Qualitative Choice Analysis
MIT Press Series in Transportation Studies

Marvin L. Manheim, editor

2. The Urban Transportation System: Politics and Policy Innovation, Alan Altshuler with James P. Womaack and John R. Pucher, 1979

6. Miles to Go: European and American Transportation Policies, James A. Dunn, Jr., 1981

8. Port Economics, Ian Owen Iansson and Dan Shneerson, 1982

9. Discrete Choice Analysis: Theory and Application to Predict Travel Demand, Moshe Ben-Akiva and Steven R. Lerman, 1985

10. Qualitative Choice Analysis: Theory, Econometrics, and an Application to Automobile Demand, Kenneth Train, 1986
Qualitative Choice Analysis
Theory, Econometrics, and an Application to Automobile Demand

Kenneth Train

The MIT Press
Cambridge, Massachusetts
London, England
Third printing, 1993

© 1986 by The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in Times New Roman by Asco Trade Typesetting Ltd., Hong Kong, and printed and bound in the United States of America.

Library of Congress Cataloging in Publication Data

Train, Kenneth.
Qualitative choice analysis.

(MIT Press series in transportation studies; 10)
Bibliography: p.
Includes index.
I. Automobiles—Purchasing—Mathematical models. I. Title. II. Series.
HD9710.A2T73 1986 338.4'76292'0724 85-15142
ISBN 0-262-20055-4
For Mandy
Contents

Series Foreword xi
List of Figures xiii
List of Tables xv
Preface xvii

1 THEORY AND ECONOMETRICS OF QUALITATIVE CHOICE MODELS 1

1 Qualitative Choice Models in General 3
1.1 Motivation 3
1.2 Situations Described by Qualitative Choice Models 4
1.3 Specification 7

2 Logit 15
2.1 Functional Form of Choice Probabilities 15
2.2 The Independence from Irrelevant Alternatives Property 18
2.3 Specification of Representative Utility 24
2.4 Derivatives and Elasticities of Choice Probabilities 37
2.5 Average Probabilities, Derivatives, and Elasticities 41
2.6 Estimation 44
2.7 Goodness of Fit 49
2.8 Hypothesis Testing 51
2.9 Derivation of Logit Probabilities 53

3 Probit 55
3.1 Functional Form of Choice Probabilities 55
3.2 Taste Variation 57
3.3 Nonindependence from Irrelevant Alternatives 59
3.4 Estimation 61

4 GEV 65
4.1 Functional Form of Choice Probabilities in Simple Cases 65
4.2 More Complex GEV Models 72
4.3 Estimation 73
5 Continuous/Discrete Models 77
5.1 Motivation 77
5.2 Relevant Background on Utility Maximization Theory 78
5.3 Specification of Continuous/Discrete Models 82
5.4 Estimation 86

6 Simulation with Qualitative Choice Models 98
6.1 Aggregation 98
6.2 Forecasting 102
6.3 Recalibration of Alternative-Specific Constants 104
6.4 Pivot Point Analysis with Logit Models 105

II AN APPLICATION TO AUTOMOBILE DEMAND 109

7 Previous Research on Automobile Demand 111
7.1 Introduction 111
7.2 Disaggregate, Compensatory Models Based on Real Choice Situations 113
7.3 Disaggregate, Compensatory Models Based on Hypothetical Choice Situations 124
7.4 Disaggregate, Noncompensatory Models Based on Both Real and Hypothetical Choice Situations 126
7.5 Approximate Aggregate Demand Equations 129
7.6 Consistent Aggregate Demand Equations 132

8 Auto Ownership and Use: An Integrated System of Disaggregate Demand Models 134
8.1 Introduction 134
8.2 Model Specification 136
8.3 Data 143
8.4 Estimation Results 145

9 Demand Simulations for California 171
9.1 Introduction 171
9.2 Base Case Inputs 172
Contents

9.3 Base Case Simulations 177
9.4 Sensitivity Analyses 183
9.5 Conclusions 189

Appendix A Implementation of Model for Simulations 192
A.1 Calculation of Aggregate Totals 192
A.2 Inputs 194
A.3 Sampling of Class/Vintage Pairs for Two-Vehicle Households 195
A.4 Recalibration of Alternative-Specific Constants 197

Appendix B Projected Auto Characteristics 203

Appendix C Base Case Simulations 218

Appendix D Scenarios 222
D.1 Scenario 1: Income Growth 222
D.2 Scenario 2: Moderate Gas Price Increases 224
D.3 Scenario 3: High Gas and Diesel Prices with No Electric, Methanol, and LPG Vehicles 226
D.4 Scenario 4: Reduced Employment 228
D.5 Scenario 5: No Alternative Fueled Vehicles 230
D.6 Scenario 6: Reduced Price for Electric Vehicles 232

Notes 235
References 243

Index 249
Series Foreword

Today, transportation is a well-established professional field, with numerous subspecialties and international journals, and with educational and research programs at many universities and other organizations around the world. It is a field in which the dominant philosophy is intermodal, multisectoral, and multidisciplinary. It is also a field in which researchers and practitioners can and do focus on specific facets, modes, sectors, disciplines, or methodologies, working in the context of this broad philosophy.

The approach of The MIT Press Series in Transportation Studies mirrors this philosophy. The series presents works across the broad spectrum of transportation concerns. Some volumes report significant new research, while others give analyses of specific policy, planning, management, or methodological issues. Still others show the close interaction between research and practical application in policy or management. Each individual work is intended to be an in-depth treatment from a particular viewpoint. Together, the works in the series present a broad perspective on the field of transportation as a whole.

This book, the tenth in the series, presents the methods of qualitative choice analysis and their application to the analysis of consumer demand for automobiles. Issues concerning the automobile industry and the forces influencing it are, and likely will continue to be, major questions of national policy. In this book, Dr. Train shows the depth of insight that can be gained into an important aspect of this problem—the characteristics of consumer demand for automobiles of various types—through the application of the powerful techniques of qualitative choice analysis. This book should be of interest to those concerned with understanding the forces influencing the automobile industry as well as those interested in qualitative choice methods and their application to modeling consumer behavior.

Marvin L. Manheim
List of Figures

1.1 Probability that alternative i is chosen given that
$V_{in} - V_{jn} = 1$
13

1.2 Probability that alternative i is chosen given that
$V_{in} - V_{jn} = -3$
13

2.1 Graph of logit curve
16

2.2 Slope of the logit curve
38

2.3 Difference between average probability and probability
calculated at average representative utility
43

2.4 Difference between average response and response
calculated at average representative utility
43

4.1 Tree diagram for mode choice
67

4.2 Tree diagram for choice of housing unit
74

5.1 Tree diagram for choice of number of cars and mode
of travel to work
78

5.2 Bias due to endogeneity
89

5.3 Bias due to self-selection
92

6.1 Demonstration that $\bar{P}_i \neq \exp(\beta \bar{y})/(1 + \exp(\beta \bar{y}))$, where
$\bar{P}_i = (P_{i1} + P_{i2})/2$ and $\bar{y} = (y_1 + y_2)/2$
99

6.2 Segmentation of population
102

7.1 Categorization of previous research on auto ownership
decisions
113

8.1 Household vehicle demand
135
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Example of IIA holding within subsets of alternatives</td>
<td>66</td>
</tr>
<tr>
<td>7.1</td>
<td>Explanatory variables entering models of auto type choice</td>
<td>117</td>
</tr>
<tr>
<td>7.2</td>
<td>Noncompensatory models of auto type choice</td>
<td>128</td>
</tr>
<tr>
<td>8.1</td>
<td>Vehicle quantity submodel</td>
<td>147</td>
</tr>
<tr>
<td>8.2</td>
<td>Class/vintage submodel for one-vehicle households</td>
<td>152</td>
</tr>
<tr>
<td>8.3</td>
<td>Number of miles traveled annually at which model's</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>estimate of willingness to pay for reduced operating costs is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>consistent with “rational” behavior</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Class/vintage submodel for two-vehicle households</td>
<td>159</td>
</tr>
<tr>
<td>8.5</td>
<td>Vehicles designated as “prestigious”</td>
<td>163</td>
</tr>
<tr>
<td>8.6</td>
<td>Submodel for annual vehicle miles traveled for one-vehicle households</td>
<td>165</td>
</tr>
<tr>
<td>8.7</td>
<td>Submodel for annual miles traveled in each vehicle for two-vehicle</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>households</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Submodel for proportion of VMT in each category for one-vehicle</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>households</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>Submodel for proportion of VMT in each category for two-vehicle</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>households</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Classes of vehicles assumed to be available in simulations for</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>the California Energy Commission</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Number of households by category in California in 1980</td>
<td>176</td>
</tr>
<tr>
<td>9.3</td>
<td>Projected number of households by category in California in 2000</td>
<td>176</td>
</tr>
<tr>
<td>9.4</td>
<td>Simulated number of vehicles and miles traveled</td>
<td>178</td>
</tr>
<tr>
<td>9.5</td>
<td>Simulated vehicle holdings by fuel type</td>
<td>179</td>
</tr>
<tr>
<td>9.6</td>
<td>Comparison of price and operating costs in 2000 for alternative</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>fueled vehicles</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>Simulated vehicle holdings by size class</td>
<td>182</td>
</tr>
<tr>
<td>9.8</td>
<td>Simulated fuel consumption by personal use vehicles</td>
<td>183</td>
</tr>
<tr>
<td>9.9</td>
<td>Simulated effects of greater income growth</td>
<td>184</td>
</tr>
<tr>
<td>9.10</td>
<td>Simulated effects of moderately higher gas price increases</td>
<td>185</td>
</tr>
<tr>
<td>9.11</td>
<td>Simulated effects of higher fuel price increases with no alternative</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>fueled vehicles</td>
<td></td>
</tr>
<tr>
<td>9.12</td>
<td>Alternative projection of number of households by category,</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>representing reduced employment</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>9.13</td>
<td>Simulated effects of reduced employment</td>
<td>187</td>
</tr>
<tr>
<td>9.14</td>
<td>Simulated effects of eliminating alternative fueled vehicles</td>
<td>188</td>
</tr>
<tr>
<td>9.15</td>
<td>Simulated effects of reduced prices for electric vehicles</td>
<td>189</td>
</tr>
<tr>
<td>A.1</td>
<td>Depreciation rates used in simulations</td>
<td>195</td>
</tr>
<tr>
<td>A.2</td>
<td>Projected fuel prices, as specified by the California Energy Commission</td>
<td>196</td>
</tr>
<tr>
<td>A.3</td>
<td>Number of transit trips per capita used in simulations</td>
<td>197</td>
</tr>
<tr>
<td>A.4</td>
<td>Class distribution of vehicles owned in California in 1980</td>
<td>200</td>
</tr>
<tr>
<td>A.5</td>
<td>Constants calibrated for each vehicle class</td>
<td>201</td>
</tr>
<tr>
<td>A.6</td>
<td>Constants assigned to vehicle classes not available in 1980</td>
<td>202</td>
</tr>
<tr>
<td>B.1</td>
<td>Projected auto characteristics</td>
<td>204</td>
</tr>
<tr>
<td>C.1</td>
<td>Base case simulations</td>
<td>219</td>
</tr>
<tr>
<td>D.1</td>
<td>Scenario 1: Income growth</td>
<td>222</td>
</tr>
<tr>
<td>D.2</td>
<td>Scenario 2: Moderate gas price increases</td>
<td>224</td>
</tr>
<tr>
<td>D.3</td>
<td>Scenario 3: High gas and diesel prices with no electric, methanol, and LPG vehicles</td>
<td>226</td>
</tr>
<tr>
<td>D.4</td>
<td>Scenario 4: Reduced employment</td>
<td>228</td>
</tr>
<tr>
<td>D.5</td>
<td>Scenario 5: No alternative fueled vehicles</td>
<td>230</td>
</tr>
<tr>
<td>D.6</td>
<td>Scenario 6: Reduced price for electric vehicles</td>
<td>232</td>
</tr>
</tbody>
</table>
Preface

This book serves two major functions. The original concern in writing the book was to introduce a new model of automobile demand. Unfortunately, this model, like most of the recent auto demand models, is based on methods that are not widely known, namely, qualitative choice models. A steadily growing group of researchers is applying these techniques in a variety of fields, including energy, housing, labor, telecommunications, and criminology, as well as transportation; but access to the methods is difficult. Important concepts in the field are scattered through numerous papers, many of which are not readily obtainable. The few reviews and texts that are available are advanced, written primarily for people who are already in the field. Consequently, in order to introduce the model of auto demand, it was felt necessary to provide a textbook on the theory and econometrics of qualitative choice models that, while being fully rigorous, assumes no previous knowledge of the topic. Since these methods have application in many fields other than auto demand, their dissemination is an important function of the book independent of the analysis of auto ownership and use.

The book can be viewed in either of two ways. To the reader who is interested in learning qualitative choice methods, the book is a thorough text, with many of the more advanced aspects of the methodology illustrated through an extensive application to automobile demand. For the student of auto demand, the book introduces a new auto demand model; as an aid to understanding the model, the qualitative choice methods on which the model is based are fully explained without assuming the reader is acquainted with numerous background articles.

The book is organized in the following way. Part I provides the text on qualitative choice models. This exposition is written at the level of upper-division undergraduates and graduates with training in econometrics or statistics. The first chapter introduces the general class of models. Successive chapters are devoted to each one of the major types of qualitative choice models, namely, logit, probit, and GEV ("nested logit"). The fifth chapter describes continuous/discrete models, by which qualitative choice methods are combined with standard regression techniques to analyze situations that cannot accurately be modeled by either method alone. The final chapter of part I describes how qualitative choice models are used in policy analysis for forecasting aggregate demand.

Part II introduces the new model of automobile demand. The first chapter in part II reviews the literature on auto demand, providing guide-
lines and setting the stage for the new model. The next chapter describes the model: its structure, detailed specification, and estimation. For the final chapter, a case study is presented in which the model is used for actual policy analysis for the California Energy Commission.