Discrete Choice Methods with Simulation
Second Edition

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum simulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as antithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis–Hastings algorithm and its variant Gibbs sampling. This second edition adds chapters on endogeneity and expectation-maximization algorithms. No other book incorporates all these topics, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Professor Kenneth E. Train teaches econometrics, regulation, and industrial organization at the University of California, Berkeley. He also serves as Vice President of National Economic Research Associates (NERA), Inc., in San Francisco, California. The author of Optimal Regulation: The Economic Theory of Natural Monopoly (1991) and Qualitative Choice Analysis (1986), Dr. Train has written more than 60 articles on economic theory and regulation. He chaired the Center for Regulatory Policy at the University of California, Berkeley, from 1993 to 2000 and has testified as an expert witness in regulatory proceedings and court cases. He has received numerous awards for his teaching and research.
Additional Praise for the First Edition of *Discrete Choice Methods with Simulation*

“Ken Train’s book provides outstanding coverage of the most advanced elements of the estimation and usage of discrete choice models that require simulation to take account of randomness in the population under study. His writing is clear and understandable, providing both the new and experienced reader with excellent insights into and understanding of all aspects of these new and increasingly important methods.”

– Frank S. Koppelman, Northwestern University

“This is a masterful book, authored by one of the leading contributors to discrete choice methods and analysis. No other book covers this ground with such up-to-date detail in respect of theory and implementation. The chapters on simulation and recent developments such as mixed logit are most lucid. As a text or reference work this volume should have currency for a long time. It will appeal to the practitioner as much as to the specialist researcher who has been in this field for many years.”

– David Hensher, The University of Sydney

“Simulation-based estimation is a major advance in econometrics and discrete choice modeling. The technique has revolutionized both classical and Bayesian analysis. Ken Train’s many papers have made a large contribution to this literature. *Discrete Choice Methods with Simulation* collects these results in a comprehensive, up-to-date source, with chapters on behavioral foundations, theoretical and practical aspects of estimation, and a variety of applications. This book is a thoroughly enjoyable blend of theory, analysis, and case studies; it is a complete reference for developers and practitioners.”

– William Greene, New York University
Discrete Choice Methods with Simulation
Second Edition

Kenneth E. Train

University of California, Berkeley, and NERA
To
Daniel McFadden
and
in memory of
Kenneth Train, Sr.
Contents

1 Introduction page 1
 1.1 Motivation 1
 1.2 Choice Probabilities and Integration 3
 1.3 Outline of Book 7
 1.4 A Couple of Notes 8

Part I Behavioral Models

2 Properties of Discrete Choice Models 11
 2.1 Overview 11
 2.2 The Choice Set 11
 2.3 Derivation of Choice Probabilities 14
 2.4 Specific Models 17
 2.5 Identification of Choice Models 19
 2.6 Aggregation 29
 2.7 Forecasting 32
 2.8 Recalibration of Constants 33

3 Logit 34
 3.1 Choice Probabilities 34
 3.2 The Scale Parameter 40
 3.3 Power and Limitations of Logit 42
 3.4 Nonlinear Representative Utility 52
 3.5 Consumer Surplus 55
 3.6 Derivatives and Elasticities 57
 3.7 Estimation 60
 3.8 Goodness of Fit and Hypothesis Testing 67
 3.9 Case Study: Forecasting for a New Transit System 71
 3.10 Derivation of Logit Probabilities 74

4 GEV 76
 4.1 Introduction 76
 4.2 Nested Logit 77
viii Contents

4.3 Three-Level Nested Logit 86
4.4 Overlapping Nests 89
4.5 Heteroskedastic Logit 92
4.6 The GEV Family 93

5 Probit 97
5.1 Choice Probabilities 97
5.2 Identification 100
5.3 Taste Variation 106
5.4 Substitution Patterns and Failure of IIA 108
5.5 Panel Data 110
5.6 Simulation of the Choice Probabilities 114

6 Mixed Logit 134
6.1 Choice Probabilities 134
6.2 Random Coefficients 137
6.3 Error Components 139
6.4 Substitution Patterns 141
6.5 Approximation to Any Random Utility Model 141
6.6 Simulation 144
6.7 Panel Data 145
6.8 Case Study 147

7 Variations on a Theme 151
7.1 Introduction 151
7.2 Stated-Preference and Revealed-Preference Data 152
7.3 Ranked Data 156
7.4 Ordered Responses 159
7.5 Contingent Valuation 164
7.6 Mixed Models 166
7.7 Dynamic Optimization 169

Part II Estimation
8 Numerical Maximization 185
8.1 Motivation 185
8.2 Notation 185
8.3 Algorithms 187
8.4 Convergence Criterion 198
8.5 Local versus Global Maximum 199
8.6 Variance of the Estimates 200
8.7 Information Identity 202
Contents

9 Drawing from Densities 205
\hspace{1em} 9.1 Introduction 205
\hspace{1em} 9.2 Random Draws 205
\hspace{1em} 9.3 Variance Reduction 214

10 Simulation-Assisted Estimation 237
\hspace{1em} 10.1 Motivation 237
\hspace{1em} 10.2 Definition of Estimators 238
\hspace{1em} 10.3 The Central Limit Theorem 245
\hspace{1em} 10.4 Properties of Traditional Estimators 247
\hspace{1em} 10.5 Properties of Simulation-Based Estimators 250
\hspace{1em} 10.6 Numerical Solution 257

11 Individual-Level Parameters 259
\hspace{1em} 11.1 Introduction 259
\hspace{1em} 11.2 Derivation of Conditional Distribution 262
\hspace{1em} 11.3 Implications of Estimation of \(\theta \) 264
\hspace{1em} 11.4 Monte Carlo Illustration 267
\hspace{1em} 11.5 Average Conditional Distribution 269
\hspace{1em} 11.6 Case Study: Choice of Energy Supplier 270
\hspace{1em} 11.7 Discussion 280

12 Bayesian Procedures 282
\hspace{1em} 12.1 Introduction 282
\hspace{1em} 12.2 Overview of Bayesian Concepts 284
\hspace{1em} 12.3 Simulation of the Posterior Mean 291
\hspace{1em} 12.4 Drawing from the Posterior 293
\hspace{1em} 12.5 Posteriors for the Mean and Variance of a Normal Distribution 294
\hspace{1em} 12.6 Hierarchical Bayes for Mixed Logit 299
\hspace{1em} 12.7 Case Study: Choice of Energy Supplier 305
\hspace{1em} 12.8 Bayesian Procedures for Probit Models 313

13 Endogeneity 315
\hspace{1em} 13.1 Overview 315
\hspace{1em} 13.2 The BLP Approach 318
\hspace{1em} 13.3 Supply Side 328
\hspace{1em} 13.4 Control Functions 334
\hspace{1em} 13.5 Maximum Likelihood Approach 340
\hspace{1em} 13.6 Case Study: Consumers’ Choice among New Vehicles 342
Contents

14 EM Algorithms 347
 14.1 Introduction 347
 14.2 General Procedure 348
 14.3 Examples of EM Algorithms 355
 14.4 Case Study: Demand for Hydrogen Cars 365

Bibliography 371
Index 385