The price \tilde{p} is interpreted as the shadow free-market price of gold given a price hypothetically fixed at \bar{p} between dates 0 and t, but not after; it is the competitive market price that would prevail in the absence of future price fixing, given the economy's remaining stock of gold, $S_t = S_0 - D(\bar{p})t$, when the price has been fixed at \bar{p} in the past.

Figure 1

When $\tilde{p} < \bar{p}$, \tilde{p} is rising at a proportional rate below the real interest rate r because the economy is using gold more slowly than it would were \bar{p} the actual price. When $\tilde{p} > \bar{p}$, \tilde{p} is rising at a proportional rate greater than r because gold is being consumer more quickly. Since $\dot{S} = -D(\bar{p}) = -\bar{p}^\sigma$ under price fixing, equation (3) discloses that

$$\frac{\tilde{p}}{\bar{p}} = r \left(\frac{\bar{p}}{\tilde{p}} \right)^\sigma,$$

which confirms the intuitive argument just given\(^{(1)}\).

The date T^* at which the two price lines intersect is the date on which the price-fixing scheme collapses; it does so after a speculative attack in which private market participants acquire all of the remaining official gold stock at price \bar{p}. Thereafter a *laisssez-faire* equilibrium prevails, with market price rising at rate r until the (perhaps infinite) choke price is reached and the economy's gold stock is

\(^{(1)}\) Notice in particular that $\tilde{p} \neq \bar{p} S_t$, where the latter (shown by the upper dashed line in the figure) is the *laisssez-faire* or Hotelling price prevailing (given an initial gold stock of S_0) if the government never intervenes in the gold market. In contrast, in the equilibrium under study now, demand is at $D(\bar{p})$ for dates t prior to the date of the crisis, not at $D(\hat{p}S_t \sigma t)$. Thus, S_t under the price-fixing-cum-collapse scenario generally won't equal the gold stock the economy would have had on date t had *laisssez-faire* prevailed since date 0, even though the gold stock on date 0 was S_0 in both regimes.