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A two-stage budgeting model is developed for electricity demand where consumption in each
period is treated as a different commodity. A relative household demand model is first estimated.
a consistent price index for electricity is constructed, and then a total electricity consumption
model is estimated. Econometric procedures are derived which permit application of the model
to both time-of-day price situations and also declining block price situations which resuit in
non-linear budget sets. The model is applied to both types of situations - the data from the
Connecticut time-of-day pricing test as well as data from the declining block rate situation of the
previous year. The model is also tested in a forecasting application to time-of-day customers.

1. Introduction

Time-of-day (TOD) electricity pricing has received increased attention in
the post-1974 era of sharply increased energy prices. Generating capacity for
electricity can be divided into three main types: base load capacity, in-
termediate capacity, and peak capacity. The marginal costs of generation rise
greatly as system demand requires utilization of intermediate and peak load
capacity at certain times of day or during certain seasons of the year. Thus,
time-of-day prices for electricity offer a possible method of decreasing
average generation cost per kWh of demand by causing peak demand to
shift into other hours of the day when only base load capacity is required.
Also, by setting time-of-day prices in a pattern which has a shape similar to
that of marginal costs of generation, the price patterns prescribed by
economic theory to achieve a welfare optimum might be closely approxi-
mated.! Another possible outcome is to decrease energy consumption of oil

*M. Kinnucan died in April 1978. We would like to thank R. Wilson for excellent research
assistance and W. Hieronymous for assistance and advice. R. Engle, W. Hughes and a referee for
this journal made helpful comments. This paper was written under a contract to Charles River
Associates by the Electric Power Research Institute, and presented at the EPRI Workshop on
Analysis of Electricity Demand by Time-of-Day, June 11-14, 1978. The complete results and
forecasts will be contained in the Charles River Associates Final Report (forthcoming).

It is incorrect, however, to conclude on this basis that the introduction of TOD pricing
would lead to a welfare improvement. Since the cost of metering equipment is significant, this
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and natural gas by electric utilities since these fuels tend to be used primarily
for intermediate and peak capacity while coal and nuclear generation are
more economic for longer load durations. The increased attention by both
regulatory commissions, electric utilities, and the federal government has led
to the initiation. of at least six time-of-day demonstrations or experiments
which attempt to estimate the effect on household electricity demand of time-
of-day prices.

Here we analyze the results of the Connecticut Peak Load Pricing Test,
which was conducted in the Connecticut Light and Power Service Area
during the period October 1975 to October 1976. Meters were installed in
199 households and readings of household electricity consumption were
recorded every fifteen minutes for the one-year period. Households faced a
time-of-day pricing structure with price set on an hourly basis into one of
three categories corresponding to peak price (16¢/kWh), intermediate price
(3¢/kWh), and off-peak price (1¢/kWh). The TOD pattern changed between
weekdays and weekends and between summer and winter. Previous analyses
in the Final Report (1977) and papers in the EPRI conference volume {1977),
which have concentrated on the time pattern of response have demonstrated
that significant shifting of hdusehold electricity demand from peak to
intermediate and off-peak periods occurred. The peak demand in January for
the experimental group of households occurred in an off-peak price period
while peak demand for the control group occurred during a peak-price
period. Similar load shifting occurred during other periods of the year
resulting in the conclusion that TOD prices had the expected effect on the
pattern of household electricity demand.

Other important results are not conveniently analyzed within a time series
framework, however. Total electricity consumption of the experimental group
was 39, less than the control group during the period of the experiment.
Also, given the short time duration of the experiment, the appliance stock is
taken as fixed, so that the medium- and long-run response cannot be inferred
from the analysis. Our approach, which falls more within the tradition of
econometric consumer demand estimation, has the potential to explain these
questions and others which arise regarding TOD prices. We treat electricity
demand within a two stage budgetary context. Letting electricity demand in
each period be a different commodity, we estimate relative household
demands across periods conditional on relative prices, the appliance stock,
socioeconomic characteristics of the household, and the weather. From these
relative demand estimates, we then estimate a price index for electricity that
corresponds to the unit cost function of a subutility function in a weakly

extra cost must be included in any cost-benefit calculation, see Wenders and Taylor (1976).
Also, the significant fixed costs of electricity generation raise questions in the absence of a two-
part tariff which need to be considered in any welfare calculation.
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separable utility specification. Given the pric'e index for electricity and- t.he
prices for other goods, the household determ1ne§ how mu_ch tota'l elegtrlclty
to consume. The household’s absolute demand in each time period is then
derived from the product of its relative demand in the period and its total
demand for electricity. Since initial analysis demonstrated that relative
"demands couid be estimated more precisely than absolute demands by
households across time periods, this approach permits quite precise estimates of
the relative load schedule by households. Also, since the estimated price
index for the experimental household is higher than for control households.
the model explains why total electricity consumption is lower for households
which face time-of-day prices. As the appliance mix of households changes
over time, forecasts of hourly demand can be generated by the model. so
long as the technology of the appliances does not shift markedly. Lastly,
interactions of prices, weather, and the appliance mix are accounted for so
that the model can be used in a general load forecasting framework.

In section 2 of the paper, we describe the theoretical model for time-of-day
electricity consumption. Beginning with a specification of a weakly separable
utility function, we derive an equation for relative electricity demand. The
equation is derived by applying a Taylor expansion to the demand function
derived from Roy’s identity for each hour of the day during the winter and
summer price periods. We then construct the price index and in a similar
manner derive an equation for total electricity demand. In section 3 we
estimate both relative hourly demand and total demand using the equations
developed from the demand theory in the previous section. For the time
period in which households faced declining block prices rather than time-of-
day prices, we use appropriate procedures to deal with the non-linear budget
set. These procedures have been previously developed in work on labor
supply where an identical problem arises due to progressive taxation and
government tax and transfer programs and in work on aggregate demand for
electricity under declining block rates. In the last section we compare
forecasts of relative demand, total demand, and absolute hourly demands to
actual demands for a sample of twenty households which were not used in
the estimation of section 3. The model appears to perform relatively well in
the forecast environment, especially in predicting peak period demands. We
conclude that it is worthwhile to consider using such a model in the other
time-of-day experiments where cross elasticities could also be estimated since
the data design in the Connecticut test did not permit these elasticities
to be estimated.

2. Theoretical derivation of time-of-day model

Given the preliminary empirical observation from the time-of-day experi-
mental data that the distribution of the relative load across households i1s more
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stable than are absolute consumption levels, it was decided to fit a two-level
budgeting model to the Connecticut data. An advantage to this approach is
that it reduces the complication, inherent in the control customers, that price
depends on quantity consumed, i.e., the declining block rate structure. The
main disadvantage to the approach is that a linear homogeneity assumption
is required on the relative load which is unlikely to be strictly correct.
Considered as an approximation, the usefulness of our approach is an
empirical matter which we test in the process of estimating the model. We
also take what is essentially a single equation approach to estimation (mainly
due to computer software limitations). Thus, given the insufficient variation
in experimental prices in the Connecticut experiment, only the own price
effect will be estimated. By utilizing a multi-variate approach and imposing
strict assumptions about the form of cross-price effects within the framework
of consumer theory, it is possible to estimate cross-price effects. We will
indicate the direction of this approach after discussing the two-level scheme
used in the actual estimation.

2.1. Two-level budgeting model?

The model considers electricity consumption in a representative day. For
simplicity, the household appliance holdings are assumed to be prede-
termined, and the dynamics of electricity consumption behavior across days
or seasons is ignored. Thus, response of the appliance mix to time-of-day
pricing is ignored. In time-of-day experiments of longer duration than the
Connecticut experiment, it will be necessary to consider this important
source of consumer response. Interday dynamics are less important; an
example of such a response is the shifting of clothes washing to take
advantage of weekend rates. However, in future detailed analyses of in-
teractions among time-of-day rates, serial weather patterns, and ‘storage’
appliances, interday dynamics will require modeling.

Suppose the day is divided into a series of periods 1,,1t,,..., ty. These may
correspond to fifteen-minute measurement periods, or may be longer in-
tervals which aggregate a number of measurement periods. Let x, denote the
consumption of electricity (in kWh) during period ¢,. Then, x=(x,,...,x,) is
the vector of electricity consumption levels over the day. Under time-of-day
pricing, there is a corresponding vector of electricity rates, p=(p,,..., py) with
p. the cost (¢/kWh) in period t,. For simplicity, assume time-of-day rates are
constant with respect to kWh consumption levels, as is the structure of prices
in the Connecticut experiment. Much of the model structure below would
continue to hold, however, if the vector p specified only relative time-of-day

*The model structure described here was suggested by McFadden (1976); see also McFadden,
Puig, and Kirschner (1977). Two level budgeting models were pioneered by Gorman and Strotz.
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prices, with the overall level determined by a block rate structure depending
on overall consumption.

The household is assumed to have a utility function depending on the
vector of electricity consumption levels x and on the quantities consumed of
all other commodities, denoted by x,. (We shall treat x, as a single variable:
the formulae below have an obvious reinterpretation when 1t 1s a vector.) Let
po denote the price of all other commodities, and let I denote the daily
expenditure of the household. On an average, I should also equal daily
income. The household then has the budget constraint

p0x0+p1x1+...+pNXn=I. . (1)

Let u=U{x,, x) denote the household utility function, and let

U=V p_oap_ly-“v@
I 1 I

=max {U(xo, X)

14 P P
TO,‘CO-FTIL.‘CI-F...%XN:l} (2)

be the indirect utility function giving the maximum utility obtainable at
prices pg, Py..- .. Py and expenditure /.

The two-level budgeting procedure imposes separability between electricity
consumption and the consumption of other commodities. The basic idea
behind the approach is that the household decides the total to be spent on
electricity along with how much to spend on other commodities. This
decision uses a price index for electricity consumption at different times of
day along with the prices of all the other commodities. Given the total
expenditure on electricity, the share of expenditure allocated to electricity
consumption in each time period depends on relative electricity prices only.
The utility function then has the special form Ufxg,x ..., Xy}= WX,
f{x1,....xy)). For the price index scheme to be feasible, it is sufficient to
have f homogeneous of degree one.® Since f is homogeneous, the indirect
utility function corresponding to f can be written in separable form as
ré(py,....py) where r=3N_, p x,, the total expenditure on electricity and ¢
might be thought of as the inverse of a price index. Thus the linear
homogeneity assumption implies that if all electricity prices were to double,
the relative allocation among periods of the day would not change, although
total consumption would change. This is the restrictive assumption to which
we previously referred.

Given these assumptions, the two-stage budgeting process corresponding

*Gorman {1974) has shown that this condition can be weakened slightly, but only to the
extent of shifting the intercept of the Engel curve.



268 J.A. Hausman et al.,, A two-level electricity demand model

to the utility function Wixq.f(x,,...xy)) leading to the corresponding
indirect utility function is

max {W(XO, f(xls feey xn))

N
> p,.x,.=l}
=0

=max {W(xo, r¢(py, ..., pa))|xo = {I = r)/po} 3)

= Vipo/1, 1/$(pi/1,- ., po/1)),

where the homogeneity of degree one of ¢ has been used and the fact that

r=f(x,....x,)/¢{p1,....p,). Roy’s identity gives demands from the indirect
utility function as x, = —(év/ép,)/(év/éI)= —v,/v;. Then, again using the linear
homogeneity assumption and Euler’s theorem so that coplpy/L,. .. p /NI =
—¢(pi/I, ..., p,/1)/1, we have the demand function

Y= — (Vi 0* ) (poVi/I+Vof®),  n=1,...N. (4)

Defining total electricity consumption as X=>7Y_,x, the proportion of
electricity consumption in period ¢, is

Snzd)n(plﬂ"':pN)/ Z d)m(PI"“spn)s n=17-"9Na (5)
m=1

or consumption’in period n, relative to consumption in a ‘base period’ N, is
hrl = Sn/SN = xn/xN

=P (P1s - PNY NP1, - - D)

=@u(D1/Prs- - Pn—1/PNY ONDL/PNs - Py - 1/ PR)s (6)

where the last expression follows using the homogeneity of ¢. Taking a first
order Taylor expansion to this function gives

Pm

n=1,...N—1. (7}
Pn

N-1
hn:9n+ Z o -
=1

m

The effects of appliance holdings, socioeconomic factors, and weather are
incorporated both through the intercept parameters 6, and through the slope
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parameter by specifying «,, as a (linear-in-parameter) function of these
variables. Thus, adding a stochastic term ¢, would lead to an equation of the
form

J

K
h,= Z Bimapp;+ Z VknSOC, + 0, weather
k=1

i=1

+'z w,,,,,"uz S b, —app,

ji=lm=1
K N-—-1 Do
+Y Y Ckm sock + Z d,, — weather +¢,, (8)

k=1m=1 =1 P

where app; are appliance variables, soc, are socioeconomic variables, and g,
is the disturbance. In principle both own price effects and cross price effects
could be estimated from this relative consumption equation. Note that
normalization has eliminated the statistical problem (at this stage) of having
prices dependent on quantity for the control observations when electricity
price depends on total consumption X. Unfortunately, due to lack of
sufficient variation of the p,/py variable in the Connecticut sample design,
only own-price effects can be recovered using this approach. The column
rank of the price variable submatrix is one so that all but the own price
effect is absorbed into the constant. We will later show that by imposing
additional assumptions using consumer theory, these cross-price effects could
be estimated in restricted form. But since the restrictions could not be tested
in the present dataset, we leave this model to other experiments where the
restrictions could be tested.

This specification permits estimation of both the relative consumption and
the proportion of electricity consumption in each period. To estimate total
expenditure on electricity we form the price index to use in the first stage of
the budgeting process. The linear homogeneity of f(x,,.., xy) implies that the
correct price index to use is the estimated demand weighted average price of
electricity since it corresponds to the unit cost function for utility

p=r/X
A A R

where the estimates from the previous stage are used for the 8, and «,,
parameters. The price index corresponds to the unit cost of electricity
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consumption and is now used with eq. (3) to derive a demand function for
total daily electricity consumption. Again, using a Taylor expansion on the
demand X derived from using Roy's identity to eq. (3) gives total con-
sumption X for day |,

X}= Xni

1

n~]=

J k
=Y B,app;+ 2 7,s0c, +oweather, +yj
i=1 K=1

J k
+ Y bgapp;+ Y ¢pisoc, +0p,weather, +¢;. (10)

i=1 k=1

For the pre-experimental period when a declining block rate structure was in
use rather than time of day pricing, p, ts constant across all periods so that
p=p, However, an additional complication arises because p is a function of
total monthly consumption, p=g(> L, X,)=g(X) due to the block structure
which causes marginal price to depend on monthly demand. A question
arises of which is the appropriate price from the rate structure to use and
how to avoid the simultaneity problem of having price, a right-hand side
variable, depend on quantity consumed, the left-hand side variable. These
problems are resolved in the next section when the demand system is
estimated.

2.2. Multivariate approach

The single equation approach used in our empirical analysis ignores two
potential sources of information: cross-equation restrictions which arise
because the ¢ function is common to all the h, equations, and restrictions
which arise from the maximization hypothesis of consumer theory. We now
outline a fairly general approach which imposes this information in the form
of parameter restrictions. Here we do not follow the two-stage budgeting
approach, with the result that the indirect utility function has the unre-
stricted form V(po/I, pi/I,..., py/I). Then by Roy's identity

S p

x,,=v,,/ Y Ry, (11)
m=01

Therefore, total expenditure on electricity

N N N p
=% rn= X o 3 B 12)
n=0

n=1 m=0
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The proportion of electricity consumption in period n is

N

sp=x,/ X =, ,-'i Y U {13)

Com=1

and relative to the base period N,
hn = Sn/SN = llnt":L"N' (14)

Once an assumption is made in the form of the indirect utility function .
any of the above equations could be estimated. A relatively general function
form which serves as a linear-in-parameter approximation to v is the translog
form of Jorgenson and Lau,

v= i 0,log22+4 i i 1| log 2 \( log 22
= n = I 2 e [ I ! [15)

n=0m=0

This functional form leaves N2+ N parameters to be estimated. However, the
maximization hypothesis of consumer theory implies symmetry (%, = %),
which gives N(N —1)/2 restrictions. Still, any of the three equations determin-
ing x,, s, or h, is non-linear in parameters and therefore complicated to
estimate. A sufficient assumption to attain linearity in parameters is to
assume that all income elasticities are unity, or equivalently that ¥ is linear
homogeneous in prices. This additional restriction implies > Y.,8,=1, and

N _o%mm=0 which gives N+ 1 further restrictions. Then

I al Pon
Xy=—]0,+ Y amlog—T|, (16)
Pn m=0 i

and expenditure shares are

pnxn p_m

T

N
sp=——=0,+ ) u,,log (17
0

m=

Now the cross-price effects arise from the a,, which has N(N+1)/2~
independent parameters, while the Connecticut data has a price submatrix of
rank 2N — 1. Thus, to identify all price effects (N —2)(N —1)/2, restrictions
must be imposed a priori and cannot be tested. If the own-price effects are
unrestricted then N —1 cross-price effects are permitted. Two possible sets of
restrictions come to mind: %,,,=v,7, for m#n with ) y_,,=0 so the cross-
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price effect has a muitiplicative form from ‘spillover’ propensities for each
period, or g, =f,—,, 50 only temporal distance matters. This approach then
would include socioeconomic factors, appliance holdings, and weather in the
0, and 2, specification, as did our earlier approach. While the current
approach relies heavily on consumer theory and the linear homogeneity
assumption, it does permit estimation of all desired price effects while the
earlier single equation approach requires N(N —2) additional restrictions to
identify any price effect beyond an own-price effect and a single cross-price
effect between a given period and all other periods.

3. Estimation of the two level demand system

Given the development of the theoretical two level demand system we now
proceed to estimate it on a sample of 150 households using data from both
the pre-experimental period and the time-of-day experimental period. An
additional 20 households in the sample are not used to estimate the
unknown parameters; instead they are used for testing and validation of the
model. Two levels of household demand are estimated. The first level which
corresponds to relative demands for electricity is estimated on daily data on
an hourly basis using the specification of eq. (8). Then the price index p is
estimated by eq. (9) for the experimental period or instrumental variable
estimates for the declining block rate period (pre-experiment) are used to
estimate a daily consumption function for electricity using the specification of
eq. (10). Using those two equations allows us to forecast both the relative
system load and the absolute system load for different hours, days, and
seasons of the year. Thus, the estimation procedure allows analysis and
forecasts of household demand using a consistent aggregation scheme on the
household level for the important price variable during the experiment and a
consistent estimation scheme for the demand determined marginal price
during the pre-experimental period.

Before presenting the actual estimates some potentially important econ-
ometric 1ssues need to be discussed. First, the sample of households is not a
random sample in two respects. The sample was chosen by stratification on
an endogenous variable, annual consumption for the year 1973. Since the
residuals from almost any specification of demand over time will be
correlated due to unobserved permanent household effects, this stratification
will affect the distribution of residuals in all later periods. For instance, large
users in the highest stratum are ten times as likely to occur in the sample as
customers in the lowest stratum (Final Report, p. 2). Thus, even two years
later, it is likely that the conditional expectation of the error term is positive
rather than zero. Thus least squares type techniques will lead to inconsistent
estimates. To counteract this problem; inverse sample weights are used in a
weighted least squares procedure to yield consistent estimates. As Hausman
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and Wise (forthcoming) demonstrate, these estimates are not efficient:
more important is the fact that the reported standard errors are likely to
be downward biased.* This downward bias should be kept in mind when
interpreting the results. The second respect in which the sample is not
random is potentially more important and cannot be so easily fixed.
Individual households voluntarily agreed to participate in the experiment.
Over 129 of the households interviewed declined to participate, raising the
possibility that the experimental participants anticipated more advantage
from the experimental TOD rates than those people who declined. While an
analysis (Final Report. p. 26) was conducted to check on the representative
nature of the sample, it is likely that unobserved attributes are important in
consumer response and these attributes cannot be checked. In a demand
study of the Arizona TOD experiment, Aigner and Hausman (1978) found
that the peak period elasticity declined significantly when the voluntary
choice was modelled. Thus, the possibility exists that the elasticities of
response are overstated relative to the population as a whole. The last
potential econometric problem is that the appliance stock is taken as
predetermined and unchanging, while only the pre-experimental marginal
price is treated as endogenous. While the short-term nature of the experiment
precludes any other treatment, inspection of the daily consumption equations
indicates the likely event that some high electricity using appliances, such as
air conditioners, were purchased during the course of the experiment. Since
the choice of model characteristics of the appliances are affected by the price
regime during the experiment, these appliances (which enter the error term)
are likely to create correlation with the right-hand side variables. This
problem is unlikely to be too important, since the occurrence of such events
seems to be relatively small as an inspection of the estimated residuals in the
daily consumption equation indicates.

3.1. First level demand estimation

The first level of the two level demand system was estimated on the basis
of four periods: weekdays and weekends during two months in the winter
(January-February) and two months in the summer (July-August) which
correspond to the system peak demand periods. The total number of periods
used are N=17 from eq. (5). Each hour during the day was treated as a
separate demand period with the night-time hours of 11 p.m. to 7 a.m. being
aggregated to form the base period. Thus, in the pre-experimental period the
price relative to the base period is a constant set to one since price varies
only with total consumption, not with relative consumption across periods.

*Unfortunately, the correction procedure is quite complicated so we did not attempt to use it
here. The appropriate technique is to use maximum likelihood as Hausman-Wise do for their
particular case of the Gary NIT experiment.
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During the experiment, the hourly relative rates differ due to the TOD
structure of hourly prices. Fig. 1 indicates the relative prices for the 17
periods of winter weekdays. The specification for the relative demand eq. (8)
has prices, appliance holdings, socioeconomic and weather variables entering
both in level form and as interactions. With the addition of day of week
variables, the total number of coefficients for winter weekdays i1s 36. Since
each of the 16 hours has its own set of estimated coefficients, presentation of
the complete model is left to the final Charles River Associates (CRA) report.
Instead, we present the resuits for three hours during winter weekdays,
corresponding to one peak hour, one intermediate hour, and one off-peak
hour.

The estimated coefficients for one peak period, one intermediate period,
and one off-peak period are presented in table I. In interpreting the
coefficients, it is important to remember that these demand equations are
relative to the base period which is the middle of the night when presumably
little substitution occurs.® In the long run, considerably increased sub-
stitution would occur in this period due to the use of storage heaters and
timed appliance use. That is. Py in eq. (7) is the off-peak rate, and we have
aggregated the eight night hours into a base period. The coefficient of the
variables corresponding to appliances generally have the correct sign and are
estimated precisely. An appliance like an electric range or clothes dryer
should have a positive coefficient since they are operated during the day, and
thus they raise consumption relative to the base period if they are present in
a household. For instance, 60%, of the households have electric dryers and
relative consumption rises by 229 during the 9-10 a.m. period if a dryer is
present. Alternatively, an appliance like a freezer should have a negative
coefficient since it 1s operated at all times of day. But a freezer increases
consumption in the numerator period less proportionately than it increases
consumption in the denominator period and since log of the left-hand side
variable is used to reduce heteroscedasticity, the coefficient is negative. Most
of the appliance coefficients fall into this expected pattern; while dishwasher
may initially look incorrect, its interaction with the electric water heater has
the expected sign pattern. The socioeconomic variables of home-during-the-
day and number-of-persons have the expected signs. The interpretation of the
income coefficient is not totally in one direction, but its sign should be
positive as is found.

The effect of price comes through mainly in the interaction terms. Higher
prices cause people to reduce their heating consumption in periods when
these higher prices are in effect, and the effect spills over to the off-peak

*Tt is possible that people could buy timing devices to operate appiiances at night or use heat
storage devices to take advantage of the low rate. Virtually no appliances of this sort were
purchased during the experiment, however. although a repurchase agreement by the electric
utility has been made.
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Table 1
Winter weekdays parameter estimates.”

Period 3 Period 8 Period 16
(peak) {(intermediate) (off-peak)
Variable 9-10 a.m. 2-3 p.m. 10-11 p.m.
(1) Constant —2.23 -2.37 —1.38
{0.049) (0.082) (0.073)
(2) Hear® 0.039 —0.163 —0.356
) {0.063) (0.098) {0.088)
(3) Range 0.166 0.374 —~0.126
{0.035) (0.058) (0.053)
{4) Water heater 0.0100 0.545 0.058
(0.045) (0.076) {0.068)
{5) Dishwasher —-0.064 —0.215 0.152
| {0.032) (0.055) {0.050)
(6) Clothes washer -0.079 —0.899 -~0.411
» water heater {0.050) (0.084) (0.075)
(7) Clothes dryer 0.222 0.450 0.705
{0.027) (0.046) (0.041)
(8) Dishwasher 0.307 0.266 0.192
= water heater (0.064) {0.108) {0.096)
{9) Freezer —0.283 —.407 —0462
(0.029) (0.048) (0.043)
(10) Home during day 0.257 0.079 —0.228
(0.033) (0.057) (0.051)
{11} Home Sq. Ft. 0.084 0.114 —0.076
{0.031) (0.052) {0.046)
{12} Home type® -0.395 —0.206 -0.316
(0.026) {0.045) (0.040)
{13) Persons 0.070 0.038 0.065
(0.013) (0.021) (0.019)
(14) Income (1000s) 0.0058 0.0074 0.0020
(0.0021) {0.0036) (0.0032)
(15) Relative price (p) 0.011 0.137 0.019
{0.004) (0.037) (0.033)
{16) p x heat -0.012 —~0.283 —-0.021
{0.005) (0.042) {0.038)
{17) pxrange —0.020 —0.031 0.073
. {0.003) (0.023) (0.021)
(18) p x water heater —0.018 ~0.208 —-0.200
{0.004) (0.031) (0.028)
{19) p x dishwasher 0.014 0.062 0.066
(0.003) (0.025) {0.022)
{20) p xclothes washer 0.043 0.379 0.266
x water heater (0.004) (0.035) {0.031)
{21) p xclothes dryer —0.022 —~0.181 --0.141
{0.002) (0.021) {0.018)
(22) p x dishwasher —-0.027 —-0.017 —0.067
x water heater (0.005) (0.048) {0.042)
(23) p x freezer " 0.01% 0.123 —0.036
{0.002) (0.021) (0.018)
{24) p x home days —0.005 0.061 0.118

(0.003) (0.024) (0.022)
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Table 1 (continued)

§——

-

Period 3 Period 8 Period 16
{peak) {intermediate) (ofl-peak)
Variable 9-10 a.m. 2-3 pm. 10-11 p.m.
(25) p x home sq. {t. -0.010 -0.084 0.019
(0.002) {0.022) {0.019)
{26) p x home type 0.021 —0.024 0.030
(0.002) (0.019) (0.017)
(27) p x persons —0.002 0.0098 —0.025
(0.001) (0.0094) (0.008)
(28) p x income —0.0006 —0.0065 —0.0028
(0.0002) (0.0015) {0.0014)
(29) Temperature —0.0006 0.0024 -0.012
(0.021) (0.0045) {0.003)
{30) p x temperature 0.0002 —0.0002 0.004
(0.0002) (0.0017) (0.001)
{31) Temperature 0.037 -0.047 0.034
x heat {0.011) {0.022) (0.017)
{32) p x temperature 0.0006 0.024 —=0.020
% heat (0.0008) (0.008) {0.007)
{33) Tuesday —-0.011 —0.107 0.002
(0.021) (0.025) (0.023)
(34) Wednesday —-0.043 —-0.079 0.051
(0.022) (0.026) (0.023)
(35) Thursday -0.011 -~0.109 0.032
(0.022) (0.026) (0.022)
(36) Friday -0.029 —0.153 0.050
(0.021) (0.024) (0.021)
NOBS 8198 7986 7973
S.E.E. 0.786 0.906 0.808
R%. 0.861 0.835 0.772

*The reported standard errors (given in parentheses) here are from the weighted least squares
estimates. Since we use a time series of cross sections with 60 observations per household.
however, the standard errors are understated since no account is taken of the non-independence
of the observations. In a variance components framework including a household effect and a
random effect, the household effect comprises between 14% and 35% of the total variance for
the different regressions in the paper. Thus, an upper bound on the understatement of standard
errors is between 3 and 4 times. Generalized least squares is the appropriate estimator, but due
to a constrained budget, it was not undertaken. The parameter estimates would hardly change
due to the large number of observations. On the other hand, GLS would lead to more efficient
cstimates so the final result could well be lower standard errors than we reported. Thus, the only
firm conclusion we can draw is that the parameter estimates would not change; the final
direction of change in standard errors cannot be calculated on a priori grounds.

®Corresponds to a dummy variable indicating that an electric appliance of the type indicated
is owned by the household.

“Corresponds to a dummy variable indicating a multiple {family dwelling.
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period in a weaker form through non-adjustment of the thermostat. Likewise.
households lessen their use of electric ranges during peak periods and shift
their use to off-peak periods which goes along with the sign reversal in
table 1. On the other hand, the sign pattern of the price-freezer interaction
has exactly the opposite pattern since during the high-priced periods the
numerator of relative consumption falls more than the denominator. We find
the coefficient of the price-income interaction difficult to interpret. Overall
price elasticity is negative in each hour, as expected. The morning peak
elasticities for 9-11a.m. average —0.22 while the evening peak elasticity for
5-7 p.m. averages —0.13. Thus, daily household tasks seem more substitut-
able than supper-time activities. The intermediate period elasticities are
lowest near the peak periods and attain a maximum value of —0.21 from 2—
3p.m. Temperature seems to have little effect on relative consumption,
although the coefficients here can be contaminated due to slowly changing
temperature conditions. Lastly, the day-of-the-week variables, all measured
relative to Monday, reinforce the presumption that people still wash and dry
their clothes more on Monday than any other day of the week. However, on
this interpretation they did do more of their wash in intermediate price
periods than in peak price periods as we would expect. As we noted in
section 2, relative consumption seems much more stable than absolute
consumption which appears in our R*s of around 0.8 in table !, which is
quite high for cross section data. Thus, the first stage equation seems to be
quite reasonable. We will further investigate its properties in the next section
when we discuss model validation.

3.2. Construction of appropriate prices

Given the estimates of relative consumption at the first fevel in our two
level system, we proceed to estimate the aggregate daily eq. (10). This daily
equation when combined with the hourly relative equations estimates the
absolute system load during each hour of the day. Before presenting
estimates from the daily consumption equations, we must specify how the
price of electricity was entered into the demand equations. During the pre-
experimental period, residential electricity rates were not time differentiated:
rather a declining block rate structure was in effect. In this structure, after an
initial connection fee the price per kWh declines as quantity consumed
increases. The pre-experimental rate structure in Connecticut during the pre-
experimental period had the form (October 1975) shown in fig. 2. Thus, it is
not immediately evident which is the correct price to enter into the
household demand function. Given the household demand, one might use
either average price or some marginal price, but this procedure introduces a
simultaneous equation problem as Taylor (1976) and others have pointed
out. Exactly the same problem occurs with a progressive tax system in the
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estimation of labor supply. Thus, we use a technique analogous to the one
used by Hausman and Wise (1976), and Rosen (1976) in the labor supply
case and by McFadden, Puig, and Kirschner (1977) in the electricity demand
case.® The basic idea is to linearize a budget set at a reduced form prediction
of monthly consumption and then use instrumental variables to estimate
daily consumption using predicted marginal price and the lump sum
payment to characterize the budget set.” The familiar two good diagram of
fig. 3 where consumption of electricity is on the horizontal axis and
consumption of the composite good illustrates the situation. Here a three-
part declining block rate shows each segment linearized with marginal prices
p, > p,> p;. The appropriate income for each of the linearized budget sets 1s
Vi, 20 73 Where the latter two correspond to ‘virtual’ income since they are
not actually observed. It is straightforward to show by integration that
v, — 7, equals the corresponding lump sum payment from fig. 2 so that its
coefficient in the demand equation should be the same magnitude as the
income coefficient with an opposite sign. For instance, if predicted monthly
consumption is between 200 and 300 kWh then in fig. 2 the marginal price is
3.54¢/k Wh with associated lump sum payment of the fixed fee ($2.27) plus
the amount paid in excess of the marginal price for the amount consumed up
to the block where predicted demand falls. For fig. 2 this lump sum amounts
to $6.16. This linearized budget set then is equivalent to the declining block
rate structure the household faces, and the instrumental variable procedure
eliminates the potential simultaneity problem.

During the experimental period, the household faced three different prices
depending on the time of day. The question of the correct price to enter into

®One aspect of the problem which this approach does not capture adequately is the non-
convexity of the budget set which leads to intervals around the kink points being non-utility
maximizing points. Due to the non-convexities individual (utility maximizing) demand functions
are discontinuous in the price space at certain points. A treatment of this problem within the
labor supply context is given by Burtless and Hausman (1978).

It is important to use a lrue instrumental variable estimator in this situation and not a two-
stage least squares procedure since the latter estimator is inconsistent because of the nonlinear
price schedule:
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a daily demand equation is basically a question of index number theory. An
hourly weighted average on demand weighted averages of the Laspyres or
Paasche type are possible choices. However, within our two-level demand
approach, the correct choice arises from eq. (9) which gives a weighted
average using the estimated coefficients from the first level of demand. This
estimated demand weighted average price indicates the amount of sub-
stitution that each household practiced to miss the higher price periods. For
instance, during winter weekdays for the price schedule shown in fig. 1, the
mean and standard deviation of the price index are 3.89¢/kWh and 0.320
respectively with a high estimated price index of 4.66 and a low value of
3.25. These price indices can be compared to the winter of the pre-
experimental period when the average marginal price was 3.34¢. During this
pertod 137 of the 150 households were forecast to be in the same block with
a marginal price of 3.31¢/kWh and a lump sum payment of $4.07. Thus,
comparing the price indices, it appears that households faced a higher marginal
price during the experiment of about 16%. Since electricity is certainly a
normal good with a positive income elasticity, unless removal of the $4 lump
sum payment induces sufficient additional consumption to overcome the
price effect, we would expect to see a decrease in daily consumption during
the experiment. A decrease in consumption did occur with approximately a
19, decline from the previous year and a 5° decline compared to the
controls during the same year which allows us to control for weather
differences.” Thus, the higher marginal prices faced during the experiment

8During the month of January 1976, experimental demand is significantly greater than both
the previous year and than the controls. Thus, even accounting for weather, we would have an
clasticity with the wrong sign. For February and the average of the two winter months, the
clasticity has the correct sign. Both summer months have the correct sign since marginal price
again increased during the experiment while consumption decreased.



J.A. Hausman et al., A two-level electricity demand model 81

seem to outweigh the removal of the lump sum payment and result in a
decline in overall consumption.

3.3. Second level demand estimation

Four different daily demand equations are estimated using the specification
of eq. (10). These equations correspond to weekday and weekend demand for
the winter and summer. Table 2 presents the weekday consumption [or
summer and winter, leaving discussion of the weekend resuit for the final
CRA report. The first point to note is that the daily demand equations are
much less precise than the first level hourly relative demand equations. The
R?¥s fall dramatically, and this problem in the absolute demand equation is
one reason that we found the two level approach to be attractive. Next to be
noted is that the appliance coefficients generally have the correct total effect.
For instance, at the mean of the sample presence ol electric heat adds
50.7kWh/day during the winter while a 19 rise in the marginal price leads
to a reduction in weekday electricity consumption due to electric heating of
2.45kWh/day or about 4.3%. It is important to note in calculating these
demand derivatives that a change in price not only affects the marginal price
terms, but also affects the lump sum payment. Both effects need to be
accounted for in the calculations. Thus, households did seem to lower their
thermostats during the TOD experiments relative to the previous year. On
the other hand, the presence of a freezer adds 1.24kWh/day to electricity
consumption, but the price elasticity is only 0.68 %, which is not significantly
different from zero, which reflects the non-discretionary behavior of freezer
electricity consumption. The one significant disappointment in the estimates
arises from the demand effect of the lump sum income effect. As de-
monstrated above, its total effect should be equal in magnitude but opposite
in sign to the income effects. During the winter weekdays, the income
elasticity at the mean of the sample is 0.230 while the demand elasticity with
respect to the lump sum payment is 0.207, which has the wrong sign. For
summer weekdays the income elasticity is 0.118 while the lump sum elasticity
is estimated to be 0.029. The likely reason for the failure of the elasticities to
have the correct sign probably lies with the lack of variation in the lump
sum payments during the pre-experimental period. Since 137 out of 150
households are forecast to be in the same block, while, of course, the lump
sum payment is an identical $2.00 during the experiment, the variable is very
close to becoming a dummy variable for the two periods and thus merely
representing a time effect. The lack of sufficient variation in prices does not
permit accurate estimates to be made of this lump sum payment effect.
Furthermore, since average income in the sample is around $14,000 the
income effect of the lump sum payment is miniscule compared to yearly
income. Unless the income elasticity of electricity is extremely high, change in
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Table 2

Weekday consumption estimates (standard error given in parentheses).

Variable Winter Summer
(1) Constant —136.8 —-29.6
(6.67) (12.09
(2) Heat ~24.9 —
(10.0)
(3) Central air conditioner —_ —375.5
(84.9)
{4) Window air conditioner — —76.7
(26.8)
(5) Range 46.2 174
(3.43) (1.92)
{6) Water heater —389.9 4.85
(11.3) (2.78)
(7) Dishwasher -3.36 19.2
{3.04) (3.25)
(8) Clothes washer 392.2 —1.64
x water heater (11.2) (3.98)
(9) Clothes dryer 192 6.96
(2.61) {(2.09)
(10) Dishwasher : 131 ~17.32
x water heater {6.46) {7.90)
(11) Freezer —31.4 —0421
(2.74) (2.05)
(12) Home during day 29.6 269
(3.60) (3.48)
(13) Home sq. fi. —1.52 0.182
(3.09) (1.88)
(14) Home type 14.4 -9.39
: (2.65) (1.76)
{15) Persons —0.067 —0.468
- (1.25) {0.828)
(16) Income (1000’s) 319 0.577
{0.370) (0.184)
(17) Marginal price (p) 309 4.48
(L.71) (3.31)
(13) Lump sum payment 4.85 0.828
{(0.234) {0.109)
{19) p x heat 20.98 —
(2.86) —_
(20} p x central air conditioner S 103.0
(24.3)
(21) px window air conditioner — 17.4
(7.95)
(22) p x range —11.14 —3.58
(0.902) (0.559)
{23) p x water heater 108.72 0717
(3.13) {0.804)
(24) p x dishwasher -1.21 —5.89
{0.815) (0.922)
(25) p xclotheswasher —106.8 275

x water heater (3.11) (1.1%
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Tabi¢ 2 (continued)

Variable Winter Summer
{26) p x clothes dryer . —0.298 0512
(0.687) (0.583)
(27) p x dishwasher —0.007 5.06
» water heater (1.76) (2.36)
(28} p x freezer 8.69 0.239
(0,739} (0.582)
{(29) p x home days —6.40 —6.71
(0.964) (1.00)
(30) pxhome sq. L. 2.00 1.88
(0.828) (0.533)
{31) px home type —-441 1.13
(0.699) (0.467)
{32) p x persons 1.04 0.626
(0.338) (0.238)
(33} p xincome © —(.760 —-0.123
(0.094) (0.050)
(34) Lump sum x income —0.114 —0.034
(0.015) (0.0071)
(35) Temperature —0.313 —_—
(0.214)
(36) p xlemperature 0.037 o —
(0.055)
(37) Temperature x heat 14.78 : E—
(1.61)
(38) p x temperature —4.60 E—
x heat (0.463)
(39) Temperature humidity —_ 0.056
index (THI) (0.168)
{40) p x THI — 0.016
(0.046)
(41) THI x central air conditioner —_ 6.04
(1.26)
(42) px THI —1.66
x central air conditioner : (0.361}
(43) THI x window air conditioner _ 1.711
(0.399)
(44) px THI — —0.427
x window air conditioner ) (0.118)
(45) Tucsday 0.142 0.102
(0.331) (0.232)
(46) Wednesday —0.127 0.175
(0.347) {0.235)
{47) Thursday —0.462 0.090
(0.330) (0.232)
(48) Friday 0.016 —0372
(0.314) (0.233)
NOBS 8116 9338
S.E.E. 12.16 : 9.4]

R? 0.187 0.382
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the lump sum payment should have almost no effect on demand, which is in
accord with our empirical finding. This effect could be potentially important.
since a lump sum payment scheme might be an important part of a time-of-
day pricing structure where the lump sum payment covered part or all of the
fixed costs of electricity generation. Then the time of day change would cover
the marginal costs of generation, and the pricing system might more closely
ressmble the pattern which arises from economic theory at a first best
optimum.

In this section we have presented the estimates of our two level demand
system. The first level which estimates the relative load curve is quite
successful in capturing the pattern of hourly demands for electricity. From
these first level demands we construct the price index which enters the
second level daily consumption demand equations. Our specification is
considerably less successful at this level in capturing demand behavior. In the
next section we report some limited attempts at validation of the forecasting
properties of the two level system. Again, the performance in forecasting the
relative load curve is superior to forecasting the absolute levels.

4. Model validation

Twenty households from the sample, including four from each of the five
strata, were not used in the estimation procedure. Instead, they are used to
attempt to validate the results of the demand system estimation in the
previous section.’ Forecasts are made using the estimated coefficients for the
last five days in February and the last five days in August although here we
present only the winter results. First, we consider the relative load forecasts
using eq. (8) and the estimates from table 1. Then the price indices are
estimated using eq. (9) and used in eq. (10) along with the coefficient
estimates from eq. (10) to forecast daily consumption. Lastly, these two sets
of forecasts are combined to forecast absolute system load.

In fig. 4 we first present the actual average relative consumption and the
forecast average relative consumption for the validation sample of twenty
households. The four worst forecasts (%, error greater than 209%) are the
periods from 7-8 a.m., 11-12 a.m,, 1-2 p.m., and 7-8 p.m. The forecasts do
well in periods of peak TOD prices with the average absolute percentage
error being about 129, A x%(4) test of prediction confidence intervals, taking
the estimated coefficients as known with certainty, yields a value of 9.08
which is not significant at the 59 level. Thus, our peak demand forecasts do
fairly well in forecasting the relative load curve. The intermediate period

*The mean consumption levels of the validation sample differ significantly from the cor-
responding estimation sample mean so that the validation exercise is not bound to succeed
through the law of large numbers given unbiased estimates. The estimates are made using both
pre-experimental and experimental data, while the forecasts use only the latter data.
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forecasts are less successful with three out of nine periods having relatively
large forecast errors. The off-peak forecasts do well at night with the average
absolute forecast error equal to 2.9° during the three night periods.
However, the morning period off-peak forecast during 7-8 a.m. has the
largest forecast error of the entire day of nearly 38°%/. It is of interest to note
that the best forecasts are made during the peak periods since these periods
are of the most importance in designing system capacity and pricing schemes
since system peaks involve the use of the highest unit cost capacity for
electricity generation.

Another way to consider the share forecasts is to aggregate them into
peak. intermediate, and off-peak periods. These results presented in fig. 5
show remarkable accuracy - except for rounding error they are exactly
correct! Since actual peak usage in the validation group occurs in an off-
peak price period. this forecasting accuracy seems extremely good. Thus, we
may conclude that while our forecasts do not capture all the hourly
dynamics, they certainly explain the economics of demand shifts among the
three periods when prices differ in a time of day pattern.

Period Forecast Actual

(1) Peak 0.163 0.163

(2) Intermediate 0.370 0.370

(3) Off-peak 0.465 0.466
Fig. 5

The next step in the forecast validation procedure involves computing the
price index p from eq. (9). The mean j over the twenty validation households
is 4.15¢ for winter weekdays which is 0.8 standard deviations greater than
the mean 3.89¢ of the estimation sample. These prices are then used in
eq. (10) to forecast average daily electricity demand. In fig. 5 we present the
mean forecasts for the four households in each of the five sample strata and
then give the demand weighted average which represents the appropriate
population forecast.

Fig. 6 gives the expected result of overprediction for stratum 1 and
underprediction for stratum 5. This result occurs because of the sample
stratification used to design the experiment. Since part of the reason that a
household falls in stratum 1 is due to unobserved individual effects which
persist over time, the expectations of the forecast error is negative in
stratum 1 and positive in stratum 5. Thus performing a »? test on each
stratum or the arithmetic average across strata is incorrect for the same
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Strata 1 2 3 9 5 Weighted average
o/ of population 046 022 016 010 005 -
Actual demand (kWh) 14.5 17.5 350 52.2 107.6 269
Forecast demand 18.1 155 256 36.1 78.3 255
Fig. 6

reason that ordinary least squares on the original data yields biased
estimates. Thus, the analogous procedure to that discussed at the beginning
of section 3, which forms a weighted average, using the strata weights, will
lead to an unbiased forecast. The weighted average forecast is 25.5kWh
which is quite close to the actual valve of 269kWh. When we take a
weighted average across strata we find a forecast error of only 5.3°/ with the
%*(1) forecast test equal to 0.52 which is not significant at any reasonable
level test. Thus, while the second level demand equation is not as accurate as
the first level equation in the estimation, the daily demand forecasts do
considerably better in the forecast validation test. We probably do not want
to be overconfident that similar excellent performance would hold in future
Lests.

That last step of our validation procedure is to combine the relative load
forecasts with the daily consumption forecasts to predict absolute system
load. These forecasts are presented in fig. 7. The average absolute forecast
error 1s about 169% with somewhat better performance during the peak
periods where the absolute forecast error is 14 %,. In terms of the increment
to systemn peak design, our model forecasts an increment of 1.43kWh while
the actual increment in period 12 is 1.32kWh which is an overestimate of

% Thus, the model seems to forecast reasonably well in a situation where
time of day prices are in effect.

Now to present the final economic forecasts of the experiment, the hourly
demands are aggregated into peak, intermediate, and off-peak periods. The
results are presented in fig. 8. The model underpredicts actual usage in each
case by about 5°. Given that actual peak usage shifted from 6-7 p.m. in the
pre-experimental year, which is a peak price period in the test year, to 9-10 p.m.
during the test year, which is the first off-peak price period at night.
the model forecasts the demand shift quite well. One reason for the
underprediction may be the exclusion of higher order terms for temperature
in the specification since the test year winter was extremely cold by historic
standards. Nevertheless. the forecasts capture the shift from peak periods to
off-peak periods: and the model seems valuable for revenue forecasts under a
time-of-day price system,

The approach presented here is thus a flexible procedure to model time-of-
day electricity demand within a two-level budgeting framework. It represents
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Period Forecast (kWh) Actual », Difference
(1) Peak 4.16 441 3.8°%
(2) Intermediate 9.43 9.95 549
{3) Off-peak 11.85 12.56 5.827

an alternative approach to both the time series approach and the single level
budgeting approach which have been used previously. The main advantage
of the method would occur in future applications if the model can continue
to forecast the relative load curve better than alternative approaches which
attempt to forecast the absolute load curve. In situations where the right-
hand side variables change as both appliance holdings and prices would
change if time-of-day pricing is adopted, 1t may be superior to the other
methods so long as the second level daily consumption equation continues to
forecast well in the aggregate. Application to other time-of-day experimental
data where more price variation exists would help resolve the question of
whether this alternative approach is a valuable tool for analyzing and
forecasting time-of-day electricity demand.
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