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10 Simulation-Assisted Estimation

10.1 Motivation

So far we have examined how to simulate choice probabilities but have
not investigated the properties of the parameter estimators that are based
on these simulated probabilities. In the applications we have presented,
we simply inserted the simulated probabilities into the log-likelihood
function and maximized this function, the same as if the probabilities
were exact. This procedure seems intuitively reasonable. However, we
have not actually shown, at least so far, that the resulting estimator has
any desirable properties, such as consistency, asymptotic normality, or
efficiency. We have also not explored the possibility that other forms of
estimation might perhaps be preferable when simulation is used rather
than exact probabilities.

The purpose of this chapter is to examine various methods of esti-
mation in the context of simulation. We derive the properties of these
estimators and show the conditions under which each estimator is con-
sistent and asymptotically equivalent to the estimator that would arise
with exact values rather than simulation. These conditions provide guid-
ance to the researcher on how the simulation needs to be performed to
obtain desirable properties of the resultant estimator. The analysis also
illuminates the advantages and limitations of each form of estimation,
thereby facilitating the researcher’s choice among methods.

We consider three methods of estimation:

1. Maximum Simulated Likelihood: MSL. This procedure is the
same as maximum likelihood (ML) except that simulated prob-
abilities are used in lieu of the exact probabilities. The proper-
ties of MSL have been derived by, for example, Gourieroux and
Monfort,(1993), Lee(1995), and Hajivassiliou and Ruud (1994).

2. Method of Simulated Moments: MSM. This procedure, sug-
gested by McFadden (1989), is a simulated analog to the tradi-
tional method of moments (MOM). Under traditional MOM for
discrete choice, residuals are defined as the difference between
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the 0–1 dependent variable that identifies the chosen alterna-
tive and the probability of the alternative. Exogenous variables
are identified that are uncorrelated with the model residuals in
the population. The estimates are the parameter values that make
the variables and residuals uncorrelated in the sample. The sim-
ulated version of this procedure calculates residuals with the
simulated probabilities rather than the exact probabilities.

3. Method of Simulated Scores: MSS. As discussed in Chapter 8,
the gradient of the log likelihood of an observation is called the
score of the observation. The method of scores finds the para-
meter values that set the average score to zero. When exact prob-
abilities are used, the method of scores is the same as maximum
likelihood, since the log-likelihood function is maximized when
the average score is zero. Hajivassiliou and McFadden (1998)
suggested using simulated scores instead of the exact ones. They
showed that, depending on how the scores are simulated, MSS
can differ from MSL and, importantly, can attain consistency
and efficiency under more relaxed conditions.

In the next section we define these estimators more formally and re-
late them to their nonsimulated counterparts. We then describe the prop-
erties of each estimator in two stages. First, we derive the properties of
the traditional estimator based on exact values. Second, we show how
the derivation changes when simulated values are used rather than exact
values. We show that the simulation adds extra elements to the sampling
distribution of the estimator. The analysis allows us to identify the condi-
tions under which these extra elements disappear asymptotically so that
the estimator is asymptotically equivalent to its nonsimulated analog.
We also identify more relaxed conditions under which the estimator,
though not asymptotically equivalent to its nonsimulated counterpart,
is nevertheless consistent.

10.2 Definition of Estimators

10.2.1. Maximum Simulated Likelihood

The log-likelihood function is

LL(θ ) =
∑

n

ln Pn(θ ),

where θ is a vector of parameters, Pn(θ ) is the (exact) probability of the
observed choice of observation n, and the summation is over a sample
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of N independent observations. The ML estimator is the value of θ that
maximizes LL(θ ). Since the gradient of LL(θ ) is zero at the maximum,
the ML estimator can also be defined as the value of θ at which∑

n

sn(θ ) = 0,

where sn(θ ) = ∂ ln Pn(θ )/∂θ is the score for observation n.
Let P̌n(θ ) be a simulated approximation to Pn(θ ). The simulated

log-likelihood function is SLL(θ ) = ∑
n ln P̌n(θ ), and the MSL esti-

mator is the value of θ that maximizes SLL(θ ). Stated equivalently,
the estimator is the value of θ at which

∑
n šn(θ ) = 0, where šn(θ ) =

∂ ln P̌n(θ )/∂θ.

A preview of the properties of MSL can be given now, with a full
explanation reserved for the next section. The main issue with MSL
arises because of the log transformation. Suppose P̌n(θ ) is an unbiased
simulator of Pn(θ ), so that Er P̌n(θ ) = Pn(θ ), where the expectation is
over draws used in the simulation. All of the simulators that we have
considered are unbiased for the true probability. However, since the
log operation is a nonlinear transformation, ln P̌n(θ ) is not unbiased
for ln Pn(θ ) even though P̌n(θ ) is unbiased for Pn(θ ). The bias in the
simulator of ln Pn(θ ) translates into bias in the MSL estimator. This bias
diminishes as more draws are used in the simulation.

To determine the asymptotic properties of the MSL estimator, the
question arises of how the simulation bias behaves when the sample
size rises. The answer depends critically on the relationship between
the number of draws that are used in the simulation, labeled R, and the
sample size, N . If R is considered fixed, then the MSL estimator does
not converge to the true parameters, because of the simulation bias in
ln P̌n(θ ). Suppose instead that R rises with N ; that is, the number of
draws rises with sample size. In this case, the simulation bias disappears
as N (and hence R) rises without bound. MSL is consistent in this case.
As we will see, if R rises faster than

√
N , MSL is not only consistent

but also efficient, asymptotically equivalent to maximum likelihood on
the exact probabilities.

In summary, if R is fixed, then MSL is inconsistent. If R rises at any
rate with N , then MSL is consistent. If R rises faster than

√
N , then

MSL is asymptotically equivalent to ML.
The primary limitation of MSL is that it is inconsistent for fixed R.

The other estimators that we consider are motivated by the desire for
a simulation-based estimator that is consistent for fixed R. Both MSM
and MSS, if structured appropriately, attain this goal. This benefit comes
at a price, however, as we see in the following discussion.
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10.2.2. Method of Simulated Moments

The traditional MOM is motivated by the recognition that the
residuals of a model are necessarily uncorrelated in the population
with factors that are exogenous to the behavior being modeled. The
MOM estimator is the value of the parameters that make the residu-
als in the sample uncorrelated with the exogenous variables. For dis-
crete choice models, MOM is defined as the parameters that solve the
equation

(10.1)
∑

n

∑
j

[dnj − Pnj (θ )]znj = 0,

where

dnj is the dependent variable that identifies the chosen alternative:
dnj = 1 if n chose j , and = 0 otherwise, and

znj is a vector of exogenous variables called instruments.

The residuals are dnj − Pnj (θ ), and the MOM estimator is the parameter
values at which the residuals are uncorrelated with the instruments in
the sample.

This MOM estimator is analogous to MOM estimators for standard
regression models. A regression model takes the form yn = x ′

nβ + εn .
The MOM estimator for this regression is the β at which

∑
n

(yn − x ′
nβ)zn = 0

for a vector of exogenous instruments zn . When the explanatory vari-
ables in the model are exogenous, then they serve as the instruments.
The MOM estimator in this case becomes the ordinary least squares
estimator:

∑
n

(yn − x ′
nβ)xn = 0,

∑
n

xn yn =
∑

n

xnx ′
nβ,

β̂ =
( ∑

n

xnx ′
n

)−1( ∑
n

xn yn

)
,

which is the formula for the least squares estimator. When instruments
are specified to be something other than the explanatory variables, the
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MOM estimator becomes the standard instrumental variables estimator:∑
n

(yn − x ′
nβ)zn = 0,

∑
n

zn yn =
∑

n

znx ′
nβ,

β̂ =
( ∑

n

znx ′
n

)−1( ∑
n

zn yn

)
,

which is the formula for the instrumental variables estimator. This esti-
mator is consistent if the instruments are independent of ε in the pop-
ulation. The estimator is more efficient the more highly correlated the
instruments are with the explanatory variables in the model. When the
explanatory variables, xn , are themselves exogenous, then the ideal in-
struments (i.e., those that give the highest efficiency) are the explanatory
variables themselves, zn = xn .

For discrete choice models, MOM is defined analogously and has
a similar relation to other estimators, especially ML. The researcher
identifies instruments znj that are exogenous and hence independent in
the population of the residuals [dnj − Pnj (θ )]. The MOM estimator is
the value of θ at which the sample correlation between instruments and
residuals is zero. Unlike the linear case, equation (10.1) cannot be solved
explicitly for θ̂ . Instead, numerical procedures are used to find the value
of θ that solves this equation.

As with regression, ML for a discrete choice model is a special case
of MOM. Let the instruments be the scores: znj = ∂ ln Pnj (θ )/∂θ . With
these instruments, MOM is the same as ML:∑

n

∑
j

[dnj − Pnj (θ )]znj = 0,

∑
n

{( ∑
j

dnj
∂ ln Pnj (θ )

∂θ

)
−

( ∑
j

Pnj (θ )
∂ ln Pnj (θ )

∂θ

)}
= 0,

∑
n

∂ lnPni (θ )

∂θ
−

∑
n

∑
j

Pnj (θ )
1

Pnj (θ )

∂Pnj (θ )

∂θ
= 0,

∑
n

sn(θ ) −
∑

n

∑
j

∂Pnj (θ )

∂θ
= 0,

∑
n

sn(θ ) = 0,

which is the defining condition for ML. In the third line, i is the
chosen alternative, recognizing that dnj = 0 for all j �= i . The fourth
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line uses the fact that the sum of ∂Pnj/∂θ over alternatives is zero,
since the probabilities must sum to 1 before and after the change
in θ .

Since MOM becomes ML and hence is fully efficient when the in-
struments are the scores, the scores are called the ideal instruments.
MOM is consistent whenever the instruments are independent of the
model residuals. It is more efficient the higher the correlation between
the instruments and the ideal instruments.

An interesting simplification arises with standard logit. For the stan-
dard logit model, the ideal instruments are the explanatory variables
themselves. As shown in Section 3.7.1, the ML estimator for standard
logit is the value of θ that solves

∑
n

∑
j [dnj − Pnj (θ )]xnj = 0, where

xnj are the explanatory variables. This is a MOM estimator with the
explanatory variables as instruments.

A simulated version of MOM, called the method of simulated mo-
ments (MSM), is obtained by replacing the exact probabilities Pnj (θ )

with simulated probabilities P̌nj (θ ). The MSM estimator is the value of
θ that solves

∑
n

∑
j

[dnj − P̌nj (θ )]znj = 0

for instruments znj . As with its nonsimulated analog, MSM is consistent

if znj is independent of dnj − P̌nj (θ).

The important feature of this estimator is that P̌nj (θ ) enters the
equation linearly. As a result, if P̌nj (θ ) is unbiased for Pnj (θ ), then
[dnj − P̌nj (θ )]znj is unbiased for [dnj − Pnj (θ )]znj . Since there is no
simulation bias in the estimation condition, the MSM estimator is con-
sistent, even when the number of draws R is fixed. In contrast, MSL
contains simulation bias due to the log transformation of the simulated
probabilities. By not taking a nonlinear transformation of the simulated
probabilities, MSM avoids simulation bias.

MSM still contains simulation noise (variance due to simulation). This
noise becomes smaller as R rises and disappears when R rises without
bound. As a result, MSM is asymptotically equivalent to MOM if R
rises with N .

Just like its unsimulated analog, MSM is less efficient than MSL un-
less the ideal instruments are used. However, the ideal instruments are
functions of ln Pnj . They cannot be calculated exactly for any but the sim-
plest models, and, if they are simulated using the simulated probability,
simulation bias is introduced by the log operation. MSM is usually
applied with nonideal weights, which means that there is a loss of
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efficiency. MSM with ideal weights that are simulated without bias be-
comes MSS, which we discuss in the next section.

In summary, MSM has the advantage over MSL of being consistent
with a fixed number of draws. However, there is no free lunch, and the
cost of this advantage is a loss of efficiency when nonideal weights are
used.

10.2.3. Method of Simulated Scores

MSS provides a possibility of attaining consistency without a
loss of efficiency. The cost of this double advantage is numerical: the
versions of MSS that provide efficiency have fairly poor numerical prop-
erties such that calculation of the estimator can be difficult.

The method of scores is defined by the condition∑
n

sn(θ ) = 0,

where sn(θ ) = ∂ ln Pn(θ )/∂θ is the score for observation n. This is the
same defining condition as ML: when exact probabilities are used, the
method of scores is simply ML.

The method of simulated scores replaces the exact score with a sim-
ulated counterpart. The MSS estimator is the value of θ that solves∑

n

šn(θ ) = 0,

where šn(θ ) is a simulator of the score. If šn(θ ) is calculated as the deriva-
tive of the log of the simulated probability; that is, šn(θ ) = ∂ ln P̌n(θ )/∂θ ,
then MSS is the same as MSL. However, the score can be simulated in
other ways. When the score is simulated in other ways, MSS differs from
MSL and has different properties.

Suppose that an unbiased simulator of the score can be constructed.
With this simulator, the defining equation

∑
n šn(θ ) = 0 does not in-

corporate any simulation bias, since the simulator enters the equation
linearly. MSS is therefore consistent with a fixed R. The simulation noise
decreases as R rises, such that MSS is asymptotically efficient, equiv-
alent to MSL, when R rises with N . In contrast, MSL uses the biased
score simulator šn(θ ) = ∂ ln P̌n(θ )/∂θ , which is biased due to the log
operator. MSS with an unbiased score simulator is therefore better than
MSL with its biased score simulator in two regards: it is consistent under
less stringent conditions (with fixed R rather than R rising with N ) and
is efficient under less stringent conditions (R rising at any rate with N
rather than R rising faster than

√
N ).
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The difficulty with MSS comes in finding an unbiased score simulator.
The score can be rewritten as

sn(θ ) = ∂ ln Pnj (θ )

∂θ
= 1

Pnj (θ )

∂Pnj

∂θ
.

An unbiased simulator for the second term ∂Pnj/∂θ is easily obtained
by taking the derivative of the simulated probability. Since differenti-
ation is a linear operation, ∂P̌nj/∂θ is unbiased for ∂Pnj/∂θ if P̌nj (θ)
is unbiased for Pnj (θ ). Since the second term in the score can be sim-
ulated without bias, the difficulty arises in finding an unbiased simula-
tor for the first term 1/Pnj (θ ). Of course, simply taking the inverse of
the simulated probability does not provide an unbiased simulator, since
Er (1/P̌nj (θ )) �= 1/Pnj (θ). Like the log operation, an inverse introduces
bias.

One proposal is based on the recognition that 1/Pnj (θ ) is the expected
number of draws of the random terms that are needed before an “accept”
is obtained. Consider drawing balls from an urn that contains many balls
of different colors. Suppose the probability of obtaining a red ball is 0.20.
That is, one-fifth of the balls are red. How many draws would it take,
on average, to obtain a red ball? The answer is 1/0.2 = 5. The same
idea can be applied to choice probabilities. Pnj (θ ) is the probability
that a draw of the random terms of the model will result in alternative
j having the highest utility. The inverse 1/Pnj (θ ) can be simulated as
follows:

1. Take a draw of the random terms from their density.
2. Calculate the utility of each alternative with this draw.
3. Determine whether alternative j has the highest utility.
4. If so, call the draw an accept. If not, then call the draw a reject

and repeat steps 1 to 3 with a new draw. Define Br as the number
of draws that are taken until the first accept is obtained.

5. Perform steps 1 to 4 R times, obtaining Br for r = 1, . . . , R.
The simulator of 1/Pnj (θ ) is (1/R)

∑R
r=1 Br .

This simulator is unbiased for 1/Pnj (θ ). The product of this simulator
with the simulator ∂P̌nj/∂θ provides an unbiased simulator of the score.
MSS based on this unbiased score simulator is consistent for fixed R
and asymptotically efficient when R rises with N .

Unfortunately, the simulator of 1/Pnj (θ ) has the same difficulties as
the accept–reject simulators that we discussed in Section 5.6. There is
no guarantee than an accept will be obtained within any given number
of draws. Also, the simulator is not continuous in parameters. The
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discontinuity hinders the numerical procedures that are used to locate
the parameters that solve the MSS equation.

In summary, there are advantages and disadvantages of MSS relative
to MSL, just as there are of MSM. Understanding the capabilities of
each estimator allows the researcher to make an informed choice among
them.

10.3 The Central Limit Theorem

Prior to deriving the properties of our estimators, it is useful to review
the central limit theorem. This theorem provides the basis for the distri-
butions of the estimators.

One of the most basic results in statistics is that, if we take draws from
a distribution with mean μ and variance σ , the mean of these draws will
be normally distributed with mean μ and variance σ/N , where N is a
large number of draws. This result is the central limit theorem, stated
intuitively rather than precisely. We will provide a more complete and
precise expression of these ideas.

Let t = (1/N )
∑

n tn , where each tn is a draw from a distribution
with mean μ and variance σ . The realization of the draws are called
the sample, and t is the sample mean. If we take a different sample
(i.e., obtain different values for the draws of each tn), then we will get
a different value for the statistic t . Our goal is to derive the sampling
distribution of t .

For most statistics, we cannot determine the sampling distribution
exactly for a given sample size. Instead, we examine how the sampling
distribution behaves as sample size rises without bound. A distinction is
made between the limiting distribution and the asymptotic distribution
of a statistic. Suppose that, as sample size rises, the sampling distribution
of statistic t converges to a fixed distribution. For example, the sampling
distribution of t might become arbitrarily close to a normal with mean
t∗ and variance σ . In this case, we say that N (t∗, σ ) is the limiting
distribution of t and that t converges in distribution to N (t∗, σ ). We

denote this situation as t
d→ N (t∗, σ ).

In many cases, a statistic will not have a limiting distribution. As N
rises, the sampling distribution keeps changing. The mean of a sample
of draws is an example of a statistic without a limiting distribution. As
stated, if t is the mean of a sample of draws from a distribution with
mean μ and variance σ , then t is normally distributed with mean μ

and variance σ/N . The variance decreases as N rises. The distribution
changes as N rises, becoming more and more tightly dispersed around
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the mean. If a limiting distribution were to be defined in this case, it would
have to be the degenerate distribution at μ: as N rises without bound,
the distribution of t collapses on μ. This limiting distribution is useless
in understanding the variance of the statistic, since the variance of this
limiting distribution is zero. What do we do in this case to understand
the properties of the statistic?

If our original statistic does not have a limiting distribution, then
we often can transform the statistic in such a way that the transformed
statistic has a limiting distribution. Suppose, as in our example of a
sample mean, that the statistic we are interested in does not have a
limiting distribution because its variance decreases as N rises. In that
case, we can consider a transformation of the statistic that normalizes
for sample size. In particular, we can consider

√
N (t − μ). Suppose

that this statistic does indeed have a limiting distribution, for example√
N (t − μ)

d→ N (0, σ ). In this case, we can derive the properties of
our original statistic from the limiting distribution of the transformed
statistic. Recall from basic principles of probabilities that, for fixed a
and b, if a(t − b) is distributed normal with zero mean and variance σ ,
then t itself is distributed normal with mean b and variance σ/a2. This
statement can be applied to our limiting distribution. For large enough N ,√

N (t − μ) is distributed approximately N (0, σ ). Therefore, for large
enough N , t is distributed approximately N (μ, σ/N ). We denote this
as t

a∼ N (μ, σ/N ). Note that this is not the limiting distribution of t ,
since t has no nondegenerate limiting distribution. Rather, it is called
the asymptotic distribution of t , derived from the limiting distribution
of

√
N (t − μ).

We can now restate precisely our concepts about the sampling distri-
bution of a sample mean. The central limit theorem states the following.
Suppose t is the mean of a sample of N draws from a distribution with
mean μ and variance σ . Then

√
N (t − μ)

d→ N (0, σ ). With this limiting
distribution, we can say that t

a∼ N (μ, σ/N ).
There is another, more general version of the central limit theorem.

In the version just stated, each tn is a draw from the same distribution.
Suppose tn is a draw from a distribution with mean μ and variance σn ,
for n = 1, . . . , N . That is, each tn is from a different distribution; the
distributions have the same mean but different variances. The genera-

lized version of the central limit theorem states that
√

N (t − μ)
d→

N (0, σ ), where σ is now the average variance: σ = (1/N )
∑

n σn . Given

this limiting distribution, we can say that t
a∼ N (μ, σ/N ). We will use

both versions of the central limit theorem when deriving the distributions
of our estimators.
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10.4 Properties of Traditional Estimators

In this section, we review the procedure for deriving the properties of
estimators and apply that procedure to the traditional, non-simulation-
based estimators. This discussion provides the basis for analyzing the
properties of the simulation-based estimators in the next section.

The true value of the parameters is denoted θ∗. The ML and MOM
estimators are roots of an equation that takes the form

(10.2)
∑

n

gn(θ̂ )/N = 0.

That is, the estimator θ̂ is the value of the parameters that solve this
equation. We divide by N , even though this division does not af-
fect the root of the equation, because doing so facilitates our deriva-
tion of the properties of the estimators. The condition states that the
average value of gn(θ ) in the sample is zero at the parameter esti-
mates. For ML, gn(θ ) is the score ∂ ln Pn(θ )/∂θ . For MOM, gn(θ)
is the set of first moments of residuals with a vector of instruments,∑

j (dnj − Pnj )znj . Equation (10.2) is often called the moment condition.
In its nonsimulated form, the method of scores is the same as ML and
therefore need not be considered separately in this section. Note that
we call (10.2) an equation even though it is actually a set of equations,
since gn(θ ) is a vector. The parameters that solve these equations are the
estimators.

At any particular value of θ , the mean and variance of gn(θ ) can be
calculated for the sample. Label the mean as g(θ ) and the variance as
W (θ ). We are particularly interested in the sample mean and variance
of gn(θ ) at the true parameters, θ∗, since our goal is to estimate these
parameters.

The key to understanding the properties of an estimator comes in
realizing that each gn(θ∗) is a draw from a distribution of gn(θ∗)’s in
the population. We do not know the true parameters, but we know that
each observation has a value of gn(θ∗) at the true parameters. The value
of gn(θ∗) varies over people in the population. So, by drawing a person
into our sample, we are essentially drawing a value of gn(θ∗) from its
distribution in the population.

The distribution of gn(θ∗) in the population has a mean and variance.
Label the mean of gn(θ∗) in the population as g and its variance in the
population as W. The sample mean and variance at the true parameters,
g(θ∗) and W (θ∗), are the sample counterparts to the population mean
and variance, g and W.
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We assume that g = 0. That is, we assume that the average of gn(θ∗) in
the population is zero at the true parameters. Under this assumption, the
estimator provides a sample analog to this population expectation: θ̂ is
the value of the parameters at which the sample average of gn(θ ) equals
zero, as given in the defining condition (10.2). For ML, the assumption
that g = 0 simply states that the average score in the population is zero,
when evaluated at the true parameters. In a sense, this can be considered
the definition of the true parameters, namely, θ∗ are the parameters at
which the log-likelihood function for the entire population obtains its
maximum and hence has zero slope. The estimated parameters are the
values that make the slope of the likelihood function in the sample zero.
For MOM, the assumption is satisfied if the instruments are independent
of the residuals. In a sense, the assumption with MOM is simply a
reiteration that the instruments are exogenous. The estimated parameters
are the values that make the instruments and residuals uncorrelated in
the sample.

We now consider the population variance of gn(θ∗), which we have
denoted W. When gn(θ ) is the score, as in ML, this variance takes a
special meaning. As shown in Section 8.7, the information identity states
that V = −H, where

−H = −E

(
∂2 ln Pn(θ∗)

∂θ ∂θ ′

)

is the information matrix and V is the variance of the scores evaluated at
the true parameters: V = Var(∂ ln Pn(θ∗)/∂θ ). When gn(θ ) is the score,
we have W = V by definition and hence W = −H by the information
identity. That is, when gn(θ ) is the score, W is the information matrix.
For MOM with nonideal instruments, W �= −H, so that W does not
equal the information matrix.

Why does this distinction matter? We will see that knowing whether
W equals the information matrix allows us to determine whether the
estimator is efficient. The lowest variance that any estimator can achieve
is −H−1/N . For a proof, see, for example, Greene (2000) or Ruud
(2000). An estimator is efficient if its variance attains this lower bound.
As we will see, this lower bound is achieved when W = −H but not
when W �= −H.

Our goal is to determine the properties of θ̂ . We derive these proper-
ties in a two-step process. First, we examine the distribution of g(θ∗),
which, as stated earlier, is the sample mean of gn(θ∗). Second, the
distribution of θ̂ is derived from the distribution of g(θ∗). This two-
step process is not necessarily the most direct way of examining tra-
ditional estimators. However, as we will see in the next section, it
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provides a very convenient way for generalizing to simulation-based
estimators.

Step 1: The Distribution of g(θ∗)
Recall that the value of gn(θ∗) varies over decision makers in the pop-
ulation. When taking a sample, the researcher is drawing values of
gn(θ∗) from its distribution in the population. This distribution has zero
mean by assumption and variance denoted W. The researcher calculates
the sample mean of these draws, g(θ∗). By the central limit theorem,√

N (g(θ∗) − 0)
d→ N (0, W) such that the sample mean has distribution

g(θ∗)
a∼ N (0, W/N ).

Step 2: Derive the Distribution of θ̂ from the Distribution of g(θ∗)
We can relate the estimator θ̂ to its defining term g(θ ) as follows. Take
a first-order Taylor’s expansion of g(θ̂ ) around g(θ∗):

(10.3) g(θ̂ ) = g(θ∗) + D[θ̂ − θ∗],

where D = ∂g(θ∗)/∂θ ′. By definition of θ̂ (that is, by defining condition
(10.2)), g(θ̂ ) = 0 so that the right-hand side of this expansion is 0. Then

0 = g(θ∗) + D[θ̂ − θ∗],

θ̂ − θ∗ = −D−1g(θ∗),√
N (θ̂ − θ∗) =

√
N (−D−1)g(θ∗).(10.4)

Denote the mean of ∂gn(θ∗)/∂θ ′ in the population as D. The sample
mean of ∂gn(θ∗)/∂θ ′ is D, as defined for equation (10.3). The sample
mean D converges to the population mean D as the sample size rises. We
know from step 1 that

√
N g(θ∗)

d→ N (0, W). Using this fact in (10.4),
we have

(10.5)
√

N (θ̂ − θ∗)
d→ N (0, D−1WD−1).

This limiting distribution tells us that θ̂
a∼ N (θ∗, D−1WD−1/N ).

We can now observe the properties of the estimator. The asymptotic
distribution of θ̂ is centered on the true value, and its variance decreases
as the sample size rises. As a result, θ̂ converges in probability to θ∗ as
the sample size rises without bound: θ̂

p→ θ . The estimator is therefore
consistent. The estimator is asymptotically normal. And its variance is
D−1WD−1/N , which can be compared with the lowest possible variance,
−H−1/N , to determine whether it is efficient.

For ML, gn(·) is the score, so that the variance of gn(θ∗) is the
variance of the scores: W = V. Also, the mean derivative of gn(θ∗)
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is the mean derivative of the scores: D = H = E(∂2 ln Pn(θ∗)/∂θ ∂θ ′),
where the expectation is over the population. By the information iden-
tity, V = −H. The asymptotic variance of θ̂ becomes D−1WD−1/N =
H−1VH−1/N = H−1(−H)H−1/N = −H−1/N , which is the lowest
possible variance of any estimator. ML is therefore efficient. Since
V = −H, the variance of the ML estimator can also be expressed as
V−1/N , which has a readily interpretable meaning: the variance of the
estimator is equal to the inverse of the variance of the scores evaluated
at the true parameters, divided by sample size.

For MOM, gn(·) is a set of moments. If the ideal instruments are used,
then MOM becomes ML and is efficient. If any other instruments are
used, then MOM is not ML. In this case, W is the population variance
of the moments and D is the mean derivatives of the moments, rather
than the variance and mean derivatives of the scores. The asymptotic
variance of θ̂ does not equal −H−1/N . MOM without ideal weights is
therefore not efficient.

10.5 Properties of Simulation-Based Estimators

Suppose that the terms that enter the defining equation for an estima-
tor are simulated rather than calculated exactly. Let ǧn(θ ) denote the
simulated value of gn(θ ), and ǧ(θ ) the sample mean of these simulated
values, so that ǧ(θ ) is the simulated version of g(θ). Denote the number
of draws used in simulation for each n as R, and assume that independent
draws are used for each n (e.g., separate draws are taken for each n).
Assume further that the same draws are used for each value of θ when
calculating ǧn(θ ). This procedure prevents chatter in the simulation: the
difference between ǧ(θ1) and ǧ(θ2) for two different values of θ is not
due to different draws.

These assumptions on the simulation draws are easy for the researcher
to implement and simplify our analysis considerably. For interested read-
ers, Lee (1992) examines the situation when the same draws are used for
all observations. Pakes and Pollard (1989) provide a way to characterize
an equicontinuity condition that, when satisfied, facilitates analysis of
simulation-based estimators. McFadden (1989) characterizes this con-
dition in a different way and shows that it can be met by using the
same draws for each value of θ , which is the assumption that we make.
McFadden (1996) provides a helpful synthesis that includes a discussion
of the need to prevent chatter.

The estimator is defined by the condition ǧ(θ̂ ) = 0. We derive the
properties of θ̂ in the same two steps as for the traditional estimators.
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Step 1: The Distribution of ǧ(θ∗)
To identify the various components of this distribution, let us reexpress
ǧ(θ∗) by adding and subtracting some terms and rearranging:

ǧ(θ∗) = ǧ(θ∗) + g(θ∗) − g(θ∗) + Er ǧ(θ∗) − Er ǧ(θ∗)

= g(θ∗) + [Er ǧ(θ∗) − g(θ∗)] + [ǧ(θ∗) − Er ǧ(θ∗)],

where g(θ∗) is the nonsimulated value and Er ǧ(θ∗) is the expectation of
the simulated value over the draws used in the simulation. Adding and
subtracting terms obviously does not change ǧ(θ∗). Yet, the subsequent
rearrangement of the terms allows us to identify components that have
intuitive meaning.

The first term g(θ∗) is the same as arises for the traditional estima-
tor. The other two terms are extra elements that arise because of the
simulation. The term Er ǧ(θ∗) − g(θ∗) captures the bias, if any, in the
simulator of g(θ∗). It is the difference between the true value of g(θ∗)
and the expectation of the simulated value. If the simulator is unbiased
for g(θ∗), then Er ǧ(θ∗) = g(θ∗) and this term drops out. Often, however,
the simulator will not be unbiased for g(θ∗). For example, with MSL,
ǧn(θ ) = ∂ ln P̌n(θ )/∂θ , where P̌n(θ ) is an unbiased simulator of Pn(θ ).
Since P̌n(θ ) enters nonlinearly via the log operator, ǧn(θ ) is not unbi-
ased. The third term, ǧ(θ∗) − Er ǧ(θ∗), captures simulation noise, that
is, the deviation of the simulator for given draws from its expectation
over all possible draws.

Combining these concepts, we have

(10.6) ǧ(θ ) = A + B + C,

where

A is the same as in the traditional estimator,
B is simulation bias,
C is simulation noise.

To see how the simulation-based estimators differ from their traditional
counterparts, we examine the simulation bias B and noise C .

Consider first the noise. This term can be reexpressed as

C = ǧ(θ∗) − Er ǧ(θ∗)

= 1

N

∑
n

[
ǧn(θ∗) − Er ǧn(θ∗)

]

=
∑

n

dn/N ,
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where dn is the deviation of the simulated value for observation n from
its expectation. The key to understanding the behavior of the simulation
noise comes in noting that dn is simply a statistic for observation n. The
sample constitutes N draws of this statistic, one for each observation:
dn, n = 1, . . . , N . The simulation noise C is the average of these N
draws. Thus, the central limit theorem gives us the distribution of C .

In particular, for a given observation, the draws that are used in sim-
ulation provide a particular value of dn . If different draws had been
obtained, then a different value of dn would have been obtained. There
is a distribution of values of dn over the possible realizations of the draws
used in simulation. The distribution has zero mean, since the expectation
over draws is subtracted out when creating dn . Label the variance of the
distribution as Sn/R, where Sn is the variance when one draw is used
in simulation. There are two things to note about this variance. First,
Sn/R is inversely related to R, the number of draws that are used in sim-
ulation. Second, the variance is different for different n. Since gn(θ∗)
is different for different n, the variance of the simulation deviation also
differs.

We take a draw of dn for each of N observations; the overall simu-
lation noise, C , is the average of these N draws of observation-specific
simulation noise. As just stated, each dn is a draw from a distribution
with zero mean and variance Sn/R. The generalized version of the cen-
tral limit theorem tells us the distribution of a sample average of draws
from distributions that have the same mean but different variances. In
our case,

√
NC

d→ N (0, S/R),

where S is the population mean of Sn . Then C
a∼ N (0, S/N R).

The most relevant characteristic of the asymptotic variance of C is
that it decreases as N increases, even when R is fixed. Simulation noise
disappears as sample size increases, even without increasing the number
of draws used in simulation. This is a very important and powerful fact.
It means that increasing the sample size is a way to decrease the ef-
fects of simulation on the estimator. The result is intuitively meaningful.
Essentially, simulation noise cancels out over observations. The simula-
tion for one observation might, by chance, make that observation’s ǧn(θ )
too large. However, the simulation for another observation is likely, by
chance, to be too small. By averaging the simulations over observations,
the errors tend to cancel each other. As sample size rises, this canceling
out property becomes more powerful until, with large enough samples,
simulation noise is negligible.
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Consider now the bias. If the simulator ǧ(θ ) is unbiased for g(θ ), then
the bias term B in (10.6) is zero. However, if the simulator is biased, as
with MSL, then the effect of this bias on the distribution of ǧ(θ∗) must
be considered.

Usually, the defining term gn(θ ) is a function of a statistic, �n , that can
be simulated without bias. For example, with MSL, gn(θ) is a function
of the choice probability, which can be simulated without bias; in this
case �n is the probability. More generally, �n can be any statistic that
is simulated without bias and serves to define gn(θ ). We can write the
dependence in general as gn(θ ) = g(�n(θ )) and the unbiased simulator
of �n(θ ) as �̌n(θ ) where Er �̌n(θ ) = �n(θ ).

We can now reexpress ǧn(θ ) by taking a Taylor’s expansion around
the unsimulated value gn(θ ):

ǧn(θ ) = gn(θ ) + ∂g(�n(θ ))

∂�n
[�̌n(θ ) − �n(θ )]

+ 1
2

∂2g(�n(θ ))

∂�2
n

[�̌n(θ ) − �n(θ ]2,

ǧn(θ ) − gn(θ ) = g′
n[�̌n(θ ) − �n(θ )] + 1

2
g′′

n [�̌n(θ ) − �n(θ )]2,

where g′
n and g′′

n are simply shorthand ways to denote the first and second
derivatives of gn(�(·)) with respect to �. Since �̌n(θ ) is unbiased for �n(θ ),
we know Er g′

n[�̌n(θ ) − �n(θ )] = g′
n[Er �̌n(θ ) − �n(θ )] = 0. As a result,

only the variance term remains in the expectation:

Er ǧn(θ ) − gn(θ ) = 1
2
g′′

n Er [�̌n(θ ) − �n(θ )]2

= 1
2
g′′

n Varr �̌n(θ ).

Denote Varr �̌n(θ ) = Qn/R to reflect the fact that the variance is in-
versely proportional to the number of draws used in the simulation. The
simulation bias is then

Er ǧ(θ ) − g(θ ) = 1

N

∑
n

Er ǧn(θ ) − gn(θ )

= 1

N

∑
n

g′′
n

Qn

2R

= Z
R

,

where Z is the sample average of g′′
nQn/2.
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Since B = Z/R, the value of this statistic normalized for sample size
is

(10.7)
√

N B =
√

N

R
Z.

If R is fixed, then B is nonzero. Even worse,
√

N B rises with N , in
such a way that it has no limiting value. Suppose that R is consid-
ered to rise with N . The bias term then disappears asymptotically: B =
Z/R

p→ 0. However, the normalized bias term does not necessar-
ily disappear. Since

√
N enters the numerator of this term,

√
N B =

(
√

N/R)Z p→ 0 only if R rises faster than
√

N , so that the ratio
√

N/R
approaches zero as N increases. If R rises slower than

√
N , the ratio√

N/R rises, such that the normalized bias term does not disappear but
in fact gets larger and larger as sample size increases.

We can now collect our results for the distribution of the defining term
normalized by sample size:

(10.8)
√

N ǧ(θ∗) =
√

N (A + B + C),

where

√
N A

d→ N (0, W), the same as in the traditional estimator,
√

N B =
√

N

R
Z , capturing simulation bias,

√
NC

d→ N (0, S/R), capturing simulation noise.

Step 2: Derive Distribution of θ̂ from Distribution of ǧ(θ∗)
As with the traditional estimators, the distribution of θ̂ is directly related
to the distribution of ǧ(θ∗). Using the same Taylor’s expansion as in
(10.3), we have

√
N (θ̂ − θ∗) = −Ď

−1√
N ǧ(θ∗) = −Ď

−1√
N (A + B + C),(10.9)

where Ď is the derivative of ǧ(θ∗) with respect to the parameters, which
converges to its expectation Ď as sample size rises. The estimator itself
is expressed as

(10.10) θ̂ = θ∗ − Ď
−1

(A + B + C).

We can now examine the properties of our estimators.



P1: JYD/...

CB495-10DRV CB495/Train KEY BOARDED May 25, 2009 16:35 Char Count= 0

Simulation-Assisted Estimation 255

10.5.1. Maximum Simulated Likelihood

For MSL, ǧn(θ ) is not unbiased for gn(θ ). The bias term in (10.9)
is

√
N B = (

√
N/R)Z . Suppose R rises with N . If R rises faster than√

N , then

√
N B = (

√
N/R)Z p→ 0,

since the ratio
√

N/R falls to zero. Consider now the third term in
(10.9), which captures simulation noise:

√
NC

d→ N (0, S/R). Since
S/R decreases as R rises, we have S/R

p→ 0 as N → ∞ when R rises
with N . The second and third terms disappear, leaving only the first term.
This first term is the same as appears for the nonsimulated estimator. We
have

√
N (θ̂ − θ∗) = −D−1

√
N A

d→ N (0, D−1WD−1)

= N (0, H−1VH−1)

= N (0, −H−1),

where the next-to-last equality occurs because gn(θ) is the score, and
the last equality is due to the information identity. The estimator is
distributed

θ̂
a∼ N (θ∗, −H−1/N ).

This is the same asymptotic distribution as ML. When R rises faster
than

√
N , MSL is consistent, asymptotically normal and efficient, and

asymptotically equivalent to ML.
Suppose that R rises with N but at a rate that is slower than

√
N . In

this case, the ratio
√

N/R grows larger as N rises. There is no limiting
distribution for

√
N (θ̂ − θ∗), because the bias term, (

√
N/R)Z , rises

with N . However, the estimator itself converges on the true value. θ̂

depends on (1/R)Z , not multiplied by
√

N . This bias term disappears
when R rises at any rate. Therefore, the estimator converges on the
true value, just like its nonsimulated counterpart, which means that θ̂ is
consistent. However, the estimator is not asymptotically normal, since√

N (θ̂ − θ∗) has no limiting distribution. Standard errors cannot be cal-
culated, and confidence intervals cannot be constructed.

When R is fixed, the bias rises as N rises.
√

N (θ̂ − θ∗) does not have
a limiting distribution. Moreover, the estimator itself, θ̂ , contains a bias
B = (1/R)Z that does not disappear as sample size rises with fixed
R. The MSL estimator is neither consistent nor asymptotically normal
when R is fixed.



P1: JYD/...

CB495-10DRV CB495/Train KEY BOARDED May 25, 2009 16:35 Char Count= 0

256 Estimation

The properties of MSL can be summarized as follows:

1. If R is fixed, MSL is inconsistent.
2. If R rises slower than

√
N , MSL is consistent but not asymp-

totically normal.
3. If R rises faster than

√
N , MSL is consistent, asymptotically

normal and efficient, and equivalent to ML.

10.5.2. Method of Simulated Moments

For MSM with fixed instruments, ǧn(θ ) = ∑
j [dnj − P̌nj (θ )]znj ,

which is unbiased for gn(θ ), since the simulated probability enters lin-
early. The bias term is zero. The distribution of the estimator is deter-
mined only by term A, which is the same as in the traditional MOM
without simulation, and term C , which reflects simulation noise:

√
N (θ̂ − θ∗) = −Ď

−1√
N (A + C).

Suppose that R is fixed. Since Ď converges to its expectation D, we

have −√
N Ď

−1
A

d→ N (0, D−1WD−1) and −√
N Ď

−1
C

d→ N (0, D−1

(S/R)D−1), so that

√
N (θ̂ − θ∗)

d→ N (0, D−1[W + S/R]D−1).

The asymptotic distribution of the estimator is then

θ̂
a∼ N (θ∗, D−1[W + S/R]D−1/N ).

The estimator is consistent and asymptotically normal. Its variance is
greater than its nonsimulated counterpart by D−1SD−1/RN , reflecting
simulation noise.

Suppose now that R rises with N at any rate. The extra variance due
to simulation noise disappears, so that θ̂

a∼ N (θ∗, D−1WD−1/N ), the
same as its nonsimulated counterpart. When nonideal instruments are
used, D−1WD−1 �= −H−1 and so the estimator (in either its simulated
or nonsimulated form) is less efficient than ML.

If simulated instruments are used in MSM, then the properties of the
estimator depend on how the instruments are simulated. If the instru-
ments are simulated without bias and independently of the probability
that enters the residual, then this MSM has the same properties as MSM
with fixed weights. If the instruments are simulated with bias and the
instruments are not ideal, then the estimator has the same properties as
MSL except that it is not asymptotically efficient, since the information
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identity does not apply. MSM with simulated ideal instruments is MSS,
which we discuss next.

10.5.3. Method of Simulated Scores

With MSS using unbiased score simulators, ǧn(θ ) is unbiased
for gn(θ ), and, moreover, gn(θ ) is the score such that the information
identity applies. The analysis is the same as for MSM except that the
information identity makes the estimator efficient when R rises with N .
As with MSM, we have

θ̂
a∼ N (θ∗, D−1[W + S/R]D−1/N ),

which, since gn(θ ) is the score, becomes

θ̂
a∼ N

(
θ∗,

H−1[V + S/R]H−1

N

)
= N

(
θ∗, −H−1

N
+ H−1SH−1

RN

)
.

When R is fixed, the estimator is consistent and asymptotically normal,
but its covariance is larger than with ML because of simulation noise. If
R rises at any rate with N , then we have

θ̂
a∼ N (θ∗, −H−1/N ).

MSS with unbiased score simulators is asymptotically equivalent to ML
when R rises at any rate with N .

This analysis shows that MSS with unbiased score simulators has
better properties than MSL in two regards. First, for fixed R, MSS is
consistent and asymptotically normal, while MSL is neither. Second,
for R rising with N , MSS is equivalent to ML no matter how fast
R is rising, while MSL is equivalent to ML only if the rate is faster
than

√
N .

As we discussed in Section 10.2.3, finding unbiased score simulators
with good numerical properties is difficult. MSS is sometimes applied
with biased score simulators. In this case, the properties of the estimator
are the same as with MSL: the bias in the simulated scores translates
into bias in the estimator, which disappears from the limiting distribution
only if R rises faster than

√
N .

10.6 Numerical Solution

The estimators are defined as the value of θ that solves ǧ(θ ) = 0, where
ǧ(θ ) = ∑

n ǧn(θ )/N is the sample average of a simulated statistic ǧn(θ ).
Since ǧn(θ ) is a vector, we need to solve the set of equations for the
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parameters. The question arises: how are these equations solved numer-
ically to obtain the estimates?

Chapter 8 describes numerical methods for maximizing a function.
These procedures can also be used for solving a set of equations. Let T
be the negative of the inner product of the defining term for an estimator:
T = −ǧ(θ )′ǧ(θ ) = −(

∑
n ǧn(θ ))′(

∑
n ǧn(θ ))/N 2. T is necessarily less

than or equal to zero, since it is the negative of a sum of squares. T
has a highest value of 0, which is attained only when the squared terms
that compose it are all 0. That is, the maximum of T is attained when
ǧ(θ ) = 0. Maximizing T is equivalent to solving the equation ǧ(θ ) = 0.
The approaches described in Chapter 8, with the exception of BHHH,
can be used for this maximization. BHHH cannot be used, because
that method assumes that the function being maximized is a sum of
observation-specific terms, whereas T takes the square of each sum of
observation-specific terms. The other approaches, especially BFGS and
DFP, have proven very effective at locating the parameters at which
ǧ(θ ) = 0.

With MSL, it is usually easier to maximize the simulated likelihood
function rather than T . BHHH can be used in this case, as well as the
other methods.


