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TCHEBYSCHEFF BOUNDS FOR THE SPACE OF
AGENT CHARACTERISTICS*

Daniel McFADDEN
University of California, Berkeley, Calif., U.S.A.

1. Introduction

The concept of a measure space of agents has been used to deduce implica-
tions for the structure of demand and equilibrium in an economy. Conversely,
properties of demand and equilibrium contain implications for the distribution
of agents’ characteristics. We are concerned with these converse implications.
A precedent for our interest in these problems is provided by the classical
economic theory of revealed preference for a single consumer. Jointly with
Professor M.K. Richter, the author has previously generalized classical revealed
preference axioms to the case of market data generated by a population of agents
[McFadden and Richter (1971), McFadden (1973a, 1973b)]. This analysis was
concerned with the existence of a measure space of agent characteristics con-
sistent with the market data. Recently, Professor R.E. Hall has explored in the
context of an empirical application the problem of bounding the consistent
measures on the space of agent characteristics [Hall (1973)]. His ingenious
application of the results of Krein (1959) and others on Tchebyscheff systems
has suggested that analogous results might be obtained in a more abstract
context. We take this approach, starting in section 2 with a restatement of the
classical moment problem of Tchebyscheff and Markov. Section 3 lists some
basic properties of the space of agent characteristics. Section 4 formulates the
questions of existence and limiting values. Section 5 gives conditions for
existence. Section 6 gives limiting values for an integral. Section 7 gives limiting
values for the probability on a subset of agent characteristics. Section 8 sharpens
the results of the previous section in the case of a finite-dimensional space of
observations. Section 9 gives an application. Some open questxons are hsted in
section 10.

*Presented at the Mathematical Social Science Board Colloquium on Mathematical Econom-
ics in August 1974 at the University of California, Berkeley. This research was supported by
NSF grant SOC72-05551. I have benefited from dlscussmns with R. Hall, A. Mas-Colell and
M.K. Richter, but claim sole responsibility for errors.
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2. The classical moment problem of Tchebyscheff and Markov

We paraphrase Krein’s (1959) formulation of the problem of Markov. Let T
be a closed interval [a, b] in the real line. Let #: T — R? and f: T — R be con-
tinuous functions, and H e R' be a specified vector. For two measures v and n
on T, define v < # to mean

Jzf()v(@r) < [rfin(ds),

for all continuous non-negative functions f: 7' — R.! Suppose u_ and p, are
non-negative measures on 7T satisfying

0= pu(M<1<py(T) and p_ L opy. )
First problem. Does there exist a measure u satisfying
H=[hop@n, | @
‘and L f _
B S psSpy, pT)=1. A | N )

~ Second problem. Suppose the previous problem has a solution. What are the
]imiting values F_ (infimium) and F, (supremium) of the integral

F= [rfOu@y), | o o 9
for the p satlsfymg 2. and 3). ' :

These problems have peen analyzed in detail by Krein (1959) Krein-
Nydepman (1973), Akhiezer (1962), Akhiezer-Krein (1965) Karlin (1968),
'Karhn—Studden (1966), Mallow (1963), and Shohat (1943), partlcularly in the
case that the functions 4 and f have the monotomclty properties necessary to
define a “Tchebyscheff system’. We shall be concerned only with the basic
_structure of these problems and the most elementary geometry used in their
analysis. There is not to my knowledge a satlsfactory formulation of Tchebyscheﬁ'
systems in infinite- d1mens1ona1 spaces which would allow us to carry over sharper
results in our application.

3. The space of agent characteristics

Debreu (1969), Hildenbrand (1974) and Ichiishi (1974) have provided descrip-
tions of the space of agent characteristics to which we adhere, except for assump-

't is elementary that this implies v(4) < #(4) for each Borel set A < T. A measure on a
- compact metric space is regular. Hence, for ¢ > 0 there exist K < 4 < U with K closed, U
-open, and v(U\K) < g r/(U\K) <.¢e. Let f be a continuous function satisfying f(T) < [0,1],
Sf(@)=1 for teKk, and f(¢) = 0 for te T\U. Then v(K) < Frf(e)(de) £ [rf(n(de) £ n(U),
implying v(4) = 5(A)+ 2e. Hence, v(A) < n(4).
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tions of a compact consumption set (to avoid auxiliary truncation or compacti-
fication arguments) and strictly convex preferences (to ensure continuous demand
functions). An economy has / commodities, and the consumption set of each
agent is a compact rectangle,

C={xeR'|0<x =<},

with ¢ a strictly positive vector in R’.
A preference relation for an agent is defined by a closed set r = C x C with the
properties '

(i) [Completeness] (Vx,yeC) (x,))ér=(y,x)er;
(i) [Transitivity]  (Vx,y, zeC) |

(x,)er and (y,2)er=(x,2)er;
(i) [Non-satiation] (VxeC) x #c=(x,0) ¢r;
(iv) [Strict convexity] (Vx,yeC) (V6e€(0,1)) x # y and

,y)er=(,0x+(1-60p) ¢r.

The class of these preference relations is denoted 2(C x C). Endowed with the
Hausdorff set metric, (C x C) is a separable metric space.

The endowment of an agent is a vector w in the interior C° of C. The space of
agent characteristics is the product space C°x 2(Cx C) of pairs t = (w, r)
specifying the endowment and preferences of an agent. We endow this space with
the product of the relative Euclidean topology for C° and the Hausdorff set
metric topology for #(Cx C). Then the space of agent characteristics is a
separable metric space.

Let S denote the non-negative unit simplex in R’, and define the demand
function

h:SxC°x?(CxC)— C

by the condition that 4(p, w, r) equal the unique r-maximal element in the set
{xeC|p-x < p-w}.

It is a standard result that 4 is continuous on S x C° x (C x C).

4. Existence and limiting value problems for the space of agent characteristics

We reformulate the classical moment problem for the space of agent character-
istics. Consider a compact subset 7" of C°x 2(Cx C), let t = (w, r) denote an



225 D. Mctadden, Ichebyschelf bounds

element of 7. Let S denote the non-negative unit simplex in R. Let #: Sx 7T —
R' and H:S - R’ be continuous functions, and let f: 7— R’ be a bounded
measurable function. Suppose u_ is a non-negative measure on 7. Suppose .,
is either a measure on 7, or the content satisfying u,(4) = +4oo for 4 # 0. [In
the latter case, the constraint 4 < p, in eq. (6) is absent.] Suppose p_ and pu.,
satisfy

O0=p-MN<l<p(T)=S 400 and p_ S py. %

Existence problem. Find conditions for the existence of a probability measure
u satisfying

pT)=1, p_. £p=p,, and

(VpeS) H(p) = frh(p, Hu(d). ©)

Limiting value problem. Find limiting values F_ (infimium) and F, (suprem-
ium) of the integral

F = [ fOudn), @)

for u satisfying the existence problem. »
Following Krein, we first transform these problems to a simpler form. Define

v = (u—p)/(1-p(T), | ®)
Ve = (py —p)/(1—p_(T)). &)

and

Then eq. (6) can be written

(VpeS) H(p) = [y h(p, )v(dr), (10)
where
_ H(p)=fr h(p, yu_(d2)
) = 1—p_(T) '
Eq. (5) becomes
v=v, and v(T) =1, (11)

where either v, is a bounded measure or the constraint v < v, is absent. We
assume hereafter that T is the support of v, .
The existence problem is to find conditions under which a measure v exists
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satisfying eq. (10) and eq. (11). The limiting value problem is to bound the
integral

F = [ f()vdy), | (12)
where

S@ = A-p_ (D)) (13)
and .

F=F+[rj(®u-@dn. | 14)

We shall consider only the transformed problems.

5. The existence problem

We employ elementary convexity arguments to establish the following result;
analogous arguments have been used by Krein (1959), Fan (1956), Freedman
and Purves (1969), and McFadden and Richter (1971).

Theorem 1. There exists a probability measure v satisfying egs. (10) and (11) if
and only if for each finite sequence {p, ..., p,} < S and column vectors {4, .. .,

A} < R,
z %H(p) < Max. z X §. h(py, yv(de). (15)

vSvs =1

Corollary. If the condition of eq. (11) is absent, then eq. (15) becomes

Z ).'H(p,)<Max 2 Ah(py, 1). | ' (16)

Proof. Consider the normal linear space (S, R of continuous functions
from S into R'. Define the set

= {H(- ) Ir h( t)v(dt) [0<v<v, and w(T)=1}. (17
Clearly A is a convex subset of (S, R*). We next argue that 4 is compact.
Since T is compact, the space #(T) of probability measures on T is compact in

the topology of weak convergence [Parthasarathy (1967, Theorem 6.4)]. Con-
sider the subset

M= {ve./l(T)}Iv S v}
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If the constraint v < v, is absent, the conclusion follows. Otherwise, v, is.a
bounded measures, and is therefore regular [Dunford and Schwartz (1964,
HI1.9.22)]. Let v, be a net in M converging weakly to v,. For each Borel set
V < Tand ¢ > 0, there exists an open set U containing ¥ such that v (U \V) <
e. Then

vi(M)+e 2 v.(U) Z im v (V) 2 vo(U) 2 vo(F), (18)
the third inequality following from Billingsley (1968, Theorem 2.1). Hence,
Vi 2 Vo, implying voe M and M closed, hence compact. Since

J h(-, )v(dr)

is a continuous linear map from .#(T) into %(S, RY), it follows [Kelley (1955,
Theorem 8, p. 141)] that

{x 4(-, Ov(de) | ve M}

is compact. Hence, A4 is compact. o

A-separating hyperplane theorem [Dunford and Schwartz (1964, Theorem
V.2.10)] establishes that the origin of %(S, R") is not contained in 4 if and only
if there exists a continuous linear functional I' on %(S, R’) and a scalar ¢ > 0
such that ' S e

2e £ min. I'y.
yeAd

Suppose separation is possible. By the Riesz representation theorem [Dunford
and Schwartz (1964, Theorem IV.6.3)], there exists a regular countably additive
set function y from S into R’ such that

Iy = {sy(py(dp), - (19)

for all y e ¢(S, RY). The proof of Parthasarathy (1967, Theorem 6.3) can be
applied without modification to establish the existence of a sequence of set

functions y, with finite support converging weakly to y. For k sufficiently large,
the equicontinuity of the functions y € 4 implies

¢ < min. [sp(p)y(dp).
yeAd

Choose k satisfying this condition, and let (P15 - - -, Py) & S be the locations of
the point masses and (4, . . ., 4,) the vector weights. Then, |
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. . . n .
¢ < min. ZJ’(P:)At, ,
yed i=1 -
or

i XH(p) > max. il Kfz (s, OVAD). (20)
i= veM i=

Since this condition holds for some A;, p; if and only if the existence problem
has no solution, the theorem is proved.

The corollary follows by noting that when M = .#(T), the right-hand side of
eq. (20) is maximized when v is a point mass at a maximand of
‘Zl APy 1). 1)
Q.E.D.

6. Limiting values for a continuous integrand

We consider the reduced problem of eq. (10) and eq. (11), or
veM(T), v=<v,, and

H(-) = fr h(-, )v(dr). (22)

We assume the set of v satisfying eq. (22) to be non-empty. Consider a con-
tinuous function f: T'— R, and

F = [pf(O)v(ds). (23)

We let &# denote the set of values of the integral (23) attained by v satisfying eq.
(22). We established in the proof of Theorem 1 that the set of v e #(T) with
v £ v, is compact in the weak topology. Then, & is compact. We seek the
limiting values . ‘

F_=min% and F, = max. #. ' (24)
Consider the augmented system of equations

ved(T), v=v,,

H(-) = fr h(-, yv(ds), (25)

F = 1 f{t)v(dy),
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for specified F. This system has a solution if and only if F e &#. Hence, we can
use the existence condition of Theorem 1 applied to the augmented system to
obtain the limiting values.

Theorem 2. Suppose the set & is non-empty. Then,

F, =  inf. max. { > 3, hpw WA~ H(p)

- {{1:1 pn)} g:g vsé.llg) =1 ‘
+J,.f(t)v(dt)}, 26)

F.= sup.  min, { > 3(J, hBe, WA~ H(p)
{P1se-,Pn} SS  veM(T) i=1
{4 :.,=,’l2,,'} f.Rl YSve .
+I,~f(t)v(dt)}- o

Proof. Let

L0y (20, G, 20) = 3, 4(J, bpi, D0(81)~ H(p)

+Aof V(D). (28)
From Theorem 1, F e & if and only if for all 4,, (p), (1),

max. L, (), (1), A9)—AoF 2 0. (29

Takmg Ao = limplies

F, £ inf. max. L(v,(p), (1), 1). (30)

(P1)s(A) v

If F > F,, then there exists 4y, (4,), (p;) such that

max. L(v, (p), (1), Ao)—A,F < 0. @)

For the same 4,4, (1), (7)),

max. Ly, (p)), (49, Ao)—AoFs 2 0. (32)
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‘Subtracting,
Ao(F—F,)>0, (33

implying 4, > 0. Normalize A, = 1. Then eq. (31) implies equality in eq. (30),
and eq. (26) holds. A similar argument establishes eq. (27). Q.E.D.

The limiting value F, (or F.) in the preceding theorem can also be obtained
as a solution of a linear program or its dual;

Corollary. Suppose & is non-empty. Then

Fy = max. [ fiomdn) (342)

subject to

(YpeS) [rhlp,)vdr) = H(p), | (34b)
fr v(do =1, (34¢)
v é Vs, (34d)
v =0, (34e)

and _
Fr= iof  {{s HOMp)+a+ [z Bov.(dn}, (352)
peecn)

subject to - |

(VteT) a+Bt)+[sh(p, DAdp) 2 1), (35b)

Bz0. - (35¢)

Proof. The linear program in eq. (34) is a restatement of €q. (26). Therefore,
it is only necessary to show that the linear program of eq. (35) is dual to that in
eq. (34). It is possible to appeal to general results on programming in linear
spaces to obtain this result [see Hurwicz (1958), Ioffe-Tikhomirov. (1968)]; how-
ever, we give a simple direct argument. :

Let

% = RxRx%(S, R xca (D),

and -
% = RxRxca (S, R)x4(T).
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Give R the Euclidean topology, (S, R") the sup norm topology, and ca(T)
the topology of weak convergence. Then % is the space of continuous linear
functionals on & [Dunford and Schwartz (1964, Theorem V.3.9)]. Define a set

A<= by
A= {058 mMeRXRXEES, R xca(T)|r
< [rflmdn, s =),
(VpeS) g(p) = IT h(p, t)v(df), n=v forsome
veca(T), v=0}.
Clearly, A is a convex cone. Suppose a net {re, S0, 85> n,,)} < A converges to

(7, 5,9, 1) € %, and suppose {v,} < ca(T) satisfies v, = 0, ry = [ f(t)ve(d2),
etc. Since v¢(T) = s, converges to 3, there exists a compact set

M={veca(T)|v=0 and W(T) £ sup. se},
8

such that v € M. Then, {va} has a subset converging weakuy to ¥ € M, implying

P = jrf)¥d),
W(T) = §,
g = jh( t)i"(dt).

Hence, (7, 5,3, V)€ A. Also, ng = v, implies 7 = ¥. Hence (r, §,3,)€ A, and

A is closed.
As noted in the proof of Theorem 1, the set of v satlsfymg the constraints in

€q. (34) is compact; hence, there exists ¥ € ca (T') satisfying (34b) to (34¢) and

F, = [+ f()¥(de).

The definition of F, implies the points (F, +1/n, 1, H, v,) are not in 4.
Hence there exist continuous linear functionals (6", —o”, —A", — Me%
strictly separatmg these pomts from 4;ie. forallv,neca (T), n 2vz0,

6"(F+ + ,1,) ey HOW )~ PO @)

>0
2 8"fr (AN =)~ s [ Wp, HVADI(Ap)~r Bt ().
(36)
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Taking n large implies f* = 0. Substituting # for v and # implies
&"ln > [ F®v.(d)-%(dn] 2 0,

0 2 8"F, — o~ fs H(p)A(dp)~ fr "0}V (dt) 2 — .

and

Normalize 6" = 1. Then,

lim. f B(0)ly.. (@) —¥(d)] = 0,
and .
F, = lim. {o"+{s H(p)A"(dp) +jT B (tv.(dt)} .

Furthér, taking v = ntobea poiht mass at ¢ in eq. (36) implies

VteT) f(O)—a"—[sh(p, HA"dp)—F'(1) S 0,

and eq. (35b) is satisfied. Since for e ca (S), xR, Be¥(T) satisfying eqgs.
(34b) and (34c), we have

a+ [ Hp)Adp)+ ] (1) (1)
2 a+ [ H(p)Mdp)+ [ B(1)v. (1)
+ [ {£(O)—a—[h(p, HAdp) - BO}7(d1)
= [ fOWA) a1~ KT)~ [ [H(p)~ | h(p, H¥(d1)1A(dp)
+[r BOV.(A)—F(dD)] 2 F.,
we have established that the linear program (35) has the solution F.. . QED.
There are tractable computation algorithms for the linear programs above
only when the space S of observed budgets is finite; this case is discussed later.
However, when v, is a (bounded) measure, the v,-continuity of v and the
Radon-Nikodym theorem [Dunford and Schwartz (1964, 111.10.2)] imply the

existence of a unique function ¥ € L,(T, v,.) such that

0SUM ST (ac. vy,
and

(VBorel 4°S T) v(4) = [, Y(1)v.(dr).
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Then, the limiting value problem becomes an optimal control problem on T,

F, = mfx- SO, @D, (37
subject to’ '
H(p) = [r h(p, Y(t)v,(d1) (VpeS),

and
0=y =1.

7. Bounds on probabilities of given sets

Consider the reduced problem summarized in eq. (22), and suppose now that
we wish to bound the measure v(V) of a Borel set ¥ < T for v satisfying (22).
Defining f: T — R to be the indicator function of the set ¥, this problem is the
same as that of the previous section, except for the continuity of /- Thus, one
approach to this question is to approximate f by sequences of continuous func-
tions and apply the preceding analysis. We take an alternative approach here
which exploits directly the structure of the problem. . '

Given the set V, let W denote the complement of V relative to 7. For any
scalar d € [0, 1], define

Ny={ned(V)|on=<v,},

M= {Ecd(W)| (1= < vy} (38)
~ Then, the problem of éq. (22) can be Writt;n as |

(VPeS) H(p) = 8y hp, @)+ -8y h(p, DEE@), (39

o0€[0,1], neN;, teM;, : 40)

with § = v(¥). Thus, the problem can be restated as that of determining bounds
on the values of é for which eq. (39) has a solution. The following result gives
bounds which may not be sharp. :

Theorem 3. Define D < [0, 1] to be the set of scalars & such that for each
finite sequence {p,, ...,p,} < Sand{A,,..., 4} S R,

S H@e)4 S8 sup. Y [T
i=1 v

N#eENg =1

+0- sp. & 4f Mpwne@), @

$eMs j=1
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and

2 H(p,)l, >6 inf. Y A f h(p, (1)

neENs I
+(1-0) inf. 3 4 e, Heds). @2)
$eMs  i=1 w

Then, each é € [0, 1] such that eq. (39) and eq. (40) have a solution which satisfies
inf. D £ 6 < sup. D. 43)
Proof. For 6 € [0, 1], define the set
A = {H(-)=8fy h(-, )n(dr)

—(1=8)fw h(-, H¢@A?) | ne N;, Ee M,}.

Then A, is a convex subset of (S, RY). If eq. (39) has a solution for a given J,
then the origin 0 € 4;, implying 0 cannot be strictly separated from A;. Then,
for any continuous linear functional 1 e ca (S, R’),

js H(p)A(dp) < & Sup. §s §v h(p, tin(d1)A(dp)
+(1-9) 213 is §w h(p, DEMADAdS). 44)

Since the set of functions in ca(S, R’) with finite support is dense, this in-
equility is equivalent to eq. (41). A similar argument establishes that eq. (42) is
satisfied. Therefore eq. (43) holds. Q.E.D.

Since the sets 4, constructed in the proof above are not in general closed, the
bounds obtained are not necessarily sharp. However, a corollary provides an
important case where sharpness is guaranteed.

Corollary. Suppose V is a continuity set of V. . Then, for each § satisfying
inf. D £ 6 < sup. D,

there exists a solution to eq. (39) and eq. (40).

Proof. We first consider a related problem. Let V W denote the closures of
V, W, and define

Ny={ne#(V)|6n <v,} and
M; = {Ee-/{(W)I(l—é)f = V+}-
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Define the set

A5 = {H(")=3y h(-, n(dD)=(1 - &)y h(-, )E(dt) | n e N,,
EeM,}.

By the same arguments as in the proof of Theorem 2, 4, is convex and compact.
Hence, a necessary and sufficient condition for the equation

H(-) = 8fp h(:, )n(dt)+(1— )y A(-, E@?) (45)
to have a solution is that for each (py,...,p,) < Sand (1,,...,1,) = R},

5 4.1) < 6 max. 3 1fy hipy, o)
i= 1

7eNs i=

+(1=38) max. 3 Afy h(p;, HEAL). (46)

deMs i=1

Now, since V'is a continuity set of v.., v,(V\V®) = v, (W\W®) = 0. Therefore,
n(V)=1forallneN,;,and {(W) = 1forall Ee M s- Hence, eq. (45) becomes

H(e) = bfy h(-, (@) +(1=8)fy h(-, HE@S), )

and eq. (46) becomes

M=

AH(p) S & max. 3. 1fy h(p,, Dn(d)

i=1 )]GN‘; i=

+A=8)max. 3. Lfy h(p,, DEQ)

eMs i=1

< 0 sup. lliIV h(p;, On(ds)

neNg i=

+(1=8) sup. 3" Afw h(ps, QD). (48)
¢eMg i=1

Hence, in this case the bound is necessary and sufficient for the original problem.
Q.E.D.
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8. Sharpenings when the number of observations is finite

The characterizations of measures achieving limiting values can be sharpened
when the observations form a finite vector. Suppose S = {p;,...,px} is a
finite set, and define

H(p,) h(pys 0
H= : and A(?) = : ,
H(pg) h(pk, 1)

of dimension N = K-/. Consider the problem

max. {7 f(Hv(d?),
veM

subject to
H = [ h(t)v(d?),

M = {ve M(T)|v £ v.}, where fis continuous. From the proof of Theorem 2,
M is compact. Consider the continuous linear map ¢ : M — R¥* ! defined by

I
<
I

S Fx fd)
( ) fr h(H)v(de)

Then ¢(M) is a convex compact set in RV * 1. It is elementary to show that each
extreme point in ¢(M) is the image of an extreme point in M. Further, the maxi-
mum value of y for (¥, x) € (M) satisfying x = H is a boundary point of ¢(M),
and can hence be written as a convex combination of at most N+1 extreme
points of ¢(M). Define a basis to consist of N+1 distinct extreme points of M.
Then, a solution to the problem can be attained among the set of bases.

An extreme point of M is a measure v characterized by a Borel set ¥ < T, with
WW) = v,.(W)for W = T and w(W) = 1. In the case that the restriction v < v,
is non-binding, these extreme measures will be unit weights at single points. Then,
the structure of the problem can be utilized to attain computational bounds.
In particular, the linear program in eq. (34) has a finite basis, and it is possible
to adapt the simplex algorithm to give an efficient procedure for improving
bases and bounding solutions.

9. An example

Consider a two-good exchange economy with a continuum of consumers with
identical endowments of one unit of each commodity. Suppose the first com-
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modity is indivisible, so that the net trades in this commodity available to any
consumer are —1, 0, 41, 42, etc., up to the largest integral purchase in the
budget constraint. Two budgets are observed. At the first, only the trades —1, 0
are possible and a mean trade of —0.2 is observed. At the second, the trades —1,
0, +1, 42 are possible, and a mean trade of 1.0 is observed. It is desired to bound
the possible mean trade when the budget makes the trades —1, 0, 1 possible.

The space T of agent characteristics is in this application an eight-element set
enumerating the possible rankings of these trades by strictly convex preferences,
as follows: o

o -1, 0, 1, 2 Vi,
) 2, 1, 0 —1, Va,
3) 0, -1, 1, 2 Vs,
@ 0, 1, -1, 2 Va,
) 0o, 1, 2 -1, Vs,
(6) 1, 2, 0, —1, Ve
@ 1, 0 2 -l Vas
®) 1, 0, -1, 2 Vg.

The conditions for consistency with the observations are then
—-02 = —v,,
1.0 = —v, +2v2+v6+v.7+v8,
-where v, are the probability weights, and the expression to be bounded is
F= —v;+4v,+vs+vs+vs.
Maximizing or minimizing this expression is a linear programming problem
whose dual corresponds to the bounds given in Theorem 2. In this example, the
solutions by inspection are
F, = 0.6, achieved by v; =0.2, v¢ =038,
F_ =0.2, achievedby v; =02, v, =04, v; =04,

A second example is given in McFadden (1974).

10. Open questions

This paper has applied only elementary methods to the problem of limiting
values of integrals over the space of agent characteristics. In the case of finite



D. McFadden, Tchebyscheff bounds 241

vectors of observations, much sharper characterizations of extremands can be
obtained, and these greatly facilitate empirical application. A general open
question is whether analogous techniques can be applied on the space of agent
characteristics. In particular, are there structures in which optimal control
methods are useful ?

Empirical experience suggests that bounds such as those in Theorem 2 can be
approximated with reasonable accuracy employing relatively few alternative
(p:), (4;) vectors. Can approximation theorems be established to estimate rate of
convergence to the exact bounds?

The analysis in this note has been applied solely to strictly convex preferences
yielding continuous demand functions. Because this set of preference relations
is not compact in the Hausdorff set metric topology, we restricted our attention
to a compact subset of these preferences. It would be desirable to consider the
entire class of convex acyclic preferences, since this set is compact. However,
this would require that we consider the space #(T) of upper hemicontinuous
closed convex-valued correspondences on T and the #(T)-topology of the space
of measures on 7. Can analogues of the standard theorems on €(7) and #(T)
be established for this space?
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