5 Continuous/Discrete Models

5.1 Motivation

Decisionmakers are often in the situation of making two interrelated
choices. If in each choice the decisionmaker faces a finite and exhaustive
set of mutually exclusive alternatives, then qualitative choice models can
readily be applied to describe the two choices. All that is required 1s for
the choice set facing the decisionmaker to be defined appropriately. For
example, suppose a worker had a choice of how many cars to own and
which mode of travel to use for the commute to work. To keep the example
simple, assume that the alternative modes were auto and bus and that the
worker cannot own more than two cars. The two choices that the decision-
maker has can be “collapsed” and considered one choice, with the decision-
maker facing a set of alternatives each of which denotes a particular number
of cars and a particular mode. That is, the choice set that the decisionmaker
faces consists of these alternatives: (1) own no cars and take a bus to work,
(2) own one car and take an auto, (3) own one car and take a bus, (4) own two
cars and take an auto, (5) own two cars and take a bus. (The alternative of
owning no cars and taking an auto to work is not included under the
presumption that it is logically impossible.) With alternatives defined in this
way, any of the qualitative choice models can be applied. Perhaps the most
appealing approach, for this example, is a GEV specification based on the
tree diagram in figure 5.1

In many situations, however, a decisionmaker makes two choices that are
not both “qualitative.” For example, a household chooses how many cars
to own and how many miles to drive each car. The first choice is among a
discrete set of alternatives (0, 1, 2, and so on up to some maximum) while the
second is among a continuous set of alternatives (any number of miles, and
fractions of miles, above zero and below some maximum). The choice of
number of cars can be appropriately described by qualitative choice
models, but not the number of miles.

Another example is a household’s choice of whether or not to obtain air
conditioning (with the alternatives being “yes” or “no”) and the choice of
how much to run the air conditioner each day if it is obtained (the alterna-
tives are any number between 0 and 24 hours). The first choice is among a
discrete set of alternatives and can be described by qualitative choice
models, but the second choice is among a continuous set of alternatives and
cannot appropriately be described by qualitative choice models.

Choice situations such as these are called “continuous/discrete” situa-
tions, reflecting the fact that the set of alternatives for one choice is
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Number of Cars 0 1 2
Mode of Travel to Work Bus Auto Bus Auto Bus
Figure 5.1

Tree diagram for choice of number of cars and mode of travel to work.

continuous while that for the other is discrete. Methods have recently been
developed (Heckman, 1978, 1979; Dubin and McFadden, 1984) for specify-
ing and estimating models that describe continuous/discrete choice situa-
tions. These methods are based on some relatively advanced concepts in
microeconomic theory of utility maximization. Since these concepts are not
widely known and are crucial to an understanding of continuous/discrete
methodologies, they are now presented, prior to the discussion of the
models themselves.

5.2 Relevant Background on Utility Maximization Theory

Assume (for simplicity) a two-good world and consider a consumer with
fixed income y who has a choice of how much to consume of each of the two
goods. The quantities of each good are denoted x, and x,, respectively, and
their prices, which are fixed from the consumer’s perspective, are denoted p,
and p,, respectively. The consumer’s utility function is denoted

U="U(x,,x,)
If the consumer is a utility maximizer, then he will purchase the quantities of

the two goods that solves the constrained maximization problem

max U(x,, x,)

Xy,X9

(5.1
such that y =p,x, + p,x,.
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That is, he will choose the x; and x, that maximize utility subject to the
budget constraint. Label the chosen quantities as xf and x3. These quan-
tities will depend, of course, on the price of each good and the consumer’s
income, and hence can be written as functions of p,, p,, and y:

x? = 91(1’1,172,}’),

x¥ = g,(P1,P2,¥)-

The functions g, and g, are the consumer’s demand functions for x, and x,.

All of this is standard material in microeconomic courses. These ideas
can be extended, however, in the following way. We can substitute the
chosen quantities of the two goods into the consumer’s utility function to
determine the utility that he would obtain at these chosen quantities; this
gives the actual utility the consumer obtains after he has maximized his
utility subject to the budget constraint:

U* = U(xt, x3),

where U* is the actual utility obtained with x} and x3. Since xf and x3 are
functions of p,, p,, and y, U* is also a function of these variables:

U* = U(x¥,x3) = U(g1(P1> P2, ¥)92(P1: P2, ¥))

= Y(p1,P2,¥)

That is, the actual utility that the consumer obtains after he has chosen the
quantities that maximize his utility depends on the prices of the goods and
his income. The function denoting this relation, Y, is called the “indirect
utility function.”

We now have two utility functions:

1. U(x,,x,), which gives the utility that the consumer obtains at given
quantities of each good and is called the “direct utility function,” and

2. Y(p,,p,, ), which gives the utility that the consumer obtains at given
prices and income once he has chosen the quantities that maximize his
(direct) utility subject to the budget constraint for the given prices and
income.

It can be shown (see Varian, 1978) that a consumer’s preferences can be
equivalently represented by either a direct utility function or an indirect
utility function. That is, given a direct utility function that represents the
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consumer’s preferences, a particular indirect utility function can be derived;
and, given a appropriate indirect utility function, the consumer’s direct
utility function can be derived. Consequently, a researcher can specify an
indirect utility function to represent a consumer’s preferences' and know
that a direct utility function is implicit.

Why is this important? A researcher usually examines a consumer’s
utility function for the purpose of determining the functional form of the
consumer’s demand function for goods; it is rare that a researcher is
interested in the shape of the utility function for its own sake. For deriving
demand functions, it is much easier, as will be shown, to work with a
consumer’s indirect utility function rather than with his direct utility
function.

Under the standard analysis of consumer behavior, demand curves are
derived from the direct utility function by solving the constrained max-
imization problem given in (5.1). This involves specifying the Lagrangian,
taking derivatives of the Lagrangian with respect to each good and the
Lagrangian multiplier, setting these derivatives to zero, and solving for the
quantities of each good. Except for every simple direct utility functions, this
procedure becomes very complex, and often intractable, so that specific
demand functions cannot be derived.

Deriving demand functions from indirect utility functions is much easier,
thanks to a result called “Roy’s identity.” Roy’s identity states that the
demand for a good is equal to (the negative of) the derivative of the indirect
utility function with respect to the good’s price divided by the derivative of
the indirect utility function with respect to income. That is, using the
previous notation,

xt = —(0Y/dp)/(0Y/dy) = g,(P1, P2, V)
x3 = —(0Y/0p)/(3Y/0y) = g,(P1,P2,Y)

Proof of Roy’s Identity The maximum utility the consumer obtains from
prices p,, p, and income y is given by indirect utility function

U* = Y(p1,P2, V)
By definition
Y(plsPZ’y) = U(x’f,x;), (52)

where xT and x¥ are the utility maximizing values of x, and x, and are
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themselves functions of py, pa, and y. When utility is maximized, two
things occur. First, all income is spent:

y = p1X§ + p2x3.

Consequently, given the utility maximizing amount of good one, we know
the utility maximizing amount of good two:

x3 = (y — p1X1)/P2-
Substituting into (5.2) we have

Y(p1,P2,¥) = Uxt,(y — p1x7)/P2)-

Second, at the utility maximizing quantities x} and x3, the ratio of marginal
utilities is equal to the ratio of prices:

MU,/MU, = P1/P2s

where MU, and MU, are the marginal utility of goods 1 and 2, respectively.
This can be rewritten as MU, — (p,/p,) MU, = 0. Therefore, indirect util-
ity can be written as

Y(py,P2,Y) = U(xy,(y — P1X1)/P2) (evaluated at the point at which
(MU, — (p1/p2) MU) = 0).

We can now determine the derivatives of Y;

8Y/dp, = QU (x1,(y — p1X1)/P2)/0py) (evaulated at the point at which
(MU, — (p;/p2) MU,) = 0)

= (0x,/0p )MU, + (—x1/p2 — (P1/P2)(0x1/0p,)) MU,
= —(x;/p2) MU, + (9x,/0p,) (MU, — (p1/p2)MU>)
= —(x1/p) MU,

and

dY/0y = (OU(x,,(y — P1X1)/P2)/0Y) (evaluated at the point at which
MU, — (p;/p2)MU;) = 0)

= (0%, /0y) MU, + ((1/p2) — (P1/P2)(0x,/8Y)) MU,
= (1/p) MU, + (@x,/0y)(MU, — (py/p;) MU>)
= (1/px) MU,.
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Therefore,
(@Y/dp,)/(@Y/dy) = —x,,  as required.
The result for good two is obtained analogously. O

In short, a researcher can derive the functional form of demand equations
from either direct or indirect utility functions. Since consumers’ preferences
can be equivalently expressed with either type of utility function, demand
curves derived from either are necessarily the same. However, it is much
casier to derive demand equations from the indirect utility function (using
Roy’s identity) than from the direct utility function (which requires solving
a constrained maximization problem).

5.3 Specification of Continuous /Discrete Models

Consider a person who faces two choices: (1) which alternative to choose
from a finite and exhaustive set of mutually exclusive alternatives; and (2)
how much of a particular good to obtain, where the amount of the good can
be represented by a continuous variable. In general these choices will
depend, at least partially, on the same underlying factors, so that the two
choices are interrelated.? The researcher wishes to describe the situation by
specifying both (1) the probability that the person will choose each alterna-
tive and (2) the demand function for the continuous good. Label the set of
alternatives as J, observed characteristics of each alternative i in J as z;, the
quantity of the good as x, the person’s income as y, other observed charac-
teristics of the person as s, and all unobserved factors as w;. The price of the
good can, in the general case, vary depending on which alternative is
chosen,* and so the price is denoted p;, that is, the price per unit of x given
that alternative i is chosen.

Suppose, for the moinent, that the person chose alternative i in set J but
has not decided how much of the good x to consume. The maximum utility
that the person can obtain, given that he has chosen alternative i, depends
on the price of the good and the person’s income (as well as, of course, the
characteristics of the person and alternative i). This maximum-attainable
utility, given alternative i, can be written

Y= Yi(pb Y:%Zi5 S, wi)'

This function is an indirect utility function, giving the maximum utility
attainable at given price and income. More precisely, it is the indirect utility
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function that the person faces given that he has chosen alternative i. Since it
is conditional on the choice of alternative i, it is called the “conditional
indirect utility function” for alternative i. Conditional indirect utility func-
tions can be constructed for each alternative in the set J; each of these gives
the maximum utility that the person can obtain if he chooses a particular
alternative.

We can now specify the demand equation for the good and the choice
probabilities for the alternatives. The person will choose alternative i if and
only if the conditional indirect utility is higher for alternative i than for any
other alternative:

Y}(pis Y Zis S, Wi) > Y;'(pj)yﬁz_hsy Wj) fOI' all Jin Ja j '-ié i-
Consequently, the probability of alternative i being chosen is
P, = Prob(¥(p;, ¥, 2:, 5, W) > Yipjs .23, 5, w) for all jin J,j # 1). (5.3)

To specify these probabilities, recall that factors w; entering indirect utility
are not observed by the researcher. Therefore, we decompose indirect utility
into observed and unobserved parts,

Yi(pi: V.2 S, wi) = I/i(pi,y,zi’s) + €

where ¢; is a function of unobserved variables w; and V. is simply the
difference between e; and Y;. By specifying a distribution for e; and substitut-
ing into (5.3), explicit formulas for the choice probabilities are derived
exactly the same as for any qualitative choice model. For example, if each ¢;
is assumed to be distributed independently, identically extreme value, then
the choice probabilities are logit with V; as representative utility:

PE = exp(Vi(ph Y 2 S))/Z cxp(Vj(pj: Y, zj’ 5))-
velJ

It is important to note that representative utility in the choice probabilities
includes as an explanatory variable the price of the good whose quantity is
being chosen simultaneously with the choice of alternative.

The demand for good x is determined from the conditional indirect
utility functions using Roy’s identity. That is, the demand for x, given that
alternative i is chosen, is

x; = (0Y(pi> ¥- 25 S, w,;)/0p)/(@Y:(pi, ¥, 21> S, w;)/0y) = gi{Pi» V> Zi> S, w;).

This is the conditional demand for x (conditional on alternative i being
chosen). The marginal demand for x, marginal over all alternatives, is the
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weighted average of conditional demands with the choice probabilities
being weights:

X = ) Pgdpi, .25, ;).
ieJ
Note that both the conditional and marginal demands for x depend on

unobserved as well as observed factors; the error structure for these equa-
tions will depend on how w;, enters g;.

Example A simple example will demonstrate how functional forms for
choice probabilities and demand functions are derived from indirect utility
functions, using the ideas just expressed. Suppose the conditional indirect
utility function is of the form

Y =In((@ + B'p + Oy + Yf(z.,5) + €)-€7?),

where f is a vector-valued function of observed characteristics of aiternative
i and the person, ¢; is a function of unobserved factors, «’, #°, and @ are scalar
parameters, and ¥ is a vector of parameters. Note that in this example, the
price of good x does not depend on the alternative chosen, and so p is not
subscripted by i. The demand for x is obtained with Roy’s identity. First,
take the derivatives of Y; with respect to p and y:

0Y;/p = (1/A)(B'e™® — 6Be™®) = (1/A)(e™ (B — 6B)),
0Y;/dy = (1/4)(0e%7),

where

A= (o' + B'p + 0y + Yf(z;,5) + €;)e

and

B=a'+ Bip + Oy + Yf(z,,5) + e

The conditional demand for x is the negative of the ratio of these two
derivatives:

x; = —(8Y,/0p)/(9Y,/0y) = —(B' — 6B)/6 = B — (B'/6)
=& — (BY/0) + B'p + Oy + Yf(z:,5) + e

That is, the conditional demand equation for good x is linear in price,
income, and other explanatory variables, with an intercept term (o' —
(8/6)) and an additive error.

(5.4)
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The choice probabilities are also simple in form. The conditional indirect
utility functions can be rewritten

Y, = In(’ + Bip + Oy + yf(z;,5) + &) — Op.

Since 6p does not vary over i, the decisionmaker ignores its value in
comparing Y; and Y and considers only

Y. = In@' + B'p + Oy + Yf(z;,5) + €)-

Furthermore, since ¥, > ¥, if and only if exp(¥;) > exp(¥)), the decision-
maker effectively chooses an alternative on the basis of comparison among

exp(¥) = o« + Bip + Oy + ¥f(z;,5) + s

Therefore, the probability of choosing alternative i is
P, =Prob(V,+ ¢;> V;+ ¢ foralljin J,j # i),

where

V, =o'+ Bip + Oy + ¥f(z;,5).

Specification of the distribution of e; (e.g., extreme value) provides a
functional form (e.g., logit) for the choice probabilities, with representative
utility being V;. Note that this representative utility function is linear in
price, income, and other explanatory variables, with an alternative-specific
constant and an alternative-specific coefficient for price. Other examples of
simple continuous/discrete model specifications based on utility theory are
given by Dubin and McFadden (1984).

Remark A final note is required regarding terminology. It was stated at
the beginning of this section that the discrete and continuous choices
described by these models are assumed in general to be interrelated, but the
form of this interrelation was not described. It is now possible to clarify this
point. In the previous specification, the decisionmaker is assumed to choose
the discrete alternative and the amount of the continuous good that, in
combination, provide the greatest utility. Since the choices are simulta-
neous, it is not possible for one choice to cause the other, in a strict sense of
causation. However, the two choices are caused, or determined, by the same
underlying factors, and so there is an observable association between the
two. That is, the decisionmaker would (in general) choose a different
alternative if, due to a change in an underlying factor, the chosen amount of
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the continuous good changed; and the person would consume a different
amount of the continuous good if, due to a change in an underlying factor,
the person were to choose a different alternative. In these statements, the
phrase “due to a change in an underlying factor” is important since the
reason each choice changes when the other does is not because of direct
causation between the choices but rather because both choices are deter-
mined by the same underlying factors.

5.4 Estimation

The parameters of both the choice probabilities and the demand equations
for the continuous good can conceivably be estimated simultaneously with
full information maximum likelihood methods. To do so, it is necessary to
(1)-specify the probability of each sampled observation (i.e., the probability
of observing the alternative that was actually chosen and the amount of the
continuous good that was actually consumed), (2) substitute the probability
of each observation into the log likelihood function, and (3) maximize the
function with respect to the parameters. While feasible, this procedure is
difficult, and, to date, no special purpose computer routines have been
developed for such estimation.

It 1s usually the case that researchers estimate the choice probapbilities
and demand equation sequentially, starting with the choice probabilities.
Recall that the choice probabilities in continuous/discrete situations are a
function of representative utility (¥(p;, y, z;, s)) for all i, with the form of the
function determined by the distributional assumptions regarding unob-
served utility. Since each of the variables entering V; is exogenous,’ the
parameters of choice probabilities can be estimated the same as if no
continuous good were involved. These estimates are consistent, but since (1)
some parameters might be common to both the choice probabilities and the
demand equation for the continuous good and (2) the unobserved compo-
nent of utility and the error in the demand equation generally contain
some common unobserved factors, the estimates are not as efficient as full
information maximum likelihood.

Estimation of the demand equation for the continuous good is consider-
ably less straightforward. The basic difficulty is that some of the explana-
tory variables in the demand function are, in general, correlated with the
error term, causing ordinary least squares estimation to be biased. The
precise source of the bias and the methods that are available for eliminating
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it are most easily discussed in terms of a specific and simple example.
Generalization to more complicated cases is fairly obvious.

Consider a situation in which a household has a choice between a room
air conditioner and a central air conditioning system and also chooses how
long each day to run the air conditioner. Suppose the conditional demand
equations are linear in price and income similar to (5.4). However, in this
example, price varies over alternatives since the cost of operating a room air
conditioner for a minute is different from that for a central system. In
particular, let the conditional demand equations be

x. =&+ fp. + Oy + e, (5.5)
Xq = Bpo + 0Y + €0 (56)

where x_ is use given that a central air conditioner is chosen and the
household faces price p, per minute of use, and x, is defined analogously for
a room system.

These equations can be estimated simultaneously on the entire (ie.,
pooled) sample, or separately on the subsample of households that chose
each alternative (i.., estimate (5.5) on those households that chose a central
system and (5.6) on those that chose a room system). In either case, ordinary
Jeast squares is biased and alternative estimation methods are required. The
source of the bias and methods for eliminating it are now described.

Two Stage Estimation on Pooled Sample

Since the parameters f and 6 are common to both equations, estimation of
(5.5) and (5.6) on the pooled sample is equivalent to estimating the single
equation

x=0d°+pp+6y+e,

where x is the observed use level of the household, d° is a dummy variable
that equals one if the household chose a central system and zero otherwise,
p is the price that the household is observed to face given its chosen system
(i.e., p is the price of using a room system if the household chose a room
system and the price associated with a central system if it chose a central
system), y is income, and e is an error term. Note that this equation is simply
a more concise way of writing (5.5) and (5.6) and does not entail any change
in specification.

The basic difficulty in estimating this equation is that the dummy vari-
able d° and the price p are, in general, correlated with the error term.
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Consider first the dummy variable. A household whose dwelling, for some
unobserved reasons (e.g., poor insulation, large picture windows in un-
shaded areas), tends to become unusually hot, will tend to purchase a
central system since it provides greater cooling capacity than a room
system. Thus, for this houschold, d° would probably be one, indicating a
central system. This household would also, for the very same unobserved
reasons, tend to use the air conditioner more than average: since the
dwelling becomes unusually hot, the household would run the system for an
unusually long time to reduce the heat. That is, e would be high for this
household. In this case, d° is one when e is high. In other cases (e.g,, little
need for air conditioning because all the household members are away from
the house during the hot part of the day), a low e would be associated with a
d° of zero.

Similarly, the price variable is correlated with e. The cost per minute of
operation is generally higher for a central system than for a room system.
Households that, due to unobserved factors such as poor insulation, tend to
choose a central system will also tend to have above average use of the
system; consequently, p will tend to be high when e is high. For similar, but
reversed reasons, a low p will be associated with a low e.

The basic problem here is one of endogeneity. The household determines
the values of d° and p in choosing which air conditioner to purchase. Since
the choice of air conditioner is endogenous with the use of the air condit-
ioner, d° and p are necessarily endogenous. Treating them as exogenous in
the estimation of the demand equation results in standard endogeneity
bias.

The bias is shown visually in figure 5.2. The true relation between price p
and use x is depicted by the solid line. The observed data points are the
asterisks. Recall that p is correlated with e, so that use tends to be below
average when p is low and above average when p is high. This correlation is
represented in the placement of the asterisks: for low p, most of the observed
data points are below the true line (i.e., below the true average), while for
high p, most are above the true line. As can be seen from this graph, the line
that best fits these data is the dashed line. This estimated relation is
necessarily less steep than the true line, indicating that the estimated effect
of price on use is biased toward zero when price is correlated with the error
term.

The solution to this problem is a two stage procedure, analogous to that
for eliminating endogeneity bias in standard simultaneous equation sys-
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Figure 5.2

Bias due to endogeneity.

tems. In particular, the solution is to replace the endogenous explanatory
variables by consistently estimated functions of exogenous variables. In the
context of our example, the following two steps are required. First, an
equation is estimated for each of the two variables d° and p with only
exogenous variables entering on the right-hand side:

= f(w);
p=gw)
where w is a vector of exogenous variables and f and g are parametric
functions whose parameters are estimated. Using the estimated parameters
in f and g, predicted values of d° and p are obtained denoted d° and p,

respectively. Second, the demand equation for air conditioner use is es-
timated with the estimated values of d° and p replacing the observed values:

x; = ad® + Bp + Oy + e,

Ordinary least squares is a consistent estimator for this equation,; since d°
and p are functions of exogenous variables, they are necessarily uncorre-

lated with e.
The only question with this approach is what functions f and g to use in
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replacing d° and p. Any function of exogenous variables will allow consis-
tency; three particular functions have traditionally been used.

METHOD 1 The most obvious and, in some sense, straightforward method
is to specify f and g as regression equations of all observed exogenous
variables: d° = ww + u, and p = ¢w + u,, where w is a vector of observed
exogenous variables, w and ¢ are vectors of parameters, and u, and u, are
error terms. Ordinary least squares applied to these equations provides
consistent estimates of w and ¢.

METHOD 1  The choice probabilities are functions of exogenous variables. _
Since these have previously been estimated, d° and p can be expressed in
terms of the choice probabilities, thus avoiding the estimation of additional
regression equations. That is, let the function replacing d° be the estimated
probability of choosing a central system, and let the function replacing p be
the expected price given that either of the two systems could be chosen:

A

d*=P,
p=p.P. + p, P,

where P, and Pq are the estimated probabilities of choosing a central and a
room systermn, respectively.

METHOD I Methods I and II can be combined for greater efficiency. Let
f and g be regression equations, but include the estimated choice proba-
bilities as explanatory variables in addition to exogenous variables. That is,
estimate by ordinary least squares:

d® = a, B, + ow + uy,
p= cxZ(Pcpc + Pqpq) + ¢W + u2a

where «, and a, are scalar parameters. Since method I is obtained when
o, = a, = 0 and method II results from «, = a, =1 and w = ¢ = 0, this
third method is a generalization of the other two and is consequently more
efficient.

It is important to note that methods I and IIT are equivalent to instru-
mental variables estimation. For method I, the instruments are all exoge-
nous variables available prior to estimation of the choice probabilities,
while for method I the instruments are all of these exogenous variables
plus the estimated choice probabilities and variables created from these
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choice probabilities. Furthermore, just as two stage least squares can be
equivalently performed in one stage as instrumental variables estimation,
methods I and III can also be estimated in only one stage using instru-
mental variables routines.

Parameters Varying over Equations In the previous example, there are
parameters common to both conditional demand equations. While this
specification simplifies the notation, it is important to realize that the two
stage estimation procedure is not restricted to cases with common para-
meters. To show this fact, suppose that all the parameters in the air
conditioner use equations are different for room and central systems:

x, =+ B°p. +0°y t+ e,
xq = Bopy + 0%y + ;.

This specification is actually quite reasonable. A central air system pro-
duces much more cooling within a given period of time than does a room
system. A household would consequently be more willing to use a central
system than it would a room system if the household (somehow) faced the
same price per minute of operation for each type of system. That is, fis less
negative than f9. For similar reasons, income might have a larger effect on
the use of a room system than on a central one, implying that ¢ is larger
than 6°.

With parameters varying over alternatives, the approach just described is
applied by rewriting the two use equations as one:

x = ad® + B°p.d® + Bp,d® + 6°yd® + 0%yd® + e,

where d° and d9 are dummies indicating that central and room systems were
chosen, respectively. The parameters are estimated by first replacing d° and
d? by their predicted values based on estimated functions of exogenous
variables (using any of the three methods described), and then applying
ordinary least squares.

Selectivity Correction Approach

It is most natural to discuss this approach in the context of parameters that
are not equal over equations, since the additional complication of in-
corporating this equality is avoided. Therefore, consider for now the
specification
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Bias due to self-selection.

Income y

x,=a+ f°p.+ 0y + e, (5.7

Xq = BOp, + 8%y + e, (5.8)
where B¢ # B9 and 08¢ # 09 for the reasons discussed.

Suppose the researcher segmented the sample on the basis of the type of
air conditioner chosen, and estimated (5.7) on the subsample that chose
central air and (5.8) on the subsample that chose room air conditioner. Both
equations would be estimated with bias. Consider income y in (5.7). A
household that had low income would have a low probability of choosing a
central system since it costs more than a room system. As a result, if a low
income household chose a central system, then there must be unobserved
factors (such as poor insulation in the house necessitating a powerful air
conditioner) that induced the household to do so. These same factors would
also tend to induce the household to use the system more than expected.
Thus, when y is low for a household that chose a central system, we would
expect e, to be high; the household must have higher than expected use to
induce it to purchase the central air system.

The bias is shown graphically in figure 5.3. Suppose the household
chooses a central system if its use will exceed X, but will choose a room air
conditioner if its use of a central system will be below X.. Suppose further
that use increases with income. If the amount that a household would use
a central air system were somehow observed for all households, whether
or not they actually chose a central system, then the data points indicated
by asterisks would be obtained; for any given income level, there would be
a distribution of use around the “true” line. However, if the equation is
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estimated only on those people who actually chose a central system, then
the only data points used in the regression are those above X, that is, the
circled asterisks. As this graph shows, the line that best fits the data points
used in the regression has a downwardly biased slope. This bias is called
“selectivity bias,” or “self-selection bias,” because the estimation is per-
formed on a subsample of households that, through their choice of alterna-
tive, essentially selected themselves to be included in estimation.

The correlation between income and the error term in the demand
equation can also be seen in figure 5.3. For low levels of income, the only
observed data points are those above the true line, i.e., those with positive
errors; however, as income rises, negative errors become likely and larger in
magnitude. Hence the negative correlation between y and e..

The bias is not limited to income. The choice probabilities are really the
underlying issue; when the probability of choosing a central air system is
low and it is purchased anyway, we expect use to be higher than average.
Thus, any variable that affects the choice probability P is correlated, in that
portion of the sample that chose central air, with the error term e, in the use
equation.

Stated more formally, the problem is that the expectation of e  is not zero
for each observation as required for ordinary least squares, but rather a
function of the choice probability P.. Therefore, to solve this problem, we
decompose e into its expectation and a deviation from its expectation:

e. = Ele) + 1,

where E(e.) is a function of the probability of choosing a central system. The
deviation # is due to factors that are unnrelated to the choice between
central and room systems and so is independent of P,. The use equation for
a central system becomes

X, = o+ f°p.+ 6y + E(e)) + 1. (5.9)

Since E(n) = 0 and p,, y, and E(e,) are independent of n, this equation can
be estimated by ordinary least squares if a consistent estimate for E(e ) can
be obtained. The term E(e,) is calied the “selectivity correction” since its
inclusion corrects for selectivity bias.

Heckman (1978, 1979) has derived expressions for E(e) under various
sets of distributional assumptions. Using these techniques, Dubin and
McFadden have shown that, if the choice probabilities are logit and e and
e, are normally distributed, then the selectivity correction is
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E(e) = (/66%/m)[(p Py In P,AL — P)) ~ p,In P.], (5.10)

where ¢ is the variance in e in the entire population (not conditional on the
choice of system) and p, and p, are the correlation of e with the unobserved
utility associated with room and central air systems, respectively.®

Generally 62, p,, and p, are unknown to the researcher. Furthermore, Py
and p, are not independent; in fact, p. necessarily equals the negative of p,.
This fact is explained as follows. Recall that only differences in utility
matter, not the absolute level (see section 2.3). Therefore, any factor either
(1) increases the utility of a central system relative to a room system (and
thereby decreases the relative utility of a room system) or (2) decreases the
relative utility of a central system (and increases that of a room system). A
factor cannot increase or decrease the relative utility of both alternatives. (If
the utility of a central system increased by u_ and that of a room system
increased by u,, then the relative utility of a central system increases and the
relative utility of a room system decreases if u, — u, exceeds zero, and vice
versa if u, — u, is less than zero.) Consider now an unobserved factor that
increases a household’s use of an air conditioner (for example, poor insul-
tation). If this factor increases the relative utility of a central system, then
it necessarily decreases the relative utility of a room system by the same
amount. Thus, if p is positive, then p, is necessarily negative by the same
amount.

Since p, = — p,, equation (5.10) can be expressed in a form that does not
require the researcher to know o2, p,, or p,. In particular, substituting — p,
for p, in (5.10), we have

E(e) = —(/Bo?/m) . [’:f‘ Lay lnfz]. i1

q

With estimated choice probabilities P, and P, the researcher can calculate
the term in brackets. Entering this into the use equation gives

X, =a+ f°p. + 0y + y°C, + 1, (5.12)

where C. is the “selectivity correction term,” calculated as ((P,InP,/.
(1 — P)) + In P,) and y° is the coefficient of the selectivity correction term,

which equals (—\/t?/n) p.. Estimation of (5.12) provides a consistent

estimate of each coefficient, including y°. Note that if the researcher expects

p. to be positive (e.g., unobserved factors that cause high use also increase

the utility of a central system), then the coefficient of the selectivity correc-

tion term is expected to be negative.’
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By the same arguments, we can show that the conditional demand
equation for use of room air conditioners can be estimated by ordinary least
squares on the subsample of households that chose a room system, pro-
vided a selectivity correction term is added. The estimation equation is

Xq = Bipy + 0%y + ¥3C, + 1,

where C, equals (P.InFP./(1 — P)+InP) and »* equals (—./60%/7)py,
which can be estimated by ordinary least squares on the subsample of
households that chose a room system.

The Selectivity Approach with Common Parameters In the specification
used thus far in describing the selectivity correction approach (i.e., equa-
tions (5.7) and (5.8)), there are no parameters that are equal across the use
equations.® However, in the original specification of the example (equations
(5.5) and (5.6)), common parameters appeared in the two equations. In fact,
in many real world situations, particularly if the number of choice alterna-
tives is large compared with the sample size, the researcher will choose to
specify the conditional demand equations with parameters equal over
equations.

Common parameters can be handled in two ways with the selectivity
correction approach. The demand equations can be estimated as a system
of simultaneous equations with each equation estimated on its own sub-
sample (i.e., the subsample that chose that alternative) and with parameters
explicitly restricted in the estimation procedure to be equal across equa-
tions. Alternatively, and usually more simply, the separate demand equa-
tions can be written as one and estimated on the pooled sample. In the
example of air conditioner use, equations (5.5) and (5.6) would be rewritten
as

x = ad® + B(p.d° + p,d%) + Oy + P(C.d® — Cyd%) + 1 (5.13)

(since y°= —7y,4). With the selectivity correction term, the explanatory
variables are not correlated with n and so ordinary least squares is
consistent.

Equation (5.13) points out that the selectivity correction approach can be
applied on either a pooled sample or choice based subsamples. When
applied on a pooled sample, it is an alternative to two stage estimation,
while on choice based samples it is the only option (since two stage
estimation requires a pooled sample). In fact, even if there are no common
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parameters, the selectivity correction approach can be applied on a pooled
sample. In the air conditioning example, instead of estimation of

Xe=a+ Bp.+ 0y +y°C. +n
and
Xq = PIpg + 0%y +yIC, + 1

separately on the subsample of households that chose room and central
systems, respectively, the researcher can estimate

x =ad® + f°p.d° + Bp.d? + 6°yd°® + §yd? + y*(C,d° — C,d%) + 1

on the pooled sample. In short, the selectivity correction approach is not
restricted to the use of choice based subsamples, but is also applicable on
pooled samples as an alternative to the two step estimation procedures

described.

The Selectivity Correction Approach When Conditional Demand Is Observed
Only for a Subsample The selectivity correction approach is applicable in
situations that cannot be handled with the two stage estimation procedures,
namely, when conditional demand is observed only for those sampled
decisionmakers that chose a particular alternative. For example, suppose
an electric utility has a conservation program that customers are invited to
join. The utility records the savings in electricity that each program partici-
pant obtained as a result of the program, and wants to relate these savings
to characteristics of the customer as well as the price of electricity faced by
the customer. The situation is a continuous/discrete one, with the choice of
whether to join the program being discrete and the savings from the
program being continuous. However, savings are observed only for those
customers who joined the program. The savings that would have been
obtained from participating in the program by those who did not join are
not observed, and savings resulting from nonparticipation are necessarily
zero. The savings equations in this case are

X, =0s+e,
X, =0,

where x, is the savings conditional upon being a participant, x, is the
savings conditional upon choosing not to be a participant, and s is a vector
of characteristics of the customer and other explanatory variables.
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The selectivity correction approach is perfectly appropriate for this
situation (and was in fact developed for this type of situation rather than for
ones in which two stage estimation could be used as an alternative). The
researcher estimates a qualitative choice model on a sample of participants
and nonparticipants; this model allows calculation of the probability of
participating as a function of exogenous variables. The researcher then
estimates the equation

x, = 0s + Ele/p) + n, (5.14)

on the subsample of customers that chose to participate in the program. In
this equation, E(e/p) is a consistent estimate of the expectation of the error
given that the customer participated in the program and is calculated as a
function of the estimated probability of choosing to be 2 participant. If the
choice model is logit, then E(e/p) takes the form of equation (5.11) with an
appropriate change in terms. With this value of E(e/p), ordinary least
squares applied to (5.14) is consistent.



