linear combination of the regressand and the regressor is exactly
stationary+ It turns out that thex2 result can break down when the regressors
are not exactly integrated+ Theorem 3 enables us to conduct a complimentary
experiment: we can investigate the robustness of cointegration methods in a
model where the regressors are exactly integrated whereas some linear combi-
nation of the regressand and the regressors is nearly stationary+ It follows from
Theorem 3~b! that tests based on the distribution applicable under cointegra-
tion ~the x2~ p! distribution! are oversized~asymptotically! under near cointe-
gration+ That is,

lim
Tr`

Pr~GT . t ! 5 PrS**E HVD
pdUl**

2

. tD . PrS**E HVD
pdU0**

2

. tD
5 Pr~x2~ p! . t !

for all t . 0 wheneverl . 0+
For concreteness, consider the case wheremd 5 1,Fb 5 Imx

, andfb 5 b0+ In
other words, consider the null hypothesisH0 : b 5 b0 in a regression ofyTt

† on
xTt

† and a constant+ To illustrate the magnitude of the size distortions encoun-
tered under near cointegration, we have simulated the limiting distribution of
GT for mx 5 1, + + + ,4 and for various values ofl+ Specifically, we have made
20,000 draws from the distribution of the discrete approximations~using 2,000
steps! to the limiting random variables+ Figure 1 plots the rejection frequencies
corresponding to a test with a nominal size of 5%+

The evidence presented in Figure 1 suggests that severe size distortions can
occur if conventional cointegration methods are being used when the series
are nearly cointegrated rather than exactly cointegrated+ In fact, the size in-
creases dramatically as~the absolute value of! l increases from 0, and sub-
stantial size distortions are encountered even for values ofl in the range 5–10+
Whether or not this is a problem obviously depends on whether or not research-
ers can be expected to be able to detect such departures from exact cointegra-
tion+ It is therefore of interest to know whether or not tests for cointegration
can be expected to reject the null hypothesis of cointegration whenl is equal
to 10, say+ A partial answer to this question is provided in the next section,
where we illustrate how to obtain the local asymptotic power functions of tests
for cointegration+

5. LOCAL ASYMPTOTIC POWER OF COINTEGRATION TESTS

During the last decade, numerous cointegration tests taking cointegration as
the null hypothesis have been proposed+ These test procedures utilize different
properties of cointegrated systems, and it therefore seems desirable to investi-
gate what, if anything, can be said about the power properties of the different
tests+ In this section, we characterize the behavior of five regression based co-
integration tests under local alternatives+15 Moreover, we obtain the correspond-
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ing local asymptotic power functions and use these to address the following
questions+

~i! Does any one of these tests dominate the others in terms of local asymptotic
power?

~ii ! Can cointegration tests be expected to detect those departures from cointegration
that seriously distort the size of conventional cointegration procedures~cf+
Section 4!?

The variable addition test proposed by Park~1990! is computed as follows+
Let k1 andk2 be arbitrary nonnegative integers such thatk 5 k1 1 k2 $ 1 and
for t 5 1, + + + ,T, let r1t 5 ~t md, + + + , t md1k121!' ~if k1 $ 1! and~if k2 $ 1! let $r2t %
be ak2-dimensional computer generated random walk such that$Dr2t % ; i+i+d+
N ~0, Ik2

!+16 Finally, let rt
'5 ~r1t

' , r2t
' !+ Based on the multiple regressions~6! and

yTt
† 5 ]aT

†'dt 1 \bT
†'xTt

† 1 ]gT
†' rt 1 ]uTt

† ~t 5 1, + + + ,T !, (8)

construct the statisticJT~k1, k2! 5 [vuu+x
21 @(t51

T ~ [uTt
† !2 2 (t51

T ~ ]uTt
† !2# + This is

simply the Wald test used to test the significance of the regressorrt in ~8!+ As

Figure 1. Rejection rates forGT + Nominal size is 5%+
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a consequence, JT~k1, k2! rd x2~k! under the null hypothesis of cointegration
~Park, 1990!+

Several cointegration tests based on partial score sums have been proposed+
We consider the test due to Shin~1994!+17 That test is based onCIT 5
[vuu+x
21 T22 (t51

T ZSTt
2 , where ZSTt 5 (s51

t [uTs
† +18 Evidently, CIT is constructed by

applying the stationarity test proposed by Kwiatkowski, Phillips, Schmidt, and
Shin ~1992! to the residuals$ [uTt

† % from ~6!+
Cointegration tests also can be based on the residuals$ XSTt% from the multiple

regression

STt
y 5 YaT

' St
d 1 XbT

' STt
x 1 XSTt ,

whereSTt
y 5 (s51

t yTs
† ,St

d 5 (s51
t ds, andSTt

x 5 (s51
t xTs

† for 1 # t # T+ Choi and
Ahn ~1995! propose the statisticsLMT

I 5 @ [vuu+x
21 ~T21 (t52

T XST, t21 D XSTt 2 [guu+x
1 !# 2,

LMT
II 5 ~ [vuu+x

21 {T22 (t52
T XST, t21

2 !21{LMT
I , and SBDHT

I 5 [vuu+x
21 T22 (t51

T XSTt
2 ,

where [guu+x
1 5 ~1,2 [vxu

' ZVxx
21!~ ZGww 2 ZSww!~1,2 [vxu

' ZVxx
21!'+ These tests are inti-

mately related to the stationarity tests of Choi and Ahn~1998!+

THEOREM 4+ Suppose$zTt% is generated by (1) and suppose A1–A4 hold.
Then

JT~k1, k2! rd **E HRQdUl**
2

,

CIT rd E ZUl
2,

SBDHT
I rd EUl, OQ

2 ,

LMT
I rd SEUl, OQdUl, OQD2

,

LMT
II rd

SEUl, OQdUl, OQD2

EUl, OQ
2

,

where HRQ~r ! 5 ~* RQ RQ
' !2102RQ~r !, RQ~r ! 5 R~r ! 2 ~* RQ'!~*QQ'!21Q~r !,

Q' 5 ~D ',V '!, R' 5 ~R1
' ,R2

' !, R1~r ! 5 ~r md, + + + , r md1k121!', R2 is a k2-
dimensional Wiener process independent of Q and Ul, ZUl~r ! 5 Ul~r ! 2
~*QdUl!'~*QQ'!21 OQ~r !, and Ul, OQ~r ! 5 Ul~r ! 2 ~* OQUl!'~*QQ' !21 OQ~r !,
OQ~r ! 5 *0

r Q~s! ds, whereas D, V, and Ul are defined as in Lemma 1.
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An expression equivalent to the representation of the limiting distribution of
CIT is obtained by Tanaka~1996, Theorem 11+11!+19 To obtain local asymptotic
power functions, we have simulated~the discrete time counterparts of! the lim-
iting distributions of theJT~2,2!,20 CIT , LMT

I , LMT
II , andSBDHT

I test statistics
in the case wheremd 5 1 andmx 5 1+21 As in Section 4, we have used 2,000
steps and have repeated the procedure 20,000 times+ Figure 2 shows the local
asymptotic power functions of tests with size 5%+

The local asymptotic power properties ofJT~2,2!, CIT , andSBDHT
I are very

similar, whereasLMT
II and~in particular! LMT

I are remarkably inferior in terms
of local asymptotic power+ Because the local asymptotic power properties of
JT~2,2!, CIT , andSBDHT

I are almost indistinguishable, our tentative conclusion
is that the choice among these tests should be guided by finite sample consid-
erations concerning size distortions+

Remark 1+ Notice thatLMT
II 5 ~SBDHT

I !21{LMT
I 1 op~1!+ Under fixed alter-

natives ~i+e+, under spurious regression!, LMT
I diverges at a faster rate than

SBDHT
I , and a test based onLMT

II is therefore consistent~Choi and Ahn,
1995!+ In contrast, because bothLMT

I and SBDHT
I are Op~1! under near co-

integration, LMT
II might be expected to have rather disastrous local asymptotic

                 
              

Figure 2. Local power of tests for cointegration; md 5 1, mx 5 1+
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power properties if the local asymptotic power ofSBDHT
I is higher than the

local asymptotic power ofLMT
I + Figure 2 confirms this conjecture+ More

generally, our findings illustrate the obvious, but important, point that the
~local asymptotic! power properties of a test cannot be deduced from the rate
of divergence under fixed alternatives+ In the present example, e+g+, LMT

I and
SBDHT

I diverge at the same rate under fixed alternatives andLMT
I diverges

faster than both of these~Choi and Ahn, 1995!+ Evidently, Figure 2 tells an
entirely different story+

Remark 2+ The local asymptotic power properties of the tests depend solely
on l+ In particular, our distributional results do not depend on the particular
estimator used to estimate nuisance parameters such asvuu+x+ In fact, the as-
ymptotic results are the same as if these nuisance parameters were known+ As
pointed out by a referee, this is somewhat unfortunate, because there is ample
~simulation! evidence documenting that the finite sample size properties of tests
can be very sensitive to the choice of nuisance parameter estimation method
~see McCabe, Leybourne, and Shin, 1997, and references therein!+ We share
this view and encourage the reader to interpret the local asymptotic power curves
presented here as approximations to the finite sample size-adjusted power curves
~as opposed to the true power curves! of the corresponding tests+

In the previous section, we argued that Wald tests based on conventional co-
integration methods can encounter severe size distortions when the series are
nearly cointegrated andl exceeds 5+ On the other hand, the evidence presented
in Figure 2 indicates that even whenl 5 10 the power of the tests for cointe-
gration can be well below 50%+ This suggests that even if the departure from
~exact! cointegration is substantial~in the sense that it severely affects the size
of the conventional tests!, tests for cointegration cannot be expected to detect
such departures very frequently+ Therefore, whenever a researcher rejects a struc-
tural hypothesis~on the coefficientb! using cointegration methods, the result
should be interpreted carefully+ Indeed, it might be the case that the structural
hypothesis is correct, whereas the~possibly auxiliary! assumption of cointegra-
tion is not+ This of course leaves open the question of how to interpret the co-
efficient vector in a noncointegrated system, a question that we shall not attempt
to answer here+22

6. CONCLUDING REMARKS

Based on a new representation, a notion of near cointegration was proposed+
The notion of near cointegration was used to generalize several existing results
from the cointegration literature to the case of near cointegration+ Throughout,
we have deliberately studied the properties of known inference procedures un-
der near cointegration rather than proposed new methods+ As a result, several
extensions are possible+ For instance, a companion paper by one of us~Jans-
son, 2001c! takes the analysis of Section 5 one step further and uses a model of
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near cointegration to propose a new cointegration test with~essentially! opti-
mal local asymptotic power properties+

NOTES

1+ Earlier, Yule ~1926! used the termnonsense correlationto describe a similar phenomenon+
2+ In the aforementioned papers, r2 is computed from a long-run covariance matrix that is

itself defined by taking limits asT r `+ Therefore, it is not immediately obvious how to modelr2

as a sequence of parameters that lie in a shrinking neighborhood of unity asT increases without
bound+ By working with a representation wherer2 is a primitive parameter, we circumvent this
potential problem+

3+ A previous version of this article~Jansson and Haldrup, 2000! contains a detailed study of
the F-statistic+

4+ CT~L! 5 CT~1! 1 DCT~L!~1 2 L!, where DCT~L! 5 (i50
` DCTi L

i is a lag polynomial with co-
efficients DCTi 5 2(j5i11

` CTj + These coefficients satisfy(i50
` i 7 DCTi7 , ` ~as required under As-

sumption A1, which appears later in this section! if (i50
` i 27CTi7 , `+

5+ Suppose OC~L! 5 (i50
` OCi L

i is a matrix lag polynomial and suppose$ Set : t [ Z% is i+i+d+
with E~ Set ! 5 0 and E~ Set Set

'! 5 OS . 0+ We can construct an orthogonal matrixO such that
OC~1! OS102O is upper triangular~with nonnegative diagonal elements!+ Given any suchO, define

C~L! 5 OC~L! OS102O andet 5 O'S2102 Set + By construction, C~1! is upper triangular and$et % is i+i+d+
with E~et ! 5 0 andE~et et

'! 5 O' OS2102 OS OS2102'O 5 Im+
6+ For T $ 1, let

DT~L! 5 S1 2rT b '

0 Imx

DCT~L!+

It is not hard to show thatCu~1!~1,0'!' . 0 holds under the identification0invertibility condition
inf $6z6 : 6DT~z!6 5 0% . 1 ∀T,l . 0+

7+ Notable exceptions include Park and Phillips~1989, Sec+ 5+2!, Choi ~1994!, and McCabe
et al+ ~1997!+ See also Phillips~1995! and Chang and Phillips~1995!+

8+ Indeed, T{Cx~1!dT 5 T~ rT 2 1! Tvxy 5 O~T21! under A1+
9+ Alternative conditions of near cointegration have appeared in Quintos and Phillips~1993,

Sec+ 5! and Phillips~1998a, p+ 1025!+ The ~multivariate extension of the! notion of near cointegra-
tion introduced by Quintos and Phillips~1993! is more general than the notion suggested in the
present paper+ On the other hand, the notion of near cointegration discussed in Phillips~1998a! is
fundamentally different from ours, because the series$h 'yt % generated by equation~5! of that pa-
per is nearly integrated+

10+ Details concerning the derivation of the triangular form of Tanaka’s models are available
from the authors upon request+

11+ Alternative estimators with identical asymptotic properties include the estimators proposed
by Johansen~1988, 1991!, Phillips ~1991!, Phillips and Hansen~1990!, Saikkonen~1991, 1992!,
and Stock and Watson~1993!+

12+ For convenience, we do not make the dependence ofZSww, ZVww, and ZGww on T and ZbT explicit+
13+ Using Tanaka’s~1993! notation, the representation of the limiting distribution ofT~ Dbj 2 b!

in Theorem 6 of that paper should read

~A1
' Wj A1!21 @A1

' Wj d 1 A1
' Vj ~g 2 A1~A1

' A1!21A1
' g!# +

Upon subtraction of~A1
' A1!21A1

' d, we arrive at the representation

~A1
' Wj A1!21 @A1

' Wj ~d 2 A1~A1
' A1!21A1

' d! 1 A1
' Vj ~g 2 A1~A1

' A1!21A1
' g!# ,
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which is equivalent to the result in Lemma 2+ The difference in the location parameter is due to the
fact that Tanaka~1993, p+ 49! defines the population value of the regression coefficient asb 5
~A1
' A1!21~A1

' A2 2 A1
' d0T !, whereas ourb equals~A1

' A1!21A1
' A2 in Tanaka’s~1993! notation+

14+ It is a simple matter to generalize Theorem 3 to the case of nonlinear hypotheses+ To con-
serve space, we shall not do so here+

15+ Harris ~1997! and Snell~1998! propose tests for cointegration that utilize principal compo-
nent methods+ These tests are not considered here+

16+ This particular choice of superfluous regressors is advocated by Park~1990!+ On the other
hand, little guidance on the optimal choice ofk1 andk2 is provided although Remark c of the paper
suggests thatk1 1 k2 $ 2 is preferable+

17+ Closely related tests have been proposed by Hansen~1992!, Harris and Inder~1994!, Kuo
~1998!, Leybourne and McCabe~1993!, McCabe et al+ ~1997!, Quintos and Phillips~1993!, and
Tanaka~1996!+ In Jansson and Haldrup~2000!, we also study Hansen’sLc test ~1992!+ The local
asymptotic power properties of that test are very similar to those of Shin’s test~1994!, as are the
local asymptotic power properties of the test due to Xiao~1999! ~Jansson, 2001a!+

18+ In its original formulation, Shin’s test~1994! uses Saikkonen’s estimator~1991!+ The for-
mulation based on the CCR estimator is due to Choi and Ahn~1995!+

19+ To see the equivalence, notice that rows 1 throughq 2 1 in the expression

E
0

t

Kw~s! ds2E
0

1

Kw~s! Kw1
' ~s! dsSE

0

1

Kw1~s! Kw1
' ~s! dsD21E

0

t

Kw1~s! ds

in Theorem 11+11 of Tanaka~1996! are identically zero+ As a consequence, the limiting distri-
bution of Tanaka’s DST2 ~1996! depends on the vectorc~J2

' , J3!0~g~1!J3! only through the scalar
c0g~1!+ Indeed, the variatecZ2~t ! appearing in the statement of Tanaka~1996! has the following
simple representation:

c

g~1! HE0

t

Kw2~s! ds2E
0

1

Kw2~s! Kw1
' ~s! dsSE

0

1

Kw1~s! Kw1
' ~s! dsD21E

0

t

Kw1~s! dsJ +
20+ That is, r1t 5 ~t, t 2!' andr2t is a two-dimensional random walk in~8!+ Changing the values

of k1 andk2 does not seem to affect the local power of theJT test much+
21+ Results for 2# mx # 4 are qualitatively similar and can be found in Jansson and Haldrup

~2000!+
22+ For recent contributions to this discussion, see Phillips~1998! and Phillips and Moon~1999!+
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APPENDIX

This Appendix outlines the proofs of the main results of the paper+ To facilitate the proofs,
we start with two preliminary lemmas+

LEMMA 5 + Suppose$zTt% is generated by (1) and suppose A1–A4 hold. ThenZVwwrp

Vww, ZGww rp Gww, and ZSww rp Sww.
For 1 # t # T, let qt

' 5 ~dt
' , xt
'!, vTt 5 yTt 2 b 'xt, qTt

†' 5 ~dt
' , xTt

†'!, and vTt
† 5 yTt

† 2
b 'xTt

† . Moreover, let YT 5 diag~T md1102, + + + , t md1k12102,T{ik2

' !, whereik2
is a k2-vector

of ones.

LEMMA 6 + Suppose$zTt% is generated by (1) and suppose A1–A3 hold. Then

(a) T102CT
21q{T{} rd Qx~{!,

(b) CT
21 (t51

T qt vTt rd vuu+x
102 *Qx dUl 1 *Qx dX'Vxx

21vxu 1 ~0,gux!
',
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where{{} denotes the integer part of the argument. Moreover, if A4 holds, then

(c) T102CT
21qT, {T{}

†
rd Qx~{!,

(d) T2102 (t51
{T{} vTt

†
rd vuu+x

102 Ul~{!,

(e) CT
21 (t51

T qTt
† vTt

†
rd vuu+x

102 *Qx dUl,

(f ) T21 (t52
T ~(s51

t21 vTs
† !vTt

†
rd vuu+x *UldUl 1 guu+x

1 ,

(g) T102YT
21r{T{} rd R~{!,

(h) YT
21 (t51

T rt vTt
†
rd vuu+x

102 *RdUl,

whereguu+x
1 5 ~1,2vxu

' Vxx
21!~Gww 2 Sww!~1,2vxu

' Vxx
21!', whereasCT , Qx, Ul, X, and R

are defined as in the text.

Proof of Lemma 5. For 1 # t # T, let [uTt
* 5 Cu~L!et 2 [aT

' dt 1 ~ ZbT 2 b!'xt and
[uTt
** 5 dT

' jt + Because [uTt 5 [uTt
* 1 [uTt

**, we can write [wTt as the sum of [wTt
* 5 ~ [uTt

* ,Dxt
'!'

and [wTt
** 5 ~ [uTt

**,0' !'+ Using notation typified by

ZGww
*,** 5 T21 (

t51

T

(
s51

t

kS 6 t 2 s6

ZbT
D [wTt

* [wTs
**' ,

the corresponding decomposition ofZGww is ZGww 5 ZGww
*,* 1 ZGww

**,** 1 ZGww
*,** 1 ZGww

**,* + Now,
ZGww
*,* rp Gww by Corollary 4 of Jansson~2001b!, which is applicable because A5~i! of

that paper holds by Lemma 1 and Lemma 6~a! of the present paper+ To show ZGww rp

Gww it therefore suffices to show thatZGww
**,**, ZGww

*,**, and ZGww
**,* areop~1!+

The idea of the proof is the following+ Each of the matricesZGww
**,**, ZGww

*,**, and ZGww
**,*

can be written asT21 (i50
T21 k~ ZbT

21 i !MTi , where$MTi : 0 # i # T 2 1;T $ 1% is a trian-
gular array of random matrices+ The event$7T21 (i50

T21 k~ ZbT
21 i !MTi7 . «% is a subset of

$ [aT Ó @ ta, Sa#% ø H sup
ta#a# Sa**T21 (

i50

T21

kS i

a{bT
DMTi** . «J +

Under A4, infT$T0
Pr~ [aT Ó @ ta, Sa# ! can be made arbitrarily close to zero for suffi-

ciently large T0 and appropriately selected 0, ta # Sa , `+ We therefore have
T21 (i50

T21 k~ ZbT
21 i !MTi 5 op~1! if

sup
ta#a# Sa**T21 (

i50

T21

kS i

a{bT
DMTi** 5 op* ~1! (A.1)

for every 0, ta # Sa , `, whereop* ~1! denotes convergence to zero in outer probabil-
ity+ ~To avoid measurability complications, we consider convergence in outer probabil-
ity rather than convergence in probability+! The proof proceeds by applying additive
decompositions toZGww

**,**, ZGww
*,**, and ZGww

**,* and establishing~A+1! for each element of
these decompositions+ In each instance, we make use of the fact that

sup
ta#a# Sa

T21 (
i50

T21

*kS i

a{bT
D*mTi 5 op* ~1!

if $mTi : 0 # i # T 2 1;T $ 1% is a triangular array of nonnegative random variables with
max0#i#T21 E~mTi ! 5 O~T 102!+
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Indeed, by Markov’s inequality and the properties of Pr*, E*, and Ok~{!, we have

Pr*S sup
ta#a# Sa

T21 (
i50

T21

*kS i

a{bT
D*mTi . «D

# «21E*S sup
ta#a# Sa

T2102 (
i50

T21

*kS i

a{bT
D*T2102mTiD

# «21EST2102 (
i50

T21

OkS i

SabT
DT2102mTiD

# «21T2102 (
i50

T21

OkS i

SabT
DST2102 max

0#j#T21
E~mTj !D

# «21ST2102 max
0#i#T21

E~mTi !DST2102 (
i50

T21

OkS i

SabT
DD5 o~1!

for any « . 0, where Pr*~{! andE*~{! denote outer probability and outer expectation,
respectively, and the last equality uses the assumption on max0#i#T21 E~mTi ! along with
the fact thatT2102 (i50

T21 Ok~~ SabT !21i ! 5 o~1! under A5~Jansson, 2001b!+
Defining i 5 t 2 s and applying the decomposition[wTt

**5 [wTs
**1 ~ [wTt

**2 [wTs
**!, ZGww

**,**

can be written asZGww,1
**,**~ [aT ! 1 ZGww,2

**,**~ [aT !, where

ZGww,1
**,**~a! 5 T21 (

i50

T

kS i

a{bT
D(

s51

T2i

[wTs
** [wTs

**' ,

ZGww,2
**,**~a! 5 T21 (

i50

T

kS i

a{bT
D(

s51

T2i

~ [wT,s1i
** 2 [wTs

**! [wTs
**' +

By subadditivity of 7{7, 7 ZGww,1
**,**~a!7 # T21 (i50

T 6k~~a{bT !21i !6{(s51
T2i 7 [wTs

** [wTs
**'7, so

ZGww,1
**,**~ [aT ! 5 op~1! if max0#i#T21 E~(s51

T2i 7 [wTs
** [wTs

**'7! 5 O~T 102!+ Using A2 and the
relation 7dT7 5 O~T21!, we have

max
0#i#T21

ES(
s51

T2i

7 [wTs
** [wTs

**'7D 5 ES(
s51

T

7 [wTs
** [wTs

**'7D5 7dT72 (
s51

T

E~js
'js!

5 7dT72 (
s51

T

m{s5 O~1!+

Next, 7 ZGww,2
**,**~a!7 # T21 (i50

T 6k~~a{bT !21i !6{7(s51
T2i ~ [wT,s1i

** 2 [wTs
**! [wTs

**'7+ Therefore,
ZGww,2
**,**~ [aT ! 5 op~1! if max0#i#T21 E7(s51

T2i ~ [wT,s1i
** 2 [wTs

**! [wTs
**'7 5 O~T 102!+ By the law

of iterated expectations and A2,

E @~js1i 2 js!
'~jt1i 2 jt !js

'jt # 5 E~E @~js1i 2 js!
'~jt1i 2 jt !8Gmax~s, t ! #js

'jt !

5 E @mmax~i 2 6 t 2 s6,0!js
'jt #

5 m2 max~i 2 6 t 2 s6,0!min~t,s!

# m2i1$6 t 2 s6 , i %s
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for any 1# s, t # T and i $ 0, whereGt 5 s~es: s # t ! for any t $ 1 and 1${% is the
indicator function+ Using this relation, the Cauchy–Schwarz inequality, and 7dT7 5
O~T21!,

SE**(
s51

T2i

~ [wT,s1i
** 2 [wTs

**! [wTs
**'**D2

# ES**(
s51

T2i

~ [wT,s1i
** 2 [wTs

**! [wTs
**'**

2D
5 (

s51

T2i

(
t51

T2i

E @~ [wT,s1i
** 2 [wTs

**!'~ [wT, t1i
** 2 [wTt

**! [wTs
**' [wTt

**#

# (
s51

T2i

(
t51

T2i

m27dT74i1$6 t 2 s6 , i %s

# (
s51

T2i

m27dT742i 2s

# m27dT74i 2~T 2 i !~T 2 i 1 1!

# m27dT74T 4 5 O~1!

for any 0# i # T 2 1+ Therefore, ZGww,2
**,**~ [aT ! 5 op~1! and ZGww

**,** 5 op~1!, as was to be
shown+

Next, consider ZGww
*,**, which can be written asZGww,1

*,** ~ [aT ! 1 ZGww,2
*,** ~ [aT !, where

ZGww,1
*,** ~a! 5 T21 (

i50

T

kS i

a{bT
D(

s51

T2i

~ [wT,s1i
* 2 ws1i ! [wTs

**' ,

ZGww,2
*,** ~a! 5 T21 (

i50

T

kS i

a{bT
D(

s51

T2i

ws1i [wTs
**' +

Because

[wT,s1i
* 2 ws1i 5 SS [aT 0

ZbT 2 b 0D'CTDST 102CT
21S ds1i

xs1i
DDT2102

and 7AB7 # 7A7{7B7 for conformableA and B, an upper bound on7 ZGww,1
*,** ~a!7 is

given by

**CTS [aT

ZbT 2 bD** ~T7dT7!

3 T21 (
i50

T

*kS i

a{bT
D*T21 (

s51

T2i

**T 102CT
21S ds1i

xs1i
D**7T2102js7+

By Lemma 1 andT7dT75 O~1!, 7CT~ [aT
' , ~ ZbT 2 b!'!' 7~T7dT7! 5 Op~1!, so the follow-

ing condition is sufficient for ZGww,1
*,** ~ [aT ! 5 op~1!:

max
0#i#T21

T21 (
s51

T2i

E~7T 102CT
21~ds1i

' , xs1i
' !' 77T2102js7! 5 O~T 102!+
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By A2, max1#t#T E~7T2102jt72! 5 E~7T2102jT72! 5 m+ Moreover, it can be shown that
max1#t#T E~**T 102CT

21~dt
' xt

'!' **2! 5 O~1!+ Using these relations and the Cauchy–
Schwarz inequality, the proof of ZGww,1

*,** ~ [aT ! 5 op~1! is completed as follows:

max
0#i#T21

EST21 (
s51

T2i

**T 102CT
21S ds1i

xs1i
D**7T2102js7D

# max
0#i#T21

T21 (
s51

T2i

ME~7T2102js72!ME~7T 102CT
21~ds1i

' , xs1i
' !' 72!

# M max
1#t#T

E~7T2102jt72!M max
1#t#T

E~7T 102CT
21~dt

' , xt
'!' 72! 5 O~1!+

Let (k50
` Ck

wLk 5 ~Cu~L!,Cx~L!'!'+ Because [wTt
** 5 dT

' (l50
` 1$l # t 2 1%et2l and

wt 5 (k50
` Ck

wet2k, ZGww,2
*,** ~ [aT ! can be written as(j51

3 ZGww,2, j
*,** ~ [aT !, where

ZGww,2, j
*,** ~a! 5 T21 (

i50

T

k~~a{bT !21i !MT, i, j
*,** , 1 # j # 3,

with

MT, i,1
*,** 5 (

k50

`

(
l50

`

Ck
w (

s51

T2i

es1i2kes2l
' 1$l # s2 1%1$k Þ l 1 i %~dT ,0!,

MT, i,2
*,** 5 (

l50

`

Cl1i
w (

s51

T2i

~es2l es2l
' 2 Im!1$l # s2 1%~dT ,0!,

MT, i,3
*,** 5 (

l50

`

Cl1i
w (

s51

T2i

Im1$l # s2 1%~dT ,0!+

By the law of iterated expectations and A2,

ES**T21 (
s51

T2i

es1i2kes2l
' 1$l # s2 1%1$k Þ l 1 i %**

2D
5 T22 (

s5l11

T2i

(
t5l11

T2i

E~es1i2k
' et1i2kes2l

' et2l 1$k Þ l 1 i %!

5 T22 (
s5l11

T2i

(
t5l11

T2i

E @E~es1i2k
' et1i2kes2l

' et2l 1$k Þ l 1 i %8Gmax~s, t !1max~i2k,2l !21!#

5 1$k Þ l 1 i %T22 (
s5l11

T2i

E~es1i2k
' es1i2k!E~es2l

' es2l !

# T22 (
s5l11

T2i

m2

# m2T211$l # T 2 1%
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for any i, l $ 0+ The conclusion ZGww,2,1
*,** ~ [aT ! 5 op~1! now follows because

max
0#i#T21

E~7MT, i,1
*,** 7!

# T7dT7(
k50

`

(
l50

`

7Ck
w7 max

0#i#T21
ES**T21 (

s51

T2i

es1i2kes2l
' 1$l # s2 1%1$k Þ l 1 i %**D

# T7dT7(
k50

`

7Ck
w7(

l50

`

mT21021$l # T 2 1%

5 ~T7dT7!mT102 (
k50

`

7Ck
w75 O~T 102!,

where the second inequality uses the Cauchy–Schwarz inequality and the previous dis-
play, whereas the last equality usesT7dT7 5 O~1! and the fact that(k50

` 7Ck
w7 , `

under A1+
Next, 7MT, i,2

*,** 7 # T7dT7(l50
` 7Cl1i

w 77T21 (s51
T2i ~es2l es2l

' 2 Im!1$l # s 2 1%7 for any
i $ 0 and

ES**T21 (
s51

T2i

~es2l es2l
' 2 Im!1$l # s2 1%**D5 ES**T21 (

s51

T2i2l

~eses
'2 Im!**D

for any i, l $ 0+ By A2, $vec~et et
' 2 Im! : t $ 1% is a uniformly integrable martingale

difference sequence, so

sup
l$0

max
0#i#T21

ES**T21 (
s51

T2i

~es2l es2l
' 2 Im!1$l # s2 1%**D

5 sup
l$0

ES**T21 (
s51

T2l

~eses
'2 Im!**D5 o~1!

by an argument analogous to the proof of Theorem 2+22 of Hall and Heyde~1980!+ In
particular,

max
0#i#T21

E~7MT, i,2
*,** 7!

# T7dT7(
l50

`

7Cl1i
w 7 max

0#i#T21
ES**T21 (

s51

T2i

~es2l es2l
' 2 Im!1$l # s2 1%**D

# T7dT7Fsup
l$0

max
0#i#T21

ES**T21 (
s51

T2i

~es2l es2l
' 2 Im!1$l # s2 1%**DG(

l50

`

7Cl
w7

5 o~1!,
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so ZGww,2,2
*,** ~ [aT ! 5 op~1!+ Finally, ZGww,2,3

*,** ~ [aT ! 5 o~1! because

max
0#i#T21

7MT, i,3
*,** 7 # T7dT7 max

0#i#T21
F(

l50

`

7Cl1i
w 7ST21 (

s51

T2i

1$l # s2 1%DG
# T7dT7 max

0#i#T21
S(

l50

`

7Cl1i
w 7D

5 T7dT7(
l50

`

7Cl
w75 O~1!+

The proof of ZGww
**,* 5 op~1! is analogous to that ofZGww

*,** 5 op~1! and is omitted to con-
serve space+ The proof of ZSww rp Sww is a special case~with S i50

T21 replaced bySi50
0

throughout! of the proof of ZGww rp Gww+ Finally, ZVww 5 ZGww 1 ZGww
' 2 ZSww is consistent

for Vww 5 Gww 1 Gww
' 2 Sww, becauseZGww rp Gww and ZSww rp Sww+ n

Proof of Lemma 6. Let $wt %, $jt % , and $r2t % be defined as in the text+ By a multi-
variate analogue of Phillips and Solo~1992, Theorem 3+4!, we have

1T2102 (
t51

{T{}

wt

T2102j{T{}

T2102r2, {T{}

2 rd 1
Vww

102 0

Im 0

0 Ik2

2 1
U~{!

V~{!

R2~{!2 , (A.2)

whereU, V, andR2 are independent Wiener processes of dimension 1, mx, andk2, re-
spectively, and

Vww
102 5 Svuu+x

102 vxu
' Vxx

2102'

0 Vxx
102 D+

Moreover,

T21 (
t51

T S(
s51

t

wsDwt
'rd Vww

102E
0

1SU

VD dSU

VD'Vww
102'1 Gww

' , (A.3)

T21 (
t51

T

r2t wt
'rd E

0

1

R2dSU

VD'Vww
102' , (A.4)

by Phillips ~1988b!, whereas

T21 (
t51

T

wt wt
'rp Sww (A.5)

in view of the law of large numbers+
Part~a! is standard+ For 1# t # T, vTt 5 ut 1 dT

' jt , whereut , dT , andjt are defined
as in Section 2+ By ~10!, ~11!, and part~a!,

CT
21 (

t51

T

qt ut rd vuu+x
102 EQx dU 1EQx dX'Vxx

21vxu 1 ~0,gux!'+
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Moreover,

CT
21 (

t51

T

qt jt
'dT rd lvuu+x

102 EQxU,

by ~A+2!, part ~a!, the relation limTr` TdT
' 5 ~lvuu+x

102 ,0' !, and the continuous mapping
theorem~CMT!+ Because*QxdUl 5 *QxdU 1 l *QxU, part ~b! is obtained by com-
bining the preceding displays+

Part~c! is standard+ Defineqt
†† 5 ~dt

' , xt
††'!' andvTt

†† 5 ut
†† 1 dT

' jt , wherext
†† 5 xt 2

G{x
' Sww

21 wt andut
†† 5 ut 2 vxu

' Vxx
21Dxt 5 ~1,2vxu

' Vxx
21!wt + Let ~c††! 2 ~h††! denote the

counterparts of parts~c!–~h! in which qTt
† andvTt

† are replaced withqt
†† andvTt

††, respec-
tively+ Part~c††! follows from part~a!+ By ~10!, limTr` TdT

' 5 ~lvuu+x
102 ,0' !, and CMT,

T2102 (
t51

{T{}

ut
†† 5 T2102 (

t51

{T{}

~1,2vxu
' Vxx

21!wt rd vuu+x
102 U~{!,

T2102 (
t51

{T{}

dT
' jt 5 ~TdT !'T2302 (

t51

{T{}

jt rd vuu+x
102 lE

0

{

U~t! dt+

Combining these results, part ~d††! is obtained+ Next,

~diag~T 102, + + + ,T md2102!!21 (
t51

T

dt vt
††
rd vuu+x

102 EDdUl

by ~a!, ~d††!, and CMT, whereas

T21 (
t51

T

xt
††ut

†† 5 ST21 (
t51

T

xt wt
'2 G{x

' Sww
21 T21 (

t51

T

wt wt
'D

3 S 1

2Vxx
21vxu

Drd vuu+x
102 EX dU

and

T21 (
t51

T

xt
††jt

'dT 5 ST22 (
t51

T

xt
††jt

'D~TdT ! rd vuu+x
102 lEXU

in view of ~A+3!, ~A+5!, ~c††!, ~A+2!, and CMT+ Part ~e††! is established by using these
results and the relation

CT
21 (

t51

T

qt
††vTt

†† 5 1 ~diag~T 102, + + + ,T md2102!!21 (
t51

T

dt vt
††

T21 (
t51

T

xt
††ut

†† 1 T21 (
t51

T

xt
††jt

'dT
2 +
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Because

T21 (
t52

T S(
s51

t21

vTs
††DvTt

††

5 T21 (
t52

T S(
s51

t21

us
††Dut

†† 1 T21dT
' (

t52

T S(
s51

t21

jsDut
†† 1 T21 (

t52

T S(
s51

t21

us
††Djt

'dT ,

part ~f ††! can be obtained by combining the following results, each of which is obtained
in standard fashion using~A+2!, ~A+3!, ~A+5!, and CMT:

T21 (
t52

T S(
s51

t21

us
††Dut

†† 5 T21 (
t52

T S(
s51

t

us
††Dut

†† 2 T21 (
t52

T

ut
††ut

††

rd vuu+xEU dU 1 guu+x
1 ,

T21dT
' (

t52

T S(
s51

t21

jsDut
††
rd vuu+x lE PU dU,

T21 (
t52

T S(
s51

t21

us
††Djt

'dT rd vuu+x lEUl U,

where PU~r ! 5 *0
r U~t! dt+ Parts~g! and ~h††! are proved in the same way as~a! and

~e††!, respectively+
Now,

xt
†† 2 xTt

† 5 ~ ZG{x
' ZSww

21 2 G{x
' Sww

21 !wt 1 ZG{x
' ZSww

21 ~ [wTt 2 wt !

and

vTt
†† 2 vTt

† 5 ~ ZbT 2 b! ZG{x
' ZSww

21 [wTt 1 ~ [vxu
' ZVxx

21 2 vxu
' Vxx

21!Dxt +

By Lemma 5, ZG{x
' ZSww

21 rp G{x
' Sww

21 and [vxu
' ZVxx

21 rp vxu
' Vxx

21+ Furthermore, ZbT 2 b 5
Op~T21! and max1#t#T7 [wTt 2 wt7 5 Op~T2102! by Lemma 1, the proof of which only
uses~a!–~b! of the present lemma+ Using these facts, the proof of~d! is completed as
follows:

T2102 (
t51

{T{}

~vTt
†† 2 vTt

† !

5 ~ ZbT 2 b! ZG{x
' ZSww

21 T2102 (
t51

{T{}

[wTt 1 ~ [vxu
' ZVxx

21 2 vxu
' Vxx

21!T2102x{T{}rd 0+

Analogously, the proof of ~e!–~h! can be completed by using elementary manipula-
tions to show thatCT

21 (t51
T ~qTt

† vTt
† 2 qt

††vTt
††! rd 0, T21 (t52

T ~(s51
t21 vTs

† !vTt
† 2

T21 (t52
T ~(s51

t21 vTs
††!vTt

††
rd 0, etc+ n
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Proof of Lemma 1. In view of the relation

CTS [aT

ZbT 2 bD 5 SCT
21 (

t51

T

qt qt
'CT

21D21SCT
21 (

t51

T

qt vTtD,
the stated result follows from Lemma 6~a!–~b! and CMT+ n

Proof of Lemma 2. We have

CTS [aT
†

ZbT
† 2 b

D 5 SCT
21 (

t51

T

qTt
† qTt

†'CT
21D21SCT

21 (
t51

T

qTt
† vTt

†D
rd SEQxQx

'D21Svuu+x
102 EQx dUlD,

where the limiting distribution is obtained using Lemma 6~c! and ~e! and CMT+ It fol-
lows from integration by parts that*QxdUl 5

L
*Qx,ldU+ The mixture representation is

obtained by noting that*Qx,l dU8FV
5
L N ~0,*Qx,l Qx,l

' ! by the properties of the Itô
integral+ n

Proof of Theorem 3. The statisticGT can be written as

GT 5 **FFbST22 (
t51

T

xTt,d
† xTt,d

†' D21

Fb
' G2102

[vuu+x
2102FbT~ ZbT

† 2 b!**
2

+

By Lemma 5, Lemma 6~c!, Lemma 2, and CMT,

FbST22 (
t51

T

xTt,d
† xTt,d

†' D21

Fb
' rd FbSEXD XD

' D21

Fb
' 5EXD

Fb XD
Fb'

and

[vuu+x
2102FbT~ ZbT

† 2 b! rd FbSEXD XD
' D21EXD dUl 5EXD

Fb dUl ,

whereXD 5 Vxx
102VD and

XD
Fb~r ! 5 FbSEXD XD

' D21

XD~r ! 5 ~Fb Vxx
2102'!SEVDVD

'D21

VD~r !+

As a consequence, GT rd 7* HXD
Fb dUl72, where HXD

Fb~r ! 5 ~*XD
Fb XD

Fb'!2102XD
Fb~r !+

The distribution ofXD
Fb depends onFb and Vxx

2102' throughFb Vxx
2102' + By the par-

titioned inverse formula, HXD
Fb 5 HVD

p when Vxx 5 Imx
and Fb 5 ~Ip,0! and the

proof of part ~a! can therefore be completed by showing that no generality is lost by
assumingFb Vxx

2102' 5 ~Ip,0!+ L~ HXD
Fb! is invariant under transformations of the form

Fb Vxx
2102' r KFb Vxx

2102'O, whereK is a nonsingularp 3 p matrix andO is an orthog-
onal mx 3 mx matrix+ TakeO such thatFb Vxx

2102'O 5 ~L,0!, whereL is lower trian-
gular+ SettingK 5 L21, we arrive at the desired conclusion+
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To establish part~b!, it suffices to show that

E HVD
p dUl*FV

5
L NS0, Ip 1 l2E

0

1

HVD
p~r ! HVD

p~r !' drD+
Using integration by parts, * HVD

pdUl 5
L

* HVD,l
p dU, where HVD,l

p ~r ! 5 l HVD
p~r ! 1 HVD

p~r ! and
HVD
p~r ! 5 *r

1 HVD
p~s! ds+ By the properties of the Itô integral,

E HVD,l
p dU*FV

5
L NS0,E

0

1

HVD,l
p ~r ! HVD,l

p ~r !' drD+
Now, *0

1 HVD
p~r ! HVD

p~r !' dr 5 Ip, and the result follows because

E
0

1

HVD
p~r ! HVD

p~r !' dr 1E
0

1

HVD
p~r ! HVD

p~r !' dr 5 SE
0

1

HVD
p~r ! drDSE

0

1

HVD
p~r ! drD' 5 0,

where the equality uses integration by parts and the relation*0
1 VD~r ! dr 5 0,

respectively+ n

Proof of Theorem 4. Let rTt,q
† 5 rt 2 ~(s51

T rsqTs
†' !~(s51

T qTs
† qTs

†' !21qTt
† + By Lemma 5,

Lemma 6~c!, ~e!, ~g!, and~h!, and CMT,

JT~k1, k2! 5 **SYT
21 (

t51

T

rTt,q
† rTt,q

†' YT
21D2102

[vuu+x
2102YT

21 (
t51

T

rTt,q
† vTt

† **
2

rd **SERQ RQ
' D2102SERQ dUlD**2

5 **SE ERQ dUlD**2

+

Next, by Lemma 5, Lemma 6~c!–~e!, and CMT, [vuu+x
2102T2102 ZST, {T{} rd ZUl~{!, so

CIT 5 [vuu+x
21 T22 (t51

T ZSTt
2 rd * ZUl

2, as claimed+
Finally, using Lemma 5, Lemma 6~c!–~f !, and CMT, it is not hard to show that
[vuu+x
2102T2102 XST, {T{} rd Ul, OQ~{! and [vuu+x

21 ~T21 (t52
T XSt21 D XSt 2 [guu+x

1 ! rd *Ul, OQdUl, OQ,
where the notation*Ul, OQdUl, OQ is shorthand for*Ul, OQdUl 2 ~*Ul OQ'!~* OQ OQ'!21*Ul, OQQ+
As a consequence, SBDHT

I 5 [vuu+x
21 T22 (t51

T XSTt
2 rd *Ul, OQ

2 , LMT
I rd ~*Ul, OQdUl, OQ!2,

andLMT
II 5 ~SBDHT

I !21{LMT
I 1 op~1! rd ~*Ul, OQ

2 !21~*Ul, OQdUl, OQ!2+ n
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