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ON THE CONTROLLABILITY OF DECENTRALIZED MACROECONOMIC SYSTEMS:

THE ASSIGNMENT PROBLEM *

Daniel McPFadden

1. Introduction

In classical control theory, the operation of a system 1s controlled by a single
supervisor with complete information on the system's state. By contrast, control respon-
slbiiity in economlc systems is frequently spread among a number of institutions, each
operating with limited information on the state of the system and the behavior of other
institutions. In this environment, each controlling agency must form a decentralized

behavioral strategy based on the partial information it receives.

Consider an economy with K controlling institutions, indexed k=1,...,K, with
Agency k operating an abstract control vector u,. Let fSt) describe the state of the
system at time t, and let zk(t) denote the sigggl recelved by Agency Kk containing
information on 55t). Generaziy, the desecription ﬁft) of the state of the system can

iInclude lnter-agency messages and historical data.

As noted in Figure 1, the economy has an information transformer Pk: x(t) + zk(t)
- P ey -
determining the signal transmitted to Agency k. On the basis of the information contain-
ed In this signal, the agency's strategy determines a control s,.: z,(t) + u, (t). The
state z}t) and controls ul(t),...,uK(t) then lead, through a state transformer A,
m -~ Rt

to a new state x(t+l). We pose four questions on the control of this system.

N

1. For a particular structure of instlitutional authority and a particular informa-~
tion transformer, do there exist feasible decentralized strategies (sl,...,sK) which
o b,

steer the system to a target state; i.e., 1s the system controllable?

* fTechnical Report No. 6. Project for the Estimation and Optimization of Economic
Growth. ‘
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FPigure 1: An abstract decentralized macrpoeconomic system

2. Given a performance function assigning losses to deviations from a target state,
does there exist within a specified class of feasible strategles an optimal decentralized

strategy?

3. When alternative designs for the economic system are available ylelding differ-
ent patterns of Institutlonal decentralization and/or information transformers, can de-

slgns be found which make the system controllable? (This 1s termed the assignment problem.)

4, Weilghing performance and operating costs under alternative economic designs, 1s

there an optimal design?

In thils lecture, I will answer some of these questions for a simple economic model,

and will pose a number of unsolved problems.
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2. A Simple Macroeconomic System

A highly simplified version of a common economic model will be used to 1llustrate
the problems confronted in the control of a macroeconomic system. The United States has
the short run economic objectives of full eﬁployment without inflation (internal balance)
and balance of international payments (external balance), which must be achieved fhrough
two principal policy instruments, changes in the rate of interest and in the govermment
budget deflcit. The country has, correspondingly, two government institutions, a central
bank (the Federal Reserve) which controls changes in the interest rate, and a Congress
which controls changes in the government deficit. While it is politically impossible to
combine these institutions into a single controlling agency, 1t 1s possible to establish
gene:al directives for them to follow.™ Can this system be controlléd? To answer this
question, we will first give a simple algebraic statement of the system. Define the fol-

lowing variables:

Y(t) domestic U. S. production (= income of consumers)
X{(t) U. S. aggregate expenditure

C(t) U. S. Aggregate consumption

S(t) U. S. aggregate saving

I(¢t) U. S. domestic investment

M(t) U. S. imports of foreign goods and services

K(t) Net capital cutflows from the U. S.

T(t) Taxes net of transfers

G(t) U. S. government expenditures for goods and services

B(t) U. S. net surplus in international balance of payments

All the variables above are annual rates measured in period ¢t, and are measured in

billions of dollars, deflated to a uniform price level. Define the additlonal variables

E U. S. exports of goods and servicés ({annual rate in dollars),
assumed constant
the full-employment, no inflation level of domestiec production,

assumed constant

* This problem has been analyzed by Robert MUNDELL [9] and Harold VOTEY [13], and the
algebralc model presented here is a simplified version of the one they analyze.
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r(t) U. S. domestic interest rate

re forelgn interest rate, assumed constant

Time arguments will be suppressed where there is no ambiguity.

Four accounting identities link these varlables:

(1) Y = C+8+T

(2) X = C+I+K+¢Q
(3) B = E-M-K

m) B = Y-X

Further, the following functional relatlons are found empirically to be roughly valid:*

(5) S = a¥-a, * .25¢¥ - 4o
(6) M o= B,¥Y - By * .13V - 45
(7) I = -yr+y = =375r + 113
(8) K = =8&;r + & s =T6r + 13.7
This model yields the very simple dynamic system
(9) ax = Ae“
B AT §, * uByy, -wBy 204.2 -, 342
3‘(. = 3 u = ’ 'é‘ = =
Y AD -ury n -986 2.632

where 1y = (a1 + 81)'1, D=G-T (the net government deficit), and Ax = ﬁft+1) -_i(t),
ar = r{t+1) - r(t), ete. From an initial state '5(0), the central planner wishes to steer

this economy to the target
0

* vapriables are measured in billions of U. 8. dollars in 1958 prices (except r, which is
a proportion). The numerical functions are adapted from econometric estimates in a more
complex model considered by VOTEY [13], modified so that the model approximates the 1963

U. S. national accounts. In this year, the U. S. had D = $9 bil., r = .08 (= deprecla-
tion + yield on long-term corporate bonds * anticipated rate of inflation), E = $32, and
Yp = $579 bil. The model then ylelds roughly the values actually observed: Y = $551 bil.,

I = $83 bil., C = $355 bil., M = $26.5 bil., G = $109 bil., T = $100 bil., and S = $98 bil.
(see [11], [12]).
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where International payments are in balance and a level YF of output is achieved yield-
1
ing internal balance. In the example, 5:(0) = (-2.0, 551) and gf = (0, 579).
Assume in this example that every admlssible control has the linear, time-independ-
ent form u = §f§‘- ﬁ*?, where §| is a 2 x 2 matrix. Let e? denote the set of matrices
§' which yleld admissible controls. Does there exist E‘G g? such that the dynamic system

ax = £§S§‘- if) 1s stable? In the case that 51 1s non-~singular, as 1n the numerical
example, and the set of matrices zy is unrestricted, the system is trivially controllable:

1

S = 1&' is one stable control. With decentralization of control responsibillity and limited

information on the state of the system, stability i1s less immediate. Consider in this
example the case in whlich the Central Bank observes the balance of payments, the Congress
observes the output level, and no communication between the institutions is possible.*

Then, 4§ must be a diagorial matrix for each admissible control. For example, let

> isil £ 1}

Direct calculation of the characteristic roots of the two-dimenslonal system a4x = AS(x - x¥)

sy Ay o

0]

g - {§|§ i

s
0 55

for S € zf and an arbitrary matrix A‘= (aiJ) verifies that this system is controllable
from an arbitrary starting point if and only if ’i 1s non-singular and has at least one
non-zerc diagonal element.* In the numerical example, one finds that the system 1s stable

if and only if s, < 0, -.00981 < 5, < O, and

1

1.521 + 155.1 54

s > -
2
2 + 76 54

* In the U. S. economy, control responsibility for "monetary" variables, such as the
balance of payments, the rate of inflation, and the interest rate are the primary responsi-
bility of the Federal Reserve Bank; and control responsibility for "real" variables, such
as unemployment, are the primary responsibility of the Congressional-Executive branch of
government. Correspondingly, the Federal Reserve serves as the basic data-gathering agency
for "monetary"” varlables and bureaus of the Executive branch serve as the basic data-
gathering agencles for "real" variables. While in practice there 1s considerable exchange
of Information between these institutlons, at least with scme time lag, and at least some
degree of discretlonary coordination on both targets and controls, the example nevertheless
captures an important aspect of the problem of macroeconomic control, and probably does
less violence to reality than an assumption of monolithic control.

** Choosing s
1, Sp such that aq9sy + apysy < O and sqsp det (A) > O, one guarantees
that the characteristic roots of AS have negatlve real %arts. Thén, s;, s2 can be

taken sufficiently small 1in magnitude so that the characteristic roots of I + AS are
less than one in modulus. -7
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and that the characteristic roots of ﬁ§" are real for all s, < O, < 0. We see that

1 52
in the two-dimensional case, decentralized controllabllity 1s obtained under qulte general
conditions. We shall now establish an analogous result for a more general class of pro-

blems, and also explore socme of the other questlons that we posed initially.

3. Decentralized Controllability

Employing a basic theorem on the stabilizatlion of matrices due to FISHER and FULLER
[2], we can establish a simple sufficient condltion for the controllabllity of a decen-
tralized linear, time-independent macroeconémic system of the type described in the above
example. Conslder an economic system whose states are described by real N-dimensicnal

vectors, X € BP. There are K controlling agencies, indexed k=1,...,K. Agency k re-
J
celves a signal Ek € RN and operates a control Bk € R k, using a linear strategy

u, =8 (zk - z;), where zg is the signal generated when the system is in its target
L AL A ~ -

state, and Sk is a Jk x N matrix. The information transformer is assumed to be an
a~

orthogonal projection onto a coordinate subspace: Z, = P, _x, where Pk is an N x N

dilagonal matrix with "zero" and "one" diagonal elements.” The state transformer 1is as-

sumed to have the linear form ax = ﬁi’ where A 1s a N x J matrix, J = ZE=1 Jk’ and

1 L] -
u' = (uy,...,u,). The dynamic system is then
P 1 K

(10) bx = ASE(x - x9),
where
51 2
0 P
) -2
s =]o0 .. s P =] |,
Sg Pk

and S 1is contained 1n a set of feasible strategiles z? .

* Thus, Px passes a subset of the components of x without alteration. Our results are
unchanged 1f Py 1is, more generally, any idempotent matrix. The information transformer
in actual macroeconomic control problems 1is usually considerably more complex than this,
contalning systematic blases, time lags, aggregates of state varlables, and stochastlc
components. The problems of (centralized) cecontrol under some of these conditions have been
studied by THEIL [10] and ZELLNER [14]. We shall not take up these problems here.
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An- obvious necessary condition for the system (10) to be controllable from any
initial 5(0) is that each of the matrices ﬁ,‘é,)g be at least of rank N. Then, in
particular, the number of control varlables J must be at least N; the XN x N matrix
E must be of full rank, requiring that infarmation on all components of the state vari-

able be transmitted to the controlling agencies; and the strategles Sk must satisfy

A

"n o~ AR
1o~

N £ rank (S) = rank (Sk) s min (Jk’ rank Pk)’

k=1 k=1

These weak necessary conditions are not generally sufficient. In the system

o 1 5, 0 0 O 1 0
o o

A= - » P o of
1 o ©o 0 0 s, 0o 1

for example, no stable control exists for any 8443 Son- We now conslder conditions which
are sufficient for stability, starting with the case of full decentralization in which

there are N controls, each administered by a distinct agency which receives information
only on the state variable it is attempting to control. Then, A‘ i1s a square matrix, and

L = SP = diag (sil,...,sNN). The following theorem is due to FISHER and FULLER [2],

o~

THEOREM 1: Conslder the dynamlc system 4Ax = Au, u = ij - x*), where }1 and L
are real square matrices of order N, and L = diag (811,-..,SNN), with the s = un-
restricted. A sufficient condition for the existence of a decentralized linear control
u = L(x - x®) such that this system is stable from any E}O) is that A have a nested
- Ara Ay

- A

sequence of non-zero principal minors.™

This theorem was suggested by the economist J. R. HICKS [3] in a literary discus-
sion of the stability of market equilibrium. A formal proof of the theorem we have stated
has been given in [2] and extended slightly in [8]. We will not repeat 1t here, but will

illustrate the method of proof for the case N = 2: The matrix AL has, in this case,

the characteristic polynomial P(A) = P [a11511 + a22322]A + 511522IA .  Suppose

* A principal minor of order n of an N x N matrix A 1s a determinant formed by
striking out N-n columns and the corresponding symmetric rows of A. A sequence of
principal minors of order 1,2,...,N 1s nested if the determinant of order n-1 1n this
sequence is itself a principal minor o¢f the determinant of order n in the sequence,
n=2,...,N.
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asq # 0 and |A] # 0, satisfying the hypothesis of the theorem., Define a second poly-
nomlal
a
i} 11 lal) . .2 la]
alx) = (‘ = S11 ‘1‘) (" T Se2a,) T T [311511 g, S22| t S11%2208l

whose roots are glven by ratlos of successive principal minors of A, multiplied by cor-

responding dlagonal elements of L. Take Syqs Spp SO that sign (511) = - sign (all)
. 1al
and sign (s,,) = - sign (;11_>, {siif is small, and |522/311I is small. Then, the

roots of Q(A) can be made distinct, real, negative, and less than one in modulus. Since
the coefficients of P{ix) and Q(i) can be made arbitrarily close for 1522/511| suf-

ficliently small, the roots of P()) can be made arbitrarily close to the roots of Qlr),
50 that they will be real, negative, and less than one in modulus. Hence, the roots of

I + AL can be less than one in modulus. The N-dimension case is proved by FISHER-FULLER

~

in this same manner.

Consider the set {1,++-,N} of indices of the components of X, and let

£y = {1,+++,1} and = {1#1,+--,N} be subsets of Indices, i=1,--:,N. (The subscript

r
i
i on zi, Ty will be deleted when there is no ambiguity.) For the case A square and
L = diag (511,-",SNN), define commensurately with these subsets the partitioned vectors
Ay

and matrices

X u A A L 0
mli ...!.i _,9,121 _,.Q.ir'i ‘_lili
i: 3 u = , A= s L = .
X u A A 0 L
mTy -y ~Tyty  WTyTy ~TyTy

If the hypotheses of Theorem 1 are satisfled, then the indices {1,:--,N} can be as-

signed so that the nested secuence of non-zero principal minors lie in the left~hand

Ls

corner of A; i.e. 1A | #0 for 1=1,--+,N., Define o, = |A |7]1A
-’ Tty o : 1 gy gt

i=3,«++,N; with |aA ] =1 and = 1 by conventlon. The characterization of

o
stable controls 1is strengthened by the following:

LEMMA 1.1: Suppose a dynamic system satisfies the hypotheses of Theorem 1, and

the components of x are lndexed so that |A | #0 for i=1,..-,N. Then, there

w1ty
exists ¢ > 0 such that 1f |[s,,{ < ¢, ‘311/51—1,1-1, < e, 1=2,+-+,N; and

sign(sii) = - sign(pi), i=1,+-+,N, then the characteristic roots i, of £'+‘£E‘ are
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distinet, real, non-negative, and less than one in modulus, Satisfying

< 1 + < A, < 1+

2

1
3 52292 < ees

2 2
0 < 1 + 5 s 5 522p2

S11°1

cee ¢ 1 + 2 < 1.

5 SyNPN <Ay ¢l

1
N > SNNPN

If, in particular, the inequality

min { /o }
120, e+ 0 ,N=1 log/ey44]

e £
= 2N+1[1 + 3N + 3NjalN max (o lo 4|}
120,+¢,N-z 1 11

holds, where lAﬂ = Zf i=1 ]aij], then the conclusion of thils corollary holds.
B sd =

"A proof of this corollary is given in the appendix of [8], and 1s based on the proof

of FISHER and FULLER. The bound on ¢ established above is derived from a bound

N+ N-1
£s min {{Ioi/pi+1|}/2 1 (1 + £ mg) given in (8], where
120, -4+ N=1
N-s g ] Y o
msz(é) {_S_§__11+_s s _ 4 +}
2 S5 P51 *s Ps+1

with ag = [A and as, Yga oo denoting the remaining principal minors of A of
Ay

”lsls
order s.

The dynamlc process characterized in this corollary has a simple geometric struc-

ture. Let E = AL and y = x - x¥*, and consider the partitioned system
Ll

by I B ;) v
~hy ot N S L I SSE L ~t1
________________ [Pt S
A _ |B ' b i B
(11) Yier | = [Zi41,2 t 010,141 : SAtl,r Yieq | .
_______ b= m e T
Ay B | B { B Yy
“Ti41 ~PPL R T I W Ty ~T141
e con ons 1=1,+-- imply that this system can be solved recursively
Th diti |B£1£i| £ 0, , ,N ply th is sy b 1ved ivel
Ay
for vectors §, = -B>1 B y which determine a "partial equilibrium" in the &,

by algy WHgTAT

~~

component of the state vector (i.e., Ayli = 0) for each possible Yp i=1,+++,N, by use
A A

of the formulae:

-1
B B B
Sitl,ey Tegny ”}1,1+1]

- |p -
(12) Byyq = ['1+1,1+1



- 230 -

B = B B 0
(13) I...'Li+111+1' “1'«.‘111i
(14) Yie1 = 813q {B:Hl e Bil By . - Bivi,r t7
AT e L e 17141 T T e [ T4
-1 -1 -1 to=1 =1
I-8;,.B B B B | B; B B
- R ST L e 0 P Pt 30 | 1417848, 2, 4141
(15)  B;' e
m 1+17141 !
8-1 B B-l 1 B—l
141 341,20, TN ! 1+1
If the condition ¥y, = §1 were 1mposed on the dynamic process for some -1, then one
-7y mTi
would obtain
8¥341 7 8341141 * [Byas,r . = Biagz, Biog, By r Yp
- S | ~ (A S G Rl I O R £ 2|
T B1a1Wyag = ¥iaq)-
i
Since B = |A « I s we have B8, = p,s,.. Since, by construction
Pras] * o] s s (et s ’

Py844 € (-1, 0), it follows that Y4+, Would converge to 91+1 if one fixed the value

of y and lmposed the condition y = § . But given that the s decline sharp-
“Ti+1 _21 ~li 11

ly in magnitude for increasing 1 under the conditions imposed in the corollary, these
conditions are closely approximated: the first component of x adjusts rapidly toward
its “partiai equilibrium" value while the relative adjustment in the remaining components
is small. The second component adjusts, less rapidly, toward its "partial equilibrium”
value, while the first component 1s approximately maintalned in partial equilibrium and
the components 3,.-.,N change relatively little. The process continues in this essenti-

ally recursive manner, converging eventually to the "full equilibrium" = 0. Figure 2

J
illustrates typilcal trajectories for the process.

A generalization of Theorem 1 to eétablish controllabllity in the large of a non-
linear system ax = aQ&), u = EEFE)’ L diagonal, E(i)' 2 (h1 (xl),--~,hN(xN)), can
be proved when the geometric structure of recursive "partial equilibria" of the form
noted above continues to hold and mild regularity conditions are met (see [8]). The proof

1s based directly on the geometric structure. A second extenslon considers more general



- 231 -

¥* *
ayy =0 = e, (xyx)) + (k%)

—_—

* *
09y =0=ay; (xy-x;) + a5 (x,-x,

S~

T ]

Figure 2

structures of institutilonal authority and information transfer than the fully decentral-

lzed case treated above:

Consider the dynamic system (10), and suppose that the rank conditions necessary

for controllability are met. Consider the case in which information on each state vari-
t

ik
L
Pk’ i=1,++-,N, k=1,+-+,K, we note that in this case exactly N of the rows Pik have

-

able is transmitted to one and only one agency. Letting P denote the 1ith row of
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non-zero elements. Form the matrix W = (Pi k. ? P1 " ,---,P1 k )} whose columns are given,

-~ mT1Tl 272 A NN
in order, by these rows of P with non-zero elements. Since P is of rank N, W 1is a
~ Paaal A
permutation matrix, formed by permuting the columns of an identity matrix, and W' = w'l.
AN Laanl
Define v = W'(x - x*). Then, the system (10) can be written in the equivalent form
An o AN S
Av = CLv
- AR e, By

with C = W'A, a N x J matrix; L = block diagonal (Ll""’LK) = SPW, a J x N matrix;
R Ann A A

P

and Lk
~

sibly zero) on which information 1is transmitted to agency k. The rank conditions neces-

a Jk x Nk sub-matrix, where Nk equals the number of components of x (pos~
Ay
sary for controllability imply rank (L) = Ny ¢ J, < When the sub-matrices S, of S are
A Aay At
unrestricted and the inequality Nk s Jk holds for all agencies, then Lk is unrestrict-
ed and the rank conditions are met. Let Hk denote a non-slngular N, x Nk matrix, and
A~

k
- -1
define Ek = Eij and the partitioned matrix

1 r E
(El o Fi1 Fi2 7" Fix
e Fax Fa
(16) F=C | o .. = {: -
- " @ F vee  F
O Fry, Fxx

where the partitioning is commensurate with the partitioning of L. The followlng result

can now be establlshed.

THEQOREM 2: Consider the dynamlc system Av = FHv defined above, where F = CG

Aot on 2y

and G and H are block diagonal matrices with blocks Gk and Hk’ respectively, and

L = GH. A sufficient condition for the existence of a decentralized linear control u = Lv
A s P

~ Aba

such that this system 1s stable from any v(0) 1is that there exist a sequence of agencies

k -‘,kK and a matrix G such that the following nested sequence of principal minors
o~

12"
is non-zero:

F £ 0 F, P F F
'...k1k1| T KKk ko ~KqKg kg ky
£0,000, |. £0 .
F,  F F F
Tk, Dok, Do, Erpley
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Proof: Without losc of generality, we can take (ki,---,kK) = {(1,+++-,K). Define

E = FH, let E = H denote a sub-matrix, and define
- e ~1)  Li)
PO ‘Eii
D =
mtyly . ’
.« . ',Eii
for D = E, F. Define H, = g, Fi+ and, recursively,
Pt -l 1,11
-1 -1
H = -0, |F - E E F
l_ii i[uii ._ili—lﬂfi—lli-lmfii] 4

where the o, are scalars in (0, 2) and the inverse exists by the hypothesis that
IFliEi‘ £ 0. Then, this system can be written in the partitioned form of (11), replacing
~m

¥y by the subvector vy of v commensurate with Li’ and replacing biJ by the sub-
™ Ay

Ay
matrix Eij' The formulae (12), (14), and (15) then continue to hold with these substitu-
tions, establishing (1) the existence of recursively defined subvectors
v = -E;1 E v which determine a "partial equilibrium" in the subvectors

wly bt T Tk
&Yl""{ZK) for each possible €3k+1""&XK)’ (2) By = -okff and (3) the stability of
" " - - ¥
the "partial" dynamic process axk+1 = °kﬁﬁk+1 Azk+1) which results when the condition
Vg, = Vg is imposed and vpn is rixed. The geometry of this process is then identi-
m K wmk A K+
cal to the one considered previocusly, and the stability proof given in [8] establishes
controllability for |01l and [o /o, ;| sufficiently small.
Q.E.D.

These theorems provide preliminary results on the decentralized controllability of

one class of economic systems. It would be of considerable interest to economists to have

answers to the following further questions:

1. What conditions are sufficient for controllability when the "target" is a sub-
space of the state space rather than a point (i.e., some state variables are irrelevant

to the planner)?*

* This case would occur, in particular, when a portion of the description of a state at

time t contains inter-agency "messages" on past contreol activities and anticipated
behavior, and the "messages"™ themselves are not "real" economic variables.
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2. Is decentralized control possible when there are more complex signals than 1n
the model above, allowing incomplete decentralization, storage of information with adap-
tive control procedures, more complex administrative hierarchies, and/or parametric

"messages", such as prices?

3. Can an economic system with exogenous changes be steered wilth decentralized
controls? What forecasts are requlred? What information on forecasts must be included in
signals? €an "mean controllability" be maintained when stochastic elements are present?

What historical iInformation must be stored?

4. Optimal Decentralized Control

Costs are assoclated with deviations from the target state in a macroeconomic
system, and the objective of the planner will be to choose a control strategy which mini-

mizes these costs. Consider the dynamic system given in (10),

(17) Ax = Au, u = Sz, z = P(x-x™),

L A pre A A pn

with x € RN, u 6’RJ, Z € RKN and S chosen from a set AY of feasible decentralized
Al A Laal Awm A A

control strategies. Suppose that costs are described by a quadratic loss funection

(18) c =

nomg

sU(x(t) - x®)'Q(x(t)-x™),

AN A A Bl

t=0

where & 1s a discount factor applied to future costs, 6 € (0, 1); Q@ 1is a real sym-
metric positive-definite matrix; and the range of ¢ 1s the extended half-line [0, =].

From (17), =x(t) - x® = (I + ASP)t(x(O) - x*, and ¢ can be written
. A faal ~ -

A A na Ll

-
(19) ¢ = 2 vy ENYm®® oy,

1 1 L
where y, = Q¥(x(0) - x*) and E = I + Q2ASPQ 2.

Several difficultles may occur in treating the minimization of (19) over S 1in QF as
a cbnventional finite-dimensional non-linear program. The set of S for which the
system (17) is stable from x(0), or more generally, from all starting vectors, is not
usually compact or convex. Hence, these properties may fall for a feas;ble set j’
requiring stability, and an optimum may not exlst. Further, the obJective functilon
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i1s not usually convex in S, and standard programming algorithms are of limited usefulness.
It would be desirable to have a good algorithm for solving this program which exploits
the structure of (17) and (19).

In the simple macroeconomic system of Section 2, numerical methods have been used
to calculate optima for two alternative feaslble sets. Suppose that at the initial
state x(0), the soclety considers a $1 decrease in the balance of payments surplus to
imply the same economic loss as a $7 decrease in GNP. Roughly, the soclety considers
a one billion dollar change in the balance of payments to be weighed the same as a one
percent change in unemployment. If the costs of devlations from the balance of payments
and full employment targets are additive, equation (18) then has approximately
ii = dlag (100, 1),* The system (17) then can be written for this example, for & = .9, as

1 L
Ay = QZASPQ 2y

L N 204.2s, -3.42s2
Q2ASPQ 2 =
-9H.651 ?.63252
1
y = Q2(x-x™) y(0)' = (-20, -28).
R Ay . T an

When all diagonal matrics SP are feasible, 1.e. gf {s|SP = diag (51’ 52)}, the condi-
tion y(1) = (I + Q}ASPQ_A)y(O) = 0 obtalns for s, = -.0371, s, = -1.42. This control
strategy applied in the US cconomy 1in 1963 would have produced internal and external
balance in the followlng year, but would have required that the Federal Reserve Bank raise

the interest rate by 7.42 percentage points and that the Congress ralse the government
deficit by 39.76 billion dollars. For this strategy, Yo is an eigenvector of Q ASPQ”

(with the corresponding root -1), and the second characterlstic root of this matrix

is -11.315. Hence, this strategy 1s unstable for any starting point not proportlonal to ¥o-
In particular, if we make the realistie modification 1in (17) of allowing random noise in
the signals to control agencles, this strategy would be explosive with probabllity one.

Now suppose that the set of feasible strategies contains the diagonal matrices SP such
that the characteristic roots of I + QiASPQ'iare bounded in modulus by, say, 0.9. The
optimal strategy 1s found to be s, = ~,00624 and s, = -.2385. This strategy requlres that
the interest rate be ralsed 0.62 percentage points for each one billion dollar deficit 1in
the balance of payments, and that the government debt be increased 0.24 billion dollars
for each one billion dollar deficiency in GNP. The characteristic roots of I + QiASPQ'i
for this strategy are 0.832 and -0.9, with Yo and eigenvector for the positive root.

* In this example, it would probably be more realistic to assume that Q has a negative
off-diagonal term, implying that a balance of payments deficit entalls a greater economic
loss in an inflationary situation than 1ln a less-than-full-employment economy.
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5. The Assignment Problem

Thus far, we have discussed control in economic systems in which the information
transformer 1s fixed. At a more bas;c level, we may consider the possibllity that the
planner can choose among alternative deslgns for the structure of information flows to
optimize performance of the system. This problem of determining an efficlent economic

organization is the fundamental question of economics, and has been studied extensively
in an abstract framework by MARSCHAK [5, 6], HURWICZ [4], and MARSCHAK and RADNER [7]. We

shall not repeat here a formal statement of this problem, but shall examine a very spe-
clal case, called the assignment problem, which arises in the context of decentralized

macroeconomic control (see MUNDELL [9] and COOPER [1]).

Conslder the macroeconomic system of equation (10), and suppose now that the planner
can choose the information transformer P from a set of alternative designs GD . We say

that the assignment of signals 1is unrestricted if any lisf of feasible signals (z

A~

1072 2g)
going to agencies 1,-.:,K, respectively, could be re-assigned so that agency k recel-
ves a slgnal 2y, where (11,---,1K) is a permutation of (1,-..,K). Equivalently, 1if
Ay
1 r 1) ~

assignment 1s unrestricted, then P e P » P = (P ,,*°,P.), implies P € (P, where

- oy Pty ‘K e
-~

1 ' T L} L}
P = ﬁ511a512"";51x’ and (il""’ix) is a permutation of (1,---,K).

o

THEOREM 4: Consider the macroeconomic system of equation (10), Suppose that the
assignment of signals is unrestricted, and that § € 2? and S any J x KN matrix with
- Raad P
lsyg] < 15551 1=1,+++,05 y=1,--,KN, implies S € & . If there exist iez? and
P € ® such that ASP 1s of rank N, then there exist S€ 4 and P € @ such that
R AR Yy P aad Pagn)
the system 1s controllable from any x(0).
Proof: The following result will be employed in the proof: If ii,li are N x J
matrices with columns ad, b3 respectively, and if AB' 1is of rank N, then there exist
o A Lk d
N ' g
columns (J1""’JN) such that £i=1,3312§1 1s of rank N. Suppose, to the contrary,

that more than N columns were needed to obtain a matrix of full rank. Then one would

have, for some 1Y,

1'-1 ' 1t '
rank ( I aJ b ) = rank ( b :;mJ bj ) s
151 aJd1add 1=1 9491
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1
implying that each column of aJi"EJi' can be written as a linear combination of the
L)
il_1 1 L]
columns of Zi=1 Afji.zgi' Then, —331' jui could be deleted from the sum without re-
L. 1]
ducing the subspace spanned by zi=11 aJi in. This yields a contradicticn of the suppos-
A R

“ition and proves the result.

Applying thls result to the matrices A and {éé)', one obtains a partition
- (D) (2) apy ' (154" (2354 (1)

A= (A = = “ee
A (’_ s A ) and (EE‘) [(:‘i }1) » (8 4‘l‘l)], where A = (le’ ,iJN) is
N x N of full rank and (EP) is partitioned commensurately. Applying the result again

~ ~t -~ ]
(11) (12))’ P - (P(1) , p(2) y,

R ad

A

to (Efi)P) , one obtains a partition §(1) (S

8(11) and P(l) (11) (1) is of full rank. From the.assumption

a(2) a(12)

where are N x N and S

on g? , a feasible contrcl can be formed from S by replacing S and S by

zero, ylelding 4x = A(l) (11)3 (1)x. The remainder of the proof will utilize the follow-
M L e

7

ing result: If an N x N matrix A 1s non-singular, then there exists a permutation
matrix ‘ﬂ such that ‘fﬂ‘ has non-zero principal minors and diagenal elements. The result
is established by induction. Note that '£H~ is a permutation of the columns of ,ﬁf and
suppose that columns 1+1,-+-,N have been chosen sc that the left-hand principal minors
of order i#1,+--,N are non-zero. The i+1 order principal minor can be expanded in
terms of the elements of its last row. Since the 1+1 order minor 1s non-zero, at least
one element of this row and its corresponding 1 order minor must be non-zero. Choose

the column contailning this non-zero element to be the ith column of the permuted matrix.

The corresponding minor then becomes the non-zero 1 order principal minor.

We now complete the proof of the theorem. By the result above, there exlsts a per-
mutation matrix lﬂ such that 4§(11)H. has non-zero diagonal elements. Then, by the as-
sumption on 2P , & feasible control strategy can be obtained from éEL by reducing the
magnitude of off-diagonal elements to zero. Denote the resulting matrix by L. The dyna-
mic system can now be written 4Av = CLv, where v = W P(l) and C = w P(l) A. Again

A Ll acienl “oa R Rand Ay
applying the result above, there exists a permutation matrix EL such that WA has non-
zero principal minors. By construction and the properties of ’Efi), thils matrix is a
permutation matrix, and by the unrestricted assignment assumption, it can be replaced by

any other N x N permutation matrix. Replacing P(l) by Wﬁ, the system satisfies the
o Pt

hypotheses of Theorem 1, and controllabllity follows.
Q.E.D.
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Thls theorem establishes, for one simple case, a condition under which an informa-
tion structure can be selected to make a system controllable. The question of controlla-
bility can be posed for more general economic systems and more complex sets of feasible

information transformers, as at the end of Section 3. It would also be of interest to ex-

plore the conditions under which reorganization of lnstitutlons can lead to controllabilil-
ty. (One might view alternative organizations as the cholce of different sets of feasible

strategles .QP from a specified class.)

A second class of questions can be posed on optimal control when the information

transformer is a declsion varlable and there 1s an economic cost associated with each
information structure. What degree of decentralization 1s optimal? What criterion must a

"marginal®” signal meet to be included in the optimal information transformer? Answers to
these questions 1n concrete maéroeconomic policy models, particularily under the actual
conditions of signal "noise", exogenous trends, and non-linearity of the system, would
provide a useful complement to the abstract treatments of these problems cited at the

beginning of this section,
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