## A NOTE ON THE COMPUTABILITY OF TESTS OF THE STRONG AXIOM OF REVEALED PREFERENCE

## Daniel McFADDEN\*

M.I.T., Cambridge, MA 02138, USA

Received May 1977, final version received August 1978

Let  $R_+^l$  denote the non-negative orthant; and  $P = \{p \in R_+^l | p \gg 0\}$ , the positive orthant. Let  $d: p \to R_+^l$  be a continuous demand function satisfying  $p \cdot d(p) = 1$  for every  $p \in P$ . Define a binary relation W [resp.,  $\overline{W}$ ] on d(P) by xWy [resp.,  $x\overline{W}y$ ] if and only if there exist  $p, p' \in P$  such that x = d(p), y = d(p'), and  $p \cdot d(p') < 1$  [resp.,  $x \neq y$  and  $p \cdot d(p') \leq 1$ ]. Note that  $\overline{W}$  is the usual direct revealed preference relation satisfying  $W \subseteq \overline{W}$ . Define a binary relation S [resp.,  $\overline{S}$ ] on d(P) by xSy [resp.,  $x\overline{S}y$ ] if there exist  $z^1, \ldots, z^n$  in d(P) such that  $xWz^1W \ldots Wz^nWy$  [resp.,  $x\overline{W}z^1\overline{W} \ldots \overline{W}z^n\overline{W}y$ ]. Note that  $\overline{S}$  is the usual indirect revealed preference relation, and that  $S \subseteq \overline{S}$ .

A demand function satisfies the Strong Axiom of Revealed Preference (SARP) if and only if  $\overline{S}$  is acyclic. From the theory of revealed preference, satisfaction of SARP is necessary and sufficient for a single-valued demand function to be consistent with maximization of a locally non-satiated preference preorder.

This note establishes that satisfaction of SARP for *continuous* demand functions can be tested in principle by a recursive computational algorithm, and a failure can be found in a *finite* number of steps. Let  $P^*$  be any countable dense subset of P; e.g., the set of  $p \in P$  with rational coordinates. Let  $Q^*$  denote the countable set of all finite sequences of points from  $P^*$ . Define the following:

Algorithm. Let i=1,2,... index the elements of  $Q^*$ . For each element  $(p^{1i},...,p^{ni})$  of  $Q^*$  in this sequence, terminate the algorithm if  $\max_{k=1,...,n} p^{ki} \cdot d(p^{k+1,i}) < 1$ , where  $p^{1i} = p^{n_i+1,i}$ ; otherwise continue.

The main result is:

<sup>\*</sup>Research was supported in part by National Science Foundation Grant No. SOC75-22657 to the University of California, Berkeley.

Theorem. Suppose  $d: P \rightarrow R^1_+$  is continuous. Then, d fails to satisfy SARP if and only if the Algorithm terminates in a finite number of steps.

The following three lemmas prove the theorem:

Lemma 1.  $x\overline{W}y$  implies xSy.

*Proof.* Suppose x = d(p), y = d(p'),  $p \cdot y \le 1$  for some  $p, p' \in P$ . If  $p \cdot y < 1$ , then xWy, implying xSy. Alternately, suppose  $p \cdot y = 1$ . Since  $x \ne y$ , we can construct a hyperplane with normal  $q \ne 0$  such that  $q \cdot x > q \cdot y$ . For  $\alpha > 0$  such that  $p + \alpha q \in P$ , define  $p^{\alpha} = (p + \alpha q)/(1 + \alpha \{q \cdot (x + y)/2\})$ . Then  $\lim_{\alpha \to 0} p^{\alpha} = p$ , implying  $\lim_{\alpha \to 0} d(p^{\alpha}) = x$ . Now,  $p^{\alpha} \cdot y = (1 + \alpha q \cdot y)/(1 + \alpha \{q \cdot (x + y)/2\}) < 1$ . Hence,  $x^{\alpha} = d(p^{\alpha})$  satisfies  $x^{\alpha}Wy$ . Also, the formula for  $p^{\alpha}$  implies  $p = (1 + \alpha \{q \cdot (x + y)/2\})p^{\alpha} - \alpha q$ . Hence,  $p \cdot x^{\alpha} = 1 + \alpha [\{q \cdot (x + y)/2\} - q \cdot x^{\alpha}]$ . Since  $\lim_{\alpha \to 0} q \cdot x^{\alpha} = q \cdot x > q \cdot y$ , one has  $p \cdot x^{\alpha} < 1$  for  $\alpha$  sufficiently small, implying  $xWx^{\alpha}$ . Hence  $xWx^{\alpha}Wy$  implies xSy. Q.E.D.

Lemma 2.<sup>1</sup>  $S = \overline{S}$ .

*Proof.* We only need to show  $\bar{S} \subseteq S$ . Suppose  $x\bar{S}y$ , or  $x\bar{W}z^1\bar{W}...\bar{W}z^n\bar{W}y$ . By Lemma 1,  $xSz^1s...Sz^nSy$ . Since S is transitive by construction, xSy. Q.E.D.

Lemma 3. If  $d: P \rightarrow R_+^1$  is continuous, then it satisfies SARP if and only if its restriction to  $P^*$  satisfies SARP.

*Proof.* The 'only if' direction is trivial. To show the 'if' direction, suppose there exist  $x, y \in d(P)$  such that  $x\bar{S}y\bar{S}x$ , so that SARP fails. By Lemma 2, xSySx. Writing out the conditions for these relations, there exist  $p^i \in P$  such that  $p^n = p^1$  and  $d(p^i)Wd(p^{i+1})$  for i = 1, ..., n-1 [where  $x = d(p^1)$  and  $y = d(p^k)$  for some k], or  $p^i \cdot d(p^{i+1}) < 1$ . By continuity of d, there exist  $\hat{p}^i \in P^*$  sufficiently close to  $p^i$  to satisfy  $\hat{p}^i \cdot d(\hat{p}^{i+1}) < 1$  for i = 1, ..., n-1. Hence,  $d(\hat{p}^1)Sd(\hat{p}^{n-1})Sd(\hat{p}^1)$ , implying that the restriction of d to  $P^*$  fails to satisfy SARP. Q.E.D.

<sup>&</sup>lt;sup>1</sup>A result along the lines of Lemma 2 is contained in the unpublished paper by A. Mas-Colell, 'Preferences and income Lipschitzian demand: Continuity and compactness properties', IP-173, Center for Research in Management Science, University of California, Berkeley, CA, October 1972.