A NOTE ON THE COMPUTABILITY OF TESTS OF THE STRONG AXIOM OF REVEALED PREFERENCE

Daniel McFADDEN*

M.I.T., Cambridge, MA 02138, USA

Received May 1977, final version received August 1978

Let R_+^1 denote the non-negative orthant; and $P = \{ p \in R_+^1 | p \gg 0 \}$, the positive orthant. Let $d: p \rightarrow R_+^1$ be a continuous demand function satisfying $p \cdot d(p) = 1$ for every $p \in P$. Define a binary relation W [resp., \bar{W}] on $d(P)$ by $xW y$ [resp., $x\bar{W} y$] if and only if there exist $p, p' \in P$ such that $x = d(p)$, $y = d(p')$, and $p \cdot d(p') < 1$ [resp., $x \neq y$ and $p \cdot d(p') \leq 1$]. Note that W is the usual direct revealed preference relation, and \bar{W} is a non-tight direct revealed preference relation satisfying $W \subseteq \bar{W}$. Define a binary relation S [resp., \bar{S}] on $d(P)$ by xSy [resp., $x\bar{S}y$] if there exist z^1, \ldots, z^n in $d(P)$ such that $xWz^1W \ldots Wz^nW y$ [resp., $x\bar{W}z^1\bar{W} \ldots Wz^n\bar{W} y$]. Note that S is the usual indirect revealed preference relation, and that $S \subseteq \bar{S}$.

A demand function satisfies the Strong Axiom of Revealed Preference (SARP) if and only if S is acyclic. From the theory of revealed preference, satisfaction of SARP is necessary and sufficient for a single-valued demand function to be consistent with maximization of a locally non-satiated preference preorder.

This note establishes that satisfaction of SARP for continuous demand functions can be tested in principle by a recursive computational algorithm, and a failure can be found in a finite number of steps. Let P^* be any countable dense subset of P; e.g., the set of $p \in P$ with rational coordinates. Let Q^* denote the countable set of all finite sequences of points from P^*. Define the following:

Algorithm. Let $i = 1, 2, \ldots$ index the elements of Q^*. For each element $(p^{i1}, \ldots, p^{inp})$ of Q^* in this sequence, terminate the algorithm if $\max_{k=1, \ldots, n} p^{ki} \cdot d(p^{ki+1,i}) < 1$, where $p^{ii} = p^{n+1,i}$; otherwise continue.

The main result is:

Research was supported in part by National Science Foundation Grant No. SOC75-22657 to the University of California, Berkeley.
Theorem. Suppose \(d : P \rightarrow R^1_+ \) is continuous. Then, \(d \) fails to satisfy SARP if and only if the Algorithm terminates in a finite number of steps.

The following three lemmas prove the theorem:

Lemma 1. \(xWy \) implies \(xSy \).

Proof. Suppose \(x = d(p) \), \(y = d(p') \), \(p \cdot y \leq 1 \) for some \(p, p' \in P \). If \(p \cdot y < 1 \), then \(xWy \), implying \(xSy \). Alternately, suppose \(p \cdot y = 1 \). Since \(x \neq y \), we can construct a hyperplane with normal \(q \neq 0 \) such that \(q \cdot x > q \cdot y \). For \(\alpha > 0 \) such that \(p + \alpha q \in P \), define \(p^* = (p + \alpha q)/(1 + \alpha(q \cdot (x+y)/2)) \). Then \(\lim_{\alpha \to 0} p^* = p \), implying \(\lim_{\alpha \to 0} d(p^*) = x \). Now, \(p^* \cdot y = (1 + \alpha q \cdot y)/(1 + \alpha(q \cdot (x+y)/2)) < 1 \). Hence, \(x^2 = d(p^*) \) satisfies \(x^2Wy \). Also, the formula for \(p^* \) implies \(p = (1 + \alpha(q \cdot (x+y)/2))p^* - \alpha q \). Hence, \(p \cdot x^2 = 1 + \alpha[(q \cdot (x+y)/2) - q \cdot x^2] \). Since \(\lim_{\alpha \to 0} q \cdot x^2 = q \cdot x > q \cdot y \), one has \(p \cdot x^2 < 1 \) for \(\alpha \) sufficiently small, implying \(xWx^2 \). Hence \(xWx^2Wy \) implies \(xSy \). Q.E.D.

Lemma 2.\(^1\) \(S = S \).

Proof. We only need to show \(\bar{S} \subseteq S \). Suppose \(xSy \), or \(xWz^1W \ldots Wz^nWy \). By Lemma 1, \(xSz^1 \ldots Sz^nSy \). Since \(S \) is transitive by construction, \(xSy \). Q.E.D.

Lemma 3. If \(d : P \rightarrow R^1_+ \) is continuous, then it satisfies SARP if and only if its restriction to \(P^* \) satisfies SARP.

Proof. The 'only if' direction is trivial. To show the 'if' direction, suppose there exist \(x, y \in d(P) \) such that \(xSySx \), so that SARP fails. By Lemma 2, \(xSySx \). Writing out the conditions for these relations, there exist \(p^i \in P \) such that \(p^n = p^1 \) and \(d(p^i)Wd(p^{i+1}) \) for \(i = 1, \ldots, n-1 \) [where \(x = d(p^i) \) and \(y = d(p^k) \) for some \(k \)], or \(p^i \cdot d(p^{i+1}) < 1 \). By continuity of \(d \), there exist \(\hat{p}^i \in P^* \) sufficiently close to \(p^i \) to satisfy \(\hat{p}^i \cdot d((\hat{p}^{i+1}) < 1 \) for \(i = 1, \ldots, n-1 \). Hence, \(d((\hat{p}^i))Sd((\hat{p}^{i-1}))Sd(\hat{p}^1) \), implying that the restriction of \(d \) to \(P^* \) fails to satisfy SARP. Q.E.D.

\(^1\)A result along the lines of Lemma 2 is contained in the unpublished paper by A. Mas-Colell, 'Preferences and income Lipschitzian demand: Continuity and compactness properties', IF-173, Center for Research in Management Science, University of California, Berkeley, CA, October 1972.