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Abstract

Logit kerndl is a discrete choice model that has both probit-like disturbances as well as an additivei.i.d.
extreme vaue (or Gumbel) disturbance & lamultinomial logit. The result is an intuitive, practical, and
powerful model that combines the flexibility of probit with the tractability of logit. For this reason, logit
kernel has been deemed the “mode of the future” and is becoming extremely popular in the literature. It
has aready been included in arecent edition of awidely used econometrics textbook.

While the basic structure of logit kernel models is well understood, there are important formulation and
practical issuesthat are critical for estimation and yet are often overlooked. We aim to highlight some of
these issues in the paper. One key point is that the addition of the Gumbel term is not necessarily
innocuous, and thus the normalization required for logit kernel can be different than for an analogous pure
probit model. Another point is that there are interesting and non-intuitive identification rules regarding
nested structures and random coefficient models. Misunderstanding of these issues can lead to biased
estimates as well as a significant loss of fit. A clear understanding of identification becomes even more
critical given the fact that smulation, which is often used to estimate these models due to the high
dimensiondlity of the integrals, has a tendency to cover up identification problems.

In the paper we present a generd framework for specification, identification, and estimation of the logit
kernel model. We specify the model using a genera factor analytic error structure. We show that the
factor anaytic form includes all known (additive) error structures as special cases, including
heteroscedasticity, error components, nesting structures, random coefficients, and auto correlation. We
discussin detail many of the specia cases of the logit kernel modd and highlight specification and
identification issues related to each. Finally we demonstrate our findings with empirical examples using
both smulated and real data. The objectives of the paper are to present our specific findings, as well as
highlight the broader themes and provide tools for uncovering identification issues pertaining to logit kernel
models.
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FCAR, and aUPSfellowship. This paper isamajor revision of the working paper by Ben-Akivaand Bolduc (1996),
"Multinomial Probit with aLogit Kernel and a General Parametric Specification of the Covariance Structure” based
on recent work by Walker (2001).
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Introduction

The logit kernd model is a straightforward concept: it is a discrete choice model in which the disturbances
(of the utilities) consst of both a probit-like portion and an additivei.i.d. Gumbe portion (i.e., a multinomia
logit disturbance).

Multinomia logit (MNL) has its well-known blessing of tractability and its equaly well-known curse of a
rigid error structure leading to the 1A property. The nested logit model relaxes the rigidity of the MNL
error structure and has the advantage of retaining a probability function in closed form. Nonethel ess,
nested logit is il limited and cannot capture many forms of unobserved heterogeneity, including, for
example, random parameters. The logit kernel model with its probit-like disturbances completely opens up
the specification of the disturbances so that amost any desirable error structure can be represented in the
modd. As with probit, however, this flexibility comes at a cost, namely that the probability functions
consist of multi-dimensional integrals that do not have closed form solutions. Standard practice is to
estimate such models by replacing the choice probabilities with easy to compute and unbiased simulators.
The beauty of the additive i.i.d. Gumbel term isthat it leads to a particularly convenient and attractive
probability smulator, which is smply the average of a set of logit probabilities. The logit kernel probability
smulator has all of the desirable properties of a smulator including being convenient, unbiased, and
smooth.

Terminology

There are numerous terms floating around the literature that are related to the logit kernel model that we
present here. McFadden and Train (2000) use the term “mixed logit” to refer to models that are comprised
of amixture of logit models. Thisis abroad class that encompasses any type of mixing distribution,
including discrete distributions (for example, latent class) as well as continuous distributions. Within this
reference, logit kernel is a specid case of mixed logit in which the mixing distribution is continuous. There
are a'so numerous terms that are used to describe various error specifications in discrete choice models,
including error components, taste variation, random parameters (coefficients), random effects, unobserved
heterogeneity, etc. When such models are specified in aform that includes an additive i.i.d. Gumbel term,
then they fall within the logit kernel (as well as mixed logit) class of modds. Many of these specia cases
are described later in the paper.

We choose to use the term logit kernel, because conceptually these models start with alogit model at the
core and then are extended by adding a host of different error terms. In addition, the term is descriptive of
the form of the likelihood function and the resulting logit kernel smulator.

Organization of the Paper

The paper is organized as follows. First, we introduce the logit kernel model and present a genera
discussion of identification. Then we discuss specification and identification of several important specia
cases, which are al based on afactor analytic representation of the error covariance structure. Next, we



focus on the estimation of logit kernel via maximum (simulated) likelihood. In the final section, we present
empirica results that highlight some of the specification and identification issues.

Related Literature

There have been many previous efforts to extend the logit model to alow more flexible covariance
structures. The most widely used extension is nested logit. The advantage of nested logit isthat it relaxes
the classic I1A assumption and yet has a closed form. Nonetheless it is still afairly rigid model. Nested
logit is not alogit kernel modd, athough it can be approximated in the logit kernel structure. In terms of
logit kernel models, the earliest applications were in random parameter logit specifications, which appeared
20 years ago in the papers by Boyd and Mellman (1980) and Cardell and Dunbar (1980). The more
genera form of the model came about through researchers quest for smooth probability smulators for use
in estimating probit models. McFadden's 1989 paper on the Method of Simulated Moments, includes a
description of numerous smooth smulators, one of which involved probit with an additivei.i.d. Gumbel
term. Stern (1992) described a smilar smulator, which has an additivei.i.d. normal term instead of the
Gumbd. At the time of these papers, there was a strong desire to retain the pure probit form of the model.
Hence, the algorithms and specifications were designed to eventually remove the additive “contamination”
element from the model (for example, McFadden, 1989) or ensure that it did not interfere with the pure
probit specification (for example, Stern, 1992). Bolduc and Ben-Akiva (1991)" did not see the need to
remove the added noise, and began experimenting with models that Ieft the Gumbel term in tact, and found
that the models performed well. There have been numerous relatively recent applications and
investigations into the mode, including Bhat (1997 & 1998), Bolduc, Fortin and Fournier (1996),
Brownstone, Bunch and Train (2000), Brownstone and Train (1999), Goett, Hudson, and Train (2000),
Gonll and Srinivasan (1993), Greene (2000), Mehndiratta and Hansen (1997), Revelt and Train (1998 &
1999), Srinivasan and Mahmassani (2000), and Train (1998). A very important recent contribution is
McFadden and Train’s (2000) paper on mixed logit, which both (i) proves that any well-behaved random
utility consistent behavior can be represented as closely as desired with a mixed logit specification, and (ii)
presents easy to implement specification tests for these models.

While logit kernel has strong computationa advantages, it, like probit, does not have a closed form solution
and can eadly lead to high dimensiond integras. The well-known Gaussian Quadrature method of
numerica integration is not computationally feasible for dmensionalities above 3 or so, and therefore
estimation viasimulation is a key aspect to applications of the logit kernel model. The basic idea behind
smulation is to replace the multifold integral (the probability equations) with easy to compute probability
simulators. Lerman and Manski (1981) introduced this concept and proposed the use of a frequency
simulator to simulate probit probabilities. The frequency smulator was found to have poor computational
properties primarily because it is not smooath (i.e., not continuous and not differentiable). Basically the
frequency smulator maps each draw to avalue of either 0 or 1, whereas a smooth s mulator would map
each draw to avalue somewhere between 0 and 1 (and therefore retains more information). The result is

! Later generalized to Ben-Akiva and Bolduc (1996).



that discontinuous simulators require a prohibitively large number of simulation draws to obtain acceptable
accuracy. In addition, a theoretical advantage of smoothnessisthat it greatly simplifies asymptotic theory.
For these reasons, there has been alot of research on various smooth simulators (see, for example,
Borsch-Supan and Hagjivassiliou, 1993; McFadden, 1989; Pakes and Pollard, 1989; and Stern, 1992). The
discovery of the GHK simulator provided a smooth simulator for probit, which quickly became the
standard for estimating probit models (see Hajivassiliou and Ruud, 1994). Now there is great interest in the
logit kernel smooth smulator because it is conceptually intuitive, flexible, and relatively easy to program.

With smulation, the types and number of draws that are made from the underlying distribution to calculate
the smulated probabilities are dways important issues. Traditionally, smple pseudo-random draws (for
example, Monte Carlo) have been used. Bhat (2000) and Train (1999) present an interesting addition to
the econometric simulation literature, which is the use of intelligent drawing mechanisms (in many cases
non-random draws known as Halton sequences). These draws are designed to cover the integration space
in amore uniform way, and therefore can significantly reduce the number of draws required. We employ
this approach for the empirical results presented later in this paper.

A find point isthat we use Maximum Likelihood Estimation (ML) or Maximum Simulated Likelihood
(MSL). An dlternative to thisis the Method of Simulated Moments (MSM) proposed by McFadden (1989)
and Pakes and Pollard (1989). MSM s often favored over MSL because a given level of accuracy in
model parameter estimation can be obtained with afairly small number of replication draws. The accuracy
of the MSL methodology critically depends on using alarge number of simulation draws because the log-
likelihood function is smulated with a non-negligible downward bias. For severa reasons, we gtill stick to
the MSL approach. First, MSL requires the computation of the probability of only the chosen dternative,
while MSM needs al choice probabilities. With large choice sets this factor can be quite important.
Second, the objective function associated with MSL is numericaly better behaved than the MSM objective
function. Third, with the increase in computational power and the implementation of intelligent drawing
mechanisms, the number of drawsissueis not as critical asit once was.

The Logit Kernel Model

The Discrete Choice Model

Consider the following discrete choice modd. For agivenindividua n, n=1,...,N where N isthe
sample size, and an dternative i, i =1,...,J,, where J isthe number of aternativesin the choice set C,
of individud n, the modd iswritten as.

Rt ifu, 3 Ui,

Yo =10 otherwise

forj=1,..,J

n
)

Uin = xinb +ein '



where y,, indicates the observed choice, and U, isthe utility of dternative i as perceived by individua
n. X, isa (1" K) vector of explanatory variables describing individual n and alternative i , including
aternative-specific dummy variables as well as generic and dternative-specific attributes and their
interactions with the characteristics of individual n. b isa (K~ 1) vector of coefficientsand e, isa
random disturbance. The assumption that the disturbances arei.i.d. Gumbel leads to the tractable, yet
restrictive logit model. The assumption that the disturbances are multivariate normal distributed leads to the
flexible, but computationally demanding probit mode. The logit kernel model presented in this paper is a
hybrid between logit and probit and represents an effort to incorporate the advantages of each.

In amore compact vector form, the discrete choice model can be written as follows:
Yo =Yoo Yol
U, =XDb+e,, (N

where y,, U, ,and e, are (J,” 1) vectorsand X, isa (J,” K) matrix.

The Logit Kernel Model with Factor Analytic Form

Model Specification

In the logit kernel modd, the e, random utility term is made up of two components: a probit-like
component with a multivariate distribution, and an i.i.d. Gumbel random variate. The probit-like term
captures the interdependencies among the alternatives. We specify these interdependencies using a factor
analytic structure. The factor analytic structure was first proposed for probit by McFadden (1984) as a
means of reducing the dimensiondlity of the integral. We use if here because it is aflexible specification
that includes al known (additive) error structures as special cases, as we will show below.

Using the factor analytic form, the disturbance vector €, is specified as follows:
e, =Fx, +n_, )

where X, isan (M "~ 1) vector of M multivariate distributed latent factors, F, isa (J,” M) matrix of
the factor loadings that map the factors to the error vector ( F, includes fixed and/or unknown parameters
and may aso be afunction of covariates), and v, isa (J,” 1) vector of i.i.d. Gumbel random variates.
For estimation, it is desirable to specify the factors such that they are independent, and we therefore
decompose X, as follows:

n o 3

X, =Tz
where z, areaset of standard independent factors (often normally distributed), TT ' is the covariance
matrix of X, and T isthe Cholesky factorization of it. The number of factors, M , can be less than, equal
to, or greater than the number of alternatives. To simplify the presentation, we assume that the factors



have standard normal distributions, however, they can follow any number of different distributions, such as

lognorma, uniform, etc.

Substituting Equations (2) and (3) into Equation (1), yidds:

The Factor Analytic Logit Kernel Specification

U,=X,b+FTz +n, , (4

cov(U,)=FTT'F, '+ (g/nf)l, (5)
(whichwedenoteas W, =S, +G,),

where: U

n

isa (J,” 1) vector of utilities;
isa (J,” K) matrix of explanatory variables;
isa (K" 1) vector of unknown parameters;

isa (J,” M) matrix of factor loadings, including fixed and/or unknown
parameters,

isa (M"M) lower triangular matrix of unknown parameters, where
TT'=Cov(x, =Tz,);

isa (M " 1) vector of i.i.d. random variables with zero mean and unit variance;
and

isa (J,”D vector of i.i.d. Gumbe random variables with zero location
parameter and scale equal to m>0. The variance is g/r‘n2 , where g isthe
variance of astandard Gumbel (p %/6).

The unknown parameters in thismodel are m, b , thosein F,, andthosein T . X are observed,
whereas z,, and n, are unobserved.

It isimportant to note that we specify the model in level form (i.e,, U, j =1,...,J,) rather thanin
difference form (i.e, (U ;,- U, ), j =1,...,(J, - 1) ). We do this for interpretation purposes, because it
enables us to parameterize the covariance structure in ways that capture specific (and conceptual)
correlation effects. Nonetheless, it is the difference form that is estimable, and there are multiple level
structures that can represent any unique difference covariance structure. We return to thisissue later in

the paper.



Response Probabilities
As will become apparent later, a key aspect of the logit kernel mode! is that if the factors z | are known,

the mode corresponds to a multinomid logit formulation:
en( Xinb 'H:inTZ n)

é en(x,nb +FiTz,)

L(ilz,)=

(6)

irc,

th

where L (i |z ) isthe probability that the choiceis i given z ,and F; is j" row of the matrix F,

j=1,.,J

Sincethe z , isin fact not known, the unconditional choice probability of interest is:

P@)=QL(1z)nE.ly)dz , (7)

where n(z ,1,,) isthejoint density function of z , which, by construction, is a product of standard
univariate normals:

N
n@, ) =0f @) -

The advantage of the logit kernel model is that we can naturally estimate P(i) with an unbiased, smooth,
tractable smulator, which we compute as:

L(i|z?),

Qos

Pi) =

Qo
Il

1

where z ! denotesdraw d from the distribution of z , thus enabling us to estimate high dimensional
integrals with relative ease.

Findly, notethat if T =0 then the model reduces to logit.

Identification and Normalization

Itis not surprising that the estimation of such models raises identification and normalization issues. There
are two sets of relevant parameters that need to be considered: the vector b and the unrestricted
parameters of the distribution of the disturbance vector e,, whichiinclude F,, T ,and m. For the vector
b , identification isidentica to that for amultinomia logit model. Such issues are well understood, and the
reader is referred to Ben-Akiva and Lerman (1985) for detalls.

The identification of the parameters in error structure is more complex, and will be discussed in detail in
this paper.



Comments on Identification of Pure Probit versus Logit Kernel

Recall that the error structure of the logit kernel model consists of a probit-like component and an additive
i.i.d. extreme value term (the Gumbadl). Bolduc (1992), Bunch (1991), Dansie (1985) and others address
identification issues for disturbance parameters in the multinomia probit model. Bunch (1991) presents
clear guiddines for identification (consisting of Order and Rank conditions, which are described bel ow)
and provides examples of identified and unidentified error structures. He also provides a good literature
review of the investigations into probit identification issues. For the most part, the identification guidelines
for pure probit are applicable to the probit-like component of the logit kernel modd. However, there are
some differences, which are touched on here, and will be expanded on in the detailed discussion that
follows.

We will see below that by applying the mechanics that are used to determine identification of a Probit
model (Order and Rank) to the logit kernel model, effectively what happensiis that the number of
identifying restrictions that were necessary for a pure probit model are aso required for the probit-like
portion of the logit kernel model. However, there are some subtle, yet important, differences. Recall that
one constraint is aways necessary to set the scale of the model. In a pure probit model, thisis done by
setting at least one of the elements of the covariance structure’ to some positive value (usualy 1). Call this
element that is constrained s . With logit kernel, on the other hand, the scale of the model isset asin a
standard logit modd by congtraining the m parameter of thei.i.d. Gumbel term. Since the scale of the logit
kernel model isset by m, the normalization of s | is now aregular identifying restriction in the logit kernel
model. One issue with the normaization of s |, for the logit kernel model is that in order to be able to
trivialy test the hypothesis that alogit kernel model is statisticaly different from a pure logit modd, it is
desirableto set s | equal to zero so that pure logit is a special case of alogit kernel specification. A
second difference is that while the specific element of the covariance matrix that is used to set the scalein
a probit mode! is arbitrary, the sdlection of s | is not necessarily arbitrary in the equivaent logit kernel
modd. Thisis due to the structure of the logit kernel model, and will be explained further below (in the
discussion of the ‘positive definiteness condition.)

Finally, it turns out that the fact that s , must be constrained in alogit kernel model is not exactly correct.
In aprobit kernel model (i.e,, with ani.i.d. normal term), itistruethat s ; must be constrained. In this
case, there is a perfect trade-off between the multivariate norma term and thei.i.d. normal term.
However, in the logit kernel model, this perfect trade-off does not exist because of the dight difference
between the Gumbel and Normd distributions. Therefore, there will be an optima combination of the
Gumbel and Normal distribution, and this effectively alows another parameter to be estimated. This leads
to somewhat surprising results. For example, in a heteroscedastic logit kernel model a variance term can
be estimated for each of the aternatives, whereas probit, probit kernel, or extreme value logit requires that
one of the variances be constrained. The same holds true for an unrestricted covariance structure.
Nonetheless, the redlity is that without the congtraint, the model is nearly singular (i.e., the objective
function is very flat at the optimum), as will be demonstrated in the estimation results that follow. Due to

2
Technically, the constraint is on the covariance matrix of utility differences.



the near singularity, it is advisable to impose the additiona constraint, and we proceed using this approach
throughout the rest of the discussion.

Overview of Identification

The first step of identification is to determine the model of interest, that is, the disturbance structure that is
apriori assumed to exist. For example, an unrestricted covariance matrix (of utility differences) or various
restricted covariance matrices such as heteroscedasticity or nesting. Once that is determined, there are
three steps to determining the identification and normalization of the hypothesized model. The first two
have to do with identification. For the model to be identified, both the order condition (necessary) and the
rank condition (sufficient) must hold. The order condition establishes the maximum number of parameters
that can be estimated, which is based on the number of alternatives in the choice set. The rank condition
establishes the actual number of parameters that can be estimated, which is based on the number of
independent equations available. In cases in which the conclusion from the order and rank conditionsis
that additional redtrictions are in order, then athird condition (which we refer to as the positive definiteness
condition) is necessary to verify that the chosen normalization is valid. Recall that the reason that an
identifying restriction is necessary is that there are an infinite number of solutions (i.e., parameter
estimates) to match the given modd structure. The point of an identifying restriction is to establish the
existence of a single unique solution, but not change the underlying model in any way. The positive
definiteness condition asks the question of whether the models true structure (i.e., the one on which the
rank and order conditions were gpplied) is maintained given the chosen identifying restriction. Thisis not
an important issue for probit, but, as we will see, it has important implications for logit kernel. Each of the
conditions is expanded on below, and we use the heteroscedastic logit kerne mode to illustrate each
condiition.

The Specification of the Heteroscedastic Logit Kernel Model

3
The heteroscedastic model, assuming a universal choice set (C, =C " n), is written as:

Vector notation: U =X b +Tz_ +n_, (M =J and F, equals the identity matrix |;),
s, )
é u
<0 s >
T=6 "2 U3, z, 39,
S0 o AGIENCE
§0 0 0 s,p

and, defining s ; =(s,)?, the Co\U,) is:

3 . . — . .
Note that our notation for symmetric matricesis to show only the lower triangular portion.



&, +g/nf U
g 0 s,,+g/nt u
w= & 22 U3 9.
e 0 0 : u
é a
g O 0 0 s, +g/ntQ
Scalar notation: U, =X b+s.z _+n_ , il C.

Note that for a heteroscedastic model with a universal choice set, the covariance matrix does
not vary across the sample, and so we can drop the subscript n from W, .

We carry the identification conditions through for a binary heteroscedastic model, a three
alternative heteroscedastic model, and a four alternative heteroscedastic model, because the
three models serve well to highlight various aspects of identification and normalization. The
covariance structures for these three models are as follows:

& . +g/nf U
J=2: w=g " J 0

e 0 S, +g/mq,

&, +g/nt u

é a
J=3:W=g O S, +g/nt a

g€ 0 0 Sg+g/ntl

&, +g/nf u

é u
J=4w=€ O Sato/m G

g 0 0 S+ g/ nf 3

g O 0 0 suta/infg

Setting the Location

The genera approach to identification of the error structure is to examine the covariance matrix of utility
differences, denoted in the general case as W, , . Taking the differences sets the “location” of the model,
a necessity for random utility models. The covarilance matrix of utility differences for any individud is.

n

W, , =Cov(DU,)= D;FTT'F,'D;"+D(g/nf)1,D; ",

where D, isthe linear operator that transformsthe J utilitiesinto (J - 1) utility differences taken with
respect to the j" aternative. D; isa(J-1)" J matrix that consistsof a (J- 1)" (J - 1) identity
matrix with a column vector of - 1'sinserted asthe j™ column. We use the notation W, ;, to denote the
covariance matrix of utility differences taken with respect to the J™ alternative.

10



Setting the Location for the Heteroscedastic Model

For the example heteroscedastic models using J as the base, the covariance matrices of utility
differences are as follows:

J=2:D,=[1 -1, Wo=g5 ., +S , +29/nT,
J=3'D _él - 1o Y isll+533+29/rnz l‘:l
=3: =a | =é u
’ 80 1 '1Uu’ ? é 333"'9/”12 322+333+29/mzﬂ’
(Aél 00 -lg
J=4:D,=0 1 0 -1j
g0 0 1 -1@],
$11+S44+29/n12 g
ng Sutg/m’ Sy +S 4 +29/ T 3
& s,+g/nt S, +g/m’ Sas*+S ., +2g/nTH.
Order Condition

Thefirst condition is the order condition, which is necessary for identification. When discussing the Order
Condition, it is useful to separate the covariance matrix into that which is constant across the sample
(called the *dternative-specific’ portion) and that which varies across the sample (for example, in the case
of random parameters). The order condition only applies to the aternative-specific portion of the
covariance matrix. It states that amaximum of s=J(J - 1)/2 - 1 aternative-specific parameters are
esimablein W, which is equa to the number of distinct cellsin W, (symmetric) minus 1 to set the scale
(another necessity of random utility models). Therefore:

with 2 alternatives, no aternative-specific covariance terms can be identified;
with 3 alternatives, up to 2 terms can be identified;

with 4 alternatives, up to 5 terms can be identified;

with 5 alternatives, up to 9 terms can be identified,

etc.

When the error structure has parameters that are not aternative-specific, for example, random
parameters, it is possible to estimate morethan S parameters, because there is additional information
derived from the variations of the covariance matrix across individuals. Technically, there still is an order
condition, but the limit is large (related to the size of the sample) and is therefore never a limiting condition.

The Order Condition and the Heteroscedastic Model

The disturbance parameters in the heteroscedastic model are alternative-specific, so the order
condition must hold. Each heteroscedastic model has J +1 unknown parameters: J S, 's and
one M. The order condition then provides the following information regarding identification:

11



J =2: unknowns={s ,,S,,,N}; s=0 - 0 variances are identified
J =3: unknowns={s ,, ,S,,,S3,N}; S=2 - upto 2 variances are identified
J =4: unknowns={S ;; ,S,,,S33,S,, M;S=5 - potentialy all variances are identified

Note that there are published probit and logit kernel models in the literature that do not meet the order
condition, see, for example, Greene (2000) Table 19.15 and Louviere et a. (2000) Table B.6. While the
logit kernel models in Greene and Louviere do not meet the order condition, these models are nonetheless
barely identified due to the dight difference between the normal and Gumbel distributions (as discussed
earlier). However, the probit model does not have this luxury, and therefore the probit model reported in
Greene is not identified (as will be demonstrated in the mode choice application).

While the order condition provides a quick check for identification, it is clearly shown in Bunch (1991) that
the number of parameters that can be estimated is often lessthan S, depending on the covariance
structure postulated. Therefore, the rank condition must also be checked, which is described next.

Rank Condition

The rank condition is more regtrictive than the order condition, and it is a sufficient condition for
identification. The order condition simply counts cells, and ignores the internal structure of W, . The rank
condition, however, counts the number of linearly independent equations availablein W, that can be used
to estimate the parameters of the error structure. Bolduc (1992) and Bunch (1991) describe the mechanics
of programming the rank condition. The basic idea behind determining this count is to examine the
Jacobian matrix, which is equal to the derivatives of the elementsin W, with respect to the unknown
parameters. The number of parameters that can be estimated is equal to the Rank of the Jacobian matrix
minus 1 (to set the scale). These mechanics are demonstrated below with the heteroscedastic example.

The Rank Condition and the Heteroscedastic Model

The first step is to vectorize the unique elements of W, into a column vector (we call this
4
operator vecu):

isn+533+29/mzl)
J =3: vecu(W,) = %22 +533+29/ng
é 533+g/mz

e

e

4
Note that there's no need to continue with identification for the binary heteroscedastic case, since the order condition resolved
that none of the error parameters are identified.

12
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n+S.,+2g/nfu
22+s44+29/nfg
5+S 4, +2g/ nfU

u
suto/nt g

J =4: vecu(W,) =

@)(‘D)&) (‘P})CD) m

By examination, it is clear that we are short an equation in both cases. This is formally
determined by examining the Rank of the Jacobian matrix of vecu(W, ) with respect to each of
the unknown parameters (S, ,...,S ,;,9/NT):

Jacobian éL 0 1 2y )
A ¢ can estimate 2 of the parameters,

J=3: matrix of =0 1 1 2Y Rank=3 ® _
€ U must normalize m and ones ;;.
vecuW,) @ 0 1 1y
Jacobian ¢ 0012y
i © 101 2Y can estimate 3 of the parameters,
J=4: matrix of = € U Rank =4 ® _
€ 01 1 2u must normalize mand ones ;.
vecu(Wo) 3) 001 14
a

So for both of these cases, the scale term m as well as one of the S;;'s must be normalized.

Which s ; should be fixed? And to what value? This is where the positive definiteness condition comes
into play, and it turns out that the normalizations for logit kernel models are not always arbitrary or
intuitive.

Positive Definiteness

When the conclusion from the order and rank conditions is that further identifying restrictions
(normalizations) are required, the positive definiteness condition is used to determine the set of acceptable
normalizations. Conceptually, the need for the positive definiteness condition is as follows. First note that
the reason for the additional normalization is that there are infinite possible solutions that result in the
hypothesized covariance structure. The normalization is necessary to establish the existence of a unique
solution, but it does not change the underlying model structure (i.e., the covariance matrix of utility
differences) in any way. The positive definiteness condition is necessary to verify that the chosen
normalization isvalid, i.e., that the remaining parameters that are estimated are able to replicate the
underlying model structure. It turns out that with logit kernel models, there can be seemingly obvious
normalizations that are not valid, because the structure of the model prevents the underlying covariance
matrix of utility differences from being recovered.

To work through the details of the positive definiteness condition, we rephrase the above discussion as
follows. There are two overriding issues behind the positive definiteness condition:
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Statement 1: There are infinite possible normalizations that can be imposed to identify the model.
However, note that dl vaid normaizations for a particular specification will result inidentica W, , thet is,
{ W, from normalizetion 1} ={ W, from normalization 2}. For example, with this relationship, one can
convert the estimated parameters from a particular normalization (say s ;; = 0) to the parameters that will
be estimated if a different normalization (say s ,; =1) isimposed (as long as both normdizations are
vaid).

Statement 2: The logit kernel covariance matrix is W, =S, +G, , where S, = (F, T)(F, T)¢ (Equation
(5)). Therefore, by construction, S, is necessarily positive semi-definite (*semi’ because F,T can equal
zero).

Given these two issues, any valid normaization must be such that both of the following conditions hold for
all observations:

l. MD =W, ® S:D +G:f =W, (by definition of anormalization).

The covariance matrix of utility differences of the normalized model (denoted by N )
equals the covariance matrix of utility differences of the non-normalized (theoretical)
modd.

. SV is positive semi-definite (by construction).

n

If the normalization is such that both Conditions | and |1 cannot be met, the parameter estimates will be
inconsistent and result in aloss of fit. It turns out that for logit kerndl, these conditions can impose
restrictions on the feasible set of normalizations, as we describe below.

We have aready stated that Condition |1 necessarily holds due to the construction of the model.

Therefore, the issue is whether the imposed normalization is such that Condition | can be met, given the
restriction that SE is poditive semi-definite. Problems can arise with logit kerne models due to the additive
i.i.d. Gumbel portion of the covariance structure, G, . Because of G, there can be normalizations for
which satisfying Condition | requires a negative definite S . However, this conflicts with Condition I1, and
so any such normalization is not vaid. Note that this issue actually arises with any model structure that
includes an i.i.d. disturbance term aong with a parameterized disturbance, for example, a probit kernel
modd.

Positive Definiteness and the Heteroscedastic Model

Looking at the heteroscedastic case, we will use the three alternative model as an example. It is
useful in the analysis to deal directly with the estimated (i.e., scaled) parameters, so we
introduce the notation S, = (M8, )*. Say we impose the normalization that the third
heteroscedastic term, S 4, is constrained to some fixed value we denote as S f’? . Condition |
can then be written as:
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g(s:n+s:33+2g)/nf y
e

& +S5 +29)/nf J
e (5'33+g)/rr12 (5'22+S.33+29)/nf0

u
(Sh+o)/m  EL+sy+20)/mg
where the matrix on the left represents the normalized model (S’ N =(ms iN)Z) and the matrix
on the right represents the theoretical (non-normalized) model. This relationship states that
when the normalization is imposed, the remaining parameters in the normalized model will
adjust such that the theoretical (or true) covariance matrix of utility differences is recovered. It
also provides us with three equations:

Sy +09)/mf=(s 5 +0)/nt | (8)
(S +Sy +29)/nf =(Sy, +S 5 +29) /1T, and ©)
(Sp+Sy +20)/nf =(S , +S 53+ 29) /0T . (10)

Condition 1l states that S™ must be positive semi-definite, where:

&Sy u 1
N_§ . N l;l*

< N, .

€0 0 sgxH

This matrix is positive semi-definite if and only if the diagonal entries are non-negative and r‘rﬁ
is strictly positive, or:

g, >0, (11)
sh30, (12)
s»30,and (13)
Sy30. (14)

The positive definiteness condition requires that all valid normalizations satisfy the restrictions
stated by Equations (8) to (14). The question is, what values of S# guarantee that these
relationships hold?

To derive the restrictions on Sf’\f' , we first use Condition | (Equations (8) to (10)) to develop
equations for the unknown parameters of the normalized model (nf,, S;, and s}}) as
functions of the normalized parameter S# and the theoretical parameters

(n?, S,;, S,, and S.;), which leads to:

mf, =nf(S i +9)/Cx+0) . (15)
SlNl :((5'11"'9)5'2l +(Sy;- S'33)9)/(5'3"'9) , and (16)
S'glzz((s.zz +g)5?fl+(5.2'5.33)9)/(533+9) : (17)
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Equations (11) to (14) impose restrictions on the parameters of the normalized model, and so
we can combine them with Equations (15) to (17), which results in the following set of
restrictions:

sy30, (Eq. (14)) (18)
(S +9)/Ex+9)>0, (Egs. (1) & (15) (19)
(Su+to)sii+6u-52)9)/(s:+9)2 0., ad  (Egs (12 & (16)) (20)
(2+9)sk+6E2-5)9)/[sx+9)2 0. (Egs. (13) & (17)) (21)

The other information we have is that S is positive semi-definite (by construction), and
therefore:

m>0,s,,30,5,,%0,ands ;2 0. (22)

So going back to restrictions (18)-(21), the first two restrictions are trivial: Equation (18) just
states that the normalization has to be non-negative; and given Equations (18) and (22),
Equation (19) will always be satisfied. Equations (20) and (21) are where it gets interesting,
because solving for S  leads to the following restrictions on the normalization:

s (S'za' S'ii)%g+s'”) =12, )

(S g isthe heteroscedastic term that is fixed.)

What does this mean? Note that as long as alternative 3 is the minimum variance alternative,
the right hand side of Equation (23) is negative, and so the restriction is satisfied for any

S# 3 0. However, when alternative 3 is not the minimum variance alternative, S f’\f' must be set
“large enough” (and certainly above zero) such that Equation (23) is satisfied. This latter
approach to normalization is not particularly practical since the s ; are unknown (how large is
large enough?), and it has the drawback that MNL is not a case nested within the logit kernel
specification. Therefore, the following normalization is recommended:

The preferred normalization for the heteroscedastic logit kernel model is to constrain the
heteroscedastic term of the minimum variance alternative to zero.

A method for implementing this normalization is described later in the section on
heteroscedastic logit kernel models.

Positive Definiteness and a Probit Model

What about the positive definiteness condition for pure probit? Pure probit models aso must satisfy a
positive definiteness condition, but it turns out that these do not impose any problemetic restrictions on the
normalization. With pure probit, there is obviously no Gumbel term, so Condition | can be written as

Sﬁ"D =S, . Condition Il is similar to that for logit kernel, except that S must now be positive definite
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(since it cannot equal zero). Since S, , iswell-behaved (by congtruction), Condition | states that SrTD will
aso be well-behaved, and, therefore, sowill S . The result isthat the positive definiteness condition
automatically holds for normdizations that are intuitively applied to probit.

Positive Definiteness and a Probit Heteroscedastic Model

This can be demonstrated for the heteroscedastic pure probit case, Condition I is:

sl +s 1)/ U_§s.,+S:o)/ y
C . N ~ . N . N ~2 U™ C . ~ . . ~o U
e (S ff)/nﬁ (322+Sff)/nﬁg e (533)/m2 (522+S33)/mzu
where M isthe scale of the probit model (i.e., not the traditional Gumbel m).

Solving for the unknown parameters from the normalized model:
~2 _ ~2.N .
nﬁ =MmsS g /S 33 1
N _ o+ N .
S11 =SS ¢ /333 , and
SN _ . N .
S =SS ff/s33 :
Condition Il requires:

it >0,
s) >0,
s» >0 ,and
sy >0.

Given that the theoretical Sy is well behaved (i.e., all theoretical variances and scale are
strictly positive), it is clear that any S f';' >0 will result in Conditions | and Il being satisfied. So,
the normalization is arbitrary, and the standard practice of normalizing any one of the terms to
1is valid.

Examination of the normalization unrestricted probit and logit kernel models are provided in the Appendix.
The heteroscedastic and unrestricted covariance matrix examples illustrate the nature of the problem. The
issue arises due to the manner in which the normalized parameter estimates adjust to replicate the true
covariance structure. With probit, the parameters shift in a s mple multiplicative manner. However, with
logit kernel, the parameters shift in an additive manner, and this can lead to infeasible * negative’ variances
and afactor analytic term that is not positive definite.

The brief summary of identification is that the order and rank conditions need to be applied to verify that
any estimated modd isidentified, and the positive definiteness condition needs to be applied to verify that a
particular normalization is valid. It is critical to examine identification on a case-by-case basis, which is
how we will proceed in the remainder of the paper. There is also an empirical issue concerning
identification, which is whether or not the data provide enough information to estimate any given
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theoreticaly identified structure. Thisis the usual multicollinearity problem, and it arises when there are too
many parametersin the error structure and therefore the Hessian is nearly singular.

Special Cases

Many interesting cases can be embedded in the general factor analytic logit kerne specification presented
in Equation (4). We will cover the following specid cases in this section:

Heter oscedastic — a summary and generaization of the discussion above.
Nested and Cross-nested — ana ogous to nested and cross-nested logit.
Error Components — a generalization of heteroscedastic and nested structures.

Factor Analytic — afurther generdization in which parametersin F, are also estimated.

General Auto-Regressive — particularly useful for large choice sets.

Random parameters — where most of the current applications of logit kernd in the literature are
focused.

Thisis not meant to be an exhaustive list. There are certainly other specia cases of the logit kernel model,
some of which are presented in papers listed in the references. The objective of this section isto show the
flexibility of logit kernel, to provide specific examples of specification and identification, and to establish
rules for identification and normalization for some of the most common specia cases.

Heteroscedastic

The heteroscedastic model was presented above. The scalar notation form of the model is repeated here
for convenience:

Ui, = Xinb +s,z;, +ny, il C

n *

Identification

| dentification was aready discussed above for J =2, 3, and 4. These results can be straightforwardly
generdized to the following:

Identification
J =2 none of the heteroscedastic variances can be identified.

J 33 J-1 of the heteroscedastic variances can be identified.
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Normalization

For J 32 3, a normdization must be imposed on one of the variance terms, denote this as
S; =S t Where s j isthetrue, albeit unknown, variance term that is fixed to the value s 5.

This normalization is not arbitrary, and must meet the following restriction:

S'f'?3 (Sjj -Sii)%] +Sii) i1 =1,...,J .

This restriction shows that the natura tendency to normalize an arbitrary heteroscedastic term to zero is
incorrect. If the alternative does not happen to be the minimum variance aternative, the parameter
estimates will be inconsistent, there can be a significant loss of fit (as demonstrated in the application
section), and it can lead to the incorrect conclusion that the model is homoscedastic. Thisis an important
issue, which, as far as we can tdll, isignored in the literature. It appears that arbitrary normalizations are
being made for models of this form (see, for example Gonll and Srinivasan, 1993, and Greene, 2000, Table
19.15). Therefore, there is a chance that a non-minimum variance was normalized to zero, which would
mean that the model is misspecified. It isimportant to note that it is the addition of thei.i.d. disturbance
that causes the identification problem. Therefore, heteroscedastic pure probit models as well as the
heteroscedastic extreme value models (see, for example, Bhat, 1995, and Steckel and V anhonacker, 1988)
do not exhibit this property.

Idedlly, we would like to impose a normalization such that MNL is a specia case of the model. Therefore,
the best normalization is to fix the minimum variance aternative to zero. However, thereis in practice no
prior knowledge of the minimum variance dternative. A brute force solution isto estimate J versions of
the model, each with a different heteroscedastic term normalized; the model with the best fit is the one
with the correct normalization. Thisis obvioudy cumbersome as well as time consuming. Alternatively,
one can estimate the unidentified model with dl J heteroscedastic terms. Although this model is not
identified, it will pseudo-converge to a point that reflects the true covariance structure of the model. The
heteroscedastic term with minimum estimated variance in the unidentified modd is the minimum variance
aternative, thus diminating the need to etimate J different models. Examples of this method are
provided in the applications section.

Nesting & Cross-Nesting Error Structures
Nesting and cross-nesting logit kernel is another important special case, and is analogous to nested and
cross-nested logit. The nested logit kernel modd is specified as follows:

U,=Xb+FTz +n,,

where: z, is(M”1), M isthe number of nests, and one factor is defined for each nest.

_11 ifalternativej isamember of nest m

I:n is(‘]n, M)a f]. —10 .
i 0 otherwise

m
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T is(M~ M) diagond, which contains the standard deviation of each factor.

Inastrictly hierarchical nesting structure, the nests do not overlap, and F F, ' isblock diagond. Ina
cross-nested structure, the alternatives can belong to more than one group.

Identification

Asusud, the order and rank conditions are checked for identification. The order condition states that at
most J(J - 1)/2- 1 nesting parameters can be identified. However, the rank condition leads to further
restrictions as described below.

Models with 2 Nests

The summary of identification for a 2 nest structure is that only 1 of the nesting parametersis identified.
Furthermore, the normalization of the nesting parameter is arbitrary. Thisis best shown by example. Take
a5 alternative case (with universal choice set) in which the first 2 aternatives belong to one nest, and the
last 3 dternatives belong to a different nest. The model is written as:

U, =..+sz,,+n, él Ou

U, =..+sz,, +n,, & OH & 0Q
Uy =S 2,, N, , where F=8& 10 andT=é01 R
U, = ..+s 2z, +n, g) 13 € ?
Ug, = ... +8 Z,, Ny, g) 18

We denote this specification as 1, 1, 2, 2, 2 (a shorthand notation of the matrix F ). The covariance matrix
of utility differences (with aternative 5 as the base) is as follows:

&, +s ,+29/ 0T y
W:gsll-'-SZZ-'-g/rn2 Sl].-'-SZZ-'-Zg/rn2 H
P g g/nf g/ nt 2g/nt 3
é g/nt g/ nt g/nf  2g/nfg

It can be seen from this matrix that only the sum (s, +S ,,) can beidentified. Thisis verified by the rank
condition as follows:

&,,+s,,+2g/nfU élL 1 2

é a - é a
vecu(WD):esll+522+g/m2‘;' JaCObl.an:él ! 1‘;' ® RANK=2

g g/t 3 matrix €0 0 10

& 2g/nf g & 0 2

® can estimate 1 of the parameters, must normalize m andone s ; .
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Furthermore, unlike the heteroscedastic logit kernel model, either one of the variance terms can be
normalized to zero (i.e., the normdization is arbitrary). This can be seen intuitively by noticing that only the
sum (S,, +S,,) appearsin W, and so it is always this sum that is estimated regardless of which term is
set to zero. This can dso be verified via the positive definiteness condition, as follows. Say we impose the
normalization s ), =0. Condition | leads to the relationships nf, = nt and S} =(S,, +S ,,) . Condition
Il statesthat SN must be positive semi-definite, where:

s ;
é§1'\i S]'EJL U 1

s"=éo0 0 o0 O —
é a ny
eO 0O 0O u .
€0 0 0 0 oY

A matrix is positive semi-definite if al of its eigenvalues are non-negative. The eigenvalues for S™ shown
aboveare: 25,/ nf,, 0, 0, 0, 0. We know from Condition | that nf, >0 and s} 3 0, which means
2s .y /nt 3 0, S" is positive semi-definite, and the normalization s ), =0 isvaid. Smilarly, it can be
shown that the normalization s ] =0 isaso valid.,

Whileit is not possible to estimate both variance parameters of the 1, 1, 2, 2, 2 structure, the following
structures are all identified and result in identical covariance structures (i.e., identical models):

{1,1,000}={00222}={11222withs,=s, } .

These results straightforwardly extend to al two nest structures regardless of the number of alternatives
(aslong as at least one of the nests has 2 or more aternatives).

Models with Three or More Nests

The summary of identification for models with 3 or more nestsisthat all of the nesting parameters are
identified. To show this, we will again look at a5 aternative modd, this time imposing a 3 nest structure
1,12373):

U,=..+s,z,, él 0 Ou
U, =.+S.2, +n,_ & o of &, 0 00
Ug, =..#S 2, #Ny, , where F=& 1 00andT=g0 s, 0.
U, = ..+S Z,, +N,, 0 0 1 g0 0 s,
U = S 2o+, O 0 1

The covariance matrix of utility differencesis:
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&, +S 5 +2g/ 0T v
W:gsu+533+g/mz Sll+833+29/n‘? 3
° é S ..t /I‘T‘I2 S . + /I'T12 S+ +2q/ 2 G
g Su'd =+0 »+S 5 +2g/m G
6 g/nf g/nf g/nt 29/t

A check of the rank condition verifies that al three variance parameters are identified:

€, +S 5 +2g/nfU éL 0 1 2
gsn+s£+g/ng gl 01 13
€ s, +g/nt U Jacobian €0 0 1 10
veecuW,)=¢& % g a ® . =a 0 ® RANK=4
& ,, +S 4, +20/ N1y matrix 0 1 1 2;
e g/ nt Y € 0 0 10
e u é U
& 29/t g & 0 0 2

® can estimate 3 of the parameters; only need to normalize m.

Itisan interesting result that 1, 1, O, 2, 2 structure results in both variance parameters being identified (by
virtue of having a 3 nest structure) whereas only one parameter of the 1, 1, 2, 2, 2 structure is identified.

Conceptually, the number of estimable parameters can be thought of in terms of the number of differences
and number of covariancesthat are left in the utility differences. In atwo nest structure, only one
difference remains and no covariances and therefore one parameter is estimable. Whereas in a three nest
structure, there are two differences, plus the covariance between these two differences, and so three
parameters are estimable.

This finding can be extended to any model with 3 or more nests (where ‘nests' can have only 1
aternative, aslong as at least one nest has 2 or more alternatives) as follows. Without loss of generdlity,
assume that the base dternative is a member of a nest with 2 or more aternatives (as in the example
above). Define m, as the group to which the base alternative belongs, and s, as the variance associated
with this base. Recall that M is the number of nests. The covariance matrix of utility differences has the
following dements:

On the diagond:

S +Sy, +29/ nt "l m,, M-1 equations, (29)
2g/nt , 1 equation. (25)
On the off-diagond:

Syp+g/nt, 1 equation, (26)
g/nt, irrelevant: a dependent equiation,

S, +S,,+g/nt forsomeil m,, irelevant: adependent equation.
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Equations (24) through (26) provide identification for al nesting parameters, and the remaining equations
are dependent. In the two-nest case, Equation (26) does not exist, and thus is an equation short of
identification.

Cross-Nested Models

There are no genera rules for identification and normalization of cross-nested structures, and one hasto
check the rank condition on a case-by-case basis. For example, in the five dternative case in which the
third dternative belongs to both nests (1, 1, 1-2, 2, 2), the (non-differenced) covariance matrix is:

isn"'g/mz u
2 Sy s,+g/nt 3
er Sll S]J. Sll+822+g/n12 l;'
& 0 0 S s, +g/nf ;
§ 0 0 S22 Sp  Sptg/mfl

A check of the order and rank conditions would find that both of the parametersin this cross-nested
structure are identified. However, note that the cross-nesting specification can have unintended
consequences on the covariance matrix. For example, in the (1, 1, 1-2, 2, 2) specification shown above, the
third aternative is forced to have the highest variance. There are numerous possible solutions. Oneisto
add a set of heteroscedastic terms, another is to add factors such that al the alternative-specific variances
are identical as with the following specification:

& 0010 O g, 0 0 0 0 0Y
SHI I SRR
F=8 00 0 0 1adT=4 ! G
© 100 0 1y 28 8 8 Sg 0 08
@ 010 0 1f & s: 0y
80 0 0 0 0 s,j
The covariance matrix of utility differences for this structure is as follows:
€25,,+ 25, +2g/nt y
V\/D232511+522+g/r'n2 25,,+% ,,+2g/ nf 2 ﬂ
g 2s,,+g/nf 2s,,+g/nf %, +2g/m 3
8 s,+g/nf s, +g/nt sutg/nt  2s,+2g/nfg

A check of the rank condition verifies that both variance parameters are identified for this specification.
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€2, + 2% ,+2g/nfu e 2 20
é U & U
a25,+s,+g/nf g 2 114
€ 2, ,+g/nf U Jacobian € 0 10
vecu(W,) = é N U . =a 0 ® RANK=3
& 2,+2g/nt g matrix g2 0 2
¢ s +g/nt U € o0 1u
e u U
8 2,+2g9/nf e2 0 2g

® can estimate 2 of the parameters, only need to normalize m.

Extensions to Nested Models

There are various complexities that can be introduced to the nesting structure, including multi-level nests,
cross-nested structures with multiple dimensions, and unknown parameters in the loading matrix (F ).
While we have investigated various special cases of these extended models, we have not yet derived
genera rules for identification. We recommend that identification be performed automatically on a case-
by-case basis by programming the rank and order conditions into the estimation program.

Error Components

The error component formulation is a generalization that includes the heteroscedastic, nested, and cross-
nested structures. The model is specified as follows:

U,=X,b+FTz, +n,_,

where F,,z,,and T aredefined asin the general case, and F, isamatrix of fixed factor loadings equal
toOor 1. If T isdiagond (asit often is), then the disturbances in scalar form are:

M
] S

ein = a firmsmzrm +nin1 II C:n ’
m=1

where:

_11 ifthem" element of z , appliesto alternativei for individual n,
}0 otherwise.

The number of factors can be less than, equal to, or greater than the number of alternatives.

Identification

The order condition statesthat upto J(J - 1)/2- 1 parametersin T areidentified. However, it is
aways necessary to check the rank condition for the particular specification and the positive definiteness
condition for vaid normalizations. Examples were provided above for the specia cases of heteroscedastic,
nesting, and cross-nesting specifications. Note that the rank condition should always be checked when any
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combination of nesting, cross-nesting, and heteroscedasticity are applied. That is, the identification rules
cannot be independently applied for combinations.

Factor Analytic

The Factor Analytic specification is afurther generdization in which the F, matrix contains unknown
parameters. The modd is written asin the general case:

U,=Xb+FTz, +n, .

If T isdiagond, the disturbances can be written in scalar form as follows:

M
[o] A
ein = a. firmS erm +nin1 | I Cn ’

m=1

where both the f,  ’sand s ’s are unknown parameters.

Identification

Thisisavery broad class of models. Therefore, it is difficult to go beyond the rank and order
generadizations of identification. However, note that some constraints must beimposedon F, and T in
order to achieve identification. For aternative-specific error structures, the minimum number of necessary
constraints can be determined from the order condition: amaximum of J(J - 1)/2- 1 parameters can be
estimated and thereareupto M (J +1) +1 unknown parameters (M in T diagond, JM in F,, plusthe
scaleterm m). Once the order condition is met, the rank condition needs to be checked on a case-by-case
bass. Findly, it must be verified that any imposed normaization satisfies the positive definiteness
condition.

General Autoregressive Process

A fully unrestricted error correlation structure in models with large choice setsis problematic as the
dimension of theintegral is on the order of the number of aternatives and the number of parameters
grows quadratically with the number of alternatives. A generalized autoregressive framework is attractive
in these situations, because it alows one to capture fairly general error correlation structures using
parsimonious parametric specifications. The key advantage of the method is that the number of
parameters in the error structure grows linearly with the size of the choice set.

The disturbances )(n = (Xm X ) ° of afirst-order generalized autoregressive process [GAR(1)] is
defined as follows:

X, =rWx +Tz., z,~NQO,1,), (27)

5. . ) . . .
X,, hasaslightly different interpretation than the X | used elsewhere in the paper.
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where W, isa (J” J) matrix of weights w; , describing the influence of each X in €rror upon the others,
r isan unknown parameter, and T z . alows for heteroscedastic disturbances, where T, is (J,” J,))
diagond (the subscript n isincluded to alow for different sized choice sets). Using a genera notation, we
write W, as:

W,

ijyn

Wj,n = , " jl i and Wij’n=0 " |:] ) (28)

n

[eT N

*

\Nik,n
1

=
1l

where W in Isafunction of unknown parameters and observable explanatory variables, which describe
the correlation structure in effect. Solving for X , In Equation (27) and incorporating it into Equation (4),
leads to alogit kernel form of the GAR[1] specification:

U =Xb+FTz +n,,  whee F,=(I - rW,)™.

The normdization applied in Equation (28) ensures that the processis stable for values of r inthe (- 1,1)
interval. The interpretation and thesign of r , usually referred to as the correlation coefficient, depend on
the definition of proximity embodied in W, .

In practice, the parametersin W in Could be estimated. However, there are important special casesin
which they are fixed. For example, spatial studies often use spatial autoregressive of order 1 [SAR(1)]
error processes, which define the contiguity structure through a Boolean contiguity matrix. In this case,
W, =1if i and j arecontiguousand W, =0 otherwise. For this specification, a r >0 impliesthet
errors of the same sign are grouped together. A dightly more complex specification, which requires
estimation of asingle parameter (, isto set V\f; = (dij)'q , inwhich the distance d; playstherole of a
contiguity or proximity measure between pairs of aternatives. For examples of SAR(1) see Ansdlin
(1989), and Cliff and Ord (1981). For an application of SAR(1) processes in economics, see Case (1991).
Bolduc, Fortin, and Fournier (1996) use an SAR(1) process to estimate a logit kerne modd with 18
aternatives.

For more details on GAR(1), including a discussion on identification issues, see Bolduc (1992).

Random Parameters
The MNL formulation with normally distributed random taste parameters can be written as:

U,=X,b,+n, , where b, ~N(b,S,).

n ?

b, isa K -dimensional random normal vector with mean vector b and covariance matrix S, . Replacing
b, with the equivaent rdlationship: b, =b +Tz_, where T isthelower triangular Cholesky matrix such
that TT'=S, , leadsto agenera factor anaytic logit kernel specification where F, = X :

U,=Xb+XTz, +n, .
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The parameters that need to be estimated in thismodel are b and those present in T . T isusudly
specified as diagonal, but it does not have to be (see, for example, Train, 1998, and Walker, 2001).
Independently distributed parameters are probably a questionable assumption when variables are closdy
related, for example in-vehicle and out-of -vehicle trave ti me.’ Also, note that the distribution does not have
to be normal. For example, parameters with sign constraints should be specified with alognormal
distribution. See the telephone case study presented later for an example of amodel with alognormally
digributed b, parameter.

Identification

For identification of random parameter models, it is useful to separate the random parameters into two
groups: those that are applied to aternative-specific constants and those applied to variables that vary
across the sample.

Alter native-specific constants

When dternative-specific zero/one dummy variables have randomly distributed parameters, thisis
identical to the heteroscedastic, nested, and error component structures. In such cases, the order and
rank conditions as discussed earlier hold.

Variables that include variation across the sample

As pointed out in the genera discussion on identification, the order condition does not hold for the
portion of the covariance matrix that varies across the sample. Rather, as many parameters as the
data will support (without running into multicollinearity problems) can be estimated.

Continuous Attributes of the Alter natives

When random parameters are specified for continuous attributes of the aternatives, there are no
identification issues per se. Data willing, the full covariance structure (i.e., variances for each
parameter as well as covariances across parameters) can be estimated.

Categorical Attributes of the Alternatives

An interesting and unintuitive identification issue arises when categorical variables' are specified with
independently distributed random parameters. Say there are M categories for a variable. Then there
istheoretically a b, and s , for each category m, m=1,...,M . Itiswell known that for the
systematic terms (the b ,,’s), only (M - 1) b ,’s can be identified and therefore a base must be
arbitrarily selected. However, thisis not necessarily true for the disturbance terms. To do the analysis,

° Note that if a subset of the covariances are estimated, then one has to be careful about the way the structural zeros are imposed
on the Cholesky. In order for the structure of the Cholesky T (i.e., the location of the structural zeros) to be transferred to the
covariance structure TT’, the structural zeros must be in the left-most cells of each row in the Cholesky. See Walker (2001) for
more discussion.

! An example of a categorica variable in a housing choice context is X={ street parking only, reserved parking space in a lot,
private garage}, where each alternative has exactly one of the possible X's associated with it.

27



the rank condition comes into play. Identification of the s ,’s can be thought of asidentification for a
nested structure (think of it as examining the covariance structure for a particular individud).
Therefore, if there are only 2 categories, then only one random parameter is identified and the
normalization is arbitrary; if there are 3 or more categories, then a random parameter for each of the
categoriesisidentified. The key here being that, unlike the systematic portion of the utility function, it
isincorrect to set one of the s .’ s as a base when there are 3 or more categories. Unlike the
identification analysis for a nested structure, the number of aternatives J does not impact the number
of s, ’sthat can be estimated, because of the variation across observations. Note that this analysis
appliesfor asingle categorica variable, and it is not immediately apparent that the conclusion
trandates to the case when random parameters are specified for multiple categorical variablesin the
model. The issue of identification for categorica variablesis not addressed in the literature, see, for
example, Goett, Hudson, and Train (2000), who include random parameters on severda categorica
variables in their empirical results.

When covariances are estimated (as they probably should be), then afull set of variances and
covariances can be estimated for the M - 1 b ’sestimated in the systematic utility.

Characteristics of the Decision-maker

If arandom parameter is placed on a variable that is a characteristic of the decision-maker (for
example, years employed), it necessarily must be interacted with an alternative-specific variable
(otherwise it will cancel out when the differences are taken). The normalization or such parameters
then depends on the type of variable with which it interacts. If it interacts with alternative-specific
dummy variables, then the heteroscedastic rules apply (i.e.,, J - 1 variance terms can be estimated,
and the minimum variance term must be constrained to zero). If it interacts with nest-specific
constants, then the rules for nested error structures apply, etc. Furthermore, we suspect that if the
characterigtic is a categorical variable (for example, low income, medium income, high income), then
the rules we presented for categorical attributes also apply (although this hasn’t been verified).

Identification of Lognormally Distributed Parameters

Our application of the Order and Rank conditions for identification assume that the disturbance
component of the utility can be separated from the systematic portion of the utility. With lognormally
distributed parameters, the mean and variance of the distribution are a function of both of the
disturbance parameters and therefore this separability does not exist. While the identification rules
described above cannot be strictly applied, they provide guidelines for identification. And, as aways,
empirica tests such as examining the Hessian should aso be applied.

Aslong as the identification restrictions described above are imposed, the number of random parameters
that can be identified is dependent on the data itsalf in terms of the variation and the collinearity present in
the explanatory variables. Therefore, empirical methods are used to verify identification of random
parameter models, for example, verifying that the Hessian is non-singular at the convergence point. An
issue with simulation is that identification issues often do not present themselves empiricaly unless alarge
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number of draws are used. Therefore, other useful methods are to constrain one or more parameters and
observe whether the likelihood changes, or to test the impact of different starting values. Also, it is
particularly important in random parameter models to verify stability of parameter estimates as the number
of draws increases.

McFadden and Train (2000) note the inherent difficulty of identifying the factor structure for random
parameter models, because many different factor combinations will fit the data approximately as well.

Parameter Estimation

We now describe the method that we use to estimate the joint vector of parametersd =(b 'y '), where
b isthe vector of unknown parameters in the systematic portion of the utility and y  is the vector of
unknown parameters in the error structure. For example, in the heteroscedastic model, only the
aternative-specific standard deviations areincluded in 'y . In the GAR(1) version based on a Boolean
contiguity matrix, the same standard deviations are estimated in addition to r (the correlation coefficient).
The factor analytic and the random parameter structures can potentially have a very large number of
unknown parameters.

The approach is to employ probability smulators within a maximum likelihood framework, which leads to
Maximum Simulated Likelihood (MSL). The application of this method is straightforward and provides
great flexibility in terms of the structure of the covariance matrix.

Maximum Likelihood
The log-likelihood of the sampleis:

L(d) =§”1 InP(i, |d) .

n=1

where P(i,, |d) isthe probability associated with the choice made by individua n. The score vector is:

Ld)_& 1 fPG,ld)
fd PG 1d

Inserting the probability equations for the logit kerne model (Equations (6) and (7)) leads to the score for
the logit kernd modd!:

L @) _& 1 . finL(i_|d,z)
0 Apg oy Q- hld2) TN

y)dz . (29)

Note that we also use the relationship TX/1q =X (1In(X)/1q) in Equation (29) in order to make the
derivativetractable: InL(i |d,C.)= X, b+F Tz -Ing € " whichiseasy to differentiate.

iic,
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Each factor z introduces a dimension to the integral. Unless the dimension of z issmdl (£ 3), the
Maximum Likelihood (ML) estimator just described cannot be computed in a reasonable amount of time.
For modelswith z of larger dimension, we use the Maximum Simulated Likelihood (MSL) methodol ogy,
described next.

Maximum Simulated Likelihood
The response probability for dternative i is replaced with the unbiased, smooth, tractable smulator:

D
Pld)==&L(dz) . (30
Dy
where z ! denotesdraw d from the distribution of z . (each draw consists of M éements). Thus, the
integral is replaced with an average of values of the function computed at discrete points. There has been
alot of research concerning how best to generate the set of discrete points (see Bhat, 2000, for a
summary and references). The most straightforward approach is to use pseudo-random sequences.
However, variance reduction techniques (for example, antithetic draws) and quasi-random approaches
(for example, the Halton draws, which are used in the empirical results in this paper) have been found to
cover the dimension space more evenly and thus are more efficient.

Incorporating the simulated probability, the smulated log-likelihood is then:

L(d) =§1 In P(i, | d) 31

n=1

and the smulated scoreiis:

(32

wrtd) & 1 148 o TInL(i |d,z9)
=8 = L(i |d, nl2"n/
0 B jaypd -z Ty

A well-known result previously obtained in Borsch-Supan and Hgjivassiliou (1993), among others, indicates
that the log-likeihood function, athough consistent, is smulated with a downward bias for finite number of
draws. The issue is that while the probability smulator (30) is unbiased, the log-smulated-likelihood (31) is
biased due to the log transformation. This can be seen by Jensen’ s inequality and the concavity of the log

function. It can also be seen by taking a second degree Taylor's expansion of In(I5(D) around P(i),
which gives:

A . 1 -, .
In(P(i) ) » |n(P(l))+%(P(l)- P(i))

1

" 2P0) (P()- P®)

Taking the expected value of this relationship implies that:
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L(d)- L(d)»-%EO. €<

This suggests that in order to minimize the bias in smulating the log-likelihood function, it isimportant to
smulate the probabilities with good precision. The precision increases with the number of draws, as well
as with the use of efficient methods to generate the draws. The number of draws necessary to sufficiently
remove the bias cannot be determined a priori; it depends on the type of draws, the model specification,
and the data.

Applications

In this section, we consider four applications. two based on synthetic data and two on real data. The first
sample concerns a hypothetical choice situation among three aternatives; the focus is on the parameter
idertification issues of heteroscedastic models. The second sample, also using synthetic data, has 5
aternatives and focuses on identification issues of categorical variables with random parameter. The third
application uses a mode choice dataset that is used for logit kernel models that appear in two recent
textbooks (Greene, 2000, and Louviere, Hensher, and Swait, 2000). We replicate the models presented in
the texts, and use them to highlight practica issues that arise in estimating logit kernel models. The fourth
application is based on a survey collected to predict residentia telephone demand. We estimate severa
error structures for the telephone data, including heteroscedasticity, nesting, cross-nesting, and random
parameter, and highlight many of the important identification and estimation issues of logit kernel models.

Estimation Notes & Practical Issues

Optimization Algorithm

While the likelihood function for linear in the parameters logit modelsis strictly concave, thisis not true for
logit kernel models (note that it is also not true for the nested logit moddl). Furthermore, the simple Newton
methods that are used for MNL estimation tend to lose their robustness when the optimization function is
not concave. Therefore, modified Newton methods, which address non-concavity with techniques such as
trust regions, should be used for logit kernel models. For details on these methods, see Dennis and
Schnabel (1983). In the applications presented in this paper, we use the DUM AH routine provided in
Fortran's IMSL Libraries. The max! i k routine provided in Gauss could also be used.”

Direction Matrix

To decrease estimation time, we analytically program the derivatives and approximate the matrix of
second derivatives (the Hessian) with first order information. The most straightforward approximation of
the Hessian is the BHHH technique (Berndt et al., 1974), which is computed as:

° Note that Kenneth Train of UC Berkeley provides Gauss-based estimation code for logit kernel (a.k.a. mixed logit) models from
hiswebsite: http://emlab.berkel ey.edu/users/train/index.html
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where the score is defined as in Equation (29) (evauated per sample observation). For Maximum
Simulated Likeihood, it is computed with the smulated scares (32).

Under certain regularity conditions, BHHH can be shown to be a consistent estimator of the covariance
matrix of parameters at the maximum likelihood estimate. There are also numerous other approximations
that can be used, see Dennis and Schnabel (1983) for further discussion.

Standard Errors at Convergence

For afinite number of smulation draws, BHHH may substantially underestimate the covariance of the
estimator due to smulation error (see McFadden and Train, 2000, for a discussion). BHHH (or some other
gpproximation) is still preferred for the direction matrix due to the low cost of estimating the matrix as well
as the robustness of estimation with regards to the direction matrix. However, it is advisable to use robust
standard errors to generate the test statistics at convergence. A robust asymptotic covariance matrix
estimator is H *RH " (Newey and McFadden, 1994), where H is the Hessian, calculated numerically or
andyticaly, and R isdefined asin Equation (34). When simulation is used, the simulated Hessian and
Score are used. We report robust t-statistics (calculated using a numerical Hessian) for al estimation
results.

Simulation Draws

We primarily use Halton draws for the smulation; however, some of the specifications are also estimated
using pseudo-random draws for comparison. (See Bhat, 2000, and Train, 1999, for more information on
Haton draws.) We have found the Halton draws to be more efficient than pseudo-random draws. For
each observation, we draw I random vectors (z},...,z ", each (M “ 1)) from the given multivariate
distribution of the factors, and these draws are kept constant across iterations so that the simulator does
not “chatter” as d changes (see McFadden and Train, 2000, for more information). The probability is
then smulated using Equation (30), the log-likdlihood using Equation (31), and the derivatives using
Equation (32).

Simulation Bias and Identification
Two issues critical to estimating logit kernd models are smulation bias and identification.

As noted above, the number of draws, 1D, must be large enough to sufficiently reduce the bias shown in
Equation (33). The problem is that there is no way to know a priori how large is large enough, because this
depends on the particular model structure and data. Therefore it is always necessary, as we do in these
applications, to verify that the estimated parameters remain stable as the number of draws is increased.

The number of draws aso plays an important role in testing for identification. Note that there are two
forms of unidentification: structural, as indicated by the order and rank conditions, and informational, which
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is when the data do not provide enough information to support the given structure (i.e., multicollinearity). It
turns out that identification problems often do not appear (via a singular Hessian) when a small number of
draws is used. For example, in the most extreme case, any specification (whether identified or not) will
always appear identified when only 1 draw is used, because this is equivalent to adding explanatory
variables to the systematic portion of the utility. Thisissue also emphasizes the importance of checking the
rank condition prior to estimation, and of verifying robustness of estimates using different starting values.

Figure a: 100 Halton Draws
1st and 2nd Dimensions (Seeds=2 & 3)
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Figure b: 100 Halton Draws

Figure c: 100 Halton Draws
7th and 8th Dimensions (Seeds=17 & 19)

20th and 21st Dimensions (Seeds=71 & 73)
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Figure 1: 100 Halton Draws for Different Dimensions of the Integral

Another issue with the number of draws is that as the dimension of the problem increases the number of
draws necessary to estimate the model also increases. Conceptually, the issueis that it takes more draws
to adequately cover the dimension space; this applies to al methods used to integrate non-closed form
functions (for example, Gaussian quadrature or simulation via pseudo-random or quasi-random methods).
It isinteresting to note that with Halton draws, planes develop when small numbers of draws are used for
high dimensional integrals. The generation of Halton draws is presented very clearly in Train (1999).
Briefly, to implement Haton draws, a non-random series is developed for each dimension, each seriesis
seeded with a prime number, and the seeds are implemented in order (2, 3, 5, 7, etc.). As an example of
the problem with planes developing, take an extreme case: 100 draws are often sufficient to estimate a
two dimensional model. As shown in Figure 1a, examination of a sample of Halton draws for a particular
observation shows that the draws cover the 1* and 2™ dimensions of the sample space quite well.
However, Figure 1b indicates that 100 draws for the 7" and 8" dimensions do not cover the space well,
and Figure 1c shows that the 100 draws for the 20™ and 21% dimensions are even worse.
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To summarize, due to the issues of bias and identification, it is critical to empiricdly verify on a case-by-
case basis that a sufficient number of draws are being used to estimate the model.

Synthetic Data I: Heteroscedasticity

The first application concerns a hypothetical choice situation among three alternatives. The model
specification is as follows.

Uln :al + xlnb +Slzln +n1n !
U2n :a2 +X2nb +SZZZn +n2n’
USn = X3nb +SBZ3n +n3n '

The true parameter values used to generate the synthetic data are:
a,=15 a,=05 b=-15s,=3 s,=2 s,=1 and m=1.

The explanatory variable, X , issmulated as anorma variable with a standard deviation of 3, independent
across aternatives and observations. The utilities for each observation are generated by drawing asingle
random draw for each z ;| from independent standard normal distributions and each n;, from
independent standard Gumbel distributions. The utilities are calculated, and the aternative with the highest
utility is then the chosen dternative.

Estimation results using the synthetic data are provided in Table 1. Table 1a presents estimation results
regarding selecting and setting the base heteroscedastic term. Recall that only J - 1 heteroscedastic terms
are identified, and that it is necessary to either set the minimum variance term to zero, or set any of the
other variance terms high enough according to the equation derived earlier (Equation (23)):

sye(s; -s'“)%ﬁs.n) i=1.,3,

where s';; isthe theoretical (true) variance that is fixed to the value s f’\f' :

All of the modelsin Table 1a are estimated with 10,000 observations and 500 Halton draws. The first
modd shows estimation results for an unidentified mode; this mode is used to determine the minimum
variance alternative, and it correctly identifies the third alternative as having minimum variance.” Modedls 2
through 4 show identified models in which the minimum variance aternative is constrained to different
values (0, 1, and 2); as expected, the log-likelihoods of these models are basically equivalent and al of
these represent correct specifications. Modes 5 through 10 show identified models in which the maximum
variance dternative is constrained to different values (0, 1, 1.5, 2.25, 3, and 4). Applying Equation (23)
(repested above), the model specification will be correct aslong as s ; is constrained to a value above

° We were able to calculate t-statistics for the unidentified model here (and elsewhere) for two reasons. First, simulation has the
tendency to mask identification issues, and therefore does not always result in a singular Hessian for a finite number of draws.
Second, the dight difference between the Gumbel and Normal distributions makes the unidentified model only ‘nearly’ singular,
and not perfectly singular.



2.2. The empirical results verify this. First, there is a severe loss of fit when the s , is constrained below
2.2. Second, the parameter estimates for the mis-specified models are biased. This can be seen by
examining the ratio of the systematic parameters (for example, b /a,) across models. While the scale
shifts for various normalizations (and therefore the parameter estimates al so shift), the ratio of systematic
parameters should remain constant across normalizations. A cursory examination of the estimation results
shows that these ratios begin to drift with successively invalid normalizations. Finally, note that these
results indicate a dlight loss of fit when the base alternative is constrained to a high value (s ; =2 and

S, =4), and this is due to the issue addressed earlier regarding the slight difference between the Gumbel
and normal distributions. It must be emphasized that the normalization in heteroscedastic logit kernel
modelsis not arbitrary.

Table 1: Synthetic Data | - Heter oscedastic M odels
(3 Alternatives)

Table a: Selecting and Setting the Base Heteroscedastic Term (10,000 Observations & 500 Halton Draws)

True Unidentified Identified: Minimum Variance Base Identified: Maximum Variance Base
Parameter  Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
ag 15 127 @4]| 124 @57 151 (159 218 (59| o097 o)  1.02 (79 1.08 (B4 124 (68 157 (172  2.03 (174
az 05 043 @8] o042 69 053 ©2 o076 2] 037 WD o040 (15 041 (04 o042 @2 o054 68 o070 (0
b -1.0 -0.80 B8] -078 (146) 094 (141) .13 (37N] -051 (55 057 (650 .0.64 (91) 078 (160) .098 (71 .127 @71
s1 3.0 232 @] 224 ©0 284 (03 430 O] o000 - 1.00 - 150 - 225 - 300 4.00
s2 2.0 127 9] 121 @0 169 69 280 N] oo O 003 03 o050 @8 122 (66 182 (117) 258 (145
s3 1.0 035 0] o000 - 100 - 200 - 000 09 000 @8 o001 05 o016 00 107 @4 178 (76
(Simul.) Log-Likelihood: | -6837 -6837 -6837 -6838 6907 -6865 -6845 -6837 -6837 -6838
Model: 1 2 3 4 5 6 7 8 9 10

Table b: Varying the Numbers and Types of Draws (10,000 Observations)

Halton Draws Pseudo-Random Draws
True  True with 200 Halton 1000 Halton 2000 Halton 4000 Halton 500 'Random’  1000'Random' 5000 'Random’ 10000 'Random’
Parameter  Value S3=0 Est t-stat  Est t-stat Est t-stat Est t-stat Est  t-stat Est  t-stat Est  tstat Est t-stat
a; 15 118 1.22 (165) 1.24 (154) 124 (155 124 (45| 1.0 (165 1.21 (162) 123 (156) 1.24 (157)
ap 05 0.39 042 ©1) 042 ©8) 042 @8 042 @9 042 03 o042 ) 042 @9 042 69
b -1.0 -0.79 -0.77 (158 078 (142 078 (143 078 BO| -0.75 (156 .0.76 (153) 078 (144 .0.78 (146)
S1 3.0 2.23 219 (102) 225 (9.5 226 (9.5 225 (87) 2.14 (102) 2.15 (10.0) 223 (99 226 (97)
S2 2.0 1.37 1.14 (46) 122 (49 123 (46) 123 (42 1.06 (4.0) 1.10 (42 119 (449 122 (@47
s3 1.0 0.00 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00
(Simul.) Log-Likelihood: -6837 -6837 -6837 -6836 -6835 -6839 -6838 -6836

Table c: Varying the Number of Observations (500 Halton Draws)

True 1000 Obs 5000 Obs 10000 Obs 40000 Obs 80000 Obs

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

ai 15 227 @) 164 (98 151 (159 145 (21) 154 (384

az 05 091 @4 o068 64 053 @2 053 (184 o052 @7

b -1.0 -1.69 (L9 .099 (63 094 (141 095 (292 .102 (@32

S1 3.0 564 (17) 313 (65 284 (103 285 @3 305 (49

s2 2.0 358 (L9 162 (2 169 (69 172 (123 208 (74
s3 1.0 100 100 100 100 1.00
(Simul.) Log-Likelihood: -655 -3369 -6837 -27499 -54944
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The models shown in Table 1b were estimated to investigate the impact of the number and types of

draws. All of these models are estimating using the normalization s ; =0, and so we report the true
parameters as calculated given this normalization (using Equations (15) to (17)). The model estimates
verify that the 500 Halton draws used for the modelsin Table 1a are sufficient. The results also show that
the Halton draws are more efficient then pseudo-random draws, as the parameter estimates stabilize for a
lower number of Halton draws. Table 1c is provided to show that as the number of observations increases,
the estimated parameters converge on their true values. Note that a potentially large number of
observations is required to accurately reproduce the parameters of the population. However, the required
number of observations is highly dependent on the model specification and data, and generaizations cannot
be drawn.

Synthetic Data Il: Random parameters on Categorical Variables

The second application, which aso involves synthetic data, concerns the issue of identification of random
parameters for categorical variables. Recall that if the variable has two categories (i.e., a 0/1 dummy) then
one systematic parameter and one random parameter are identified, and the normalization of each is
arbitrary. For variables with 3 (or more) categories, two systematic parameters are identified but al 3
random parameters (one per category) are identified. Empirical results are shown in Table 2. Table 2a, b,
and c al use dightly different datasets and model specifications. The general specification is as follows:

7 AN

éb, U &g, 0 Oueé&,u

Up=a; + [Xin Xon X ébll] * [ Xin Xan Xan) éol s ol %l a tnp
21 €0 52 0y &
sH €0 0 s;H &b

where a; =0 (the base aternative-specific constant) and X isacategorical variable, that is

Xin ={01} & X, + X, + X5, =1, " i; k=1,...,3; n. The data are generated using the same
approach as described in the synthetic data above, i.e, a X, z, andn are sampled for each person, the
utilities are calculated according to the model and parameters above, and the aternative with the highest
utility is the chosen dternative. 10,000 observations are used for al of the models.

The dataset for the models in 2aincludes a categorical variable with 2 categories ( X5, =0" i,n). While
the covariance structure varies across individuas, identification is analogous to a nested structure with two
nests, for example, 1, 1,2, 2,20r 1,2, 2,2,20r 1, 2, 1, 2, 1, etc. depending on the vdues of X for
observation n." Therefore, 1 systematic parameter (b) and 1 random parameter (s ) can be estimated.
Furthermore, the normalization of the random parameter is arbitrary. These statements are supported by
the estimation results. The first two models show that the model with

1 This concept of acategorical variable being analogous to a 2-nest nesting structureisdenoted as“ ~1, 1, 2, 2, 2" in Table 2.
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Table2: Synthetic Data Il — Categorical Variableswith Random Parameters
(5 Alternatives; 10,000 Observations)

Table a: Categorical variables with 2 categories, each enters all 5 utilities (~1, 1, 2, 2, 2)

Identified: Identified: Identified:
Unidentified  Unidentified Base 1 Base 2 Base 2
True 500 Halton 500 Halton 500 Halton 500 Halton 1000 Halton
Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
aj 05| 048 (112 048 (112)| 048 (112 048 (112) 0.48 (112)
ap 05| 044 @02 044 (02| 044 (102 044 (102) 0.44 (102)
ag 1.0 0.92 (27) 092 (27| 092 (@7 092 @27 092 (227)
a4 10| 098 (42 098 (42| 098 (42 098 (242  0.98 (24.2)
b1 05| 050 (79 050 (9| 050 (79 050 (79 0.50 (7.9)
S 2.0 0.84 (23 3.91 (139) 3.94 (14.4) 3.94 (14.4)
s2 40| 385 (136) 047 (7| 3.94 (149
(s1%452%)"? 45| 3904 3.94 3.94 3.94 3.94
(Simul.) Log-Likelihood: -15310 -15310 -15310 -15310 -15310
Model: 1 2 3 4 5

Table b: Categorical variables with 2 categories, each enters 4 of 5 utilities (~1, 1, 2, 2, 0)

Misspecified 1 Misspecified 2| Identified Identified

True 500 Halton 500 Halton 500 Halton 1000 Halton

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat
ag 0.5 0.10 (L5 0.41 (96) 0.47 (5.1) 0.47 (5.1)

ap 0.5 0.04 (06 035 (82| 041 @ 0.41 (45)

ag 1.0 052 (78 0.80 (195 | 090 ©7)  0.90 (9.8

a4 1.0 0.57 (87 0.86 (21.0) 0.95 (10.3) 0.96 (10.4)

bl 0.5 053 @7 011 @8] 050 (73 0.50 (7.3)

s1 2.0 229 (160)| 173 (84 1.73 (85)

S2 4.0 3.45 (15.) 3.55 (13.2) 3.55 (13.2)

(Simul.) Log-Likelihood: -15398 -15537 -15378 -15378

Table c: Categorical variables with 3 categories, each enters all utilities (~1, 1, 2, 2, 3)

Misspecified Identified Identified
True 500 Halton 500 Halton 1000 Halton
Parameter Value Est t-stat Est t-stat Est t-stat
a 0.5 0.36 (77 0.36 (1.7) 0.36 (1.7
ap 05| 040 @©5]| 040 @©5 040 (85
ag 10| 093 (05| 093 (206 0.93 (06
a4 1.0 0.92 (02| 0.92 (203  0.92 (203)
bl 1.0 106 4| 106 (64 106 (67)
b2 0.5 1.06 (70| 069 @4 070 (44
s1 20| 347 @2 275 (@5 277 (81
S2 3.0 252 (68) 249 (67)
s3 40| 474 @quy| 437 @7 438 (109
(Simul.) Log-Likelihood: -15376 -15368 -15368
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both random parameters is unidentified, as thefit isidentica for very different estimates of the random
parameters. The third and fourth models show that the normalization is arbitrary: the parameter and fit are
the same for either normalization. The fifth model verifies that enough draws are being used for
estimation.

The dataset used for the modelsin Table 2b is smilar to that used in Table 2a, with the exception that the
categorical variable only appliesto the first four aternatives ( X,;,, =0" k,n). Inthis case, identification
isrelated to a nested structure with three nests (for example, 1, 1, 2, 2, 0); therefore, 1 systematic
parameter is estimable and both of the random parameters are estimable. Thisis shown in the estimation
results, where the models with either of the systematic terms fixed to O resultsin a significant loss of fit.

In Table 2c, the categorical variable contains three categories. |dentification hereis also related to a
nested model with 3 nests (for example, 1, 1, 2, 2, 3), and therefore 2 systematic parameters are identified
and al 3 random parameters are identified. This is supported by the estimation results, in which
constraining one of the random terms to zero results in a significant loss of fit.

Empirical Application I: Mode Choice

The logit kernel formulation is now making its way into econometric textbooks. In this section, we
investigate the identification issues of logit kernel models that appear in Greene (2000, Table 19.15) and
Louviere, Hensher and Swait (2000, Table B6.5). Both texts make use of the same data and present
smilar model specifications.

The Data

Thisis areveaed choice dataset containing mode choices for travel between Sydney and Melbourne,
Australia. The choices available are air, train, bus, and car.”" There are 210 observationsin the sample,
and the explanatory variables are™;

GCost: Generalized cost ($00)
= in vehicle cost + in vehicle time*value of travel time savings.

TTime: Terminal waiting time for plane, train and bus (hours). Auto termina time is zero.

Income:  Household income ($00,000), which is interacted with the ‘air’ aternative specific dummy
variable.

H The dataset is actually a choice-based sample, and therefore the weighted exogenous sample maximum likelihood estimator
(WESML, see Ben-Akiva and Lerman, 1985) should be used for the logit-based models (and the probit-equivalent for the probit
models, see Imbens, 1992) to obtain consistent estimates. However, we did not use WESML in order to replicate the models as
reported in the textbooks.

12 Note: (i) The Louviere, Swait, and Hensher model also included a‘ party size' explanatory variable. We based our models on the
more parsimonious specification used in Greene. (i) We scaled the data differently than that used for the models reported in the
textbooks.
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Models

In this section, we use the models presented in Greene and Louviere et d. to highlight various practical
issuesin model estimation. Greene estimated a series of models including probit as well as severd logit
kernel specifications (an unrestricted covariance structure, a heteroscedastic model, and a more general
random parameter model). Louviere et al. present an even more genera random parameter mode.

Table 3: Mode Choice Model — Probit

Specification: Unidentified Identified
Draws: 1000 'Random’ 1000 'Random’ 1000 'Random’ 5000 'Random’

P Est t-stat Est t-stat Est t-stat Est t-stat
- Altern. Specific constants
% Air (1) 0270 nia 0.968 nia 0.456 12) 0377 (08
T Tran(2) 0.579 nia 2.10 n/a 0.959 48 0.917 (35)
&
~  Bus(d) 0.486 nia 176 na 0.805 (4.4) 0.768 @1
T
7 GCost(S00) -0.468 nia -1.70 nia 0.772 (4.9) 0747 (48
£ Trime (nours) -0.662 wa 239 na 110 @9 103 @9

Income ($00,000) - Air (1) 0.700 nia 254 n/a 1.15 (20) 1.16 (25)
% T11 0.608 wa 220 wa 1.00 1.00
By 1 0.131 na 0476 nia 0216 (09 024 23
£ 131 0.0736 na 0.267 nia 0121 (09 0132 (@9
I
H 122 0.246 na 0.888 nia 0407 (0 0381 (29
E 132 0.113 na 0.408 nia 0186 (19 0175 29
I
! 133 0130 Ma 0471 Ma 0216 @D 0202 @4

Log Likelihood (simul.): -197.727 -197.727 -197.727 -197.784

Unrestricted Probit

The first model we present is a probit model in which the covariance matrix of utility differences (W) is
unrestricted. In this case, the parameters of the Cholesky decomposition of W, are estimated, or:

e, 0 Ou
T=5L, T, 04 where TT¢=W,.
éTBl T32 T%H

Note that even with probit, one has to be careful about identification. The Order Condition States that only
five of the six parameters can be estimated. (Greene indirectly estimates al six, and therefore reports
results for an unidentified model.) The need for this restriction can be verified empirically, and we present
theresultsin Table 3. These were obtained using the GHK simulator with pseudo-random draws. First we
report two sets of estimation results for the unidentified model. The two models have identica fits and yet
different parameter estimates (note that the difference is a scale shift). The models also have a singular
Hessian and therefore t-stats could not be generated. We also report estimation results for the identified
mode (setting T;; =1). Themode is now identified: the fit isidentical to the unidentified models and the
Hessian is not singular. The 5,000 draw result is provided to verify stability.
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Unrestricted Logit Kernel

Greene also presents alogit kernel version of the probit model presented Table 3 (which he callsa

‘ congtants random parameters logit mode’). For the logit kernel version, the disturbance parameters
includethesix T, parameters as well as the logit scale parameter m. The identification of this model
presents some interesting issues. First, an application of the order condition suggests that the m as well as
one of the T;;’s must be normalized for identification. However, as we will show empirically, thisis not
exactly the case. The reason is due to the dight difference between the Norma and Gumbel distribution.
Since there is not an exact trade-off between the probit-like term and the Gumbel, there is an optimal
weighting between the two distributions that make up the disturbance, and this allows an extra term to be
estimated. Nonetheless, the model is nearly singular without aconstraint ona T, and so it is advisable to
impose a normalization.

The second issue relates to the manner in which T, is normalized. The covariance matrix of utility
differences for this mode is:

éT: +2g/nt
grnTzl*‘g/fT"z T, + T, +2g/nf
nglT3l +g/nt T,T, +T,T,+g/m* T +T5, +T5 +2g/ mzH

o\

We want to impose a normalization such that the model can reduce to a pure MNL. Therefore we want to
normalize some T;; = 0. Note that we cannot set T,; =0, because this will restrict two of the covariance
termsin the probit portion to be zero. We have aso found empirica evidence that it is not always vaid to
set T,, =0 due to the positive definiteness condition. However, it appears that the normalization T,; =0
(or, more generaly normalizing the lowest diagond element of the cholesky matrix) isavalid
normalization, and thisis whet we apply for this model. (See the Appendix for more information.)

The empirical results for the unrestricted logit kernel model are provided in Table 4. The first two columns
provide estimation results for the case in which adl six T;;’s are estimated. The model is identified as
suggested by a non-singular Hessian and stable parameter estimates as the number of drawsis increased.
The middle columns provide estimation results for modelsin which T, is normalized to various values.
Thereis margind loss of fit due to the normalizations, but the likelihood function is fairly flat across the
normalizations. The find column is provided to verify the stability of the normalized modd with ahigh
number of draws.

Heteroscedastic Logit Kernel

Greene also reports a heteroscedastic logit kernel mode (which he calls an *uncorrelated random
parameters logit model’). As with the unrestricted logit kernel model discussed above, the rank and order
conditions suggest a normalization is necessary when this is not exactly the case. Nonetheless, a
normalization is advisable since the modd is otherwise nearly singular. Furthermore, as we emphasized
earlier, if anormalization isimposed, the selection of the base aternative to normalize is not arbitrary.
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Table4: Mode Choice Model — Unrestricted Logit Kernel

Specification: | Multinomial Logit ‘Unidentified' (Nearly Singular) Identified with Various Normalizations Identified
Draws: 2000 Halton 40.000 Halton 2000 Halton 2000 Halton 2000 Halton 2000 Halton 4000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants

Air (1) 521 (53 442 (14 441 (L9 442 (14 476 (08 828 (03 253 (09 441 (14
Train (2) 387 (19 609 (12 602 (19 609 (14 828 (29 190 @9 44 69 609 (L)
Bus (3) 316 (68 500 () 493 (14 500 (4 692 (9 159 G0 51 68 500 (L0
GCost ($00) 155 (D 404 (07 397 (08 404 (08 622 (13 154 (19 331 (D) 404 (06)
TTime (hours) 577 (64 750 (18 743 (23 750 (22 973 (9 215 (46) 489  (56) 750  (L7)
____ Income ($00,000) - Air (1) 133 (14 555 (09 544 (06 555 (06) go1 (08 235 (09 405 0O 555 (09
T11 485  (06) 476 (07) 485  (07) 778 (10) 203 (09 408 (19 486 (05
T21 0934 (04 0904 (05 0933 (09 159 (09 435  (06) 783 (LY 0928 (04
T31 0554 (04 0538 (09 0554 (09 0913 (07 250 (09 430 09 0551 (04)
T22 125 (03 118 03 125 (03 281 (12 779 B9 179 61 125 (02
T32 0711 (03 0681 (04 0711 (04 130 (14 344 (14) 755 (22 0709 (03

133 512603 01 788e05 (00 0.000 1.00 4.00 10.0 0.00

Log Likelihood (simul.): -199.128 -195.466 -195.491 -195.466 -196.500 -197.713 -197.647 -195.481

etk A b

=

Sl

Table5: Mode Choice M odel — Heter oscedastic L ogit Kernel

Heteroscedastic Models
Specification: Multinomial ‘Unidentified" Identified: Identified: Identified: Identified:
Logit Base 1 Base 3 Base 4 Base 4
Draws: 1000 Halton 1000 Halton 1000 Halton 1000 Halton 5000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Air (1) 5210 (89 465 (D 521 (64 465 B 462 (39 469 GD
Train (2) 387 (79 519 (49 387 (79 519 (8 507 (68 508 (72
Bus (3) 316 (68 420 (9 316 (64 421 (40 411 (64 412 69
GCost ($00) 4155 (1) 3271 (32 155 B7) 327 (3 317 (43 315 (49)
TTime (hours) 577 64 690 (4 577 (108 690 7 678 (10 678 (9
Income ($00,000) - Air (1) 133 (@4) 368 (14 133 () 368 (4 353 (4 345 (19
s1 338 (31 000 - 338 (32 327 (34) 318 (36
s2 0143 (00 00414 (0 0.143 (00 0128 (00 0029 (00
S3 000206 (00| oo0181 (00 0.00 000266 (00| 000584 (00
S 0432 2] 00558 (00 0434 (02 0.00 0.00
Log Likelihood (simul.): -199.128 -196.751 -199.118 -196.751 -196.768 -196.255

The empirical results for the Mode Choice dataset are provided in Table 5. We estimate the * unidentified’

model to determine the parameters that are candidates for normalization. The results suggest that train,

bus, or car can be used as the base (Greene normalizes the car alternative). We then report several
identified models with different base aternatives normalized, and show that the model in which the air
heteroscedastic term is the base is a mis-specified mode (as indicated by the loss of fit).
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Random Parameter Logit Kernel

Greene also reports amodel that expands the unrestricted logit kernel moddl presented in Table 4 by
including normally distributed random parameters for the cost, time, and income variables. ™ The primary
issue here isthat there are only 210 observations in the sample, and it is not arich enough dataset to
support the estimation of alarge number of disturbance parameters. This is demonstrated with the
empirical results reported in Table 6, in which we present a series of random parameter models starting
with more parsimonious specifications.

Thefirst mode is the multinomia logit model, provided for comparison. Modd 1-2 (estimated with 2000
and 4000 Halton draws) includes independent random parameters on the cost, time, and income variables.
This model appears identified, and results in alarge improvement in fit over the multinomial logit model. ™
The t-stats are low here due to the correlation among the parameter estimates. Model 4 shows that
alowing for a single random parameter on the time variable achieves much of the tota improvement in fit.
Modd 5-6 (estimated with 2000 and 4000 Halton draws) alows for afull set of correlations among the
random parameters, and this results in amargina improvement in fit over the independent model. (Note
that the Cholesky parameters and not the variances and covariances are reported). Model 7 is estimated
with a more parsimonious correlated structure. So far, these models al appear to be identified and provide
significant (and smilar) explanation of the disturbances. Thisis not the case for the remaining models.
Modd 8-9 includes the three independent random parameters along with heteroscedasticity, and the model
appears unidentified. Model 10 is the model reported in Greene (although we normalized Tj;). It includes
an unrestricted covariance structure as well as the three independent random parameters, and the model
appears unidentified. Louviere, Hensher and Swait report estimation results for amodel similar to Greene
(i.e, an unrestricted covariance structure with additional random parameters), and their model, too,
appears unidentified.

The important points of these random parameter results are that, first, there are often severa
specifications that result in a similar improvement in fit. Second, that it is important not to overdue the
specification, because it is easy to end up with an unidentified mode!.

= Note that since the time and cost parameters have a sign constraint, they should be specified with log-normally distributed
parameters.

14
Note that we achieved a much larger improvement in fit than any of the models reported in Greene and Louviere et al., even
with this more parsimonious specification.
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Table 6;: Mode Choice Model — Random Parameters

Specification: | Multinomial Logit Independent Random Parameters Correlated Random Parameters
Draws: 2000 Halton 4000 Halton 4000 Halton 2000 Halton 4000 Halton 4000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Air (1) 521 (63 120 () 118 (29 949 () 178 @9 176 (26) 108 (8
Train (2) 387 (19 129 @D 127 @9 965 (59 184 (@4 183 (29 107 (8
Bus (3) 316 (68 16 62 115 (29 869 (59 167 (24 165 (25 97 @7
GCost ($00) 155 (39 421 (20 414 (16) 257 (33 671 (16) 653 (L9 402 (19
TTime (hours) 577 (64 167 (3 165 @7 125 (69 241 @4 241 @9 134 (9
Income ($00,000) - Air (1) 133 (4 961 (19 948 (7) 593 (29 144 (19 13 @7 55 (0
T11(S1)
T21
T31
T22(S2)
T32
T33(S3)
GCost 0493 (04 0332 (01 499 (09 486  (L1) 300 (13
TTime 107 (29 106 @1 79 @7 136 (0 141 (0 38 (04
Income - Air 834 (13 g1s (1) 694 (L0 556 (13
GCost - TTime 921 (19 g1z (19 770 @0
GCost - (Income-Air) 657 (06) 903 (09
TTime - (Income-Air) 136 (13 146 (19
Log Likelihood (simul.): -199.128 -177.523 -177.640 -178.680 -174.419 -174.420 -176.816
Model: 1 2 3 4 5 6 7
Specification: Random Paramgtgrs & Random Par.am.
Heteroscedasticity & Unconstrained
Draws: 2000 Halton 4000 Halton 2000 Halton
_Parameter Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Air (1) 257 N 282 N 41 M
Train (2) 313 Na M2 M 560 Na
Bus (3) 278 nfa 30.4 nfa 484 nfa
GCost ($00) 134 Ma 146 Ma 230 Ma
TTime (hours) 395  Ma 433 A 699  Ma
Income ($00,000) - Air (1) 255  na 287 n/a 486  Na
T11 (51) 124 Ma 117 Ma 43 N
T21 269  Ma
T31 0389 Ma
122 (52 216 M 207 M 490 "R
T32 268  Ma
T33(53) 057 Ma 160 na 0.00
GCost 010 M 216 N 267 A
TTime 255  na 281  Ma 458 na
Income - Air 669  Ma 1869  Na 131 na
GCost - TTime
GCost - (Income-Air)
TTime - (Income-Air)
Log Likelihood (simul.): -176.072 -176.036 -175.393
Model: 8 9 10



Empirical Application II: Telephone Service

In this section, we apply these methods to residentia telephone demand analysis. The modd involves a
choice among five residentia telephone service options for local caling. A household survey was
conducted in 1984 for a telephone company and was used to develop a comprehensive model system to
predict residential telephone demand (Train, McFadden and Ben-Akiva, 1987). Below we use part of the
datato estimate amodel that explicitly accounts for inter-dependencies between residentia telephone
service options. We first describe the data. Then we present estimation results using a variety of error
structures.

The Data

Loca telephone service typicaly involves the choice between flat (i.e., afixed monthly charge for
unlimited calls within a specified geographica area) and measured (i.e., areduced fixed monthly charge
for alimited number of calls plus usage charges for additiond calls) services. In the current application,
five services are involved, two measured and three flat. They can be described as follows:

Budget measured - no fixed monthly charge; usage charges apply to each call made.

Standard measured - afixed monthly charge covers up to a specified dollar amount (greater that the
fixed charge) of local calling, after which usage charges apply to each call made.

Local flat - a greater monthly charge that may depend upon residentia location; unlimited free calling
within local caling area; usage charges apply to calls made outside locd calling area.

Extended area flat - afurther increase in the fixed monthly charge to permit unlimited free calling
within an extended area.

Metro area flat - the greatest fixed monthly charge that permits unlimited free caling within the
entire metropolitan area.

The sample concerns 434 households. The availability of the service options of a given household depends
on its geographicd location. Details are provided in Table 7. In Table 8, we summarize the service option
availabilities over the usable sample.

Table 7: Telephone Data - Availability of Service Options

Geographic Location

Service Options Perimeter Exchanges
Metropolitan Areas 9

) All Other
Adiacent to Metro Areag

Budget Measured Yes Yes Yes
Standard Measured Yes Yes Yes
Local Flat Yes Yes Yes
Extended Flat No Yes No
Metro Flat Yes Yes No



Table8: Telephone Data - Summary Statisticson Availability of Service Options

Service Options Chosen Percent Total Available

Budget Measured 73 0.168 434
Standard Measured 123 0.283 434
Local Flat 178 0.410 434
Extended Flat 3 0.007 13
Metro Flat 57 0.131 280

Total : 434 1.000 1595

Models

The model that we use in the present analysisis intentionally specified to be smple. The explanatory
variables used to explain the choice between the five service options are four alternative-specific
constants, which correspond to the first four service options, and a generic cost variable (the natural log of
the monthly cost of each service options expressed in dollars). We investigated three types of error
structures: heteroscedasticity, nested and cross-nested structures, and taste heterogeneity (random
parameters).

Heteroscedastic

The results for the heteroscedastic case are provided in Table 9 and Table 10. Table 9 displays results
from the unidentified mode. To explore the issue of normalization of the minimum variance aternative, we
estimated the unidentified model for various numbers of Halton draws and pseudo-random draws. The
results suggest that there is no strong base adternative, and it could be either dternative 1, 2, 4, or 5. Table
10 provides estimation results for identified heteroscedastic models. Again, to explore the issue of the
minimum variance aternatives, 5 identified models were estimated, each one with a different base
heteroscedastic term. (Note that this defeats the purpose of estimating the unidentified model, but was
done for illustration purposes only.) As indicated by the unidentified models, the identified model estimation
results support the conclusion that any of aternatives 1, 2, 4, or 5 could be set as the base. However,
congraining S , to zero resultsin asignificant loss of fit, whereas constraining it to 4.0 brings it in line with
the correctly specified model. Comparing the correctly specified heteroscedastic models with the MNL
modd, there is an obvious gain in likelihood from incorporating heteroscedagticity, primarily due to
capturing the high variance of dternative 3.
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Table9: Telephone Model - Heter oscedastic Unidentified Modelsto Deter mine Base

100 Halton 200 Halton 400 Halton 1000 Halton 2000 Halton 5000 ‘Random'’ 10000 'Random’
p Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) -3.30 (69 -163.39 na -3.28 (79) -3.28 (17) -3.27 (76) -3.32 (712 -3.29 (17)
Standard Measured (2) 255 (65 -126.84 na 253 (63 -253 (64) 252 (68 -255 (64) 253 (65
Local Flat (3) -1.38 (85 .7809 na -1.37 @36 .137 (6 136 G| -138 B  .137 @6
Extended Flat (4) -1.07 (13) 4431 na -1.04 (13 -1.04 (13 -1.04 (19 -1.06 (19 -1.04 (14
Log Cost 270 (72 -14518 na 268 (19 -2.68 (82) 2,67 (84 270 (61 269 (76
S 010 (03 6029 na 0.06 (03 003 (02 0.00 (1) 031 (09 0.13 (04
S 030 (03 6119 na 021 (03 014 (04 0.06 (03 020 (02 0.08 (02
S3 291 (2 19653 Nk 2.88 (33 288 (34 2.87 (36 291 (43 291 (1)
sS4 0.39 (03 1618 na 0.01 (00 0.04 (01 0.01 (00 011 (02 0.07 (03
Sg 022 (02 8136 na 0.01 (01 009 (3 0.01 (00 005 (1) 0.26 (02
(Simul.) Log-Likelihood: -471.09 -468.27 -471.16 -471.20 -471.19 -470.89 -471.38

Table 10: Telephone Model - Identified Heter oscedastic M odels

MNL Identified Heteroscedastic Model
1000 Halton 1000 Halton 1000 Halton 1000 Halton 1000 Halton 1000 Halton | 5000 'Random' 10000 '‘Random’
_Parameter Est  tstat Est t-stat Est  t-stat Est t-stat Est tstat  Est  t-stat Est t-stat Est tstat Est tstat
Altern. Specific constants
Budget Measured (1) 246 (64 -3.27 (19 327 (1)) 503 (24 -3.28 (60) 327 (19 -3.91 (2 -3.28 (76) -3.28 (69)
Standard Measured (2) -1.74 (66) -2.53 (66) 252 (62 -3.85 (22 -2.53 (61 252 (69 -3.02 (24 2,53 (69 -2.53 (60
Local Flat (3) -0.54  (27) -1.37  (38) -1.36 (32 -1.09  (21) -1.37  (36) -1.36 (37) -1.67 (33) -1.37 (39 -1.37  (34)
Extended Flat (4) 074 (L1 -1.04 (13 -1.04 (13 137 (L9 -1.04 (14 -1.04 (L4 -1.10 (12 -1.05 (L3 -1.04 (14
Log Cost 2.03 (96 -2.68 (82 267 (49 324 (1) 268 (62 267 62 -3.33 (29 268 (61 269 (76)
S1 0.02 (01) 277 (18) 0.03 (0.0) 0.03 (03 0.76 (04

S2 013 (03 3.27 (1) 014 (1 0.14 (03 070 (03 011 (02 010 (02
S3 2.88 (49 288 (24 288 (33 2.87 (9 4.00 - 289 (47) 291 (9
Sq 0.04 (01) 0.04 (01 1.14 (05) 0.04 (01) 011 (01 012 (02 0.07 (01
Sg 0.09 (03 009 (02 0.01 (00 010 (0 1.33 (19 003 (1) 0.26 (02

(Simul.) Log-Likelihood: -477.56 -471.20 -471.20 -476.66 -471.20 -471.20 -471.42 -470.92 -471.39

Nested & Cross-Nested Structures

In Table 11, the estimation results of various nested and cross-nested specifications are provided. Table
11a reports results for identified model structures (as can be verified by the rank condition). The best
specification ismodel 3, in which the first two aternatives are nested, the last two aternatives are nested,
and the third term has a heteroscedastic term. This provides a significant improvement in fit over the MNL
specification shown in the first column, and a so provides a better fit than the heteroscedastic modelsin
Table 10. The poor fit for many of the nesting and cross-nesting specifications is due to the fact that the
variance for aternative 3 is constrained to be in line with the other variances. The heteroscedastic models
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indicated that it has a much higher variance, and when this was added to the nested and cross-nested
models (see Table 11b) the fit improved dramatically.

Table 11c provides results for the unidentified model in which the first two aternatives are nested and the
last 3 alternatives are nested, and we attempt (incorrectly) to estimate both error parameters. The first
model, estimated with 1,000 Halton draws, appears to be identified. However, the second model, estimated
using different starting values, shows that thisis not the case; it has an identica fit, but very different
estimates of the error parameters. This is as expected, because only the sum of the variances (S +S 5)
can be identified. The remaining columns show that it can take a very large number of draws to get the
telltale sign of an unidentified modd, the singular Hessian — in this case, 80,000 Halton draws. (Again, the
actual number depends on the specification and the data.) Table 11d shows that the normalization for the 2
nest moddl is arbitrary. The table presents three normalizations resulting in identicd fits where:

{1,1,000}={00222}={11222withs,=s, }.

Table 11: Telephone Model - Nested & Cross-Nested Error Structures

Table a: Identified Nesting & Cross-Nesting Error Structures

Nested Structures Cross-Nested Structures
11222 1-2, 2-3, 3-4, 1-2, 2-3, 3-4,
Specification*: 1,1,2,20 11,223 1,1,23,3 1,1,2,33 'S'l_’sz' 1,1,1-2,2,2 4-5,5-6 45,56
(5F=2 (all S equal) (all S equal)

Draws: 1000 Halton 1000 Halton 1000 Halton 2000 Halton 1000 Halton 1000 Halton 1000 Halton 5000 Halton

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

Budget Measured (1) -3.63 (50 -3.63 (50 379 (54) -3.80 (53 -3.80 (57) -3.80 (57) -2.83 (24 272 @Y
Standard Measured (2) 2.85 (43) 2.85 (43 -3.00 (46 3.01 (46 3.01 (49 -3.00 (49 -1.90  (31) -1.85 (39
Local Flat (3) -1.48  (31) -1.48 (31 -1.63  (31) -1.64 (31 -1.09 (36 -1.09 (35 -0.55 (23 -0.54 (24
Extended Flat (4) -1.52 (15 4152 (15) -1.18 (1.3 -1.18 (1.3 4119 (14) 2119 (14 -0.76 (L0 -0.75 (10
Log Cost -3.05 (45 305 (45  -319 (50  -3.20 (50) 325 (1| -325 (61) 240 (21) 229 (26)
s1 1.32 (11 1.32 (11 155 (15 155 (16 2.16 (3.0 0.01 (0.8 0.65 (0.6) 0.53 (06
S2 3.02 (29 3.02 (29 334 (29 337 (28) 3.04 (30
S3 0.00 (0.0) 0.01 (0.2) 0.01 (0.2

(Simul.) Log-Likelihood: -471.26 -471.26 -470.70 -470.64 -473.04 -473.05 -477.48 -477.51

15 Therefore, the problem identified earlier with the cross-nested 1, 1, 1-2, 2, 2 structure does not apply to this dataset. In fact, as
shown by the modelsin Table 11c, aternative 3 has an even larger relative variance than the 1, 1, 1-2, 2, 2 structure provides.
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Table b: Nesting / Cross-Nesting plus Heteroscedasticity (0, O, 1, 0, 0)

Combined Models

Specification®: | % (25 21:3;3:;’ % 2221333 253,5?6;'6‘-171 >
(®2...°7 equal)
Draws: 1000 Halton 1000 Halton 1000 Halton
Parameter Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) -3.81 (55) -3.80 (53) -3.28 (73)
Standard Measured (2) -3.02  (47) -3.01 (46) -2.53  (6.3)
Local Flat (3) -1.64  (3.1) -1.64 (31 -1.37 (35
Extended Flat (4) 2119 (13) -1.18  (13) -1.04  (13)
Log Cost 321 (52 320 (50 -2.68  (80)
s1 3.37 (29 3.38 (28 2.88 (33
s2 111 (L6 0.03 (03) 0.09 (02
S3 155 (1)
(Simul.) Log-Likelihood: -470.64 -470.69 -471.22

Table c: Unidentified Nested Error Structures

Specification*: 1,1, 2, 2, 2 (Unidentified - can only estimate (S1%+52%)
Draws: 1000 Halton 1000 Halton 10000 Halton 40000 Halton |40000 '‘Random’ 80000 Halton
Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) -3.80 (57) -3.80 (57) -3.80 (57 -3.80 (59 -3.81 (57 -3.80 na
Standard Measured (2) -3.01 (49 -3.01 (49 -3.01 (49 -3.01 (49 -3.01  (48) 301 na
Local Flat (3) -1.09 (36 -1.09 (36 -1.09 (36 -1.09 (36 -1.09 (35 -1.09 na
Extended Flat (4) -1.19  (14) -1.19  (14) -1.19  (14) -1.19  (14) -119  (14) -1.19  na
Log Cost -3.25 (61) -3.25 (61) -3.25 (61) -3.25 (61) -3.25 (6.0) -3.25 na
s1 265 (31) 0.78 (05 255 (25 256 (L5 1.83 (L) 193 na
s2 151 (22 2095 (33) 167 (38 168 (04) 245  (L9) 236 na
(s1%4s2%'" 3.05 3.05 3.05 3.06 3.06 3.05
(Simul.) Log-Likelihood: -473.02 -472.99 -473.02 -473.02 -472.95 -473.02

Table d: Identical (Identified) Nested Error Structures

Specification*: 1,1,0,0,0 0,0,22,2 1,1,2,22(5:=52)
Draws: 1000 Halton 1000 Halton 1000 Halton 2000 Halton
Parameter Est T-stat] Est T-stat] Est T-stat Est T-stat
Altern. Specific constants
Budget Measured (1) -3.80 (5.7) -3.80 (5.7) -3.80 (5.7) -3.80 (58)
Standard Measured (2) -3.01 (49 -3.01 (49 -3.01 (49 -3.01 (49
Local Flat (3) -1.09  (36) -1.09 (36 -1.09 (36 -1.09 (36
Extended Flat (4) -1.19  (14) -1.19  (14) -1.19  (14) -1.19  (14)
Log Cost -3.25  (6.) -3.25  (6.) -3.25  (6.) -3.25  (6.)
S1 3.05 (30 2.16 (3.0) 215 (3.0)
s2 3.05 (30) 2.16 2.15
(12,5232 3.05 3.05 3.05 3.04
(Simul.) Log-Likelihood: -473.02 -473.03 -473.04 -473.01

* the specification lists the factors (and sigmas) that apply to each of the five alternatives
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Random Parameters

We aso considered unobserved taste heterogeneity for the parameter on log of cost. Since the parameter
has a sign congtraint, alognormal distribution is used. (Draws from alognorma distribution are generated
by exponentiating draws taken from anormal distribution.) The results are shown in Table 12. The first
model shows that when there are no other covariance parameters specified, the heterogeneity on log cost
isinggnificant. However, the second model shows that heterogeneity does add dightly to the explanatory
power of the best nested model as specified in Table 11a. The remaining 4 models report specifications
with both heterogeneity and taste variation. While the rank and order conditions suggest that amodel with
4 heteroscedastic parameters and the lognorma parameter is identified, the estimation results show that
there is a multicollinearity problem. Note that when only 200 pseudo-random draws are used, this model
appears, incorrectly, to be identified.

Table 12: Telephone Model - Taste Variation, Lognormal Parameter for L og(Cost)

Specification*: | Taste Variation 1,1,2,3,3 & Taste Variation 1,2,3,4,5 & Taste Variation
Draws: 1000 Halton 1000 Halton 2000 Halton 1000 Halton 200 'Random’ 1000 Halton 1000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) 246 (82 -3.48 (57) -350 (43)| -24.20 nha -4.06 (26) -30.36 nla  -26.84 nla
Standard Measured (2) -1.74  (65) -2.68 (47) 270 @35 | -16.75 na -3.06 (28) -2203 nla -19.41 nla
Local Flat (3) 054 (1) -1.44  (31) -1.45  (27) 757 nla -157 (24 -10.72 nla 977 nla
Extended Flat (4) 074 @o| -098 @1 -098 @wy| -333 na -1.07 (1Y) 511 nla -4.75 nla
Log Cost ** -2.03  (96) -3.17  (56) -3.18 (1) -23.30 na -3.69 (270 -2838 njla -26.02 nla
S Log Cost ** 0.00 (0.1) 118 (11) 116 (10)| 1839 na 165 (14 1885 nla 18.54 nla
sl 0.40 (0.1) 050 (01| 1238 na 1.00 (06) 1372 nla 12.19 nla
s2 356 (30 358 (30 9.06 nla 0.72 (05  11.34 nla 9.02 nha
s3 0.05 (0g) 0.01 (1| 2450 a 413 (23 3045 na  28.96 na
sS4 049 nla
S5 0.88 nla 0.24  (0.6) 126 nla
Log Likelihood (simul.): -477.56 -470.36 -470.28 -469.15 -470.74 -468.69 -469.47

** the mean and standard deviation of the lognormal are reported

Summary of Telephone Data Models

By far the most important part of the error structure for the telephone dataset is that the Local Flat
Alternative (3) has a significantly higher variance than the other alternatives. Note that a smple
heteroscedastic model outperforms the most obvious nested structure in which the measured alternatives
are nested together and the flat alternatives are nested together. Marginal improvements can be achieved
by incorporating nesting, cross-nesting or taste variation as long as aternative 3 is allowed a free variance.
While this dataset served its purpose in highlighting specification and identification issues, one would idedlly
like to estimate such logit kernel models with larger datasets.
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Conclusion

In this paper we presented genera rules for specification, identification, and estimation via maximum
smulated likelihood for the logit kernel model. We presented guidelines for examining identification and
normalization, which consisted of three conditions: order, rank, and positive definiteness. The positive
definiteness condition is not an issue for probit models. However, as the heteroscedastic case highlights, it
can have important consequences for logit kerndl. We emphasized that identification must be examined on
a case-hy-case basis, and that it is not necessarily intuitive. Furthermore, given the fact that smulation has
atendency to mask identification problems, it becomes even more critical that identification is well
understood.

We discussed in detail the specification and identification of many of the specia cases, al within a genera
factor analytical framework, including:

Heter oscedasticity: F,, diagond (fixed) ; T diagond.

Nesting (Cross-Nesting): F.F," block-diagonal (fixed) ; T diagond.

Error Components: F, fixedto0/1; T (usudly) diagond.

Factor Analytic: F., unknown; T trianguler.

Autoregressive Process: F., moving average form of a GAR(1) process; T diagond.
Random parameters: F., afunction of explanatory variables (fixed) ; T triangular.

Just as there are well-known standard rules for identification for the systematic parametersin a
multinomia logit, we aimed to develop identification rules for the disturbance parameters of the logit kernel
mode. There are critical differences between the identification of these parameters and the identification
of their counterparts in both the systematic portion of the utility as well astheir counterparts in a probit
model. The following summarizes these identification rules:

Heter oscedasticity

J =2 dternatives: O parameters identified.
J 3 3 dternatives: J - 1 parametersidentified &
must constrain the minimum variancetermto O.
Nesting
M =2 nests: M - 1 parametersidentified &
normalization is arbitrary.
M 3 3 nests: M parameters identified.

Random parameters
Beyond the specific rules listed below, can estimate
as many random parameters as the data will support.

Alternate-specific variables
Rules for heteroscedasticity, nesting, and error components apply.
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Categorical variables with independently distributed parameters

M =2 categories: M - 1 parameters identified &
normalization is arbitrary.

M 3 3 or more categories: M parameters identified.

(Includes a binary categoricd variable that does not
enter dl utilities.)

Characteristics of the Decision-maker with independently distributed parameters

Interacts with alternative-specific constants: Analogous to the heteroscedastic case:
J - 1 parametersidentified & must congtrain the
minimum variancetermto O.

Interacts with nest-specific constants: Analogous to nested case:
M =2 nests: M - 1 parameters identified.
M 3 3 nests: M parameters identified.

Our objectives were that through examination of the special cases we would be able to establish some
identification and specification rules, and aso highlight some of the broad themes and provide tools for
uncovering other potential issues pertaining to logit kernel models. Clearly there are numerous
identification issues that are not covered by the above list. Therefore, models have to be examined on a
case-by-case basis. For the alternative-specific portion of the disturbance, it is recommended that the rank
and order conditions be programmed into the estimation program. When the positive definiteness condition
comes into play, it is recommended to examine the problem anayticaly, where possible, or empiricaly (by
investigating various normaizations). For random parameter models, it is recommended to use the above
identification rules as guidelines, and then empiricaly establish identification by (1) verifying that the
parameter estimates are stable as the number of draws are increased and (2) checking that the Hessan is
non-singular at the convergence point.

One of the most important points of the paper is that there are critical aspects to the logit kernel
specification that are often overlooked in the literature. It must be remembered that thisis arelatively new
methodology, and there are numerous aspects that warrant further research, including:

More testing and experience with applications,
Further exploration of identification and normalization issues,
Continued compilation and analysis of specia cases and rules of identification,

Better understanding of the impact on analysis of different factor specifications (particularly since
often several factor specification will provide similar fit to the data),

Investigation of analogous specifications estimated via different methods (for example, logit kernel
versus probit, nested logit, cross-nested logit, heteroscedastic extreme value, etc.)

Additional comparisons with GHK and other smooth smulators, and
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Further examination of Halton draws as well as other pseudo- and quasi-random drawing methods.

Finally, we aso may need to look at modifying the specification of the logit kernel model to dleviate some
of the complications. One of the issues with the logit kernel specification is that while pure logit is a specia
case of the model, pure probit is not. Our analysis assumes that it is acceptable to include the Gumbel term
in the modd. However, the Gumbe term may, in fact, have no business being in the modd. For this
reason, we would ideally want to specify and estimate the model in away that alows the Gumbel term to
disappear. Conceptually, such amodel could be specified as alinear combination of the two error terms,
s0 Equation (4) (assuming a universal choice set) would become:

U, =X,b +(g/nP)2- | )FTz, +In,,

where | isan unknown parameter. The covariance of the model is then alinear combination of the two
covariance matrices:

cov(Un)=((1- | )FTT'F,+1 2|J)(g/mz) .

Conceptualy this Combined Logit-Probit (CLP) specification is an appealing model. Note that a strict
application of the order and rank conditions lead to the conclusion that the model is not identified.
However, as we described in the section on identification, the dight difference between the Gumbel and
Normal distributions makes the model identified (albeit, nearly singular).

To summarize, the logit kernel formulation has a tremendous amount of potentia, because it can replicate
any desirable error structure and is straightforward to estimate via maximum simulated likelihood.
However, it aso has some issues that must be understood for proper specification. As increased
computational power and readily available software open up these techniques for widespread use, itisa
critical time to understand and address the nuances of the logit kernel model.
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Appendix
Normalization of Unrestricted Probit and Logit Kernel Covariance Structures

This appendix examines the normalization of unrestricted probit and logit kernel models. The important
point is that while the normalization of pure probit leads to straightforward scale shifts of al of the
parameter estimates, thisis not the case for logit kernel.

Case 1: Probit with 4 Alternatives

The unredtricted four aternative probit mode written in differenced form has the error structure Tz,
where:

é,/m 0O 0 U
T= S,./m ay/m 0 |
@y /Mm ay/m ag/my

Note that we use a 'sinstead of S ’'ssincethese aren’'t variance terms. Also m is the scale of the probit
modd (i.e, not the traditional Gumbel m).

The covariance structure is then (usng new notation):
¢ (a)/nt

TT' theoretical : ganam)/rﬁ2 @z +as)/ it
Qayaqy) /it @8y +aa,)/ M @5 +as,+agy)/ Ml

ey enly eng

A normalization must be made in order to achieveidentification. Normalizing a., =a i , and noting the
unknown parametersas a and m, then the normalized covariance structure is:

» > D> D> D
Q_) —
2=z D

Q Bz
Rz N
~—— ~

~

a &

TT' normalized ((az“‘l)2+(a2“;)2)/ﬁﬁ

alrxlla;ll)/ﬁil (ag‘las'\l‘+a;‘2a3',\‘2)/ﬁﬁ ((a£)2+(a3';)2+(af'?)2)/~z

Sating TT' normalized = TT' theoretical , leads to the following equations:

O

[@ oy enY en e ey an end

(alNl)zlm,i :(an)z/ ft

(atah)/ if = (2., )/
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(aiad)/ i =(as@q) /1
(a )2+ )/ﬁﬁ:((a21)2+(a22)2)/m2
(a21a31 +a22a32) g :(a21a31 +a22a32)/ﬁ’12

(@) + ) (o))t ={fan) (o) o o) i

And solving for each of the unknown parametersin the normalized model leads to:

s (a}) = (o) > albza,lk
azl\llza;.lajﬁm% > a2'\11=a21%
ay :ajjé“% > ay :aal%

2 2 2 ~
B RN A Y
~ N~ N ~
al = al; %aﬂa31+a22a32)%_ 3'213-31g N al :a&%
(ae'j‘l)2+(a3“;'l)2+(af'§)2 _(a31)2 +(a32)2 +(a33)2 N 3 —ﬁrﬁ
fif - it Cag

Therefore, for probit, the normalization just scales dl of the parameters, and any positive normalization is
acceptable.

Case 2: Logit Kernel with 4 Alternatives

Now, we will show that the equivaent logit kerndl case is not so straightforward. Following the same
process, the covariance matrix of utility differences for the four aternative unrestricted logit kernel model
is

é(a2 +2g)/nt u

TT'+G ¢ u
theo:etical: Qaaato)/mt  (afvag+2g)inf ;
¥

u

ga11a31+ g)/mz (a21331+azzaaz + g)/m2 (‘31231*'8-52""'5153"'29)/m2



Imposing the normaizetion a,; =a « leads to:

TT'+G

normalized :
g( all)’ +29)/rm ;
%(agagm)/mi ((ag)2+( 2N2) +Zg)/rrﬁ E
Slasali+o)/nt  (atay+afad+g)inf ((ad) +(ak) +(ak) +20)/ g

Setting the normalized covariance structure to the normalized structure leads to the following equations
(the C notation isjust to clean up the math later on):

@ ﬂ) +29

) (aﬂazﬁ g)/m20 C,

/g = (afl+29)/m2° C

altal +g) (aw@a* g)/nte C,

(azia
(
(a ) +(an) +Zg)/mN (a3 +aZ+2g)/nPo C,
(adag +ayag+g)/nf =(a,ay +aag +g)/nf o G
(@8) + (@8) + (ab) +20) /1 = (a5 +ag +aZ+ 20) P
And solving for the estimated parameters in the normalized model leads to:

(a1N1 )2 = Clnfl - 29

ale: Cznﬁ -9

Clnﬁ - 29

alN = Cnf - g

’ Clnﬁ - 29
A (Cznﬁ' 9)2
(azz) _C4nﬁ' 29- Clnﬁ' 29
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Unlike probit, thisis not asmple scale shift, i.e.,, the model must adjust to the normaization in complex,
non-linear ways. Furthermore, it is not clear from these equations what the potential restrictions are on the
normdization.

Empirical results exploring the normadlization issue for a 4 dternative unrestricted logit kernel model are
shown in Table A-13. The table includes estimation results using two different synthetic datasets (the true
parameters vary across the datasets). There are 4 adternatives, and the model is specified with three
aternative specific dummy parameters, one explanatory variable, and then an unrestricted covariance
structure. The final column in the first table shows that, under some circumstances, restricting a,, to zero
isan invalid normalization. The remaining estimation results suggest that restricting a ,, to zeroisavalid
normalization regardless of the true parameter estimates. However, these results are not conclusive.
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Table A-13: Normalization of Unrestricted Logit Kernel M odel
(2 Synthetic Datasets, 4 Alternatives; 10,000 Observations; 1,000 Halton draws)

Unidentified Valid Normalizations Norlmmaljggtion

Parameter True Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
L Alt. 1 dummy 1.0 1.38 (29) 0.93  (115) 1.02  (118) 131 (121) 0.76  (12.4)
E Alt. 2 dummy 1.0 1.28 (2.8) 0.85 (102 0.94  (103) 121 (105 0.67 (110
:Ei" Alt. 3 dummy 0.0 0.03 (0.3) 0.04 (0.5) 0.04 (0.5) 0.03 (0.3) 0.02 (0.3)
____ Variable 1 -1.0 -1.37 (2.9) -0.93  (235) -1.02  (25.6) -1.30 (2898) -0.76  (385)
all 2.0 3.16 (2.1) 1.60 9.1) 196  (113) 294  (157) -0.34 (31)
o a2l 1.0 1.75 (29) 0.86 67 1.09 @7 1.63 (6.2) 239  (151)
:E a3l 2.0 2.86 (2.7) 2.01 9.1) 2.13 9.4) 270 (109 -1.12 (8.9)

E az 3.0 4.62 (2.6) 2.89  (146) 325 (162) 435  (193) 0.00
- a3 1.0 1.79 (25) 1.16 69 1.27 (7.8) 1.69 9.3) -0.01 (0.0)
a33 1.0 2.20 (L7) 0.00 1.00 2.00 0.00 (0.0)

(Simul.) Log-Likelihood: -7973.176 -7974.867 -7973.843 -7973.187 -7998.768

Unidentified Valid Normalizations
True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
L Alt. 1 dummy 1.0 094 (85 0.92 (9.4) 0.92 (9.4) 0.92 (9.4) 0.94 8.9
E Alt. 2 dummy 1.0 0.95 (8.2) 0.93 9.1) 0.92 (9.0 0.93 9.1 0.96 (8.4)
:Er Alt. 3 dummy 0.0 0.18 (1.5) 0.17 (1.5) 0.17 (1.5) 0.17 (1.5) 0.18 (1.5)
____ Variable 1 -1.0 -0.86 (17.) -0.85 (318) -0.85  (318) -0.85 (316 -0.87 (217)
all 2.0 1.43 (5.3) 1.37 (6.9) 1.37 (6.9) -1.38 (7.0) 1.45 (7.2)
- a2l 1.0 0.79 (4.6) 0.76 (5.0) 0.76 (5.0) -0.76 (5.0) 0.80 (5.3)
:E; a3l 2.0 2.53 (3.9) 2.50 (3.8) 2.48 (3.8) -2.50 (3.9) 2.56 (3.9)
E a2 1.0 0.39 (0.9) -0.22 (1.6) -0.22 (1.6) -0.25 (1.6) 0.43 (L9)
- a3 1.0 3.19 (12) 487 (142 -4.78  (138) 446 (120) 3.03 (5.4)

a33 6.0 3.83 (15) 0.00 1.00 2.00 4.00

(Simul.) Log-Likelihood: -8983.725 -8984.556 -8984.62 -8984.222 -8983.735

Case 3: Logit Kernel with 3 Alternatives
The three dternative logit kernel caseis abit easier to compute. Following the same process as above:

_ é,/m 0 U
T: é {
@Zl/m azzlm
A 2
TG g(an) +2g)/n?

D> D
oo\ c

theoretical : ; (a11a21+ g)/mz ((a21)2 +(a33)2 +Zg)/m2

0]
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(alt) +2g)/n
é(afal +g)/nt ((a2”1)2+(af”f)2+29)/mi

Jo¥oN

TT'+G
normalized :

(- ('D> (¢
et eni ey e} end

Ing = (( a,.) +2g)/ntec,
(a1N1a21+g)/rrﬁ:(aua21+ g)/mZo C,
((az“‘l)2 +(af“f‘)2+29)/nﬁ :((am)2 +(a33)2 +2g)/ nt° C,

Solution

> (( l“i) +29

a,; =/C)nf - 29 ..Or... a)=

C _ 2
ag:% R O aZﬂ:\/CgWﬁ'(af’F') - 29

(Zg(C C+C)+( )ZCl)

D0 O YO ?B
Q- - - O

i\/(Zg(Cl- C2+CS)+(a'f“f)2C1)- 4(cz- ClCS)(-Zg(a )’ 3g? )

= 2(c;-cG)

Here, the restrictions are

2

(Zg(Cl- c2+c3)+(afo)2Cl) - 4(cz - c:lcg)(- 2g(a})’ - 392)3 0,
nt >0,
C,n’-29>0 ...or... C,;nt- ( )-Zg>0

a2 a;+(af’¥)2) -(afa%)® 0, wherea, = fagy) ada, = f@y) ,

and only 1 of the two possible n? satisfies the conditions.

Again, it's not clear in which cases these restrictions become limiting. Our empirica tests suggests that the
normaization of the lowest diagona element in the cholesky matrix is, in fact, a vaid normalization
regardless of the true parameters (unlike, for example, the heteroscedastic case).
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