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1. INTRODUCTION

1.1. An economic development programme is a description, over
the lifetime of an economy, of the commodity vectors which resource
holders, firms and consumer unifs are required to supply and
demand. The objective of development planning is to choose from
the set of programmes which are feasible for an economy the one
that is best in terms of the plannper’s imputation of social preferences,
In practice, programmes are chosen to maximise an objective
function over a relatively short horizon, with terminal conditions
established to make this optimisation consistent with optimisation
over the full lifetime of the economy.

An important problem in the theory of development planning is
to establish the logical relationships which hold among the structure
of the social preference ordering, the properties of lifetime optimisa-
tion, and the terminal conditions in the practical planning com-
putation.! In particular, it i3 necessary to determine the conditions
on social preferences which guarantee the existence of a lifetime
opiimal development programme.

When the lifetime of an economy is finite and time can be considered
as a sequence of short periods, the existence of optimal programmes
follows from the mild condition that the set of feasible plans be
closed and bounded and that the social preferences be continuous
over this set.? However, when an economy has an infinite fifetime,

* This research has been supported in part by National Science Foundation
Grant GS5-2345. The author has benefited from discussions with William Brock,
David Gale and Alan Manne, and the assistance of Eytan Sheshinski, but claims
sole responsibility for errors. Professor McFadden was prevented from attending
the conference, although his paper had been circulated. Because of its technical
character, no discussion session was devoted to it.

* Important contributions to this problem have been made by Strotz (1956}
and Goldman (1969).

2 When time can be treated as a sequence of short periods, all the results of
classical theory of value apply to this problem (Debreu, 1957, 1962). In a
continuous time formulation of the problem, the mathematical analysis is more
complex, but essentially the same conclusions hold (Yaari, 1964; Bewley, 1969).
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cnistence of an optimal programme will depend on structural
propertics of its social preferences and technology.' Koopmans
(1966} has argued for the desirability of conducting ‘logical experi-
ments’ to establish existence criteria for such economies, and has
reviewed in Koopmans (1967) most of the results obtained on this
topic through 1966,z This paper summarises more recent results of
Brock (1970), Brock and Gale (1970) and the author (McFadden
(1970)), and provides several multi-sector generalisations.

1.2. We begin by considering Ramsey’s classical one-commodity
growth model in which aggregate output y, in period ¢ is divided
into consumption ¢, and an input x, to production of the following
period’s output. The technology is defined by a production function
Yer1 = f(x), where f is assumed to be non-negative, non-decreasing,
continuous and concave.®* The e¢copomy begins with a positive
endowment y,. A programme (x., y,, ¢.} is feasible if it is non-
negative and satisfies x;+¢, < yr and yoyy < f(x) for e =0,1, ...

1.3. 1t is frequently assumed that the relative social desirability
of two feasible programmes (x., y., ¢,) and (x., y., ¢.) can be
determined by computing a discounted sum of utility differences

£ 510(e) - UGen) az.1)

where U(c,) is an atemporal utility of consumption in period ¢ and
J is a discount factor, The stream (c,) is said to be no worse than
[resp., better than] the stream (e.') if, as H approaches infinity in
(12.1), all the limit points of the partial sums are non-negative [resp.,
positive]. (Note that if the partial sums have both positive and
negative limit points, then the two strcams are not comparable.)

T A fundamental difficulty in the infinite-horizon economy is that reasonable
axioms on social preferences which are consistent for a finite horizon may be
inconsistent for an infinite horizon (Koopmans {1960); Diamond (1965)). More-
over, reasonable preference orderings will frequently fail to admit a contintous
numetical representation in any topology in which the set of feasible programmes
is closed and bounded (McFadden (1967)).

% Several authors, including this one, have argued rather unconvincingly that
infinite-horizon models are 4 reasonable representation of reality, and are thus
worthy of a scholastic examination of internal consistency. A better case is this:
to the extent that infinite-horizon models allow one to simplify the description
of an economy by eliminating terminal conditions, such models will be useful
approximations to reality {in the spirit of frictionless planes and point masses).
It is then important to know the internal logical structure of theseapproximations.

3 In growth theory, the one-commaodity model is usually given the formulation
iy = glk_) and &, = i, +(1—d)k,_;, where ¢, i, k, are consumption, gross
investment and capital stock, respectively, and o is a depreciation rate for capital
stock. In the terminalogy of this paper, x;., = &1, ¥ = ¢+ krand f{x,-) =
elx, .3+ (1 —d)x,—,. Hence, f{+0) =g (+0)+({l=d) = 1-d is positive if
capital is not completely perishable.
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This is called the overtaking criterion for optimality, introduced by
Weizsiicker (1965) as a generalisation of Ramsey’s notion of a
*bliss’ comparison utility Ievel.r

A feasible programme is optimal if it is comparable to and no
worse than any other feasible programme, and is maximal if it is
no worse than any other feasible programme to which it is com-
parable. Any programme which is optimal is also maximal, but an
economy may have many non-comparable maximal programmes
{one example is given by Brock (1970}, and a second is given in
section 2,13 below).

We agsume that the atemporal utility function U is concave and
twice continuously differentiable for positive ¢, with U'(c) positive
and U(0} = Eino U(c).

1.4. We wish to discover the conditions on the production func-
tion, atemporal utility function and discount rate which imply the
existence or non-¢xistence of an optimal programme, An ¢lementary
result due to Ramsey (1928) provides a prototype existence criterion
for a much broader class of economies.

1.5. Lemma. In the one-commodity Ramsey growth model, assume
a linear production function .41 = f(x;) = pox, with po > 0, and a
constant elasticity utility function Ulc) = '~ *f{(1—a) with a > 0,
« % 1. Then, an optimal programme exists if and only if

dpot= < 1. (12.2)

Further, an optimal programme has ¢, decreasing [resp., constant,
increasing] if épo < 1 [resp., dpo = 1, 8po > 1]

1.6, Note that the constant elasticity utility function is bounded
below for 0 < a < 1 and bounded above for « > 1. Hence in the
no-discounting case & = 1, the inequality (12.2) holds if and only if
the constant elasticity utility stream is bounded for all feasible
programmes. This property again generalises to a broader class of
economices,

1.7. Several generalisations of the existence criterion (12.2) can
be made for the one-commodity model. Retaining the assumption of
2 linear production function, but removing the assumption of a
constant elasticity utility function, the author (McFadden (1967),
Theorem 4 and Lemma 10) has established the following result.

1.8. Lemma. In the one-commodity Ramsey growth model, assume
a linear production function y..: = f(x;) = pox: with po > 0. Then
the following existence conditions hold (Note: the remarks relate these
conditions to the criterion (12.2) for the constant elasticity case):

* The use of this formulation of social preferences is discussed by Gale (1967)
and McFadden (1967).
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(i) Suppose § = 1, po > 1. An optimal programme exists if and
only if U(c) is bounded above. [Remark: 8po*—= < 1 if and
only if & > 1.]

(i1} Suppose & = 1, po < 1. An optimal programme exists if and
only if U(c) is bounded below. [Remark: 8ps*~= < 1 if and
only if e < 1.]

(iii) Suppose dpo < 1, po > 1. An optimal programme exists for
any EXc). [Remark: dps* = < 1 if a > 0.]

(iv) Suppose dpo > 1, po > 1, 6 < 1. Ulc) bounded above implies
an optimal programme exists, [Remark: dpst~= < 1 ifee > 1.]

(v) Suppose po > 1, & 2 1. The existence of an optimal pro-
gramme implies U{c) bounded above. [Remark: dpot—= > 1
ifa<ll]

(vi} Suppose 8po = 1, po < 1. No optimal programme exists for
any U(c), unless & = py = 1 and U(e) is linear. [Remark:
dpot~= = 1ifa >0}

(vii) Suppose dpa < 1, po < 1, 8 2 1. The existence of an optimal
programme implies U(c) bounded below. [Remark: ép* == > 1
Fa>1]

(viii) Suppose dpo < 1, po € 1,8 < 1. U(c) bounded below implies
the existence of an optimal programme. [Remark: dpst— < 1
ife<1.]

1.9. A second generalisation of the criterion (12.2) to the case
where both the production function f and the utility function U are
arbitrary has been made by Brock and Gale (1970). This result
introduces two concepts, the asymptotic elasticity of the utility
function U(c), and the asymptotic average productivity of the pro-
duction function f(x). Define an elasticity of marginal utility with
respect to consumption at any ¢ > 0 by

a(c) = —dlog Uc)/dlogc = —cU'(c)/U(c). (12.3)

{Note that in the case of the constant elasticity utility function in
1.5, one has a{c) = «.) Define asymptotic elasticities,

oo = lim a(¢) and o = lim &(c) (12.4)
c—0 b o

assuming that these limits exist.* The average productivity of a
production function f(x) at a positive input level x is equal to
A(x) = f(x)/x. Define asymptotic average productivities
po = lim p(x) and p; = lim p(x). (12.5)
x—0 . X—++ @

' When these limits fail to exist, the existence conditions given below continue
to hold with appropriate lim inf and lim sup eperations replacing lim operations,
Nate that the elasticity a, in the terminology of this paper is equal to 1 ~« in the
terminology of Brock and Gale,
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Because the production function is concave and non-decreasing,
these limits will always exist, and for a non-trivial technology (i.e.
[#0) satisfy 0 < p € +0, 0< p, < +00, and M1 < pg. The
results obtained by Brock and Gale can readily be shown to imply
the following,1

1.10. Lemma. In the one-commodity Ramsey growth model, assume
that the asymptotic elasticities of the utility function (12.4) and the
asymplotic average productivities of the production function (12.5) are
given. Then, any one of the following three conditions is sufficient for
the existence of an optimal programme:

(@) p:>1and épt-a < 1;
(b) po < 1and psl== < 1;
© po>1>pandd < 1.

Further, any one of the following three conditions is sufficient for the
non-existence of a maximal programme:

(d) p1>landdp,t-u > 1;
(&) po<1anddpyr==>1;
&) po>1>pyanddp, > 1.

! The existence criteria in Brock and Gale (1970) formulae (D) and (II)) are
defined only for the special case of completely perishable capital, p; = 0, but
allow commodity-augmenting technical change. This lernma is an easy -modifi-
cation of their result in the case of no technical change. Alternately, one can
generalise the Brock-Gale model in the case technical change is present as
follows. Suppose one has ¢,4;+i,4, = Ag(B{AYk,) and kyyy = ., 4 (1 —d)k,,
with g'(+00) = p > 0, where 4 and B are interpreted as rates of ‘Tabour* and
‘capital’ augmentation, respectively. Define i(x) = &(x)—px. Then, A(+00) = 0,
Suppose # = lim x'(x)/h(x), termed the asymptotic elasticity of A, exists and

X—r+ ©

satisfies B < 1, and suppose a, is defined as in the text of this paper. The gross
production of the economy then satisfies y,,, = AR((BIAYx )Y+ {pB+ 1~ dx,
with x; = &, and_y, = k,+¢,. If p = 0, one finds that an optimal programme
exists for & < 4, and fails to exist for & > 8, where Jgl-o1 = |} and
g = ABFIO-P) » 1, and finds further that an optimal programme grows
asymptotically at rate g. (This is precisely the Brock-Gale result. Hence, that
conclusion derived under the assumption & = 1 actually holds under the more
general depreciation condition 0 <d < 1) H p> 0 and B = 1, the critical
discount rate again satisfies Jg*— = I, but g = Max {48, 1+p—d}). (The
optimal programme will grow asymptotically at the rate gonlyif 48 > 14p—d.)}
Finally, if p > 0 and B > 1, an optimal programme exists for oy > 1 and any 4,
and grows asymptotically at a faster than geometric rate, whereas no optimal
programme exists for 0 < o; < 1.

One final generalisation of these formulae may deserve a note. If the partial

»

utility sums in (12.1) have the form 3 §'U(ic,), where A is a discount factor
0

=
‘inside’ the utility function, then the critical discount rate is given by (g~ =1,
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1.1]1. An interpretation of conditions (a)-(c) in this lemma is that
they establish critical levels of the discount factor below which the
distant future is insignificant and optimal programmes exist, and
above which no maximal programmes exist. Note that this lemma is
exhaustive except for ‘borderline’ cases. Unfortunately, two of these
cases, which require a detailed analysis of the structure of the
economy to establish existence criteria, correspond to commonly
used economic models, The first is a model arising in neo-classical
growth theory of a productive, primary resource-limited economy
with no discounting or with some negative discounting (i.e.
po>1>p, with d=1 or with § > 1, dp, < 1). With mild
additional differentiability assumptions, Koopmans (1966) has
established that optimal programmes exist in the no-discounting
case, and that maximal programmes fail to exist in the case of
negative discounting. The second borderline case, arising in the
study of Leontief and von Neumann models, is a productive linear
economy without resource constraints and with no discounting (i.e.
p1 > 1 and & = 1). Existence criteria sharpening 1.10 (z) and (d)
have been established for this case by the author (1967}, (1970).

1.12. The non-triviality of the question of existence in the border-
line cases above can be illustrated with several examples, For the
resource-limited, no-discounting economy with é = 1, U{c) = loge,
and y=f(x) = x% 1/2<f <1, and with y, = 1/2, one has
po = +0o0, py =0, and the existence of an optimal programme
satisfying ¢, = (1—f)2-#pra-sa-p, However, in the limit § = 1,
one has the case in 1.8 (vi) in which no optimal programme exists.

In the next example, consider a productive linear technology

= f(x) = pox, po > 1, with no discounting (§ = 1), and consider
the utility functions U(c¢) = log {(1+¢) and U(c) = —Iflog(1+¢).
The first of these functions is unbounded above, and no optimal
programme exists, by 1.8 (i), while the second function is bounded
above and an optimal programme exists. However, both functions
have the asymptotic elasticity a, = 1, and 1.10(a) or (d) do not
apply. Further, one can show that for U(c) = —1flog (1 +¢), the

© :

sum Y [U(e,)—i], where (c;) is the optimal programme, diverges
=0

for every constant #. This is in contrast to any economy satisfying

(a), (b) or (c) in 1.10, for which the sum Z o'U{e.) converges for

the optimal programme when the zero !uel of U is defined appro-
priately. This convergence property plays a crucial role in the proof
of 1.10. Hence, this cxample shows that the Brock-Gele approach
cannot be extended directly to all the borderline cases. This example
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also shows that the overtaking criterion applies to a broader class of
economies than the Ramsey comparison with bliss.

For a final example, consider an economy with the linear utility
function U(c) = ¢ and a discount factor ¢ > 1. In the first case,
suppose the economy has a production function

Pox for x<g1
y=fx)=
potpx for x>1

with po > 1 > Jp:, and has yo = po. Then, the programme x, = 1,
¢ = po—1 can be shown to be optimal. This example shows that
differentiability is essentizal to Koopman’s conclusion that no
maximal programmes will exist in the resource-limited economy with
negative discounting,

1.13. Result 1.10 and the two major borderline cases discussed in
1.11 provide a useful taxonomy of existence criteria: (1} the case in
which the distant future is insignificant and one of the conditions
1.10 (a)(c) is satisfied; (2) the resource-limited economy with no
discounting; and (3) the productive linear economy with no dis-
counting and no resource limits. The following sections of this
paper will discuss each of these cases in turn for muliti-commodity
economies,

I, A MODEL OF A MULTI-COMMODITY ECONOMY

2.1. Consider time as an infinite sequence of short periods ¢ = 0,
1, ..., and assume that there are a finite number of commodities N
in each period. Let x,, ¥, and ¢, denote commodity vectors specifying
the inputs to production, outputs from production, and consump-
tion, respectively, in period ¢, Assume that the production possi-
bilities of the economy are defined by a set T of non-nepative
input-output vectors (X., ¥.+.) with the property that the output
vector ¥, Can be attained when the input vector %, is utilised in the
preceding period.! Define an output correspondence Q(x) =
{y l(x, ¥)eT}. A feasible programme will be a non-negative sequence
(X, ¥, €} satisfying X, +¢, = ¥, and y,4,6Q(x,) for t=0,1, ...,
where y, is a given initial endowment.

* Hereafter we ignore the possibility of technical change, cither via the intro-
duction of new commodities or improvement in the technique of making old
ones. There is no difficulty in principle in modifying the existence criteria below
when technical change is present. However, there seems to be no consensus on
the most appropriate way to introduce a structure on technical change in the
multi-commaodity model,
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2.2. The following assumptions will be imposed on the production
possibility set T and its output correspondence Q(x):

A.l. T is a closed convex set in the non-negative orthant of a

2N-dimenstonal Euclidean space.

A2. T aliows free disposal of inputs and outputs [(x, ¥)eT,

x2x,0<y <yimply (x,y)T].
A.3. Q(0) is bounded.
A.4. Every commodity is producible [there exists (x, ¥)eT with
y positive].

These assumptions encompass both von Neumann and neo-classical
models of the technology, provided in the latter case that endow-
ments of primary and non-producible commodities grow at a
common geometric rate, and the production possibility set is defined
only over producible commodities, deflated by the growth rate of
primary resources. In the case of a von Neumann technology,
assumptions A.l to A4 are imposed directly on the production
possibility set, along with the requirement that T be a cone and that
Q(0) = {0}. In the case of a neo-classical technology, we may think
of an underlying production possibility cone T' containing triples
(z., x.", ¥'1+1) composed of a vector of endowments of commodities
z,, including possibly both producible and primary commodities, a
vector of inputs X, attained from the output just produced, and
a vector of ouiputs y,,, in the following period. If z, grows at
a geometric rate g, so that z, = z,g°, define deflated commodity
vectors X, = X./g', ¥ = ¥./g’, and a stationary technology
T = {X, ¥}|(Ze, X, g¥)eT’} expressed in ‘per unit of primary
commodity’ terms. This technology will satisfy A.l1 to A.4.

2.3, It is convenient to summarise the asymptotic structure of the
technology by defining the following two sets (illustrated in Fig. 12.1).
Let T, denote the closed cone spanned by the production possibility
set T, i.e.

To = Closure ({A(x, y)|(x, ¥)<T, 1 = 0}). {12.6)
Let T, denote the asymptotic cone of T, i.c.
T, = {x, )]Ax, Y)eT forall 23> 0} (127

Cleariy T; = T © Ty, with T, = T, if and only if T is a cone. We
shall employ the following standard result on a finear technology.
24, Theorem> If T* is a cone satisfving A1, A2, A4 and
Q(0) = {0}, then there exist semi-positive vectors X and f and a
positive scalar p (termed the maximal expansion rate or von Neumann
growth rate of the technology) such that & can be expanded at the

* Gale {1967) gives the details of this construction, and discusses its properties,
* Karlin (1959) or Gale (1956),
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rate p [i.e. (R, pR)eT*), profits p.y—pp.x are non-positive for all
(x, y}eT*, and for all (x, y)eT*, x # 0, p is at least as great as any
scalar A satisfying y 2 Ax.

Fis, 12.1

2.5. The cone T, either satisfies 2.4 and has a maximal expansion
rate py < -+ 00, or contains a -point {0,y ) with v # 0 and can be
defined to have a maximal expansion rate p, = + co. Similarly, the
cone T, either satisfies 2.4 and has a maximal expansion rate g, > 0,
or has some non-producible commodity which is essential to pro-
duction and can be defined to have a maximal expansion rate
71 = 0. The expansion rates p, and p; will play the same role as did
the asymptotic average productivities in the one-commodity model.

2.6. If maximal expansion in a linear technology T* is achieved at
an input vector % which is not strictly positive, it may be impossible
to produce a positive output vector starting from ®. Alternately, if
there exists a sequence (R, Xy, ..., Xy—1) With (X, Xu41)eT* and xy_,
positive, the technology is said to have the recovery property. This
property will be required on the cones To or T: of the general
technology T for some existence criteria.

2.7. We shali assume that the overtaking criterion defined in
section 1.3 is used to order feasible programimes, with the atemporal
utility function U(e) now assumed to have the following properties:

B.1. U(c) is a continuous, concave, non-decreasing function of

positive e.
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B.2. U(c) is closed; ie. if ¢ is non-negative with some zero
components, then

Im U() = Ulc) > —oco.
c:_>0
¥
B.3. U(c) is non-satiated; i.e. ¢'—c positive implies U > U{c).
2.8. We now define asymptotic elasticities for the utility function
U(c), following rather closely the construction of Brock and Gale.,
Define a scalar # equal to the least upper bound of Ulc) provided this
bound is finite, and equal to zero otherwise. For any positive vector
¢ and scalar y with U(yc) # & and y # 1, define the exponent of
| U(ye)—ii| as
1—afe, ) = log, | U(ye)—]. (12.9)
Then, one has
[U(pe)—at| = pt-ater (12.9)

revealing the relation of the exponent to the parameter « in the one-

commodity, constant elasticity utility function. On the ray through a

positive ¢, define an asymptotic elasticity &(c) = m «fe, y). We
P+t o0

next show that & = &(c) is independent of ¢.

For a positive scalar 4 and a large positive scalar p, one has
from (12.8) the relation 1—a(c, Ay) = [1—a(le, N1 —log,, A} and

lim logy, A = 0. Hence, &(c) is homogeneous of degree zero in c.
>+
Consider two positive vectors ¢ and ¢”, and positive scalars Ap

such that A¢” € ¢” < pe”. By B.3, we have U(yAc) < U(ye”) < U(yuch),
implying that a{c”, y) is bracketed by a(ic’, ) and a{uc’, y). Hence,
&(c") is bracketed by &(1c") = &(¢") and &{ue’) = & {c), implying
#(c") = &,(c’). Hence, &(c) is independent of c. Similarly, & =
a,(c} = lim ofe, y) is independent of ¢.

T
Withyt_};js result, we define the asymptotic elasticity of the utility
function
@ = lim «(c, ) (for any positive ¢) {12.104)
-+

where we impose the assumption

B.4a. The limit defining «, exists (i.e. & = a;).

A similar construction will give an asymptotic elasticity a,.
Define 7 in (12.8) to be the greatest lower bound of U(c) provided this
bound is finite, and set i equal to zero otherwise. Then define the
asymptotic elasticity of the utility function

% = lim z{c, y) {for any positive ¢} (12.108)
70
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where this limit is again independent of ¢, and exists under the
assumption
B.4p. The limit defining a, exists (i.e. & = a).

Note that the following implications hold between the asymptotic
elasticities and boundedness of the utility function:

e > 1 - U(e) bounded above - o 21
&, < 1 - U(c) unbounded above - 0 < &,
<
>

/AN

0<g 1
0€a <1 —>U(c)bounded below —>0<ap <1
@ > I - U{c) unbounded below > oy > 1

2.9. An important property of a maximal programme (X,, ,, ¢)in
an economy is that it can normally be sustained by a ‘decentralised’
price system (P.) satisfying

§'[U(e)—-U®)] < Pe.(c—&;) for all positive ¢ (12.11n
and
Pesr - Fers—Fe.Xs 2 Povr.y—Po.x forall (x, y)eT. (12.12)

A price system for which (12.12) is satisfied has been shown to exist
under very general condjtions (see Malinvaud, 1953; Radner, 1967).
Price systems satisfying both (12,11} and (12.12) have been shown
by Gale {1967) to exist for the resource-limited economy with no
discounting, and by McFadden (1967) to exist for the non-resource-
limited linear economy with no discounting. These constructions
hold for much more general economies. We have the following
result, in which the hypotheses are still unnecessarily strong:

2.10. Theorem. Suppose an economy has a technology satisfying
A.l to A4 and social preference satisfying B.1 to B.3. Suppose that
the asymptotic cone of the technology, Wy, has the recovery property.
If (X, ¥, @) is a maximal programme, then there exists a price
system (@), not identically zero, such that (12.12) holds, and

U(c) = U(c,) implies P..c = P..c. (12.13)
If 9:.% > O for any t, then the price system (p.} can be scaled so that
both (12.11Y and (12.12) hold.
Proof: Define ¢ = (o, ..., ¢,), and define the set
C={cle=y~% (X, ¥eer)eT, Yo =¥, X =%}
and the function

WHe) = é‘,od'U(c.).

Define the set
A= {U‘l’ C')lc’ 2 c”'-c,”’ s Wv(c'v)’ C"EC"}.
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One can show that A is closed and convex, with a non-empty
interior, and that [W*(&*), 0] is 2 boundary point of A. Then, there
exists a vector (4, —p*} # 0 such that

AWME) 2 dp—p.e

for all {u, ¢)eA. From the construction of A, one has 1 > 0 and
p = 0. If one had 4 = 0, then one would obtain the inequality
p.¢ = 0, which is contradicted for some negative ¢*. Hence, one
can normalise 4 = 1, Taking ¢” = ¢, ¢ = y—X",

X = ()_‘ly ey i:—z, X, -X—,, veey iv) and yy = (70, veny ?l-—h Y. yH‘h rues y")
with (x, y)eT, one obtains the condition

Pror Fesr1 =P8 X 2 Prsr . Y-P".X for all (x, y)T.

Since T, has the recovery property, one has (x*, x*)eT, for some
positive 8 and x*, and hence (X +x*, ¥,4y+ 0x*)eT implies in the
inequality above that p”.x* < 0-'po*.x*. Next, letting ¢~ =
(C1, -oe, €12, € Cuaty +oey &) 20d €™ = & define a point in A, one
obtains the condition &[U(c)— U(&)] € pr.(c—T,;). Now consider
the sequence {po'} as v > + oo, By B.3 and the last inequality, po
is bounded positive as v - + 0. If {po} has a bounded sequence
converging to a point Po, then one can construct by the diagonal
process and the bound p;.x* < 6-'po*.x* a subsequence of p~ as
v - 4o converging pointwise to a sequence (p,) satisfying (12.11)
and (12.12). Alternately, if {po*} is unbounded, then a diagonal
subsequence of {p*/|po7|} converges to a sequence (P satisfying
(12.12). Further, U(¢) > U(T,) implies p,*.(c—<¢) = 0, and hence
(p.) satisfies (12.13). Taking ¢ = /2 implies p/.%, < 25°[U(T,)—
U(&:/2)], and hence in this case one has p,.€, = 0 for all #.

2.11. A feasible programme (X, ¥, <) satisfying (12.11) and
(12.12) is termed a finitely competitive programme. It would be most
useful if every finitely competitive programme could be shown to
be optimal, or even maximal. Combining (12.11) and (12.12), one
can show that a finitely competitive programme satisfies

Zi)uéf[U(c,)- UE)] < (%) (12.14)

for any feasible programme (X, ¥:, ¢:). If one can establish that
p..X, -0, or that |p,(X,—x,)| -0 for any programme that is not
‘infinitely worse’ than the finitely competitive programme, then one
can attain this desired conclusion. This is the case, for example, in
some models studied by Gale (1967) and the author (1967). However,
in general, a finitely competitive programme need not be maximal,
and a maximal programme nced not be optimal. We give two
examples:
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2.12, First, consider a one-commodity economy with a production
function yi4q = f(x;) = x,, a utility function U(c) = ¢f(1+¢), a
discount factor § = 1, and an initial endowment y, = 1. Then,
B=7=1&=0 p =1 is a finitely competitive programme
satisfying (12.11) and (12.12), but is clearly not maximal. (In this
example, due to Gale, no maximal programme exists.)

2.13. Second, consider a six-commodity economy with a utility
function U(c) = ¢s which is linear in the sixth commodity and
independent of the remaining commodities, a discount factor § = 1,
and a von Neumann technology of the form T = {(x, y)|x = Auv,
¥y < By, v = 0}, where A and B are matrices satisfying

OO O ™
COoOPOOCQ
[ I o - I e B ]
MOOORO
SOoOONOO
NOOOKROD
COMNMOOTO
NMNOOoOOQ
OCOoOMNOOD

0
0
i
0
0
0

OO OO —
COOO~mO

Suppose the economy has the initial endowment yo = (1,0, 0,0, 0, 0).
A pure accumulation programme using activity 1 in period zero,
followed by activities 2 and 3 alternated in succeeding periods,
vields a consumption stream (cs) = (0, 2,0, 8,0, 32, ...). Alter-
nately, a pure accumulation programme using activity 4 in period
zero, followed by activities 5 and 6 alternated in succeeding periods,
yields a consumption stream (cs") = (0,0, 4,0, 16,0, ...). These
two streams and their convex combinations are the only efficient
consumption programmes. However, one has for v > 1:

v 22»—1)/3 for veven
2 [U(e")~ Ule.")} =
=0 —2(2*+1)/3 for v odd.

Hence, for any 0 < 8 < 1, the programme {fe.”+(1—&c."”) is
maximal, but none of these maximal programmes are optimal.

Ill. EXISTENCE CRITERIA FOR ECONOMIES WITH AN
INSIGNIFICANT FUTURE

3.1. We are now prepared to state a multi-sector generalisation of
the existence criteria for that ‘insignificant future’ case treated by
Brock and Gale.

3.2. Theorem. Suppose a multi-sector economy has a technoelogy
satisfying A.1 to A4 and social preferences satisfying B.I to BA.
Suppose that the overtaking criterion (1) is used to define optimal
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programmes. Suppose further that the initial endowment y, is positive.
Then, any one of the following three conditions is sufficient for the
existence of an aptimal programme:

(a) p1 > 1, dpy* = < 1, and T, has the recovery property.
(b} po < 1, dpp* =0 < 1, and To has the recovery property.
) po>l>pandd <.

3.3. The remainder of this section will be taken up with the proof
of this theorem and the statement and proof of the converse non-
existence theorem. We begin with a series of preliminary lemmas.

34. Lemma. If A to A4 hold, then, given & > 0, there exists
m > 0 such that the cones

Tom = {A(x, NI, V)T, |x] = m~1, 4 > 0}
= {Ax, V[ V)T, [x] 2m, 120}

satisfy |pom*—po~t| < € and |pim—p| < & where pm is the
maximal expansion rate for Tin, i = 0, | (see Fig. 12.1).

3.5. Lemma.r Suppose T* is a linear technology with a maximal
expansion rate p'. Then, for any p > p', there exists n > 1 such that
Jor any sequence (Xo,...,%X:) with (X,_1, % )T*, z=1,..1 it
Jollows that |x.|/p* < 1]%].

3.6. Lemma. If T satisfies A.1 to A4 and has p, > 1, then for any
P > pi, there exists y; > O such that c.|/p* < n, for any feasible
programme (X, ¥, €.

Proof: Given p, choose ¢ = (p—p,}/2 in 3.4. Consider the cone
T1n, and let 5 be the bound given by 3.5. Note that (x, y)eT, |x] < m
implies |y} < my. Consider any y.. If |x..(| < m, then |y]| <
my < mnp'. Alternately, if one has |x,] < m and |x,] > m for
§ < T < f, then 3.5 implies |y,|/p*~* < ym < ymp®. Finally, if one
has |x,| > m for 0 < r < ¢, then 3.5 implies |y,|/p* < #¥ol.
Hence, taking #, = 5 max (m, |y |) viclds the result.

3.7, Lemma. If T satisfies A.1 to A.4 and has p, < 1, then there
exists n: > 0 such that |c¢| < n. for any feasible programme
(%, ¥1, ).

Proof: In the proof of 3.6, choose ¢ = (1—p,)/2. Then, that
argument implies |¥,] € pmax (m, lyo|) = 72

3.8. Lemma. If T satisfies A.1 to A4 and has py € 1, then for
any p > pe there exists > 0 such that |e,)[p* < # for any feasible
programme (X,, ¥u, C1).

Proof: Since {x,, ¥,.1)¢To, 3.5 implics the result,

3.9. Lemma. Suppose T* is a linear technology with a maximal

! Wanter (1965) thecrem 2.
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expansion rate p’ which has the recovery property. Then, for any
P’ < p', there exists a feasible programme (x,, y., €,) for Yo positive
such that lim c¢/(p") = + co.

>+ co

Proof: Let (%, Ry, ..., R -1} be the sequence defined in the recovery
property which has Ry, positive. Choose § > 0 such that -1y, >
N-1

28+ 3 X.. Computation shows that a programme based on accumuy-
{=1

lation at the maximal rate can yield ¢, = &,_, for ¢t = 0.. .N-1
and ¢, = @(p'—p)p* Moy for t= N, N+1,.., and p" < p < o,
establishing the resuit.

3.10. Lemma. Consider o utility function U(c) satisfying B.I 10 B.4
with asymptotic elasticities o, and a,, Given ¢ > 0 and a closed,
bounded set C of positive vectors c, there exists y, > 0 such that

yrremme < |U(ye)—it] < ylowte (12.144)

Jor ceC and y > 3., where il is defined as in equation (12.8). Similarly,
there exists yo > 0 such that

proeeme > (U(pe)—i] > prmate {12.14n)

SJoreeCand v < .

Proof: Given C, choose any ¢’eC and positive scalars 1, 2 such
that 2’ < ¢” < ae’ for alt ¢"¢C. From the definition of a,, there
exists y; such that (12.14a) holds for ¢ = Ac’ and ¢ = ue, and such
that U(yAc’) is univalent for y > y,. Then |U(yc)—i| defined on
C is bracketed by the values of this expression for ¢ = ¢’ and
¢ = xc’, implying the stated result. A similar argument establishes
{12.148).

3.11. Lemma.* Let U be a family of non-negative sequences (u,)

+ @

whick is closed under pointwise convergence and such that ¥ u, < + o
=0

Jor at least one member of U, Then, there is a member (i) such that
+ o
Y &, is a minimum.
t=0
3.12. We are now prepared to prove the theorem 3.2. The argu-

ment follows closely that of Brock and Gale.

(a) Supposep; > land dp,i~= < 1. Choose 1 < g <p<pand
@ < «; < & such that Jp*~¢ < I and dp*~¢ < |, First consider the
case of U(c) unbounded above, implying 0 < @, < 1. By 3.6 and
3.10, Ule:) = Ul'(e,/f)] < U'na€) < (p*)'~s for sufficiently large 7,
where € is a vector of ones and (c,) is any feasible programme.
Hence, for #s sufficiently large, the sequence {75(85® %) —6'U(e,)}

* Brock and Gale (1970).
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is non-negative for any feasible programme {¢,). By 3.9, there exists
a feasible programme (&) with &/p' — +oc. For r largc &fp = &,

and 3.10 implies U(E,) > U(p'®) = (p)* -2 Hence, E&'U(E,) is

bounded below. Since U is continuous and the set of fca51blc pro-
grammes is pointwise closed and bounded, the family of sequences
{ns(9p' ~#) — &' U(c,)} satisfies 3.11. This result then establishes that
an optimal utility stream exists and is achieved by some feasible
programme which is consequently optimal,

Next consider the case of U(c) bounded above, implying &, > 1.

+w
Without Ioss of generality, take # = 0, Then, —¥ 6'U(c,) is non-
=0
negative, and by 3.9 and 3.10 there exists a programme (&) such
4+
that for large 1, —U(E) < (p*~9), or —X J'UE,) < 76/(1 —3p*~9),
=0

for some #6. Then 3.11 implies the existence of an optimal programme.

(b) and (¢). Suppose p, < 1. By 3.7, there exists a bound #, such
that |¢.| < #. for any feasible programme (c,). Hence, without loss
of generality, we can define the zero level of U(c) so that {— Ue,)}
is a non-negative sequence for all feasible programmes. Consider
any p satisfying 0 < p < p,. By 3.4, there exists m > 0 such that
Tom has the recovery property, and has a maximum expansion rate
p with p < p < po. Further, (x,¥)eTom and |x[ < m~! implies
(x, ¥)T. In case (b) with dpo!~= < 1, choose p < po and & > a,
such that dp*=% < 1. We canapply 3.9 to Ty, to establish the existence
of a feasible programme (&) with &/p* - +00 Then, using 3.10,

one has — U(&,) < (p*~%)" for ¢ large, and — E SU(E,) is bounded,

Then, 3.11 can be applied to establish the e:ustence of an 0pt1mal
programme. In case (c) with g, > 1, choose p = 1. Then using the
same arguments as in the proof of 3.9, we can establish the existence
of (X, ¥)eTon with [X| < m~* and € = §—% positive, Then,
(%, )eT, and we can assume ¥ < ¥o. Hence, the steady-state pro-

gramme (€) is feasible, and —Y, §*U(F) is bounded. The existence
£=0
of an optimal programme is then established using 3.11.

3.13. One would like to establish a multi-commodity analogue of
the non-existence criteria (d)—{f) in 1.10, corresponding to the result
3.2. That some further assumption is required to establish such a
theorem is shown by the following example. Consider a two-
commodity economy with a constant elasticity utility function
Uler, 02) = ¢2'*/(1~2) and a lincar technology with a single
efficicnt activity (x, ¥)eT satisfying x = (1,0) and y = (g, p) with
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p > 0. Then, given y, = (1,1), the programme c. = {0, p'} is
optimal for any values of the parameters 8, p and «. We next
introduce several conditions which will be sufficient to establish
criteria for non-existence.

We shall call a utility function U{c) which satisfies B.1 to B.4
asymptotically homothetic at infinity (resp., at zero) if it can be written
as the sum of two functions U(c) = u[H(c)]+ V(c), where H and V
are concave non-decreasing functions of positive ¢, with A linear
homogeneous and u a concave increasing function on the positive
real line, and where U(c) and u[H{c)] have the same asymptotic
elasticity ey (resp., oo).! Without loss of generality, one can assume
in the definition of an asymptotically homothetic utility function that

Max H(c) = 1.
jel=1
Then,
?/}ax ulH(c)] = u(y).
e =y
If Uf{c) is asymptotically homothetic at infinity, u(y) and H(c) are
continuously differentiable, and

lim log, #'(»)
—++

exists, then U{e) will be called asymptotically smooth. For this case,
one has
oy = —lim log, u'(y).%
Prt
A similar definition can be made at zero. The following condition
guarantees that maximal programmes will be strictly positive:

B.5. U(c) is continuously differentiable for ¢ positive, and if a
non-negative ¢ has some zero components, then the corre-
sponding components of U'(c) are unbounded for positive
¢ converging to ¢’.

We are now prepared to state criteria for non-existence of maximal

programmes.

3.16. Theorem. Suppose a multi-~commodity economy has a tech-
nology satisfying A.1 to A4, and social preferences satisfying B.1 to
B.5, Suppose that the initial endowment ¥, is positive. Then, any one
of the following three conditions is sufficient for the non-existence of a
maximal programme:

+ Suppose the function &(¥) on the positive real line has an asymptotic elasticity
o, defined as in (12.104), and that the function V(c) has asymptotic clasticities
o;" and &," defined as in the argument preceding (12.10a). If «,” < &," and
H(c) is not identically zero, then U(c) has the same asymptotic elasticity oy, =o'
as w(H(c)). Analogously, if ey = & and H{c) is not identically zero, then
Oy = oy’

2 Brock and Gale {(1970) Appendix.
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(dy 2 > 1, dp** > V. T, har the recocery property, and Ule)
is asymptotically homothetic and smooth ar infinity.

(&) po <\, dpot=o2 > 1, To contains a point (R, poR) with %
positive, and U{c) is asymptotically homothetic and smooth at
zero.

£ po>1>py, dp > 1, and T, contains a point (], p1R) with
X positive.

Proof: (d) Suppose p, > 1 and Jgi-= > 1, but suppose that a
mazimal programme (%) exists. By B.5, € is positive. Choose
@ > 0 such that T,— 0% is positive, where & is a semi-positive vector
withi (R, g R)eT,. Since T = T+ Ty, a programme (&) with & = & -8R,
& =T, +0m™ ¥xy_y,and €, = §, for 1 # 0, 7 is feasible for = > N,
where Xy_; is a positive vector which can be produced from % in
Nperiods.Let A = U(To)— U(%o). Note that 0 < H{xy_;) € H'(€). Xy,
for all positive ¢, and hence that

wlHc+cN—ulHe}] = '[Hc+c)]H (c}).c" 2 «'[Hlc+ N H ().
Then,

T SUE)~ UGN > — A+ W[ HE) v HE))
2 —A+&u [HE)IHOp1™ "Xn- o).

Choose ¢ < a; and p > p, such that dp,5~% > 1. From the pro-
perties of the asymptotic elasticity, one has w'(y) > ™% for y
sufficiently large. By 3.6, one has |&.]/p™* < ». Hence,

Le HE) < np=r and o'{HE)] > (n) %~
t

A" = (1)"%0p: " H(Xn-1).
Thea,

ga'w(e,)* UGN > —A+ V(.57

For 7 sufficiently large, the right-hand side of this expression is
positive, contradicting the supposition that (€} was maximal.

{e) Suppose po < 1 and Jp,'~= > 1, but suppose that a maximal
programme (€,) exists. Choose p < po such that dp*~* > 1. From
the construction of T,, there exists a positive scalar y such that
¥(%, pX) is the interior of T. Then, there exists # > 0 such that
(x, yjeT and (x| < #imply (&, pR)+(x, y)<T. By 3.8, the maximal
programme (X, ¥,.¢) has |%,]| € p/2 for £ 2 v, some v> Q.
Choose ¢ > G such that &— &% is positive, Then, the programme
Ty withé =&, & =C,+0p R and § =¢E forr# v, 7 is
feasible,and can be shown by anargument paralleling that of (d) to be
better than (€,) for 1 sufiiciently farge. Henee, (€,) cannot be maximal.
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(f) Suppose po > 1 > p, and dp, > I, but suppose that 3
maximal programme (T,) exists. Since (X +R, Ferr+2:R)eT for all
t, one must have U(€)+dU(E:+1) = UG —OR)+ UG+, +0p,%) for
small 8, implying 02 —d5U'€).24+*p, U (E1).%8 Hence,
UE).% < U'(To).%/(dp,)". But the right-hand side of this expression
converges to zero, implying that &, is unbounded, and contradicting
3.7. Hence, {€,) cannot be maximal.

IV, EXISTENCE CRITERIA FOR THE RESQURCE-LIMITED,
NO-DISCOUNTING ECONOMY

4.1. We next summarise existence criteria for an important *border-
ling’ case, the economy with no discounting in which outputs of
produced commodities are limited by the availability of primary
resources, This problem has been solved for the multi-commodity
case by Gale (1967). A slight weakening of Gale's assumptions and
a considerable simplification in analysis have been made by Brock
(1970). In stating this result, we require one additional assumption
(a somewhat weaker condition is used by Brock):

B.6. Uf(c)is strictly concave and continuously differentiable, with

U'(c) bounded, for all positive ¢.

Note that assumption B.6 is inconsistent with assumption B.S5.

4.2. Theorem. Suppose a multi-commodity economy has a technology
satisfying A.l1 to A4, with po > | > py, and social preferences
satisfying B.I to B.3 and B.5, and & = 1. Suppose that the initial
endowment vector yo is positive. Then, an optimal progranumne exists.

Proof: By 3.7,if p, < 1, then all feasible programmes are bounded.
Hence, replacing the original technology T with the technology
T = {{x, y)T|x| < n} for a large scalar #» leaves the problem
unchanged except that the technology T° is closed and bounded.
Then, Brock’s proof applies.

V. EXISTENCE CRITERIA FOR THE
NON-RESOURCE-LIMITED NO-DISCOUNTING ECONOMY

5.1. The final *borderline’ case we shall consider is a productive
linear technology (i.e. T is a cone with po = p; > 1) in which outputs
are not limited by the availability of primary resources, for the case
of no discounting. For this case, results 3.2 (a) and 3.16 (d) establish
(1) if the asymptotic elasticity a, is greater than ore (implying U(c)
bounded abave), then an optimal programme exists; and (2) if o,
is less than one and U(c) is asymptotically homothetic and smooth
(implying U(¢) unbounded above), then no optimal programme exists.
With several additional restrictions on the technology, the author
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(1970} has sharpened this result to establish that U(e¢) bounded
above is necessary and suflicient to imply the existence of an optimal
programme. To the assumptions A.l to A4, we first add the
condition:

A.5. The technology T is a cone with p, > 1, and the vectors

X and P in 2.4, satisfying (X, poX)eT and p.y < pofp.x for
all {x, y)<T, can be taken te be positive.

This assumption will be satisfied if the economy is irreducible
(i.e. all commodities are needed, directly or indirectly, to produce any
given commodity) and has sufficient output substitutability to avoid
‘over-production’ of some commeodities in attaining maximal growth.

A feasible programme (X,, §., &) is good if there is a scalar M > 0
such that for any other feasible programme (x,, y:, ¢.), one has

Y UE)-UEI <M, ve1,2,...
=0

The first result is a condition for the existence of good programmes:

5.2. Theorem. Suppose a multi-commodity economy has a linear
technology satisfying A.l to A.5. Suppose that social preferences
satisfy B.l to B.3 and & = 1. Suppose that the initial endowment y,
is positive. Then, a good programme exists if and only if U(c) is
bounded above.

Proof: McFadden (1967), Theorem 6.

5.3. A sequence of programmes (x./,y/, ¢f) for j= 1,2, ..., is
termed an optimising sequence if each of these programmes is
comparable to ali other feasible programmes; i.e.

lim E [U(e)— Ule)]

o (=0

exists for all feasible programmes (c.), and one has

lim E [Ule))— Ule)] <

Frtom =

A result established by the author for a very general class of
economies with linear technologies can be specialised to give a
relationship between good programmes and optimising sequences of
programmes:

5.4. Theorem. Suppose an economy satisfies A.] to A.5, B.I to B.3,
and & = 1. Suppose that y, is positive, and that a good programme
(X., ¥, &) exists. Then, the following results hold:

(1) All good feasible pians are comparable, and if a programme

(X:, ¥:, ¢;) is not good, then

fim ¥ [U(e)-U@)) = —

vy (=0
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(2) There exists an optimising sequence (X2, v/, ¢, j=1,2, ...

(3) The optimising sequence has a subseguence converging point-
wise to a programme (X, ¥:, €.), which is good.

{4) There exists a price system (P.), not identically zero, such that
(X., ¥1, ) is a finitely competitive programme (i.e. (I12.1I)
and (12.12) hold). Further,

o
P
(=0
exists for all feasible {¢,), and one has

f:o (U(e) - U@E)] - < j’oﬁ..(c.—c.’),
where

M = sup {’>§O[U(c,')- U@} (") feasible)

and (e,’) is any member of the optimising sequence.
® I i
Eoﬁr-(fr“cr) =0
1=

Jor all feasible (¢c,), then (T,) is optimal.
® I
fim 3 et =g lips’ = 0,
then (T,) is optimal,
™ I ]
lim sup { X P..c:[{c.) feasible} = 0,
=v

then (8.) is optimal.

Proof: McFadden (1970), Theorem 3.

5.5. The technology T will admit one or more supporting planes
at each point (x, y) in its boundary. The technology is smooth at
(x, y)if the supporting plane there is unigue. We make one additional
assumption:

A6, The technology is smooth at the maximal expansion path

(i, pai)
This condition is satisfied if production possibilities are representable
by a collection of production and transformation functions which are
differentiable at the maximal expansion path, or is satisfied by a
finite von Neumann technology in which 2N — 1 linearly independent
activities are operated at non-zero levels at the maximal expansion
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path.! Under this assumption, the price system (§,) given in 5.4 (4)
has a ‘rurnpike’ property that [Br.{1+£-5].8 < 0 when the
angle between (Pe, Pr+y) and (pop, P) is sufficiently large (McFadden,
1970, Lemma 5). Hence, one has

lim po'p, = Bp
tert 03
for some non-negative scalar 8 {(McFadden, 1970, Lemma 6). We
are now able to state the main result:

5.6. Theoremn. Suppose a multi-cormmodity economy has a linear
technology satisfying A.1 to A.6. Suppose that social preferences satisfy
B.1 1o B.3 and & = 1. Suppose that the initial endowment ¥, is positive.
Then, an optimal programme exists if and only if Ulc) is bounded
above,

Proof: McFadden (1970), Theorem 5.

! Since A.6 allows non-joint production, it is less objectionable economically
than the dual proposition frequently assumed in turnpike theory that the maximal
expansion path is the only ‘break-even’ programme at von Neumann prices.
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