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a b s t r a c t

We derive the limiting distribution of the Oaxaca estimator of average treatment effects studied by
Kline (2011). A consistent estimator of the asymptotic variance is proposed that makes use of standard
regression routines. It is shown that ignoring uncertainty in group means will tend to lead to an
overstatement of the asymptotic standard errors. Monte Carlo experiments examine the finite sample
performance of competing approaches to inference.
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1. Introduction

In a seminal contribution, Oaxaca (1973) proposed estimation
of counterfactual means by applying the regression coefficients of
one demographic group to the mean covariates of another.1 Kline
(2011) showed that a variant of Oaxaca’s technique corresponds
to a ‘‘doubly robust’’ estimator of average treatment effects—
estimation is consistent if either mean untreated outcomes or
the odds of treatment are linear in the covariates. An attractive
feature of the Oaxaca estimator of treatment effects is that it relies
on simple regression based methods that are easy to implement
and adapt to the needs of a particular application. Several recent
studies apply the Oaxaca estimator of treatment effects to program
evaluation problems (e.g. Angrist and Rokkanen, 2012, Busso et al.,

✩ I thank Josh Angrist, Andres Santos, and Christopher Walters for helpful
comments. All errors are my own.
∗ Correspondence to: 530 Evans Hall #3880, Berkeley, CA 94720-3880, United

States. Tel.: +1 5106434153.
E-mail address: pkline@berkeley.edu.

1 A large subsequent literature on decomposition methods reviewed by Fortin
et al. (2011) extends Oaxaca’s original contribution, focusing most recently on the
identification and estimation of distributional counterfactuals.

2013, Kline and Moretti, 2014); however no formal discussion of
the estimator’s asymptotic properties has yet been provided. This
note derives the limiting distribution of the Oaxaca estimator of
average treatment effects and proposes a simple computational
approach to variance estimation. It is shown that ignoring the
variability of the mean values of covariates will tend to lead to an
overstatement of asymptotic standard errors.2 Monte Carlo results
are provided to illustrate the relative performance of competing
approaches to inference.

2. Setup

The data are a triple {Yi, Xi,Di}
N
i=1 where Yi is a scalar outcome,

Xi a K × 1 vector of covariates which is assumed to include an
intercept, and Di a scalar indicator for treatment status with one
indicating treated. We assume throughout that all variables have
finite second moments and that E


XiX ′

i |Di = 0

is full rank.

2 In a related result, Wooldridge (2002, 2007) shows the conditions under which
variance estimates ignoring sampling uncertainty in an estimated propensity score
will tend to yield conservative inference. The present analysis considers the effects
of ignoring sampling uncertainty in themean value of covariateswhich corresponds
to one component of the Oaxaca estimator’s implicit propensity score estimate.

0165-1765/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
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Our parameter of interest is:

θ ≡ µ1
y − µ1′

x β0

where µ1
y ≡ E [Yi|Di = 1] , µ1

x ≡ E [Xi|Di = 1], and β0
≡

E

XiX ′

i |Di = 0
−1 E [XiYi|Di = 0]. To relate this to Oaxaca (1973)’s

original framework, note that if one takes Yi as log wages and Di as
an indicator for being female then this quantity corresponds to the
difference between women’s actual mean wages and their mean
predicted wages based upon the regression coefficients governing
the population of men. Quantities such as θ have traditionally
been used to detect labour market discrimination but can more
generally be thought of as measures of average causal effects.
Kline (2011) discusses the conditions under which θ identifies the
average treatment effect on the treated—a standard estimand in
program evaluation (Heckman and Robb, 1985).

The sample analogue of θ is:

θ̂ ≡ µ̂1
y − µ̂1′

x β̂0

where µ̂1
y ≡

1
N


i DiYi
1
N


i Di
, µ̂1

x ≡
1
N


i DiXi
1
N


i Di
, β̂0

≡
 1
N


i (1 − Di)

XiX ′

i

−1  1
N


i (1 − Di) XiYi


. By the continuousmapping theorem,

θ̂
p

→ θ .
We assume that any dependence across the observations is

weak enough that a central limit theorem holds:
µ̂1

y, µ̂
1′
x , β̂0

′ a
∼N


µ1

y, µ
1′
x , β0′ , V/N


,

where V ≡


Vy
Vxy Vx
Vβy Vβx Vβ


for Vy a scalar, Vxy a K × 1 vector of

covariances, Vx a K × K variance matrix, Vβy a K × 1 vector of
covariances, Vβx a K×K covariancematrix, and Vβ a K×K variance
matrix. Hence, by the Delta method:
√
N

θ̂ − θ


=

√
N


µ̂1
y − µ1

y


− µ1′

x


β̂0

− β0


−

µ̂1

x − µ1
x

′
β0


+ op(1).

Asymptotically, there are three sources of uncertainty: (i)
variability in the treated mean outcome


µ̂1

y − µ1
y


, (ii) variability

in the regression coefficients among the untreated sample
β̂0

− β0

, and (iii) variability in the covariate means in the

treatment group

µ̂1

x − µ1
x


. In general, these three sources of

variability may be correlated, which gives rise to the following
asymptotic variance expression:
√
N

θ̂ − θ


d

→N (0, Vθ ) ,

where Vθ ≡ Vy + µ1′
x Vβµ1

x + β0′Vxβ
0

− 2µ1′
x Vβy − 2β0′Vxy −

2β0′Vβxµ
1
x .

Because the estimator is asymptotically linear, bootstrap
techniques can be applied (see Theorem 23.5 in Van der Vaart,
2000). However, the bootstrap can be computationally expensive
relative to analytical estimates. Furthermore, it is sometimes of
interest to obtain analytical variance estimates for use in obtaining
an asymptotic refinement via the bootstrap.

3. Ignoring uncertainty in the group means

It is common (e.g., Oaxaca and Ransom, 1994, 1998) for re-
searchers to ignore the variability in the group means


µ̂1

x − µ1
x


,

which implies dropping the terms β0′Vxβ
0
− 2β0′Vxy − 2β0′Vβxµ

1
x

from Vθ .3 We show now that this will tend to lead to an over-
estimate of the asymptotic sampling error. To see this, note first
that typically Vβx = 0 because µ̂1′

x and β̂0 are estimated on sepa-
rate samples that are independent of one another.4 Suppose that
this is the case. Define β1

≡ E

XiX ′

i |Di = 1
−1 E [XiYi|Di = 1]

as the regression coefficient among the treated units. If the data
are independent across observations, then we can write Vxy =

Vxβ
1.5Hence β0′Vxy = β0′Vxβ

1. Thus, for β0
≈ β1, we have

β0′Vxβ
0
− 2β0′Vxy = −β0′Vxβ

0 which implies the sampling vari-
ance that ignores the variability in the group means will be too
large whenever the regression coefficients in the treated and un-
treated samples are close to one another—which will typically be
the case.

Thus, it is possible to conduct conservative inference based on
plugin estimators of V naive

≡ Vy + µ1′
x Vβµ1

x − 2µ1′
x Vβy. This is

easily accomplished in standard regression packages by running a
regression of Yi onDi and the elements of (1 − Di) Xi without a con-
stant. Heuristically, the standard error on the coefficient accompa-
nying Di provides an estimate of Vy, the covariance matrix for the
coefficients accompanying the elements of (1 − Di) Xi provides an
estimate ofVβ , and the covariance between these two sets of coeffi-
cients provides an estimate of Vβy. Note that in the absence of clus-
tering or cross-sectional dependence Vβy = 0. Finally, one simply
plugs in sample means as estimates of µ1

x to obtain the composite
variance estimate V̂ naive.

4. Full variance estimation

To derive the full asymptotic variance, note that:

θ̂ =

1
N


i
Di

Yi − X ′

iβ
0

−

1
N


i
DiX ′

i


β̂0

− β0


1
N


i
Di

= θ +

1
N


i
Di

Yi − X ′

iβ
0
− θ


1
N


i
Di

−

1
N


i
DiX ′

i

1
N


i
Di


β̂0

− β0


= θ +

1
N


i
Di

Yi − X ′

iβ
0
− θ


1
N


i
Di

−

1
N


i
DiX ′

i

1
N


i
Di


1
N


j


1 − Dj


XjX ′

j

−1

×
1
N


j


1 − Dj


Xj

Yj − X ′

jβ
0 .

3 It is important to note that there is a distinction between ignoring uncertainty in
the groupmeans µ̂x and in conditioning on the underlying covariates Xi themselves.
If onewishes to conduct inference conditional on an experimental design {Di, Xi}

N
i=1

it is necessary to estimate Vθ |x ≡ Vy|x + µ1′
x Vβ|xµ

1
x − 2µ1′

x Vβy|x where Vy|x, Vβ|x , and
Vβy|x give conditional asymptotic variances. In general Vy ≥ Vy|x and so one will
again tend to overestimate the conditional asymptotic variance by simply ignoring
variability in the group means µ̂x . See Abadie et al. (2011) for further discussion.
4 They may however be correlated if they are in the same clusters or share

some other form of cross-sectional dependence. However, for Vβx ≠ 0 one also
needs for the regression model for the control sample to be misspecified so that
E

Yi − X ′

i β
0
|Xi,Di = 0


≠ 0.

5 This follows because with i.i.d. data Vx =
E[XiX ′

i |Di=1]
E[Di]

− µ1
xµ

1′
x while Vxy =

E[XiYi |Di=1]
E[Di]

− µ1
xE [Yi|Di = 1] =

E[XiX ′
i |Di=1]β1

E[Di]
− µ1

xµ
1′
x β1 .
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By assumption, a central limit theorem applies, so that:
1

√
N


i

Di

Yi − X ′

iβ
0
− θ


1

√
N


j


1 − Dj


Xj

Yj − X ′

jβ
0


d
→N


0,

Vd(y−x′β)
V(1−d)x(y−x′b),d(y−x′β) V(1−d)x(y−x′b)


,

where,

Vd(y−x′β) ≡ lim
N→∞

E

 1
√
N


i

Di

Yi − X ′

iβ
0
− θ

2


= E [Di]2

Vy + β0′Vxβ

0
− 2β0′Vxy


,

V(1−d)x(y−x′b) ≡ lim
N→∞

E


1

√
N


i

(1 − Di) Xi

Yi − X ′

i β
0

×


1

√
N


i

(1 − Di) Xi

Yi − X ′

iβ
0′

= E

(1 − Di) XiX ′

i


VβE


(1 − Di) XiX ′

i


,

V(1−d)x(y−x′b),d(y−x′β)

≡ lim
N→∞

E


1

√
N


j


1 − Dj


Xj

Yj − X ′

jβ
0 

×


1

√
N


i

Di

Yi − X ′

iβ
0
− θ


= E [Di]2 E


(1 − Di) XiX ′

i

 
Vβy − β0′Vβx


.

Therefore, by Slutsky’s theorem,
√
N

θ̂ − θ


= E [Di]−1 1

√
N


i

Di

Yi − X ′

i β
0
− θ


− E [Xi|Di = 1]′ E


XiX ′

i |Di = 0
−1

×
1

√
N


j


1 − Dj


Xj

Yj − X ′

jβ
0

+ op(1).

Hence, the asymptotic variance can be written:

Vθ = E [Di]−2 Vd(y−x′β) (1)

+ µ1′
x E

(1 − Di) XiX ′

i

−1 V(1−d)x(y−x′b)

× E

(1 − Di) XiX ′

i

−1
µ1

x (2)

− 2µ1′
x E

XiX ′

i |Di = 0
−1 V(1−d)x(y−x′b),d(y−x′β). (3)

One can estimate Vθ using appropriate sample analogues. For ex-
ample, if the data are independent and identically distributed

across observations then V̂ i.i.d.
d(y−x′β)

≡
1
N


i Di


Yi − X ′

i β̂
0
− θ̂

2 p
→

Vd(y−x′β), V̂
i.i.d.
d(y−x′β)

≡
1
N


i (1 − Di) Xi


Yi − X ′

i β̂
0
2 p

→ Vd(y−x′β),

and V i.i.d.
d(y−x′β),(1−d)x(y−x′b)

= 0. Hence, a consistent estimator of Vθ

is given by:

V̂ i.i.d.
θ ≡

V̂ i.i.d.
d(y−x′β) 1

N


Di
2 + µ̂1′

x


1
N


i

(1 − Di) XiX ′

i

−1

× V̂ i.i.d.
(1−d)x(y−x′b)


1
N


i

(1 − Di) XiX ′

i

−1

µ̂1
x .

If the data instead exhibit dependencewithin (but not between)
clusters then, letting c(i) denote the cluster corresponding to
observation i, variance estimators that are consistent for fixed
cluster sizes as the number of clusters approaches infinity are given
by:

V̂ cluster
d(y−x′β)

≡
1
N


c′

 
i:c(i)=c′

Di


Yi − X ′

i β̂
0
− θ̂

2
p

→ Vd(y−x′β),

V̂ cluster
(1−d)x(y−x′b)

=
1
N


c′

 
i:c(i)=c′

(1 − Di) Xi


Yi − X ′

i β̂
0


×

 
i:c(i)=c′

(1 − Di) Xi


Yi − X ′

i β̂
0
′

p
→ V(1−d)x(y−x′b),

V̂ cluster
(1−d)x(y−x′b),d(y−x′β)

≡
1
N


c′

 
j:c(j)=c′


1 − Dj


Xj

×


Yj − X ′

j β̂
0


×

 
i:c(i)=c′

Di


Yi − X ′

i β̂
0
− θ̂


p

→ V(1−d)x(y−x′b),d(y−x′β).

provided that standard regularity conditions hold (Newey and
McFadden, 1994). Thus, in this case, a consistent estimator of Vθ

is given by:

V̂ cluster
θ ≡

V̂ cluster
d(y−x′β) 1

N


Di
2 + µ̂1′

x


1
N


i

(1 − Di) XiX ′

i

−1

× V̂ cluster
(1−d)x(y−x′b)


1
N


i

(1 − Di) XiX ′

i

−1

µ̂1
x .

− 2µ̂1′
x


1
N


i

(1 − Di) XiX ′

i

−1

× V̂ cluster
(1−d)x(y−x′b),d(y−x′β)

.

5. A computational trick

The above calculations are rather tedious. Fortunately, standard
regression software can be used to compute the necessary
variance estimates in a simpleway. The following regression based
procedure will provide an estimate of Vθ :

(1) Estimate β̂0 via OLS in the untreated sample.

(2) Form a new variable Y ∗

i = Di


Yi − X ′

i β̂
0


+ (1 − Di) Yi.

(3) Regress Y ∗

i on Di and the elements of (1 − Di) Xi without a
constant using an appropriate variance estimation technique
(e.g. clustering).

(4) The coefficient on Di provides the Oaxaca point estimate θ̂
with (in an abuse of notation) corresponding variance estimate
V̂θ̂ which (given appropriate regularity conditions) will be
consistent for the term in (1). The coefficients on the elements
of (1 − Di) Xi provide estimates of β̂0 with corresponding
variance estimate V̂β̂ which will be consistent for the term
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Table 1
Monte Carlo results.

Clusters Mean θ̂ Std. dev. θ̂ Accounting for uncertainty in µ̂1
x Ignoring uncertainty in µ̂1

x Prob. ignoring lowers


V̂θ

N

Mean


V̂θ

N False reject prob. Mean


V̂θ

N False reject prob.

(1) (2) (3) (4) (5) (6) (7)

25 0.9952 0.4374 0.4157 0.0651 0.4463 0.0472 0.0895
50 0.9997 0.3066 0.3003 0.0557 0.3214 0.0410 0.0255

100 1.0002 0.2161 0.2152 0.0494 0.2300 0.0355 0.0025
200 0.9995 0.1541 0.1529 0.0520 0.1632 0.0382 0.0002

Notes: Statistics computed using 10,000 simulation draws. ‘‘False reject prob.’’ refers to the fraction of simulations in which a Wald test rejected the hypothesis that θ = 1

at the 5% level. ‘‘Prob. ignoring lowers


V̂θ

N ’’ reports the fraction of simulations in which standard error accounting for uncertainty in µ̂1
x exceeded standard error ignoring

uncertainty in µ̂1
x .

E

(1 − Di)XiX ′

i

−1 V(1−d)x(y−x′b)E

(1 − Di)XiX ′

i

−1 in (2). The

regression also supplies an estimate of V̂β̂θ̂ which will be
zero unless some form of cross-sectional dependence is
allowed. V̂β̂θ̂ will be consistent for the term E


XiX ′

i |Di = 0
−1

V(1−d)x(y−x′b),d(y−x′β) in (3).

(5) The full variance estimate is computed as V̂θ̂ + µ̂1′
x Vβ̂µ̂1

x −

2µ̂1′
x V̂β̂θ̂ which will be consistent for Vθ .

6. Monte Carlo

We now consider the performance of the proposed Oaxaca
variance estimator in a simple Monte Carlo simulation design. The
data generating process is given by:

Yi = 2 + (1 − Di) (2Xi) + Di (3Xi) + η
(1)
c(i) + εi

Di = 1

η

(2)
c(i) + vi > 0


,

where vi ∼ N(0, 1), and εi, η
(1)
c , and η

(2)
c are each drawn from in-

dependent Student’s-t distributions with six degrees of freedom.
This design ensures a within cluster correlation in both the treat-
ment Di and the composite regression error η1

c(i) +εi, which neces-
sitates cluster robust inference. Because treatment varies within
cluster, it is possible for Vβy ≠ 0. As noted by Chesher (1995),
Monte Carlo experiments utilizing symmetrically distributed co-
variates are likely to give overly optimistic results. To avoid this
problem, we set Xi = 4


X∗

i −
2
7


+ Di where X∗

i ∼ Beta (2, 5),
which yields a regressor with a substantial amount of skew and
a reasonable amount of predictive power.6 In this design, the dif-
ferences between β0 and β1 and the fact that µ1

x = 1 imply the
population value of θ equals one.

Table 1 reports simulation results for several different sample
sizes. In all cases each cluster has exactly 10 observations. Columns
(3) and (4) use the regression based procedure of Section 5 to
compute variance estimates, while columns (5) and (6) use the
procedure of Section 3 which ignores the uncertainty in the
sample means µ̂1

x .
7 As column (1) indicates, the Oaxaca point

estimates θ̂ are essentially unbiased in this design. Unsurprisingly,
the standard error estimates summarised in column (3) slightly

6 The population R2 in the regression of Yi on Xi in the Di = 0 sample is
approximately 35%.
7 Variance estimates were computed in Stata 12.1 using the ‘‘cluster’’ variance

estimation routine which uses a small sample degrees of freedom adjustment of
the form C

C−1 where C is the number of clusters. Estimates ignoring the variance in

the sample means still allow for correlation between β̂ and µ̂1
y—that is, they take

the form V̂y + µ̂1′
x V̂β µ̂1

x − 2µ̂1′
x V̂βy . All code used in this paper can be found online

at http://emlab.berkeley.edu/~pkline/

underestimate the true variability of the estimator when few
clusters are present, leading to mild over-rejection of hypothesis
tests. With 100 clusters, the standard error estimates yield nearly
exact coverage. As expected, ignoring uncertainty in the mean
value of the covariate increases the estimated standard errors,
which leads to under-rejection. In this case, the problem is
relatively mild, with a 6%–7% over-estimate of the true asymptotic
standard error. Interestingly, although ignoring uncertainty in µ̂1

x
asymptotically inflates the standard error estimate, it does not
always do so in finite samples, as column (7) makes clear.

7. Conclusion

The Oaxaca estimator of average treatment effects studied
by Kline (2011) is a simple alternative to matching and inverse
probability weighting methods in evaluation problems involving
selection on observables. This note derived the estimator’s limiting
distribution. A simple computational approach to standard error
estimationwas proposed thatmakes use of conventional statistical
routines. Naive routines that ignore variability in the mean values
of the covariates are likely to yield conservative inferences.
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