ON THE EXISTENCE OF OPTIMAL DEVELOPMENT PLANS

D. McFadden

I. Intreduction

A plan for rconomic development is a description of the
production activities required of each firm and the commodity vectors
assigned to sach supplier of resources and consumer unit, over the
lifetime of an economy. The objective of deveiopment planning is to
choose from the set of feasible plars one that is "best" in terms of
the planner’s imputation of the society's welfare. In practical applica-
tions, development plans arz usually to maximizs an objective function
over a {inite horizon, subject to terminal conditions. However, the
terminal conditions are derivable in principle from an optimization
beyond the finite horizon of the plan, and at the most fundamental level,
optimization must be considerad over an infinite horizon.

In the infinite-horizon case, the set of feasible plans and the
planner’'s preference relation generally lack the compactness and con-
tinuity properties which would automatically ensure the existence of
"best'" plans, Consequently, existence is conditioned on the scecific
structure of the econcmy,

The following example illustrates this observation, and sug-
gests a relationship between existence and boundedness that is the
principal result of this paper. Let bt and <, be real numbers denotiny,

respectively, aggregate output and consumption in period t, and as-
sume that a fzasible consumption program satisfies the inequalities

bt+1§ 4(bt-ct) t=0, 1, ...
bt:;O, ctgo t=0,1, ..,
b <1
o=

These inequalities state that the output of the commodity in period t
can be either diverted to consumption, or reinvested and quadrupled
in the following period, and that initially one unit of the commodity is
available, We may rewrite this system as a discretc-time control

#This research has beensupported by the University of Chicage, the
Ford Foundation, and the National Science Foundation (Grant GS5-2345).
I have benefited from discussisns with L, Hurwicz, T. Rader, and M,
Richter, but claim sole responsibility for errors.

The question of existence of optimal growth programs has
been treated previously by Koopmans [7] and Weizsacker [13] in the
case of 2 one-sector model in which non-produced resources Limit
production; by Gale [3]in a multi-sector analogue of this model; by
Gale and Sutherland t‘i] in the case of a one-sector model with un-
bounded producticn, but decreasing returns; and by the author [9] in
the case of a one-sector model with oniy produced comunodities and
constant returns,
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problem:
Abt = f(bt, u) = {3 - «mt)bt .

Ct=utbt’

u, ¢ [0, 1].

Hence, the existence questions we consider are closely related to
the existence of optima in variable-end-point discrete control problems,
Suppose that the economy has an objective function w(ct)

measuring its performance in period t, A program (ct') is said to

strictly surpass a program (c,") if lim inf [u(ct') - m(ct“)] > 0; this
Hoo 20

relation is taken to define a partial ordering over feasible programs,
We wish to find a feasible program which is maximal; i,e., strictly
surpassed by no other feasible program.

Consider the objective function
l-a

N
w(ct)_l-a ¢

fora> 0, a # 1. An elementary computation establishes that feasible
ot

programs satisfy 544 € < 1, ¢ 2 0, and that a maximal program
t=6 t/
must be of the form ct' = K-47% for some scalar K> 0, But (ct’)'of
o0

this form can satisfy E 47t ' $ 1if and only if ¢ > 1. But this is just

t=0
the case in which m(ct) bounded above, and we conclude that m(ct)
bounded above is necessary and sufficient for.the existence of a max-~
imal program, This result, extended to 2 many-sector, many-con-
swner economy with a strictly productive von Neumann technology,
is established in the remainder of this_paper,

II. An Economic Model

Consider time as an infinite sequence of short periods,
numbered t = 0, 1, ..., In period t, assurie .here are a finite number
of commodities NI:' which may be indexed by (it), (2t),..., (Ntt)' Let

1
“This ordering relation is a natural way of making meaningful the
e o]

maximization of a sum z w(ct) which may be divergent,
t=0
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N={tmt)in=1 ..., N; t=0,1 ...}

denote the set of all possible commodity indices.

A commodity vector is a real-valued function on N (hence,
an infinite sequence of real numbers), and will be denoted by one of
the lower case letters a, b, ¢, W, x, ¥, 2. The notation ¢, will be
employed for the subvector of ¢ containing the commodities of period t
(i, e., the components of ¢ with second index t), and the notation .t
will be used for the {nt)-component of c.

Let » denote the real linear vector space of all commodity
vectors, and let (2 denote its nonnegative orthant (defined as the cone
of vectors for which every component is nonnegative),

For any finite horizon H, define a linear operator M : J=7
by the condition

cntfort-cH
c'=M.Hcifcnt‘=
0 for tgH.

Then, M.H is-3imply the projection operator from j} into the subspace

of commeodities antedating the horizon H, Let ': 3 = 7 denote the
projection operator into the complementary subspace; i.e.,

0 fort< H

el = M.H'c if Cnt” =

An aggregate production pregram for the economy is given
by a vector y ¢ 3 of net outputs of the production sector; i.e., ynt is
negative if there is a net input of commodity nt to this sector, and is
nonnegative otherwise. The aggregate production possibilities of the

c  fort>H.
nt =

economy are defined by a subset Y of 4 containing all net output vectors

y which are consistent with the production technology., The following
assumption is made on the set Y,

Assumption l, The production possibility set Y is a subset
of 3 with the properties:

{i) Non-increasing returns to factors and constant returnsto

scale: Y is+a convex cone;
{ii} Qutputs require chronologically prior inputs: yeY and
MHy= Oi:nplyyHg 0, forH=0,1, 2, ...;
(iii} Free disposal: yeY and y' < vy imply y' ¢ Y.
(iv) The set Y is closed under coordinate-wise convergence:
Y is a closed subset of the finite-dimensional sub-

gp ceM.H’.3

ZBrief economic justifications for these tonditions can be found in
Debreu [1) and Koopmans [7].

3Henc«ea, if a sequence {yv|v= 1}, 2, ...} Yhas Y:t - zt for each
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The economy has a given commodity vector w €S2 of initial
resources. Addition of a net output program y ¢ Y and the initial _
resource vector W yields an aggregate net supply program c =y +w
to the consumption sector, LetF = {ce le=y+%, yeY] dencte
the set of possible net supply programs,

A possible net supply program c ¢ F is feasible if it is non-
negative (i. e,, requires no inputs of resources irom outside the
economy, other than those possibilities for 'aid" and "trade' already
included in the specification of w and Y). A consistent development
plan requires a net supply program chosen from the set Fo={ceF| c>0}
of feasible commodity vectors, -

If a positive amount of a commedity (nt) is unobtainable in any
commodity vector in the feasible set F, it is irrelevant to choices
among feasible alternatives, and can be deleted from the set of com-
modities N, Hence, we can assume without loss of generality that the
projection M‘H Fo spans the apace MH, for any finite H.

Let x denocte the linear space spanned by F, and define its
nonnegative orthant I = 2 M % and the set F,= F Nx c_>i possible net
supply programs it contains, Define the set F?. = {fec' - (1- g)c"| 0 <6
<l ¢, ce Fo}. When F  is convex, any point c ¢ Xhas a repres-
entation ¢ = a¢' - pc" withe, p > Oandc', c"¢ Fo' Then—l- ce F2 for
# 2 @ +p, and the support function ¢(c) = inf{pls > 0, :—L- c eFZ} exists

and is nonnegative, positively' linear homogeneous', and convex on X
(cf. Dunford 2], p. 4ll). For any scalar o, ¢lac) = la| 6(c), since

F, = -F,. Hence &(c) is an pseudo-norm on¥. (Ci, Kelley [6], p.15.)

This conclusion is strengthened by the following lemma when Assump-
tion 1 holds,

Lemma l, If Assumption 1 holds, then the set F_ is convex,
is sequentially compact in the product topology ofX, and has the free
disposal property that ¢« Fo and 0 ¢ ¢' < c imply ¢'« Fo. The support

function ¢(c) of F2 ig a norm on the space®, andX is a complete space
in this norm (i, e., a Banach space),

Corollary. The norm ¢ satisfies the bound Icnt| < dlele
for ¢ eX, whereo = sup{cnt|c ¢F }>0. -

Proof: It follows trivially from Assumption 1 that F  is
closed in the product topology of 2, is convex, and has the free dis-
posal property. A standard argument by contradiction will establish
that F_ is bounded. Suppose MH F isa bounded subset of'MHI, but

(nt) ¢« N, then y® ¢ Y. Equivalently, Y is a closed subset of) in the
product topology of}.
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that M, ., F_ contains a sequence {c¥} with {c;l} unbounded, Than,
y=cv - M'H+1 w has {JMH v"} bounded and fy;;} unbounded, Define
?v = yv/ | y‘IiI\ . Then {?v} is contained in M'H+1 ¥ by Assumption 1{i),
and is bounded. Hence, there exists a subsequence of the {$"} con-
verging to a point 97 ¢ My |2 satisfying ¥, = 0 for t # H and Ve 2 O,

| ??_I! = 1. By Assumption 1(iv), y* ¢ My,,; Y, contradicting Assump-
tion 1{ii}, Hence‘M.H_!_l Fo is bounded for-all H. Since FO is coordinate-

wise closed and bounded, it follows that out of every sequence in ¥
can be extracted a coordinate-wise convergent subsequence, Hence,
Fo is sequentially compact in the product topology.
The support function ¢(c} of FZ has been shown to be a pseudo-

norm. Now consider ¢ eX¥, ¢ # 0. Then Cot # 0 for some nt ¢ N. By

the boundedness of F , ¢, = sup{cnt[c « F_} is finite. Hence, there

nt
exists a positive scalar ¢ such that lcnt|> ET 4o implying -i— cf F, and
$(c)z £> 0. It follows that p(c)e_, > [c .| for all nt ¢ N, and ¢ is
a norm onX,. nt= " @

A seguence {cv} C % is a Cauchy sequence in the ¢-norm
topology of X (or more briefly, a ¢-Gauchy sequence) if, for each
e > 0, there exists v_ such that ¢(c¥ - cV )< e forv', v'"'3 v, By

the bound ¢{c)qm_ 4 lcnt‘ derived above, every ¢-Cauchy sequence

rcv} CJE converges coordinate-wise to some peint c® e 3 (cf. Kelley
i(:], p. 57). Let X denote the linear space of all such coordinate-wise
limits of ¢-Cauchy sequences inX. We now will show that % =2,

Suppose ¢® ¢X. There exists a ¢-Cauchy sequence {cv} (x
converging coordinate-wise to co. Since {¢(cv)} is bounded, we can
agsurne (by rescaling) that ¢(cv) < 1, Then, by construction there
exists a scalar 8, 0< 9v < 1, and commodity vectors a.v, bY e Fo such
that ¢ = evav - (1 - 6,)b". By the sequential compactness of F , there
exists a subsequence {av, b’, ev} (retain notation) such that a” and b”
converge coordinate-wise to respective limits a® and 5% in Fo and Gv

cgnverges to a scalar 8- But then co = Boa.o -{1- 9°)b°, implying
c ¢ Q.E.D.

The analysis of this paper will be restricted to economies in
which (1) all commeodities can be produced, (2} initial resources are
eventually negligible relative to potential production, and (3) the tech-
nology exhibite constant returns and sufficient flexibility to allow sub-
stitution of "free' inputs for 'non-free” ones, Such economies will

‘generally have the property of reachability defined below,
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Definition. A commodity vector c e F_ is reachable if for
any positive scalar u, there exists a horizon H’such that pMi_Ic eFo.

Reachability requires that starting from an arbitrarily small
proportion of the initial resource vector, one can reach, by pure
accumulation for a sufficiently long time, the levels of a previously
feasible commodity vector. The economy will be called reachable if
every c e F, is reachable, The following lemma characterizes the
space of continuous linear functionals on 3 (in its $-norm topology)
for reachable economies.

Lemma 2. If Assumption 1 holds and the economy is reach-

able, then the spaceag* of all continuous linear functionals on € (in its
$#-norm topology} is & scquence space; i.e., every functional p €3€*
can be represented as a vector pe j, with the value of the linear

functional given by the infinite inner product plc) = z p =p-c

nte N
for c e X, Further, p = (p ,} ¢X* satisfies the bound cr;lt| pntt < ¢*(p)

nt cnt

for nt e N, where ¢*is the dual norm onag

Proof: Consider any p et Over the subspace X_ of vectors
in % with a finite number of non-zero components, p can bé represented
by an infinite sequence p' = (pnt) €3.* Hence, p(MHc) = p'. MHc for all

finite H and ¢ eX. But ¢ can be written ¢ = ac' - fc¢" with o, p non-
negative scalars and c', c" €¢F . Given ¢ > 0, reachability of the

economy implies the existence of a horizon H such that ¢(% M.I'_Ic') < 15
and ¢(% Ml'_lc") < %for H 2 Ho‘ Hence,

sl - Mye) = oMye) < efo(E Myen +oE Mpem] <e

and the sequence ¢} converges to ¢ in the ¢g-norm., Hence, the
g

Pnt” Cnt’
nte N
The bound on Pat follows irom the definition &%*(p) =

sup{p- ¢|d(c) € 1} of the dual norm, Q.E.D.

A finite number of consumer units Kt are assumed to come
into existence in the economy in each time period t, and may be indexec
by (lt), ..., {Kt). LetKs= {(kt)| k=1, ..., K,t=0, 1, ...} dencte

the set of all consumer units,

continuous linear functional p satisfies p{(c) = lim p'. MHc =
How

"The linear functional p is continuous on any finite-dimensicnal sub-
space of ¥, and hence has a unique representation as a vector on this
subspace. Induction over successively large finite -dimensional sub-
spaces establishes the conclusion,
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Each consumer unit is assumed to have a finite lifetime.
Let X, , denote the finite-dimensional linear subspace of X centaining

all commodity vectors which have zero components outside the life-
time of the consumer unit ki, A desired set D, contained in the non-

negative orthant rkt =T nxkt okat specifies the commeodity vectors

on which this consumer unit can subsist,
A consumption plan for the economy is a list of the commodity
vectors going to each of the consumer units; i, e., a function s:K -+,

. t
representable as a vector s = (ckt) with vector components ck € )th for

each kt ¢ K. A consumption plan s = (ckt) is desired if every consumer
unit receives a commodily vector in its desired set and is feasible if
the aggregate commodity vector is a feasible net supply vector. Let

S denote the set of desired feasible consurnption plans,

The problem of optimal economic planning can now be stated
formally, The economic planner has a preference ordering cver the
set of desired feasible consumption plans which reflects his evaluation
of sacial welfare, and he wishes to select a “best'" plan. At the most
general level, each consumer unit can be assurmed to have a preference
ordering over its desired set, and the planner can be taken to have
a partial or complete ordering determined as a function of his informa-
tion (real or fancied, ordinal or cardinal) on an individual's prefer-

ences. 4 In discussing the existence of '"best' programs, we shall
restrict our attention to 2 special case in which the planner assigns to
each consumer unit a concave "unit welfare" function cver its desired
set, and assumes that "social welfare' for any finite group of con-

suraer units is given by the sum of their unit welfare functions.
Let u{c, kt): Dkt - R dencte the unit welfare function assigned

by the planner to the unit kt ¢ K. For a shift from the first to the second

of any two desired consumption plans s = {ckt) and 8 = (Ekt), the gain in
social welfare for the consumer units coming intoc existence before time
H is measured by the planner as

“A particular example would be the case when the planner has a
partial ordering consistent with the Pareto ordering of plans by the
consumer units, The possibility of competitive decentralization in
this model has been explored by the author in {10],

5We avoid the question of whether ths unit welfare functions are con-
sistent with individual preferences. If they are, our decentralizaticon
results can be taken to apply to maximization of "true' preferences; if
not, units must be viewed as carrying out a "Lange-Lerner" type
maximization by command of the planner. The assumption that social
welfare is a separable function of unit welfdre levels iz one of the
analytically most tractahle of a variety of possible forms for a social
welfare function, but there seems to be no deeper justification for its
privileged position in the economics literature,
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V8, s) = z [u@®, k) - (e, k),
kte Kl—l

where K; = {kte K|t < H}., The plan 8 catches up to the plan s if

lim inf V_,(8, s) > 0, and % strictly surpasses s if lim inf V__ (%, s) > 0.
H -+ o0 H = H=» o H
We assume that the planner partially orders consumption plans by the

catches up to relation, 6 A desired feasible consumption plan s is
maximal in S if no other plan in S strictly surpasses it, and is optimal
in 5 if it catches up to all other programs in 5.

A desired, feasible consumption plan s = (Ekt) and a non-zero
"price' vector p = (Pnt) € 2 define a valuation competitive equilibrium
if .

(I) pis a continuous linear functional onX in the ¢-norm
topology of 2,

(2) ule, kt) - preg u(Ekt, kt) - p- Ekt for all ¢ ¢ Dkt' and

(3) precgp-cfor all c e Fy, where ¢ = Ek’t.

kte K

The first of these conditions requires that the present value of any
feasible net supply program be well defined, The second implies
maximization of unit welfare subject to a budget constraint, and the
third requires maximization of the present value of ouiput among
feasible net supply programs,

The desired sets and unit welfare functions are required to
meet the following regularity conditions,

Assumption 2, 7 For each consumer unit kt ¢ K, the desired
set Dkt is a convex subset of rkt with the properties

{i} [ 1"kt
{ii) I‘kt\Dkt is a closed subset of 2.
The unit welfare function u{c, kt) defined on Dkt. has the properties

and ¢ 2 ¢! ‘Dkt imply C‘Dkt H

(iii) uf{c, kt) is concave, nondecreasing, and continuous on
Dkt’ and no finite c e Dkt maximizes u {i, e,, monsatiatior

(iv} if a sequence {c(v)} C Dkt converges to a vector

kt? then u(c(v), kt) converges to - o,

6This partial ordering has come to be known as the Ramsey-
Weizs#cker "overtaking! criterion, cf, [9], p. 27.

7Brief discussions of the economic rationale for these conditions
are given in Koopmans [7, 8] and in [2], pp. 28, 36.
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In reachable sconormies satisfying Assumptions 1 and 2, the
author has established the equivalence of maximal, competitive, and
optimal programs ([9], pp. 32 - 33), as summarized in the following
theorem,

Theorem 1. Suppose Assumptions 1 and 2 hold and the econ-
omy is reachable. 1If 5 is 2 maximal desired feasible consumption
plan, then there exists a non-zero price vector p = (pnt) e} such that

{s, p) is a valuation competitive equilibrium. If (5, p) is a valuation
competitive equilibrium, then s is optimal,

As a consequence of this theorem, the gquestion of existence
of "best" plans under the overtaking criterion can be confined to tests
for the existence of plans s ¢S satisfying lim inf VH(§, s) > 0 for all
8¢S, H~»

III, On the Existence of Optimal Development Plans

Investigation of the existence of optimal consumption plans
is conveniently divided into the case in which conventional continuity
and compactness arguments can be applied and the case in which
existence depends on the precise structural characteristics of the
economy, ‘

For the first case, suppose the 'total social welfare' of the
economy can be represented by a real-valued function v:5 — [-o, +o¢)

over desired feasible conswmption plans, 8 Suppose v(8) > - » for some
2 ¢S, and suppose that 5 can be topologized in such a way that
S1 = {s eS| v(s) > v(8)} is compact and v is continuous on Sl' One can

then conclude immediately that a plan 5 ¢S exists maximizing v, An
application of this argument, employing the product topology, gives

an easy existence theorem for the common economic case of "discount-
ing of the future" (cf. [9], p. 38).

Theorem 2, Suppose Assumptions 1 and 2 hold. ? Suppose
there exist (1) a desired feasible plan 8 = (Ekt), {2} a factorization of
each unit welfare function u{c, kt) = Yiet (e, kt) (where the Yt 2T

nonnegative "discount factors' satisfying Z Yiet < 1), and (3) a large

kte K
positive scalar M, such that ff(tkt, kt) > -M and sup{ @(c, kt)| ce anDkt}
< M. Then, an optimal consumption plan exists,

81n our previous terminology, the overtaking criterion for this case
examines V_ (s, 8) = v(s) - v(8) for s, 3¢5 with v(8) > - =,

9The_conclusion continues to hold if one imposes only conditions {ii)
and (iv) of Assumption 1; conditions (i), {ii), and (iv} of Assumption 2;
the requirement that unit welfare functions be continuous on their
desired sets; and the requirement that cutput in a period be bounded
if all chronolegically prio» inputs are bounded,
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We shall now derive a number of conditions for existence in
reachable economies where the hypotheses of Theorem 2 may not be
met. We first define the concepts of a ""good" plan and an Hoptimizing
sequence' of plans.

Definition. A desired (but not neces sarily feasible) consurnp-
tion plan 3 is good if there is an upper bound on the increase in social
welfare which can be achieved, by the group of consumer units exist~
ing prior to any finite horizon H, by shifting to any desired feasible
plan; i, e., there exists M > 0 such that VH(s, 3) < M for all s ¢S and
H=1, 2, ..., - -

Definition, A sequence {3"} of desired feasible consumption
plans is an optimizing sequence if each sV is comparahble to all s ¢85
(i. e,, the limit V, (s, s¥) = lim VH(s, 8Y) exists and is a value in
H—~ w

[-o, +») for each s ¢S) and lim V,(s, 8¥) < 0 for all 5 ¢S.
[TRE - -
Associated with a consumption plan s = (ckt) is an aggregate

ckt. Let Jdenote

net supply vector which we will denote by c(s)
. kte K

the linear space of plans s with c(s) ¢ . Recalling that F'] is the set

of possible net supply vectors in and Fzg Fl' define the support

function of ¥, (c) = inf{ > 0f i- ceF,} for cex. Then, y(c) is con-

vex, 0< ule) € 4ic) for ¢ e3¢, and §(c) = ¢{c) for ce I, For reachable
economies, the following relationship can be established between the
exictence of good programs and optimizing sequences.

Theorem 3. Suppose a reachable economy satisfies Assump-
tions 1 and 2, and has a good feasible consumption plan 8, Then, the
following conclusions hold:

() All good plans in 8§ are comparable (i.e., V_(s, s') =
lim VH(s, 8') exists for any good s, &' eS), and any goodmplan 8¢S
H-—bm
strictly surpasses any plan s'¢ S which is not good (precisely,
Vw(s'l S) = 'w)-

(b) There exists an optimizing sequence {s"|v =1, 2, .., }
C S (e, imV_(s", 8 =¥2 V (s, 8) for all s ¢S), which can be
Y =00
chosen to satisfy tp(c(sv)) =1,

{c) There exists a non-zero price vector p =(pnf) in the

spaced*® of continuous linear functionals on3 such that lim B c(sv)
V =00

A > 0 exists, p.c < \(c) for all ¢ €3, and Vw(s, 3)-\7§ p-c(s) - p- c(sv)

for all good s ¢ ff and any v =1, 2, ..
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(d) The sequence {s”} has a subsequence converging
coordinate-wise to a desired feasible plan s = (Ekt) such that u(c, kt)
- u(c_:kt, kt) g p-{c - Ekt) for all ¢ EDkt and kt e XK. The plan s is good.

If p+c{s) = A, then s is optimal and (3, p) defines a valuation competi-
tive equilibrium. If A > sup{p- c(s)| s is a coordinate-wise cluster
point of some optimizing sequence}, themr no optimum exists,

(e) ¥ 1lim $(c(s¥) - ¢(53)) = 0, then 5 is optimal.
YV~ 0
(f) I lim. [sup{p- Mi_lclc ¢F _}]=0, then s is optimal.
o
H= o0

Proof: The first portion of the proof will establish the
existence of a positive scalar A and a non-zero vector p such that the
inequality

1 lim inf Vi,(s, ) - v+ Al -y(ch)) - p-c(s) +prc'< O
H-b o0
holds for all good 5 ¢ of and all c' ¢ 32, where

v = sup {lim inf Vuis, 8)jgood s eS}
H - OO

This inequality is used to establish first the conclusions (a} and (b),
and then the properties of the price system in (c).
Note that 2 good implies v finite, Define a linear space

w= R x 3 with points w = {a, B, X) «w assigned the norm |jw|=]e|
+ | +¢(x). Define the set

W = {{a,B,x) eW|a < lim inf Vi(s:8), B <1 -yle),

H- o

x2 c(s) - c' for some good s e,J, ctex}

The set of good s e is convex by Assumption 2, -y is concave onX,
and lim inf Vs, 8) is concave on the set of good s ¢, Hence, W is
H— o
a convex set, 1
The neighborhood ||w - #] < 3 of & = (-1, -1, 0) will be shown

to be contained in W, For any (@, B, x) in this neighborhood,_take
s=8andc'=c(8) -x Then, ¢(c") g olc') € $le(B)) + p(x) < 3, and

the point (0, -12-, x)is in W, Butea, p < -lz-then implies {a, B, x) e W,

The point (v, 0, 0) is in the boundary of W, since y({c') < 1
and ¢(s) > c' imply the good s is feasible, implying v3 lim inf VH"{s. 3
S = o
Since the interior of W is non-empty there exists a non-zero continuous
linear functional (y, X, =p) ¢ Rz xX* such that ya + \@ - p-x < yv for

(@, B, x} ¢eW. The construction of W implies that y, A, and P are non-
negative. If X\ = 0, taking 5 = 8 and ¢' = ¢(8) - x yields the inequality
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p-x < av, implying p = 0, a > 0, and lim inf VH(s, §) < v for all good
He o
~10

5 - J But Assumption 2(iii) implies the existence of ¢ - ¢ D_,. such

10
that u(c 0, 10) > max {u(c, 10)|c (F Nbp 0} + ¢ for some g > 0, and
the definition of v implies the exutence of a good £ ¢ S such that
lim inf VH(S, 8)2v-g/2. Thens e d, defined by <l +¢t0 and
H - QOO
= gt for kt otherwise, has lim inf VH(s, 8 > v + £/2, contradict-
H - Q0

ing the supposition that x = Q. 1
Smce c(8) is rea.chable, there exists H such that ¢(M!'{c(s))<—

‘kt. Then § = (Ekt

Define 3 = {1l - a)M.H t, MHc

tion 2(ii) and (iv), ¥ is good, with lim inf VH(K §) < v for some small
H =

positive §, But Lp(c(g)) < o(fil - B)MH + MH]c(s)) = $((1 - @)ec(8) + GM.HC(S))
< {1 -9)p(c(B) + --< 1- % Taking s = & and ¢' = c(#) yields the inequal-

J, and by Assump-

ity v lim inf VH(§ B} - v +2(l - ¢.(c(s)) < 0, implying v > 0. Normalize
H - 00
vy = 1. Then, (1} holds.,
Suppose 5= (2X%) ¢S is a good plan with V(3 %) < B (§3 o)
Let K*(3) = { (kt) ¢K|u@®, kt) > ue®, kt)}. Then
N RE ke - ek k)< < lim sup V(3 +3, 2) £ ¥ + Mp(c(d)),
kte KH(E) H -~ o

implying Z | u(gkt

kte K
V.(s, 8) =lim V (s, %) exists for zll good = e, Alterna.tely, suppose
H-o H <kt
¢ Sis nota good plan, and define s (c (H)) ecf by c (H)

for t< H and ckt(H) = for t> H., Then ;;s(c(s N < 2, implying

. kt) - u@™, kt)| < & + 2 + 2A0(c(5)). Hence,

[ @), Kt - uE@k, k)< v+ 2n.
Kkt e KH(sH)
Hence, letting H - o, z [u(

kteK (s)
S is not good, one then has lim inf V (3, §) = +o2, and % strictly sur-
H - o

passes 5, We conclude that V(5. 8} = lm VH(s, %) exists, and is
H - 0
a point in [-», ¥], for all desired s ¢S. Hence, a sequence of good

{sv}(; S with lim Vm(sv, 3) = v satisfies the definition of an
Y == 00

S, k) - we*h, k)] g ¥ + 2n. Sinee
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optimizing sequence. By Assumption 2(iii), {s”] can be taken to
satisfy ¢(c(sv)) =1, Hence, (a) and (b) hold.
The inequality (1) with ¢' = c(sv) yvields the inequality Vw(s, 3) -

w7<=: p-rcis) - p. c(sv} for good s e.J Then lim sup p-c(sv) < p-e(s) +
Y ~» OO

v - V. (s, 8). Substituting 8¥ for 5 and noting that lim Vw(sv, g) = v
. V- 00
we have lim sup p. c(s") < lim inf p. c(sv), implying that lim p.c(s")

V o= 02 VYV == O
exists. The ineqiality (1) with s = 8" yields the inequality {as v — o)
Mpte') -1]2 p-e' - iim p.c(s¥). Taking ¢' = 0 and ¢' = 2c(s”) in this
= Y= 00
inequality yields (tzking v = %) the equality \ = lim p. c(sv), giving the
Y=
inequality \i{c) 2 p-cforallc ex. Hence, (c) holds.
Since the optimizing sequence {sv} has ckt(v) €e F_and

c(sv) ¢ F,, Lemnma ]l implies the existence of a subsequ_ence (retain
notation) converging coordinate-wise to a feasible plan 5 ¢gf By

Assumption 2(ii) and {iv), Ekt € Dk* for all kt « K. In the inequality (1),
take ¥ = (35%) with & = M) for ke ¢ K, Kt ¥ 10, and take ¢’ = c(s”),

. . Voo - ~10 10 ~10 10
yielding Vo (s, 8} - v + [u{c™, 10) - u{c "{v), 10)] - p:c 4+ p:sc(v) <0,
The limit of this inequality as v — ® is then -

E-].O' -10 ~10

10) - ufc™™, 10) = p-.c +p-E10

ul go.

Since 10 can be replaced by any kt ¢ K, (3, p) satisfies the first two
conditions of 2 valuation competitive equilibrium. Summing the last
inequality over kt ¢ K, one has VH(s , 8)<p- M, (c(s) - c(8)) ¢ p-c(®) < )

forall s ¢SandH =1, 2, ..., and 5 is good. ..Now suppose that
A=lm p-c(s’) = p.c(s). Then, the inequality p-c g M(c) for all
c 1;5 i;plies prcsp- e(s) for'c e Fl' and (5, p) is a valuation com-
petitive equilibrium. By Theorem 1, s is then optimal. If an optimal
plan s* exists, then ¥ = V_ (5%, 5}, and setting c' = ¢(s%) in the inequal-
ity (1) yields the inequality V(s, 8) - V 8%, 8) - p.c(s) + p-c(s*) <0,
or Vm(s, 8%) <p- c(s) - p-e(s*), Taking s = 8% in (1) yvields the in-
equality Al - y(c")] - p-c(s*) + p.c’ €0, and c' = 0 yields A g p. c(s*).
Then s'® s* is an optimizing sequence with lim p.s¥ = ), Hence,
(d) holds, v

If lim ¢(c(s”’) - c(8)) = 0, then the continuous linear func-

v 0

tional p satisfies lim p- c(sv) = p-c(8), and conclusion (d) implies (e).
Y == OO
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Suppose lim [sup{p-Mi_Iclc ¢F°}]= 0. Then, lim p-c(s’) =

H-» o0 v o
p-Mpyc(s) + lim p- Mi_lc(sv). Given ¢ > 0, there exists H_such that
v = ©
p.M'Hc(s") <gforallv=1, 2 ... and H3 H . Then, lim prc(s) =
V=

lim p. MHc(E) = p-c(8), and conclusion (d) implies (f). Q.E.D.
H - 00
A series of examples will illustrate the sensitivity of the
existence of good and optimal programs to the precise structure of the
economy, Consider an economy with one commodity per period, an
initial resource vector W with w, = 0 fort> 0, and a single production

activity allowing storage of the commodity without depreciation. Then,
o

Z c 1y,

t=0

Suppose further that there is one consumer per period, with a "life-
time" of one period, and suppose that the unit welfare function can be

F =(¢>0
o =

written u(clt, t) = ""‘(ct); i.e,, all consumers have the same unit wel-
fare function. -1
If u(ct) = -¢,, no good plan exists in this economy. If

€t

wley = 1o, -

all faasible plans are good, but no optimal plan exists. Um(ct) =c,
an optimal plan exists. We will now verify these conclusions. Suppose
¢

) 1 ~ ~
desired plan 2 by 2_ = 3 =3¢, and 2, = ¢, ;, fortz 2. Then,

in the case w(ct) = -C a good plan ¢ did exist. Define a feasible

H
z [a(2,) - m(&'t)] = - ;;1 +-_}— .
t=0 €0 °H

But lim E,H = 0 implies that this sum is unbounded, contradicting the
H= o0

supposition that c is good. In the case

one has
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for any ¢ eFO, so that any plan in Fo is good. However, an arbitrage

argument using the strict concavity of w implies that an optimal pro-
gram would have to have equal consumption levels in any two periods,
& condition which can be met for c ¢ F, only at the least desirable pro-
gram ¢ = 0. Finally, in the case w{ct) = ¢, any program c e F  satisfy-
ing w0

z C, = 1

t=0
is obviously optimal,

Now consider the economy above when a production activity

is available which provides an output in any period quadruple the
previous period's input, Then,

F ={(c>0
o =

[+ +}
§4't e, g1 (cf. [9], p. 39).
t=0

A final example for this economy illustrates that an optimal program
may exist, but the sum

oD
Z[u(ct) - 5]
t=0

diverges, for all possible constant "comparison levels" @, Gonsider

wle,) = - [log (1 4 ct}]'l.
Then, .2 1
w'(e,) = [log (1 + ct)] {1+c)”
and -3 t ]

w'(e,) = - [log (1 + ct)] 1+c) {2+10g 14 ct)]

8o that w(c) satisfies Assumption 2, Since w(c) is bounded above, an
optimal plan C exists, with ¢, — %, satisfying the condition w'(Et) =k 4"t
for some k> 0 {(cf. [9]; p. 41). Now, w(¢,) is bounded below any positive

@ and is eventually bounded above any negative . Hence, the only pos-
sible comparison level is & = 0. But then we have the inequality

H

H+l c(H+1) ,
z{“’(et’ - 0)g S' wlc(t))dt = - %-S wlc) w(c) de
t=0 ~o

1]

c(0) w'(c)

where c(t) satisfies w'(c(t)) = ke 2!

wlc) wfc) > flog (1 + c:)]']L 1+ c)-1

w'(c)

, a=log 4. But
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implying c(H+)

H
Z w(é) ¢ L log log (1 + ¢)
t=0 c(0)

Since c(H+l) = +w<, the right-hand side of the last inequality approaches
-, demonstrating that @ = 0 is not a possible comparison level.

IV. Existence in the Generalized von Neumann Model

We consider an economy whose production possibility set is
described by a generalized von Neumann technelogy exhibiting the
characteristics that (1) all commmodities can be produced and {2) when
the economy engages in pure accumulation with zero consumption,

a program achieving maximal proportional growth can be found such
that the economy is expanding, all commeodities are actually produced,
and all commodities have positive "marginal products’, When the unit
welfare functions of all consumer units are identical, we obtain the
strong result that a necessary and sufficient condition for the existence
of a gaod or optimal plan is that the unit welfare function be bounded
from above.

We now describe the detailed structure of the economy in
which this result holds.

Assumption 3. There are a constant number of commeodities
M, = N in each time period, There are a constant number of consumer
units K; = K coming into existence i&oeac_h peried, and the lifetime of
each consumer unit is £ + 1 periods. The unit welfare function

xt

u{c, kt) can be written in the inter-temporally separable form
i
kt T . kt . , . .
u{c , kt) = 6 u(ct+?), where the rate of tirne discount (impatience)
=0

& and the atemporal preference function w are the same for all con-
sumer units and all periods.
The generalized von Neumann technology is defined by a set

Q in the nonnegative orthant of RZN containing all pairs of N-vectors

{a,, b,,,) such that an input of the vector a, in any period t can yield

an output of the vector b, ., in the following period. The technology

t+l1
set Q is assumed to satisfy the following conditions:

10The unrealistic assumption of a constant population of consumer
units can be replaced by the less stark, but equally unrealistic, as-
sumption that future weliare, defined in '"current' terms, be 'dis-
counted" by the expansion factor of population, A somewhat more
satisiactory interpretation is that each consumer unit contains a num-
ber of individuals which may grow in size over time. This last view
reguires some tacit "discounting" of the future in the definition of
unit welfare.
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Assumption 4. The technology Q is a closed convex cone in

the nonnegative orthant of R 7'\, with the properties

{i} zero inputs imply zero outputs: (0, bt) & Q implies bt =0,

(ii) all commodities are producible and the economy is
strictly productive: there exists (a,, b_,.) ¢Q such that
' Tt+l
b >a__ forn=1, ,,.,, N.
1, t+1 nt

{iii) Free disposal is possible: if (at, bt+1) €Q and aé >a

02 biyp € by then (3], by ) e,

For any point (a,, b, ) ¢Qwith a # 0, define the rate of ex-

tl

] = > i i -
pansion p(at, bt+1) max{p ¢ Ribt_'_l 2 pat}. When Q satisfies Assump

tion 4, there exists a scalar p > 1 and a non-zero vector ¢« RN such
that (%, p?) ¢eQandp > p(at, bt+1) for all (at, bt+1) € Q with a, # 0. The

scalar p is the von Neumann growth rate, and ¥ lies in 2 von Neumann
ray (see Karlin [5], p. 338),

The following condition ensures that there is sufficiently high
substitutability between inputs so that no commodity approaches ""over-
production® when overall production approaches the von Neumann
expansion rate p.

Assumption 5, The technology Q contains no sequence of
¥
t
non-zero limit point,

The following result is established in [9], pp. 45-47.

points {(a, b:+l)iv =1, 2, ...} such that b, .1 - P2, has a nounegative,

Lemma 3. Assumption 4 implies Assumptionl. Assump-
tions 4 and 5 imply the existence of a strictly positive price vector
Te RN such that 2. (bt+1

The next assumption ensures that production in von Neumann
proportions is feasible, initial resource inputs grow less rapidly than
the economy can expand by pure production, and all commodities can
be produced in von Neumann proportional growth,

- pat) € 0 for all (at, bt+1) e,

Assumption 6, The initial resource vector w has v-vo strictly
[ ]

positive and Z p't w
t=0

; < t°. The vector ¥ can be taken to be strictly

positive.

Lemma 4. If Assumptions 4 - 6 hold, then there exist pos-
® N
itive scalars m and M such that the function y(c) =Z yp"tlcnt‘ £
d
t=0 n=l
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satisfies my(c) < dlck < My(c), where ¢ is the norm on¥ given by

Lemma 1. 1 Further, the economy is reachable.
Proof: ¢ A consequence of Lemma 3 is the inequality

-t-1 -7 ~T - :
p 2-b oyt 2 p o oP.cng p P.ow, prov1dedm(a‘r, h_r+1)e Q and

T= 1-:0 -
- = - ) -7 - -1
a_r+cT-b_r+wT(b°-0}. ‘I‘henforceFo, vie) € Zp ‘l‘.wt-m .

7=0
Define constants a, = max{e| ﬁro =a%}, a, =min ¢, @3 = min ¥ and
- n
NI 1, %alazas. If c ¢ T satisfies y(c) € ZM‘l, then
o0 N
- y(ci® -t <!
w2 a > > P 4
0= 1" Sayay = @y
t=0 n=}
and
& el
z ¢>c,,
@y Tt

n=1

Hence, ¢ can be produced from the resource vectar w_employing the
von Neumann balanced growth production process, implying ce F .
Now suppose c eXhas ¢{c) = 1, By construction, c = fc’ - (1-gjc’

for some 0 ¢ land c’, c'e Fo' Then, vy{c}g bylc’y + (1 - B)ylc'Dg m'l.
Hence, myic) < ¢lc) for all c €3, 1
Next suppose c ¢ X has y(c) = 2M™", By construction, ¢ = ¢'~c”

for some ¢!, c¢" ¢ I, Further, by the free disposal property of F

]
¢!, ¢" can be chosen so that ctl-xt c;t = 0 for allnteN, Thenc defined

by gnt = lcnti has y(c) = y(c) = 2M "1, implying ¢ « F,. Further, ¢ =c
+c' > ¢!, c' implies ¢!, c'e Fo' and hence $(c) < dlc'} + (") € 2=
Mvy({c}. Hence, for all c ¢3, ¢(c) < My({c).
o0
ForanyceF , 1-%:..!2, y(M.I'_Ic) =Hli~1: th"T t.c_=0, imply-
ing lim ¢(th) = 0, Hence, the economy isTreachable. Q. E, D,

H- 0

1lThe function y is a norm onJ, and this condition implies that the
norms y and ¢ are equivalent (i.e., have the same norm topology}.
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We can now establish a condition for the existence of good
plans,

Theorern 4. Suppose the economy satisfies Assumnotions 2 -
6, and suppose that m{ct) is defined and finite for all strictly positive
c, ¢ RN (i. e., all strictly positive consumption plans are desired).

Then, a necessary and sufficient condition for the existence of a gooa
consumption plan is that w be bounded frem above,

Proof: For t> f, the social welfare accrued by consumption

in period t for a desired consumption plan s = {ckt) can be computed
K f

from the inter-temporally separable welfare function to bez Egm(cf’ t-T).

k=1+=0Q
For a net supply program ¢ which can be distributed to give a desired
consumption plan (hereafter, such a ¢ will be termed a desired net sup-
Ply program), atemporal optimal distribution requires that
K i

K f
E éTw(cic't-T) be maximized subject to Z > c?’ t-r _ c, Let
! -
k=1 v=0 k=1 v=0

w*(ct) equal the value of this maximum, Then, w*(ct) is the aggregate

social weliare obtained in period t when atemporal distribution is
optimal. The function w¥(c )} is concave, non-decreasing, and continu-

ous for desired ¢,y and no ﬁnite c, maximizes w*, If a sequence of

desired {ct‘v)} converges to 2 non-desired ct(o), then m*(ct(v)) con-

verges to -%, The function w* is bounded above if and only if w is
bounded above,

Suppose that a good feasible plan 8 exists. We can assume
without loss of generality that atemporal distribution is optimal, so
that the social welfare a2ccruing in period t (t > £) is w%(&, ), where
2 = ¢(8). Theorem 3(c) establishes the existence of a price vector
P eX* such that V(s, 8) < v + p-c(s) for all good s ¢of. Consider a

net supply program c defined by Et =8 fort<fort>Hand Et =23
= i

for 1< t< H. Then, v(c) < (14 p)y(2), implying ¢ ¢%. The program
c is good, Hence, one obfains the inequalities

H-1
m*(CH) - m*(al) = Z [w*(ét_ﬂ) - u*(Et)] =V, (s, 2)
t=1
- ~ - M
<__:v+p-c§v+)\(1+p);<+w,
where s and 2 are the consumption plans obtained from & and a,
respectively, by optimal atemporal distribution. The fgeometrically
. . _ 1 +1t-
expanding program & defined by 3t =a)lp - 1) Ze (%—) v, where
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G..ro 2y ¥ >0, is feasible and desirable, implying that &
program cannot remain bounded, Hence, the upper bound on w*(EH)
implies that w* is bounded irom above.

Now suppose that w*(ct) is bounded from above, and consider

in the good

the class of programs F = {c « €| ¢, = pt\‘r andE ot B, < a,}, where

Cvo > @,#> 0. The sub-economy with the feasible set F! has the pro-

perties of the one-sector linear model analyzed by the author in [9],
pp. 39«43, and can be shown to have an optimal program c with Et =

B,¥ such that u*(ﬁtﬂ - w*@.¥) <K p‘t(ﬂt - Bt) for some positive scalar
k', For any desired c¢ Fo,

N "~
v
€y & Z lentla,
2
n=1

where a > = min ¥ _, implying

n on
N Y
w*{ct) -w*{ﬁt?r)gw* Z !cntlc-zyg -w*{ﬁt;)
n=]
N
kl
T zlcnt['
2P n=1

Hence, for s ¢S, ¢ = c(s) satisfies

H H N
~ . k! -t - k!
Z fwt(c,) - w*(B W] g a0y Z P Z T lenl < 70 ylc)
t=4 t=f n=]

s =,
B ak

where a, = min ® . Therefore, ® is good. Q. E,D,

A production possibility set Q satisfying Assumption 4 will
admit one or more supporting planes at each point (at, b ..} inits
boundary. @ is said to be smooth at this (at, bt+1} if its supporting

plane is unigque. When (at, bt+1) is strictly positive, srmoothness

requires that the surface of Q be differentiable at this point. This
condition will certainly hold if Q is defined by a differentiable trans-
formation curve,

Assumption 7. The technology Q is smooth at the von
Neumann vector (¥, p¥%} ¢Q.
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For the technology Q, define the dual cone I as the set of

. 2N
nonnegative vectors (rt, rt+l) ¢cR such that Tilp” bt-i-l -r.-a g 0 for
all (a.t, bt-i-l) €Q. The set Il is a closed convex cone in the ncnnegative
orthant of R*N with the properties that (1) (0, Tys) € T implies r,, = 0

1 i 1

and (2) (rt, rt+1) e Il, T2 T and 0 < rt'+1 < ¥l imply (rt'. rt+l) e II.
By Lemma 3, {(pt, #) eIl

For a vector ve RN, let

N

—

Ivll = ) Iv,|

n=1
and define the angular distance between two non-zero vectors v,
N
vi'e R™ by
v! vt
Fettt foml

We shall employ the following lemma, due originally to
Radner [12],

ang({v', v') =

Lemma 5, Suppose Assumptions 4 - 7 hold, Given ¢ > o,
there exists § > 0 such that for (rt, rt+1) e IT with r, f 0 and ang(rt, T) > &,

it follows that (pr, . (1 + §) - rt) . \‘rg 0.

t+l
Proof: Define the set A = {(r,, rodell e ]l =1and
ang(r,, r) 2 e}. Then, Ais closed. Further, A is bounded: an un-
y v v f v =L v v :
bounded sequence (rt, rt+1) ¢ A would have |rt+1| (rt' rt+1) e [T with

a subsequence converging to 2 point (0, r:’ﬂ) ¢ [T with r:ﬂ # 0, con-
tradicting the properties of II,
By Assumption 7, no point (re rt+l) € A can be normal to a

e+l " rt)-9< 0 on A.

Hence, the function h(g') = (er_l(l + §') - rt) - % achieves a maximum

plane supporting Q through (®, »9), implying (pr

on the compact set A which is negative for §' = § sufficiently small.
Q. E.D.
We are now prepared to establish an existence for optimal
programs,

Theorem 5. Suppose the economy satisfies Assumptions 2 -
7, and suppose that w{ct) is defined and finite for all strictly positive

c, € RN. Then, a necessary and sufficient condition for the existence
o§ an optimal consumption plan is that w be bounded from above.,
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Proof: The necessity of the boundedness condition follows
from Theorem 4. We shall now assume w» bounded and prove the
existence of an optimal consumption plan,

By Theorem 4, 2 good feasible consumption plan # exists with
net supply vector 2, and atemporal distribution can be assumed to be
optimal, The hypotheses of Theorem 3 then hold (using Lemma 4),
implying the existence of a price vector p ¢ 3% and a good consumption

plan 8 = (Ekt) ¢S such that

éf-t[w(c ) - u(r.':kt)]g p (e - ckt) for all kt e K,
These 1nequa.11t1es imply that atemporal distribution in 5 is optimal
and m*(ct) gives the social welfare accruing in periodt (t > f) from

¢ = ¢(8). Further, the inequality w*(ct) - m*(Et) $P- (ct - Et) is satisfiec

The inequality p-c g M for ce F1 given by Theorem 3 implies
that ce F, defined by e =¢C forv#t, t+L ¢ =& -a, f’;'t_l.1=6t,r1+bt+
for (at, bt+1) e, has Peyi” bt+1 - P S A =-p-c. Since Q is a cone,
byl e

) eIll. The following result, which mavy be of independ-
1 g Y P

this inequality implies that p_ .« b -p-a < 0forall(a,
t41° Pt T Pet S £

Hence, (pt’ Py

ent interest, gives an "asymptotic turnpike’ property for prices.

Lemma 6. Under the hypotheses of Theorem 5, the price
vector pe X% given by Theorem 3 has limp pt = o? for some non-
t = 00

negative scalar «.

Proof of Lemma 6; Smce(PPtH - B -%< 0, it follows that

t . : . R
P p,:¢is a non-increaging sequence converging to a®. ¥ for some
scalare > 0. If p, = 0 in some period, it is zero thereafter and the

lemma follows trivially, If P, is always non-~zero, but lim ang(pt, P =t
E T ]
then lim p pt = a?. Alternately, suppose there exists ¢ > 0 such that
Lo W
ang(pt, ?) 2 &£ in infinitely many periods, and let He denote the number

of times this inequality holds up to period t. Then, Lemma 5 implies

t+l

the existence of 6 > 0 such that (p pt+lﬂ' + &) - ptpt] - ¥ < 0 whenever

ang(pt, ) > &. Then, ptp,c -9 $pP,: /(1 + 5)“'; — 0, and the lemma is

proved.
We continue the proof of Theorem 3, Consider first the case
lim p P, = 0, Given g > 0, there exists ho such that for B > Ho'
t-i- o
p pt < em?, where myic) < ¢ic), Then, for anyc eFo, P M.I'_Ic <

emyic) < ¢, Hence, the hypothesis of Theorem 3(f) is satisfied, and
I is gptimal,
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Ccnsider finzally the case limm p Pt =o¥® > 0. Then therc
t=s 0

exists H (H > £) such that for t 2H O0<(a-pit<yp pt < [@ +p )¥, where
a -1 o . .

B = 073 o ¥ 1" Theorem 3(a) and the inequality (1) established in the

proof of Theorem 3 imply the inequality

V(2 s) <pec(s) -p- c(sv) t[v-V (sv, 7.
where 8 is the good consumption plan, se¢.fis desired, and {5} is
an optlrmzmg sequsnce, Without loss of generality, we can assume
that each s in the op..lrmzmg sequence has opt1mal atemporal distribu-
tion. Letc’ = c(s }, and define i W'ithct = c fort< H ort)-.- > H

o1

and c = ct 1forH< t<r. Then, y(c}( (1+--)-y(c ) = (1+-—), imply-
ing ¢ ex Since ¢ is a good net supply program, we ha.ve

-
w*(c:) - wi(ey) = Z [wt(e]) -w i) 3] =V (s", §¥)
t=H+l
2pec’ -p-c’ L [v-V (s", 9)].

But

Pre’ -pc” 2 (a-ploT 2 Y- (a+|3)p"H'1i=.c;;+ ezp"‘*f. e,
where t=H+1

g = 1 - 1— _§_+_a >0
p| 2(1+q) ’
Letting r - +®, we obtain the inequality
o0
(6 - wHe b - V(o' w1+ ar 0o e 2 0 ) by,
t=H+1

where & = sup{w(c ) c, ¢ R.N, c, strictly positive}.

have for TF :rHany pair of plans ts and s" in the optimizing sequence, we
‘HC - < ¢(MT(cv -eM) + ¢(M"r(cv -y
< ¢(MT(cv -cM) + My(Mjr(c” - M)
< ¢(M_r(cv -c™) + %1 [26 - wi({c") - m*(cz)]
+ % [2v Vm(sv, 2) - vm(s'l’ 0]

M -r-l v ..n
+t—{atplp [e.cT+? c.l.
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If the program ¢ had lim infllc, | <+, then it would be non-good
t = 0

¢l
. : - -2, p+it : .
relative to 2 program c with €, = ¢ +ajlp -lp " (55—} ¥ satisfying

¢(c) g 2. But this would contradict the inequality of Theorem 3(c) for
the good program ¢. Hence, lim | <l =+
t-- @

Given £ > 0, cheose t > H such that (M/9)[25 - 2uk(E )] < e/9

and (2M/8)(@ +B)p AT E-r < £/9. Then choose v, such that for
nvzv
z o

¢(M7(cv -c) < e/9, %]u*(c:) - m*(é_r)l <&/9,
%— [v - Vy(s”, $]< ¢/9, and era + B)p-T-ll?.c:—?.ET,< e/

Then, &(c¥ - ¢M < ¢ for v, n 2 v,. Hence, {cv} is a ¢-Cauchy

sequence with limit ¢, implying that the hypothesis of Theorem 3(e)
holds., Hence § is optimal. This proves Theorem 5. - Q,E, D.

The results obtained above have employed the restrictive
assumptions that (1) the number of commeodities and new consumer
units in each period is constant, (2} the lifetime of consumer units is
constant, (3) all atemporal unit welfare functions are the same, and
(4! the technology does not change over time, We now indicate several
directions in which these conditions can he relaxed.

First, suppoase that an economy satisfies Assumptions 1 and
2 over all time, and suppose that after some very large, but finite,
horizon H, the restrictions above hold (precisely, suppose that As-
sumptions 3 - 5 and 7 hold for t > H, and suppose that the following
condition holds: "Assumption é': The initial resource vector w has

[+.4]

th th < +®, The vector ¥ can be taken to be strictly positive.
t=H
There exists a desired consumption plan which has ¢y strictly posgitive.
Then, the proofs of Theorems 4 and 5 can be applied for t > H, estab-
lishing the conclusions of these theorems. With this generalization, it
is necessary to require only asymptotically the conditions of a stationar:
list of commodities and a constant populaticn,

Next, we note that the von Neumann technology Q; may vary
from period to period, provided the von Neumann growth rates py are
all contained in a closed bounded subset of {1, + =), and the "'present
value" technologies Q= {(a, bt+1/Pt)i (@, b,y €Q,} have the pro-

pgrty that their ""eore' and "envelope' technologies (defined by Q° =
tQ) Qé and QF = tyo Q";, respectively) satisfy Assumptions 4 - 7. In

this case, the arguments of Theorems 4 and 5 can be made with only
miner modifications (see [$], pp. 45-49).
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Finally, we note that the unit atempaoral welfare functions

need not be identical, provided the "absclate variation” in welfare
due to shiits of consumption vectors between temporally adjacent

units is finite, This generalization is discussed in greater datail
in [9]), p. 39.

1¢.

11,

12.

i3,

References

Debreu, G., Theory of Value, Wiley, 195%

Dunford, N. and J. Schwartz, Linear Operators (Part I},
Interscience, 1957,

Gale, D., "On Optimal Development in a Multi-Sector
Economy", Review of Fconoric Studies, January 1967,

Cale, D. and W, R, Sutherland, "Analysis of a One-Good
Model of Economic Development', University of California,
Berkeley, July 1967, unpublished.

Karlin, 5., Mathematical Methods and Theory in Games,
Programming, and Economics, Stanford, 1958.

Kelley, J. and 1. Namioka, Linear Topological Spaces,
van Nostrand, 1963,

Koopmans, T,, Three Egsays on the State of Econcmic

Science, McGraw-Hill, 1957,

Koopmans, T., "On the Concept of Optimal Growth", in
The Econometric Approach to Development Planning, Rand
McNally, 1966,

McFadden, D., "The Evaluation of Development Programmes',
Review of Economic Studies, January 1967,

McFadden, D., !"Pareto Optimality and Competitive Equilib-
rium in Infinite-Horizon Economies!, University of California,
Berkeley, July 1967, unpublished,

McFadden, D., "On the Existence of Optimal Development
Programs in Infinite-Horizon Economies! in J. Mirrlees {ed, ),
The Essence of Growth Models, I.onden, 1970.

Radner, R., '"Paths of Economic Growth that are Optimal only
with Regard to Final States: A Turnpike Theorem', Review of
Econaomic Studies, 1961,

Weizsacker, C., "Existence of Optimal Programs of Accum-
ulation for an Infinite Time Horizon'", Review of Economic
Studies, April 1965,




