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Abstract  
Logit kernel is a discrete choice model that has both probit-like disturbances as well as an additive i.i.d. 
extreme value (or Gumbel) disturbance à la multinomial logit. The result is an intuitive, practical, and 
powerful model that combines the flexibility of probit with the tractability of logit. For this reason, logit 
kernel has been deemed the “model of the future” and is becoming extremely popular in the literature. It 
has already been included in a recent edition of a widely used econometrics textbook. 

While the basic structure of logit kernel models is well understood, there are important formulation and 
practical issues that are critical for estimation and yet are often overlooked. We aim to highlight some of 
these issues in the paper. One key point is that the addition of the Gumbel term is not necessarily 
innocuous, and thus the normalization required for logit kernel can be different than for an analogous pure 
probit model. Another point is that there are interesting and non-intuitive identification rules regarding 
nested structures and random coefficient models. Misunderstanding of these issues can lead to biased 
estimates as well as a significant loss of fit. A clear understanding of identification becomes even more 
critical given the fact that simulation, which is often used to estimate these models due to the high 
dimensionality of the integrals, has a tendency to cover up identification problems.  

In the paper we present a general framework for specification, identification, and estimation of the logit 
kernel model. We specify the model using a general factor analytic error structure. We show that the 
factor analytic form includes all known (additive) error structures as special cases, including 
heteroscedasticity, error components, nesting structures, random coefficients, and auto correlation. We 
discuss in detail many of the special cases of the logit kernel model and highlight specification and 
identification issues related to each. Finally we demonstrate our findings with empirical examples using 
both simulated and real data. The objectives of the paper are to present our specific findings, as well as 
highlight the broader themes and provide tools for uncovering identification issues pertaining to logit kernel 
models.  
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Introduction 
The logit kernel model is a straightforward concept: it is a discrete choice model in which the disturbances 
(of the utilities) consist of both a probit-like portion and an additive i.i.d. Gumbel portion (i.e., a multinomial 
logit disturbance).  

Multinomial logit (MNL) has its well-known blessing of tractability and its equally well-known curse of a 
rigid error structure leading to the IIA property. The nested logit model relaxes the rigidity of the MNL 
error structure and has the advantage of retaining a probability function in closed form. Nonetheless, 
nested logit is still limited and cannot capture many forms of unobserved heterogeneity, including, for 
example, random parameters. The logit kernel model with its probit-like disturbances completely opens up 
the specification of the disturbances so that almost any desirable error structure can be represented in the 
model. As with probit, however, this flexibility comes at a cost, namely that the probability functions 
consist of multi-dimensional integrals that do not have closed form solutions. Standard practice is to 
estimate such models by replacing the choice probabilities with easy to compute and unbiased simulators. 
The beauty of the additive i.i.d. Gumbel term is that it leads to a particularly convenient and attractive 
probability simulator, which is simply the average of a set of logit probabilities. The logit kernel probability 
simulator has all of the desirable properties of a simulator including being convenient, unbiased, and 
smooth. 

Terminology 
There are numerous terms floating around the literature that are related to the logit kernel model that we 
present here. McFadden and Train (2000) use the term “mixed logit” to refer to models that are comprised 
of a mixture of logit models. This is a broad class that encompasses any type of mixing distribution, 
including discrete distributions (for example, latent class) as well as continuous distributions. Within this 
reference, logit kernel is a special case of mixed logit in which the mixing distribution is continuous. There 
are also numerous terms that are used to describe various error specifications in discrete choice models, 
including error components, taste variation, random parameters (coefficients), random effects, unobserved 
heterogeneity, etc. When such models are specified in a form that includes an additive i.i.d. Gumbel term, 
then they fall within the logit kernel (as well as mixed logit) class of models. Many of these special cases 
are described later in the paper. 

We choose to use the term logit kernel, because conceptually these models start with a logit model at the 
core and then are extended by adding a host of different error terms. In addition, the term is descriptive of 
the form of the likelihood function and the resulting logit kernel simulator. 

Organization of the Paper 
The paper is organized as follows. First, we introduce the logit kernel model and present a general 
discussion of identification. Then we discuss specification and identification of several important special 
cases, which are all based on a factor analytic representation of the error covariance structure. Next, we 
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focus on the estimation of logit kernel via maximum (simulated) likelihood. In the final section, we present 
empirical results that highlight some of the specification and identification issues.  

Related Literature 
There have been many previous efforts to extend the logit model to allow more flexible covariance 
structures. The most widely used extension is nested logit. The advantage of nested logit is that it relaxes 
the classic IIA assumption and yet has a closed form. Nonetheless it is still a fairly rigid model. Nested 
logit is not a logit kernel model, although it can be approximated in the logit kernel structure. In terms of 
logit kernel models, the earliest applications were in random parameter logit specifications, which appeared 
20 years ago in the papers by Boyd and Mellman (1980) and Cardell and Dunbar (1980). The more 
general form of the model came about through researchers quest for smooth probability simulators for use 
in estimating probit models. McFadden’s 1989 paper on the Method of Simulated Moments, includes a 
description of numerous smooth simulators, one of which involved probit with an additive i.i.d. Gumbel 
term. Stern (1992) described a similar simulator, which has an additive i.i.d. normal term instead of the 
Gumbel. At the time of these papers, there was a strong desire to retain the pure probit form of the model. 
Hence, the algorithms and specifications were designed to eventually remove the additive “contamination” 
element from the model (for example, McFadden, 1989) or ensure that it did not interfere with the pure 
probit specification (for example, Stern, 1992). Bolduc and Ben-Akiva (1991)1 did not see the need to 
remove the added noise, and began experimenting with models that left the Gumbel term in tact, and found 
that the models performed well. There have been numerous relatively recent applications and 
investigations into the model, including Bhat (1997 & 1998), Bolduc, Fortin and Fournier (1996), 
Brownstone, Bunch and Train (2000), Brownstone and Train (1999), Goett, Hudson, and Train (2000), 
Gönül and Srinivasan (1993), Greene (2000), Mehndiratta and Hansen (1997), Revelt and Train (1998 & 
1999), Srinivasan and Mahmassani (2000), and Train (1998). A very important recent contribution is 
McFadden and Train’s (2000) paper on mixed logit, which both (i) proves that any well-behaved random 
utility consistent behavior can be represented as closely as desired with a mixed logit specification, and (ii) 
presents easy to implement specification tests for these models. 

While logit kernel has strong computational advantages, it, like probit, does not have a closed form solution 
and can easily lead to high dimensional integrals. The well-known Gaussian Quadrature method of 
numerical integration is not computationally feasible for dimensionalities above 3 or so, and therefore 
estimation via simulation is a key aspect to applications of the logit kernel model. The basic idea behind 
simulation is to replace the multifold integral (the probability equations) with easy to compute probability 
simulators. Lerman and Manski (1981) introduced this concept and proposed the use of a frequency 
simulator to simulate probit probabilities. The frequency simulator was found to have poor computational 
properties primarily because it is not smooth (i.e., not continuous and not differentiable). Basically the 
frequency simulator maps each draw to a value of either 0 or 1, whereas a smooth simulator would map 
each draw to a value somewhere between 0 and 1 (and therefore retains more information). The result is 
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 Later generalized to Ben-Akiva and Bolduc (1996). 
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that discontinuous simulators require a prohibitively large number of simulation draws to obtain acceptable 
accuracy. In addition, a theoretical advantage of smoothness is that it greatly simplifies asymptotic theory. 
For these reasons, there has been a lot of research on various smooth simulators (see, for example, 
Börsch-Supan and Hajivassiliou, 1993; McFadden, 1989; Pakes and Pollard, 1989; and Stern, 1992). The 
discovery of the GHK simulator provided a smooth simulator for probit, which quickly became the 
standard for estimating probit models (see Hajivassiliou and Ruud, 1994). Now there is great interest in the 
logit kernel smooth simulator because it is conceptually intuitive, flexible, and relatively easy to program.  

With simulation, the types and number of draws that are made from the underlying distribution to calculate 
the simulated probabilities are always important issues. Traditionally, simple pseudo-random draws (for 
example, Monte Carlo) have been used. Bhat (2000) and Train (1999) present an interesting addition to 
the econometric simulation literature, which is the use of intelligent drawing mechanisms (in many cases 
non-random draws known as Halton sequences). These draws are designed to cover the integration space 
in a more uniform way, and therefore can significantly reduce the number of draws required. We employ 
this approach for the empirical results presented later in this paper.  

A final point is that we use Maximum Likelihood Estimation (ML) or Maximum Simulated Likelihood 
(MSL). An alternative to this is the Method of Simulated Moments (MSM) proposed by McFadden (1989) 
and Pakes and Pollard (1989). MSM is often favored over MSL because a given level of accuracy in 
model parameter estimation can be obtained with a fairly small number of replication draws. The accuracy 
of the MSL methodology critically depends on using a large number of simulation draws because the log-
likelihood function is simulated with a non-negligible downward bias. For several reasons, we still stick to 
the MSL approach. First, MSL requires the computation of the probability of only the chosen alternative, 
while MSM needs all choice probabilities. With large choice sets this factor can be quite important. 
Second, the objective function associated with MSL is numerically better behaved than the MSM objective 
function. Third, with the increase in computational power and the implementation of intelligent drawing 
mechanisms, the number of draws issue is not as critical as it once was. 

The Logit Kernel Model 

The Discrete Choice Model 
Consider the following discrete choice model. For a given individual n , 1,...,n N=  where N  is the 
sample size, and an alternative i , 1,..., ni J=  where nJ  is the number of alternatives in the choice set nC  
of individual n , the model is written as:  

1 1,...,
0

in jn n
in

    if U U ,  for j J
y

    otherwise
≥ =

= 


 ,  

in in inU X β ε= +  , 
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where iny  indicates the observed choice, and inU  is the utility of alternative i  as perceived by individual 
n . inX  is a (1 )K×  vector of explanatory variables describing individual n  and alternative i , including 
alternative-specific dummy variables as well as generic and alternative-specific attributes and their 
interactions with the characteristics of individual n . β  is a ( 1)K ×  vector of coefficients and inε  is a 
random disturbance. The assumption that the disturbances are i.i.d. Gumbel leads to the tractable, yet 
restrictive logit model. The assumption that the disturbances are multivariate normal distributed leads to the 
flexible, but computationally demanding probit model. The logit kernel model presented in this paper is a 
hybrid between logit and probit and represents an effort to incorporate the advantages of each. 

In a more compact vector form, the discrete choice model can be written as follows: 

1[ ,..., ] '
nn n J ny y y=  ,     

n n nU X β ε= +  ,    (1) 

where ny , nU , and nε  are ( 1)nJ ×  vectors and nX  is a ( )nJ K×  matrix.  

The Logit Kernel Model with Factor Analytic Form 

Model Specification 
In the logit kernel model, the inε  random utility term is made up of two components: a probit-like 
component with a multivariate distribution, and an i.i.d. Gumbel random variate. The probit-like term 
captures the interdependencies among the alternatives. We specify these interdependencies using a factor 
analytic structure. The factor analytic  structure was first proposed for probit by McFadden (1984) as a 
means of reducing the dimensionality of the integral. We use if here because it is a flexible specification 
that includes all known (additive) error structures as special cases, as we will show below. 

Using the factor analytic form, the disturbance vector nε  is specified as follows: 

n n n nFε ξ ν= +  ,    (2) 

where nξ  is an ( 1)M ×  vector of M  multivariate distributed latent factors, nF  is a ( )nJ M×  matrix of 
the factor loadings that map the factors to the error vector ( nF  includes fixed and/or unknown parameters 
and may also be a function of covariates), and nv  is a ( 1)nJ ×  vector of i.i.d. Gumbel random variates. 
For estimation, it is desirable to specify the factors such that they are independent, and we therefore 
decompose nξ  as follows: 

n nTξ ζ=  ,     (3) 

where nζ  are a set of standard independent factors (often normally distributed), 'TT  is the covariance 
matrix of nξ , and T  is the Cholesky factorization of it. The number of factors, M , can be less than, equal 
to, or greater than the number of alternatives. To simplify the presentation, we assume that the factors 
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have standard normal distributions, however, they can follow any number of different distributions, such as 
lognormal, uniform, etc. 

Substituting Equations (2) and (3) into Equation (1), yields: 

   The Factor Analytic Logit Kernel Specification  
 

n n n n nU X F Tβ ζ ν= + +  ,   (4) 

cov( )nU = 2' ' ( / )
nn n JFTT F g Iµ+    (5) 

(which we denote as n n nΩ = Σ + Γ ),  

where: nU  is a ( 1)nJ ×  vector of utilities; 

 nX  is a ( )nJ K×  matrix of explanatory variables; 

 β  is a ( 1)K ×  vector of unknown parameters; 

 nF  is a ( )nJ M×  matrix of factor loadings, including fixed and/or unknown 
parameters; 

 T  is a ( )M M×  lower triangular matrix of unknown parameters, where 

' ( )n nTT Cov Tξ ζ= = ; 

 nζ  is a ( 1)M ×  vector of i.i.d. random variables with zero mean and unit variance; 
and 

 nν  is a ( 1)nJ ×  vector of i.i.d. Gumbel random variables with zero location 

parameter and scale equal to 0µ > . The variance is 2g µ , where g  is the 

variance of a standard Gumbel ( 2 6π ). 

The unknown parameters in this model are µ , β , those in nF , and those in T . nX  are observed, 
whereas nζ  and nν  are unobserved. 

It is important to note that we specify the model in level form (i.e., , 1,...,jn nU  j J= ) rather than in 
difference form (i.e., ( ), 1,...,( 1)

njn J n nU U  j J− = − ). We do this for interpretation purposes, because it 
enables us to parameterize the covariance structure in ways that capture specific (and conceptual) 
correlation effects. Nonetheless, it is the difference form that is estimable, and there are multiple level 
structures that can represent any unique difference covariance structure. We return to this issue later in 
the paper. 
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Response Probabilities 
As will become apparent later, a key aspect of the logit kernel model is that if the factors nζ  are known, 
the model corresponds to a multinomial logit formulation: 

( )

( )( | )
in in n

jn jn n

n

X F T

n X F T

j C

e
i

e

µ β ζ

µ β ζ
ζ

+

+

∈

Λ =
∑

 ,   (6) 

where ( | )ni ζΛ  is the probability that the choice is i  given nζ , and jnF  is thj  row of the matrix nF , 
1,..., nj J= . 

Since the nζ  is in fact not known, the unconditional choice probability of interest is: 

( ) ( | ) ( , )MP i i n I d
ζ

ζ ζ ζ= Λ∫  ,   (7) 

where ( , )Mn Iζ  is the joint density function of ζ , which, by construction, is a product of standard 
univariate normals: 

1

( , ) ( )
M

M m
m

n Iζ φ ζ
=

= ∏  . 

The advantage of the logit kernel model is that we can naturally estimate ( )P i  with an unbiased, smooth, 
tractable simulator, which we compute as:   

1

1ˆ( ) ( | )d
n

d

P i i ζ
=

= Λ∑
D

D  ,   

where d
nζ  denotes draw d  from the distribution of ζ , thus enabling us to estimate high dimensional 

integrals with relative ease.  

Finally, note that if 0T =  then the model reduces to logit. 

Identification and Normalization 
It is not surprising that the estimation of such models raises identification and normalization issues. There 
are two sets of relevant parameters that need to be considered: the vector β  and the unrestricted 
parameters of the distribution of the disturbance vector nε , which include nF , T , and µ . For the vector 
β , identification is identical to that for a multinomial logit model. Such issues are well understood, and the 
reader is referred to Ben-Akiva and Lerman (1985) for details.  

The identification of the parameters in error structure is more complex, and will be discussed in detail in 
this paper.  
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Comments on Identification of Pure Probit versus Logit Kernel 
Recall that the error structure of the logit kernel model consists of a probit-like component and an additive 
i.i.d. extreme value term (the Gumbel). Bolduc (1992), Bunch (1991), Dansie (1985) and others address 
identification issues for disturbance parameters in the multinomial probit model. Bunch (1991) presents 
clear guidelines for identification (consisting of Order and Rank conditions, which are described below) 
and provides examples of identified and unidentified error structures. He also provides a good literature 
review of the investigations into probit identification issues. For the most part, the identification guidelines 
for pure probit are applicable to the probit-like component of the logit kernel model. However, there are 
some differences, which are touched on here, and will be expanded on in the detailed discussion that 
follows.  

We will see below that by applying the mechanics that are used to determine identification of a Probit 
model (Order and Rank) to the logit kernel model, effectively what happens is that the number of 
identifying restrictions that were necessary for a pure probit model are also required for the probit-like 
portion of the logit kernel model. However, there are some subtle, yet important, differences. Recall that 
one constraint is always necessary to set the scale of the model. In a pure probit model, this is done by 
setting at least one of the elements of the covariance structure2 to some positive value (usually 1). Call this 
element that is constrained pσ . With logit kernel, on the other hand, the scale of the model is set as in a 
standard logit model by constraining the µ  parameter of the i.i.d. Gumbel term. Since the scale of the logit 
kernel model is set by µ , the normalization of pσ  is now a regular identifying restriction in the logit kernel 
model. One issue with the normalization of pσ  for the logit kernel model is that in order to be able to 
trivially test the hypothesis that a logit kernel model is statistically different from a pure logit model, it is 
desirable to set pσ  equal to zero so that pure logit is a special case of a logit kernel specification. A 
second difference is that while the specific element of the covariance matrix that is used to set the scale in 
a probit model is arbitrary, the selection of pσ  is not necessarily arbitrary in the equivalent logit kernel 
model. This is due to the structure of the logit kernel model, and will be explained further below (in the 
discussion of the ‘positive definiteness’ condition.) 

Finally, it turns out that the fact that pσ  must be constrained in a logit kernel model is not exactly correct. 
In a probit kernel model (i.e., with an i.i.d. normal term), it is true that pσ  must be constrained. In this 
case, there is a perfect trade-off between the multivariate normal term and the i.i.d. normal term. 
However, in the logit kernel model, this perfect trade-off does not exist because of the slight difference 
between the Gumbel and Normal distributions. Therefore, there will be an optimal combination of the 
Gumbel and Normal distribution, and this effectively allows another parameter to be estimated. This leads 
to somewhat surprising results. For example, in a heteroscedastic logit kernel model a variance term can 
be estimated for each of the alternatives, whereas probit, probit kernel, or extreme value logit requires that 
one of the variances be constrained. The same holds true for an unrestricted covariance structure. 
Nonetheless, the reality is that without the constraint, the model is nearly singular (i.e., the objective 
function is very flat at the optimum), as will be demonstrated in the estimation results that follow. Due to 

                                                 
2
 Technically, the constraint is on the covariance matrix of utility differences. 
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the near singularity, it is advisable to impose the additional constraint, and we proceed using this approach 
throughout the rest of the discussion. 

Overview of Identification 
The first step of identification is to determine the model of interest, that is, the disturbance structure that is 
a priori assumed to exist. For example, an unrestricted covariance matrix (of utility differences) or various 
restricted covariance matrices such as heteroscedasticity or nesting. Once that is determined, there are 
three steps to determining the identification and normalization of the hypothesized model. The first two 
have to do with identification. For the model to be identified, both the order condition (necessary) and the 
rank condition (sufficient) must hold. The order condition establishes the maximum number of parameters 
that can be estimated, which is based on the number of alternatives in the choice set. The rank condition 
establishes the actual number of parameters that can be estimated, which is based on the number of 
independent equations available. In cases in which the conclusion from the order and rank conditions is 
that additional restrictions are in order, then a third condition (which we refer to as the positive definiteness 
condition) is necessary to verify that the chosen normalization is valid. Recall that the reason that an 
identifying restriction is necessary is that there are an infinite number of solutions (i.e., parameter 
estimates) to match the given model structure. The point of an identifying restriction is to establish the 
existence of a single unique solution, but not change the underlying model in any way. The positive 
definiteness condition asks the question of whether the models true structure (i.e., the one on which the 
rank and order conditions were applied) is maintained given the chosen identifying restriction. This is not 
an important issue for probit, but, as we will see, it has important implications for logit kernel. Each of the 
conditions is expanded on below, and we use the heteroscedastic logit kernel model to illustrate each 
condition.  

 The Specification of the Heteroscedastic Logit Kernel Model 

 The heteroscedastic model, assuming a universal choice set ( nC C  n= ∀ ), is written as:
 3 

 

Vector notation: n n n nU X Tβ ζ ν= + +  ,         ( M J=  and nF  equals the identity matrix JI ),  

T =

1

20
0 0
0 0 0 J

σ
σ

σ

 
 
 
 
 
  

O  ( )J J× ,  nζ  ( 1)J × ,  

and, defining 2( )ii iσ σ= , the ( )nCovU  is:  

                                                 
3
 Note that our notation for symmetric matrices is to show only the lower triangular portion. 
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Ω =

2
11

2
22

2

/
0 /
0 0
0 0 0 /JJ

g
g

            g

σ µ
σ µ

σ µ

 +
 

+ 
 
 

+  

O ( )J J× .  

Scalar notation: in in i in inU X  β σ ζ ν= + +  ,  i C∈ .  

Note that for a heteroscedastic model with a universal choice set, the covariance matrix does 
not vary across the sample, and so we can drop the subscript n  from nΩ . 

We carry the identification conditions through for a binary heteroscedastic model, a three 
alternative heteroscedastic model, and a four alternative heteroscedastic model, because the 
three models serve well to highlight various aspects of identification and normalization. The 
covariance structures for these three models are as follows: 

2:J =  Ω =
2

11
2

22

/
,0 /

g
g

σ µ
σ µ

 +
 

+ 
 

3:J =  Ω =

2
11

2
22

2
33

/
0 /
0 0 /

  ,

g
g

g

σ µ
σ µ

σ µ

 +
 

+ 
 + 

 

4:J =  Ω =

2
11

2
22

2
33

2
44

/
0 /
0 0 /
0 0 0 /

  .

g
g

g
g

σ µ
σ µ

σ µ
σ µ

 +
 

+ 
 +
 

+  

 

Setting the Location 
The general approach to identification of the error structure is to examine the covariance matrix of utility 
differences, denoted in the general case as , jn ∆Ω . Taking the differences sets the “location” of the model, 
a necessity for random utility models. The covariance matrix of utility differences for any individual is: 

, jn ∆Ω = 2( ) ' ' ' ( / ) 'j n j n n j j J jCov U FTT F g Iµ∆ = ∆ ∆ + ∆ ∆ ,  

where j∆  is the linear operator that transforms the J  utilities into ( 1)J −  utility differences taken with 
respect to the thj  alternative. j∆  is a ( 1)J J− ×  matrix that consists of a ( 1) ( 1)J J− × −  identity 
matrix with a column vector of 1− ’s inserted as the thj   column. We use the notation ,n ∆Ω  to denote the 
covariance matrix of utility differences taken with respect to the thJ  alternative. 
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 Setting the Location for the Heteroscedastic Model 

For the example heteroscedastic models using J  as the base, the covariance matrices of utility 
differences are as follows: 

2:J =  [ ]1 1J∆ = − ,   ∆Ω = 2
11 22 2gσ σ µ + +  , 

3:J =  
1 0 1
0 1 1 ,J

− 
∆ =  − 

  ∆Ω =
2

11 33
2 2

33 22 33

2
,2

g
g g

σ σ µ
σ µ σ σ µ

 + +
 

+ + + 
 

4:J =  

1 0 0 1

0 1 0 1
0 0 1 1 ,

J

− 
 ∆ = − 
 − 

 ∆Ω =

2
11 44

2 2
44 22 44

2 2 2
44 44 33 44

2 /
/ 2 /
/ / 2 / .

g
g g
g g g

σ σ µ
σ µ σ σ µ
σ µ σ µ σ σ µ

 + +
 

+ + + 
 + + + + 

 

Order Condition 
The first condition is the order condition, which is necessary for identification. When discussing the Order 
Condition, it is useful to separate the covariance matrix into that which is constant across the sample 
(called the ‘alternative-specific’ portion) and that which varies across the sample (for example, in the case 
of random parameters). The order condition only applies to the alternative-specific portion of the 
covariance matrix. It states that a maximum of ( 1) / 2 1s J J= − −  alternative-specific parameters are 
estimable in Ω , which is equal to the number of distinct cells in ∆Ω  (symmetric) minus 1 to set the scale 
(another necessity of random utility models). Therefore: 

 with 2 alternatives, no alternative-specific covariance terms can be identified;  
 with 3 alternatives, up to 2 terms can be identified;  
 with 4 alternatives, up to 5 terms can be identified;  
 with 5 alternatives, up to 9 terms can be identified;  
 etc.  
 
When the error structure has parameters that are not alternative-specific, for example, random 
parameters, it is possible to estimate more than s  parameters, because there is additional information 
derived from the variations of the covariance matrix across individuals. Technically, there still is an order 
condition, but the limit is large (related to the size of the sample) and is therefore never a limiting condition. 

 The Order Condition and the Heteroscedastic Model 

The disturbance parameters in the heteroscedastic model are alternative-specific, so the order 
condition must hold. Each heteroscedastic model has 1J +  unknown parameters: J  iiσ ’s and 
one µ . The order condition then provides the following information regarding identification: 
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2J = : 11 22{ , , }unknowns σ σ µ= ; 0s =   à 0  variances are identified  

3J = : 11 22 33{ , , , }unknowns σ σ σ µ= ; 2s =   à up to 2  variances are identified 

4J = : 11 22 33 44{ , , , , }unknowns σ σ σ σ µ= ; 5s =  à potentially all variances are identified  

Note that there are published probit and logit kernel models in the literature that do not meet the order 
condition, see, for example, Greene (2000) Table 19.15 and Louviere et al. (2000) Table B.6. While the 
logit kernel models in Greene and Louviere do not meet the order condition, these models are nonetheless 
barely identified due to the slight difference between the normal and Gumbel distributions (as discussed 
earlier). However, the probit model does not have this luxury, and therefore the probit model reported in 
Greene is not identified (as will be demonstrated in the mode choice application). 

While the order condition provides a quick check for identification, it is clearly shown in Bunch (1991) that 
the number of parameters that can be estimated is often less than s , depending on the covariance 
structure postulated. Therefore, the rank condition must also be checked, which is described next. 

Rank Condition 
The rank condition is more restrictive than the order condition, and it is a sufficient condition for 
identification. The order condition simply counts cells, and ignores the internal structure of ∆Ω . The rank 
condition, however, counts the number of linearly independent equations available in ∆Ω  that can be used 
to estimate the parameters of the error structure. Bolduc (1992) and Bunch (1991) describe the mechanics 
of programming the rank condition. The basic idea behind determining this count is to examine the 
Jacobian matrix, which is equal to the derivatives of the elements in ∆Ω  with respect to the unknown 
parameters. The number of parameters that can be estimated is equal to the Rank of the Jacobian matrix 
minus 1 (to set the scale). These mechanics are demonstrated below with the heteroscedastic example.  

 The Rank Condition and the Heteroscedastic Model 

The first step is to vectorize the unique elements of ∆Ω  into a column vector (we call this 
operator vecu):

4
  

3:J =  vecu( ∆Ω ) = 

2
11 33

2
22 33

2
33

2
2

,

g
g

g

σ σ µ
σ σ µ

σ µ

 + +
 

+ + 
 + 

 

                                                 
4
 Note that there’s no need to continue with identification for the binary heteroscedastic case, since the order condition resolved 

that none of the error parameters are identified. 
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4:J =  vecu( ∆Ω ) = 

2
11 44

2
22 44

2
33 44

2
44

2 /
2 /
2 /

./

g
g
g

g

σ σ µ
σ σ µ
σ σ µ

σ µ

 + +
 

+ + 
 + +
 

+  

 

By examination, it is clear that we are short an equation in both cases. This is formally 
determined by examining the Rank of the Jacobian matrix of vecu( ∆Ω ) with respect to each of 
the unknown parameters 2

11( ,..., , / )JJ gσ σ µ : 

3:J =  

( )

Jacobian 1 0 1 2

matrix  of 0 1 1 2
vecu 0 0 1 1∆

 
 =  
 Ω  

, 3Rank =  →  
2

.ii

can estimate  of the parameters;
must normalize  and one µ σ

 

4:J =  

1 0 0 1 2
0 1 0 1 2
0 0 1 1 2

( )
0 0 0 1 1

Jacobian
matrix  of  
vecu ∆

 
 
 =
 

Ω  
 

, 4Rank =  →  
3

.ii

can estimate  of the parameters;
must normalize  and one µ σ

 

So for both of these cases, the scale term µ  as well as one of the iiσ ’s must be normalized.  

Which iiσ  should be fixed? And to what value? This is where the positive definiteness condition comes 
into play, and it turns out that the normalizations for logit kernel models are not always arbitrary or 
intuitive. 

Positive Definiteness 
When the conclusion from the order and rank conditions is that further identifying restrictions 
(normalizations) are required, the positive definiteness condition is used to determine the set of acceptable 
normalizations. Conceptually, the need for the positive definiteness condition is as follows. First note that 
the reason for the additional normalization is that there are infinite possible solutions that result in the 
hypothesized covariance structure. The normalization is necessary to establish the existence of a unique 
solution, but it does not change the underlying model structure (i.e., the covariance matrix of utility 
differences) in any way. The positive definiteness condition is necessary to verify that the chosen 
normalization is valid, i.e., that the remaining parameters that are estimated are able to replicate the 
underlying model structure. It turns out that with logit kernel models, there can be seemingly obvious 
normalizations that are not valid, because the structure of the model prevents the underlying covariance 
matrix of utility differences from being recovered. 

To work through the details of the positive definiteness condition, we rephrase the above discussion as 
follows. There are two overriding issues behind the positive definiteness condition: 
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Statement 1: There are infinite possible normalizations that can be imposed to identify the model. 
However, note that all valid normalizations for a particular specification will result in identical ,n ∆Ω , that is, 
{ 1

,
N
n ∆Ω  from normalization 1} = { 2

,
N

n ∆Ω  from normalization 2}. For example, with this relationship, one can 
convert the estimated parameters from a particular normalization (say 11 0σ = ) to the parameters that will 
be estimated if a different normalization (say 11 1σ = ) is imposed (as long as both normalizations are 
valid). 

Statement 2: The logit kernel covariance matrix is n n nΩ = Σ + Γ , where ( )( )n n nF T F T ′Σ =  (Equation 
(5)). Therefore, by construction, nΣ  is necessarily positive semi-definite (‘semi’ because nF T  can equal 
zero).  

Given these two issues, any valid normalization must be such that both of the following conditions hold for 
all observations: 

 I.  , ,
N
n n∆ ∆Ω = Ω  →      , , ,

N N
n n n∆ ∆ ∆Σ + Γ = Ω    (by definition of a normalization). 

  The covariance matrix of utility differences of the normalized model (denoted by N ) 
equals the covariance matrix of utility differences of the non-normalized (theoretical) 
model. 

 II.  N
nΣ  is positive semi-definite   (by construction). 

If the normalization is such that both Conditions I and II cannot be met, the parameter estimates will be 
inconsistent and result in a loss of fit. It turns out that for logit kernel, these conditions can impose 
restrictions on the feasible set of normalizations, as we describe below. 

We have already stated that Condition II necessarily holds due to the construction of the model. 
Therefore, the issue is whether the imposed normalization is such that Condition I can be met, given the 
restriction that N

nΣ  is positive semi-definite. Problems can arise with logit kernel models due to the additive 
i.i.d. Gumbel portion of the covariance structure, nΓ . Because of nΓ , there can be normalizations for 
which satisfying Condition I requires a negative definite N

nΣ . However, this conflicts with Condition II, and 
so any such normalization is not valid. Note that this issue actually arises with any model structure that 
includes an i.i.d. disturbance term along with a parameterized disturbance, for example, a probit kernel 
model.  

 Positive Definiteness and the Heteroscedastic Model 

Looking at the heteroscedastic case, we will use the three alternative model as an example. It is 
useful in the analysis to deal directly with the estimated (i.e., scaled) parameters, so we 
introduce the notation 2( )ii iσ µσ=& . Say we impose the normalization that the third 
heteroscedastic term, 33σ& , is constrained to some fixed value we denote as N

ffσ& . Condition I 
can then be written as: 
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2
11

2 2
22

( 2 )
( ) ( 2 )

N N
ff N

N N N
ff N ff N

g
g g

σ σ µ
σ µ σ σ µ

 + +
 

+ + +  

& &
& & & =

2
11 33

2 2
33 22 33

( 2 )
( ) ( 2 )

g
g g

σ σ µ
σ µ σ σ µ

 + +
 

+ + + 

& &
& & & , 

where the matrix on the left represents the normalized model ( )2( )N N
ii N iσ µ σ=&  and the matrix 

on the right represents the theoretical (non-normalized) model. This relationship states that 
when the normalization is imposed, the remaining parameters in the normalized model will 
adjust such that the theoretical (or true) covariance matrix of utility differences is recovered. It 
also provides us with three equations: 

2( )N
ff Ngσ µ+& = 2

33( )gσ µ+&  , (8) 
2

11( 2 )N N
ff Ngσ σ µ+ +& & = 2

11 33( 2 )gσ σ µ+ +& &  , and (9) 
2

22( 2 )N N
ff Ngσ σ µ+ +& & = 2

22 33( 2 )gσ σ µ+ +& &  . (10) 

Condition II states that NΣ must be positive semi-definite, where: 

11

22 2

1
0 *
0 0

N

N N

NN   .
ff

σ
σ

µ
σ

 
 

Σ =  
  

&
&

&
   

This matrix is positive semi-definite if and only if the diagonal entries are non-negative and 2
Nµ  

is strictly positive, or:  

2 0Nµ >  ,     (11) 

11 0Nσ ≥&  ,     (12) 

22 0Nσ ≥&  , and     (13) 

0N
ffσ ≥&  .     (14) 

The positive definiteness condition requires that all valid normalizations satisfy the restrictions 
stated by Equations (8) to (14). The question is, what values of N

ffσ&  guarantee that these 
relationships hold?  

To derive the restrictions on N
ffσ& , we first use Condition I (Equations (8) to (10)) to develop 

equations for the unknown parameters of the normalized model 2
11 22( , , )N N

N     and  µ σ σ& &  as 
functions of the normalized parameter N

ffσ&  and the theoretical parameters 
2

11 22 33( , , )    ,  and  µ σ σ σ& & & , which leads to: 

2 2
33( ) ( )N

N ff g gµ µ σ σ= + +& &  ,   (15) 

( ) ( )11 11 11 33 33( ) ( )N N
ffg g gσ σ σ σ σ σ= + + − +& & & & & &  , and (16) 

( ) ( )22 22 22 33 33( ) ( )N N
ffg g gσ σ σ σ σ σ= + + − +& & & & & &  . (17) 
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Equations (11) to (14) impose restrictions on the parameters of the normalized model, and so 
we can combine them with Equations (15) to (17), which results in the following set of 
restrictions: 

0N
ffσ ≥&  ,     (Eq. (14)) (18) 
2

33( ) ( ) 0N
ff g gµ σ σ+ + >& &  ,   (Eqs. (11) & (15)) (19) 

( ) ( )11 11 33 33( ) ( ) 0N
ffg g gσ σ σ σ σ+ + − + ≥& & & & &  , and (Eqs. (12) & (16)) (20) 

( ) ( )22 22 33 33( ) ( ) 0N
ffg g gσ σ σ σ σ+ + − + ≥& & & & &  . (Eqs. (13) & (17)) (21) 

The other information we have is that Σ  is positive semi-definite (by construction), and 
therefore: 

 2 0µ > , 11 0σ ≥& , 22 0σ ≥& , and 33 0σ ≥& .  (22) 

So going back to restrictions (18)-(21), the first two restrictions are trivial: Equation (18) just 
states that the normalization has to be non-negative; and given Equations (18) and (22), 
Equation (19) will always be satisfied. Equations (20) and (21) are where it gets interesting, 
because solving for N

ffσ&  leads to the following restrictions on the normalization: 

( )33 ( )
N
ff ii

ii

g
g

σ σ σ
σ

≥ −
+

& & & &     , 1,2i =  . (23) 

( 33σ&  is the heteroscedastic term that is fixed.) 

What does this mean? Note that as long as alternative 3 is the minimum variance alternative, 
the right hand side of Equation (23) is negative, and so the restriction is satisfied for any 

0N
ffσ ≥& . However, when alternative 3 is not the minimum variance alternative, N

ffσ&  must be set 
“large enough” (and certainly above zero) such that Equation (23) is satisfied. This latter 
approach to normalization is not particularly practical since the iiσ& are unknown (how large is 
large enough?), and it has the drawback that MNL is not a case nested within the logit kernel 
specification. Therefore, the following normalization is recommended: 

The preferred normalization for the heteroscedastic logit kernel model is to constrain the 
heteroscedastic term of the minimum variance alternative to zero.  

A method for implementing this normalization is described later in the section on 
heteroscedastic logit kernel models.  

Positive Definiteness and a Probit Model  

What about the positive definiteness condition for pure probit? Pure probit models also must satisfy a 
positive definiteness condition, but it turns out that these do not impose any problematic restrictions on the 
normalization. With pure probit, there is obviously no Gumbel term, so Condition I can be written as 

, ,
N
n n∆ ∆Σ = Σ . Condition II is similar to that for logit kernel, except that N

nΣ  must now be positive definite 
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(since it cannot equal zero). Since ,n ∆Σ  is well-behaved (by construction), Condition I states that ,
N
n ∆Σ  will 

also be well-behaved, and, therefore, so will N
nΣ . The result is that the positive definiteness condition 

automatically holds for normalizations that are intuitively applied to probit.  

Positive Definiteness and a Probit Heteroscedastic Model  

This can be demonstrated for the heteroscedastic pure probit case, Condition I is: 

 
2

11
2 2

22

( )
( ) ( )

N N
ff N

N N N
ff N ff N

σ σ µ
σ µ σ σ µ

 +
 

+  

& & %
& % & & % =

2
11 33

2 2
33 22 33

( )
( ) ( )

σ σ µ
σ µ σ σ µ

 +
 

+ 

& & %
& % & & %  ,  

 where µ%  is the scale of the probit model (i.e., not the traditional Gumbel µ ). 

Solving for the unknown parameters from the normalized model: 

2 2
33

N
N ffµ µ σ σ=% % & &  ,   

11 11 33
N N

ffσ σ σ σ=& & & &  , and   

22 22 33
N N

ffσ σ σ σ=& & & &  .   

Condition II requires:   

2 0Nµ >%  ,  

11 0Nσ >&  ,  

22 0Nσ >&  , and  

0N
ffσ >&  .  

Given that the theoretical ∆Σ  is well behaved (i.e., all theoretical variances and scale are 
strictly positive), it is clear that any 0N

ffσ >&  will result in Conditions I and II being satisfied. So, 
the normalization is arbitrary, and the standard practice of normalizing any one of the terms to 
1 is valid. 

Examination of the normalization unrestricted probit and logit kernel models are provided in the Appendix. 
The heteroscedastic and unrestricted covariance matrix examples illustrate the nature of the problem. The 
issue arises due to the manner in which the normalized parameter estimates adjust to replicate the true 
covariance structure. With probit, the parameters shift in a simple multiplicative manner. However, with 
logit kernel, the parameters shift in an additive manner, and this can lead to infeasible ‘negative’ variances 
and a factor analytic term that is not positive definite. 

The brief summary of identification is that the order and rank conditions need to be applied to verify that 
any estimated model is identified, and the positive definiteness condition needs to be applied to verify that a 
particular normalization is valid. It is critical to examine identification on a case-by-case basis, which is 
how we will proceed in the remainder of the paper. There is also an empirical issue concerning 
identification, which is whether or not the data provide enough information to estimate any given 
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theoretically identified structure. This is the usual multicollinearity problem, and it arises when there are too 
many parameters in the error structure and therefore the Hessian is nearly singular. 

Special Cases 
Many interesting cases can be embedded in the general factor analytic logit kernel specification presented 
in Equation (4). We will cover the following special cases in this section: 

• Heteroscedastic – a summary and generalization of the discussion above. 

• Nested and Cross-nested – analogous to nested and cross-nested logit. 

• Error Components – a generalization of heteroscedastic and nested structures. 

• Factor Analytic – a further generalization in which parameters in nF  are also estimated. 

• General Auto-Regressive – particularly useful for large choice sets. 

• Random parameters – where most of the current applications of logit kernel in the literature are 
focused.  

This is not meant to be an exhaustive list. There are certainly other special cases of the logit kernel model, 
some of which are presented in papers listed in the references. The objective of this section is to show the 
flexibility of logit kernel, to provide specific examples of specification and identification, and to establish 
rules for identification and normalization for some of the most common special cases. 

Heteroscedastic 
The heteroscedastic model was presented above. The scalar notation form of the model is repeated here 
for convenience:  

,in in i in in nU X               i Cβ σ ζ ν= + + ∈  .   

Identification 
Identification was already discussed above for 2J = , 3 , and 4 . These results can be straightforwardly 
generalized to the following: 

Identification 

2J =  none of the heteroscedastic variances can be identified.  

3J ≥  1J −  of the heteroscedastic variances can be identified. 
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Normalization 

For 3J ≥ , a normalization must be imposed on one of the variance terms, denote this as 
N

jj ffσ σ=& &  where jjσ&  is the true, albeit unknown, variance term that is fixed to the value N
ffσ& .  

This normalization is not arbitrary, and must meet the following restriction: 

( ) ( )
N
ff jj ii

ii

g
g

σ σ σ
σ

≥ −
+

& & & &     , 1,...,i J=  . 

This restriction shows that the natural tendency to normalize an arbitrary heteroscedastic term to zero is 
incorrect. If the alternative does not happen to be the minimum variance alternative, the parameter 
estimates will be inconsistent, there can be a significant loss of fit (as demonstrated in the application 
section), and it can lead to the incorrect conclusion that the model is homoscedastic. This is an important 
issue, which, as far as we can tell, is ignored in the literature. It appears that arbitrary normalizations are 
being made for models of this form (see, for example Gönül and Srinivasan, 1993, and Greene, 2000, Table 
19.15). Therefore, there is a chance that a non-minimum variance was normalized to zero, which would 
mean that the model is misspecified. It is important to note that it is the addition of the i.i.d. disturbance 
that causes the identification problem. Therefore, heteroscedastic pure probit models as well as the 
heteroscedastic extreme value models (see, for example, Bhat, 1995, and Steckel and Vanhonacker, 1988) 
do not exhibit this property.  

Ideally, we would like to impose a normalization such that MNL is a special case of the model. Therefore, 
the best normalization is to fix the minimum variance alternative to zero. However, there is in practice no 
prior knowledge of the minimum variance alternative. A brute force solution is to estimate J  versions of 
the model, each with a different heteroscedastic term normalized; the model with the best fit is the one 
with the correct normalization. This is obviously cumbersome as well as time consuming. Alternatively, 
one can estimate the unidentified model with all J heteroscedastic terms. Although this model is not 
identified, it will pseudo-converge to a point that reflects the true covariance structure of the model. The 
heteroscedastic term with minimum estimated variance in the unidentified model is the minimum variance 
alternative, thus eliminating the need to estimate J  different models. Examples of this method are 
provided in the applications section. 

Nesting & Cross-Nesting Error Structures 
Nesting and cross-nesting logit kernel is another important special case, and is analogous to nested and 
cross-nested logit. The nested logit kernel model is specified as follows: 

n n n n nU X F Tβ ζ ν= + +  ,  

where: nζ  is ( 1)M × , M is the number of nests, and one factor is defined for each nest.  

 nF  is ( )nJ M× , 
1
0jm

   if alternative j  is a member of nest m 
f

   otherwise


= 

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 T  is ( )M M×  diagonal, which contains the standard deviation of each factor.  

In a strictly hierarchical nesting structure, the nests do not overlap, and 'n nF F  is block diagonal. In a 
cross-nested structure, the alternatives can belong to more than one group.  

Identification 
As usual, the order and rank conditions are checked for identification. The order condition states that at 
most ( 1)/2 1J J − −  nesting parameters can be identified. However, the rank condition leads to further 
restrictions as described below. 

Models with 2 Nests 

The summary of identification for a 2 nest structure is that only 1 of the nesting parameters is identified. 
Furthermore, the normalization of the nesting parameter is arbitrary. This is best shown by example. Take 
a 5 alternative case (with universal choice set) in which the first 2 alternatives belong to one nest, and the 
last 3 alternatives belong to a different nest. The model is written as: 

1 1 1 1

2 1 1 2

3 2 2 3

4 2 2 4

5 2 2 5

...

...
...
...
...

n n n

n n n

n n n

n n n

n n n

U
U
U
U  
U  

σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν

= + +
= + +
= + +
= + +
= + +

 , where: 

1 0
1 0
0 1
0 1
0 1

F

 
 
 
 =
 
 
  

  and 1

2

0
0

T
σ

σ
 

=  
 

 .  

We denote this specification as 1, 1, 2, 2, 2 (a shorthand notation of the matrix F ). The covariance matrix 
of utility differences (with alternative 5 as the base) is as follows: 

∆Ω =

2
11 22

2 2
11 22 11 22

2 2 2

2 2 2 2

2 /
/ 2 /

/ / 2 /
/ / / 2 /   .

g
g g

g g g
g g g g

σ σ µ
σ σ µ σ σ µ

µ µ µ
µ µ µ µ

 + +
 

+ + + + 
 
 
  

  

It can be seen from this matrix that only the sum 11 22( )σ σ+  can be identified. This is verified by the rank 
condition as follows:  

vecu( ∆Ω ) = 

2
11 22

2
11 22

2

2

2 /
/

/
2 /

g
g

g
g

σ σ µ
σ σ µ

µ
µ

 + +
 

+ + 
 
 
  

   →    

1 1 2
1 1 1
0 0 1
0 0 2

Jacobian
matrix

 
 
 =
 
 
 

   →    RANK=2  

→  can estimate 1 of the parameters; must normalize µ  and one iiσ .  
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Furthermore, unlike the heteroscedastic logit kernel model, either one of the variance terms can be 
normalized to zero (i.e., the normalization is arbitrary). This can be seen intuitively by noticing that only the 
sum 11 22( )σ σ+  appears in ∆Ω , and so it is always this sum that is estimated regardless of which term is 
set to zero. This can also be verified via the positive definiteness condition, as follows. Say we impose the 
normalization 22 0Nσ =& . Condition I leads to the relationships 2 2

Nµ µ=  and 11 11 22( )Nσ σ σ= +& & & . Condition 
II states that NΣ  must be positive semi-definite, where: 

11

11 11

2

1
*0 0 0

.0 0 0 0
0 0 0 0 0

N

N N

N

N

σ
σ σ

µ

 
 
 
 Σ =
 
 
  

&
& &

 

A matrix is positive semi-definite if all of its eigenvalues are non-negative. The eigenvalues for NΣ  shown 
above are: 2

112 / , 0, 0, 0, 0N
N     σ µ& . We know from Condition I that 2 0Nµ >  and 11 0Nσ ≥& , which means 

2
112 / 0N

Nσ µ ≥ , NΣ  is positive semi-definite, and the normalization 22 0Nσ =&  is valid. Similarly, it can be 
shown that the normalization 11 0Nσ =&  is also valid. 

While it is not possible to estimate both variance parameters of the 1, 1, 2, 2, 2 structure, the following 
structures are all identified and result in identical covariance structures (i.e., identical models): 

{ 1, 1, 0, 0, 0 } = { 0, 0, 2, 2, 2 } = { 1, 1, 2, 2, 2 with 1 2σ σ=  } . 

These results straightforwardly extend to all two nest structures regardless of the number of alternatives 
(as long as at least one of the nests has 2 or more alternatives).  

Models with Three or More Nests 

The summary of identification for models with 3 or more nests is that all of the nesting parameters are 
identified. To show this, we will again look at a 5 alternative model, this time imposing a 3 nest structure 
(1, 1, 2, 3, 3): 

1 1 1 1

2 1 1 2

3 2 2 3

4 3 3 4

5 3 3 5

...

...
...
...
...

n n n

n n n

n n n

n n n

n n n

U
U
U
U  
U  

σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν

= + +
= + +
= + +
= + +
= + +

 , where: 

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

F

 
 
 
 =
 
 
  

 and 
1

2

3

0 0
0 0
0 0

T
σ

σ
σ

 
 

=  
  

 .  

The covariance matrix of utility differences is: 
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∆Ω =

2
11 33

2 2
11 33 11 33

2 2 2
33 33 22 33

2 2 2 2

2 /
/ 2 /

/ / 2 /
/ / / 2 /   .

g
g g

g g g
g g g g

σ σ µ
σ σ µ σ σ µ

σ µ σ µ σ σ µ
µ µ µ µ

 + +
 

+ + + + 
 + + + +
 
  

  

A check of the rank condition verifies that all three variance parameters are identified: 

vecu( ∆Ω ) = 

2
11 33

2
11 33

2
33

2
22 33

2

2

2 /
/

/
2 /

/
2 /

g
g
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σ σ µ
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σ µ
σ σ µ
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µ
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+ + 
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 

+ + 
 
 
  

   →    

1 0 1 2
1 0 1 1
0 0 1 1
0 1 1 2
0 0 0 1
0 0 0 2

Jacobian
matrix

 
 
 
 

=  
 
 
 
  

   →   RANK=4  

→  can estimate 3 of the parameters; only need to normalize µ .  

It is an interesting result that 1, 1, 0, 2, 2 structure results in both variance parameters being identified (by 
virtue of having a 3 nest structure) whereas only one parameter of the 1, 1, 2, 2, 2 structure is identified.  

Conceptually, the number of estimable parameters can be thought of in terms of the number of differences 
and number of covariances that are left in the utility differences. In a two nest structure, only one 
difference remains and no covariances and therefore one parameter is estimable. Whereas in a three nest 
structure, there are two differences, plus the covariance between these two differences, and so three 
parameters are estimable. 

This finding can be extended to any model with 3 or more nests (where ‘nests’ can have only 1 
alternative, as long as at least one nest has 2 or more alternatives) as follows. Without loss of generality, 
assume that the base alternative is a member of a nest with 2 or more alternatives (as in the example 
above). Define bm  as the group to which the base alternative belongs, and bbσ  as the variance associated 
with this base. Recall that M is the number of nests. The covariance matrix of utility differences has the 
following elements: 

On the diagonal:  
22 /ii bb gσ σ µ+ +   b i m∀ ∉  ,  M-1 equations, (24) 

22 /g µ  , 1 equation. (25) 

On the off-diagonal:  
2/bb gσ µ+  ,    1 equation, (26) 

2/g µ  ,    irrelevant: a dependent equation,  
2/ii bb gσ σ µ+ +  for some bi m∉ , irrelevant: a dependent equation.  
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Equations (24) through (26) provide identification for all nesting parameters, and the remaining equations 
are dependent. In the two-nest case, Equation (26) does not exist, and thus is an equation short of 
identification. 

Cross-Nested Models 

There are no general rules for identification and normalization of cross-nested structures, and one has to 
check the rank condition on a case-by-case basis. For example, in the five alternative case in which the 
third alternative belongs to both nests (1, 1, 1-2, 2, 2), the (non-differenced) covariance matrix is: 

Ω =

2
11

2
11 11

2
11 11 11 22

2
22 22

2
22 22 22

/
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/
0 0 /
0 0 /

  .

g
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σ σ σ σ µ

σ σ µ
σ σ σ µ

 +
 

+ 
 + +
 

+ 
 + 

 

A check of the order and rank conditions would find that both of the parameters in this cross-nested 
structure are identified. However, note that the cross-nesting specification can have unintended 
consequences on the covariance matrix. For example, in the (1, 1, 1-2, 2, 2) specification shown above, the 
third alternative is forced to have the highest variance. There are numerous possible solutions. One is to 
add a set of heteroscedastic terms, another is to add factors such that all the alternative-specific variances 
are identical as with the following specification: 

1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1

F

 
 
 
 =
 
 
  
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1

1

1

2

2

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

  .

T

σ
σ

σ
σ

σ
σ

 
 
 
 

=  
 
 
 
  

  

The covariance matrix of utility differences for this structure is as follows: 

∆Ω =

2
11 22

2 2
11 22 11 22

2 2 2
11 11 11

2 2 2 2
11 11 11 11

2 2 2 /
2 / 2 2 2 /

2 / 2 / 2 2 /
/ / / 2 2 /

  .

g
g g

g g g
g g g g

σ σ µ
σ σ µ σ σ µ

σ µ σ µ σ µ
σ µ σ µ σ µ σ µ

 + +
 

+ + + + 
 + + +
 

+ + + +  

  

A check of the rank condition verifies that both variance parameters are identified for this specification. 
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vecu( ∆Ω ) = 

2
11 22

2
11 22

2
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2
11

2
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2
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2 2 2 /
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2 2 /

/
2 2 /
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σ σ µ
σ σ µ
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σ µ
σ µ
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 

+ + 
 +
 

+ 
 +
 

+  

   →    

2 2 2
2 1 1
2 0 1
2 0 2
1 0 1
2 0 2

Jacobian
matrix

 
 
 
 

=  
 
 
 
  

   →    RANK=3   

→   can estimate 2 of the parameters, only need to normalize µ . 

Extensions to Nested Models 

There are various complexities that can be introduced to the nesting structure, including multi-level nests, 
cross-nested structures with multiple dimensions, and unknown parameters in the loading matrix ( F ). 
While we have investigated various special cases of these extended models, we have not yet derived 
general rules for identification. We recommend that identification be performed automatically on a case-
by-case basis by programming the rank and order conditions into the estimation program. 

Error Components 
The error component formulation is a generalization that includes the heteroscedastic, nested, and cross-
nested structures. The model is specified as follows: 

n n n n nU X F Tβ ζ ν= + +  ,  

where nF , nζ , and T  are defined as in the general case, and nF  is a matrix of fixed factor loadings equal 
to 0 or 1. If T  is diagonal (as it often is), then the disturbances in scalar form are: 

1

,
M

in imn m mn in n
m

f               i Cε σ ζ ν
=

= + ∈∑  ,   

  where:   

1 ,th
n

imn

    if the m  element of  applies to alternative i for individual n
f

0   otherwise .                               
ζ

= 


 

The number of factors can be less than, equal to, or greater than the number of alternatives.  

Identification 
The order condition states that up to ( 1)/2 1J J − −  parameters in T  are identified. However, it is 
always necessary to check the rank condition for the particular specification and the positive definiteness 
condition for valid normalizations. Examples were provided above for the special cases of heteroscedastic, 
nesting, and cross-nesting specifications. Note that the rank condition should always be checked when any 
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combination of nesting, cross-nesting, and heteroscedasticity are applied. That is, the identification rules 
cannot be independently applied for combinations.  

Factor Analytic 
The Factor Analytic specification is a further generalization in which the nF  matrix contains unknown 
parameters. The model is written as in the general case: 

n n n n nU X F Tβ ζ ν= + + . 

If T  is diagonal, the disturbances can be written in scalar form as follows: 

1

,
M

in imn m mn in n
m

f               i Cε σ ζ ν
=

= + ∈∑  , 

where both the imnf ’s and mσ ’s are unknown parameters. 

Identification 
This is a very broad class of models. Therefore, it is difficult to go beyond the rank and order 
generalizations of identification. However, note that some constraints must be imposed on nF  and T  in 
order to achieve identification. For alternative-specific error structures, the minimum number of necessary 
constraints can be determined from the order condition: a maximum of ( 1)/2 1J J − −  parameters can be 
estimated and there are up to ( 1) 1M J + +  unknown parameters ( M  in T  diagonal, JM  in nF , plus the 
scale term µ ). Once the order condition is met, the rank condition needs to be checked on a case-by-case 
basis. Finally, it must be verified that any imposed normalization satisfies the positive definiteness 
condition. 

General Autoregressive Process 
A fully unrestricted error correlation structure in models with large choice sets is problematic as the 
dimension of the integral is on the order of the number of alternatives and the number of parameters 
grows quadratically with the number of alternatives. A generalized autoregressive framework is attractive 
in these situations, because it allows one to capture fairly general error correlation structures using 
parsimonious parametric specifications. The key advantage of the method is that the number of 
parameters in the error structure grows linearly with the size of the choice set.  

The disturbances 1( ,..., ) '
nn n J nξ ξ ξ=& & &  5

 of a first-order generalized autoregressive process [GAR(1)] is 
defined as follows: 

~ (0, )
nn n n n n n JW T  ,                       N I  ,ξ ρ ξ ζ ζ= +& &  (27) 

                                                 
5
 nξ&  has a slightly different interpretation than the nξ  used elsewhere in the paper. 
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where nW  is a ( )J J×  matrix of weights ,i j nw  describing the influence of each jnξ&  error upon the others, 
ρ  is an unknown parameter, and n nT ζ  allows for heteroscedastic disturbances, where nT  is ( )n nJ J×  
diagonal (the subscript n  is included to allow for different sized choice sets). Using a general notation, we 
write ,i j nw  as: 

*
,

, ,
*

,
1

n

i j n
i j n i j nJ

ik n
k

w
w   ,                  j i   and  w 0 

w
=

= ∀ ≠ =

∑
  i=j∀  , (28) 

where *
,i j nw  is a function of unknown parameters and observable explanatory variables, which describe 

the correlation structure in effect. Solving for nξ&  in Equation (27) and incorporating it into Equation (4), 
leads to a logit kernel form of the GAR[1] specification:  

n n n n n nU X F Tβ ζ ν= + + , where 1( )n nF I Wρ −= − .  

The normalization applied in Equation (28) ensures that the process is stable for values of ρ  in the ( 1,1)−  
interval. The interpretation and the sign of ρ , usually referred to as the correlation coefficient, depend on 
the definition of proximity embodied in *

ijw .  

In practice, the parameters in *
,i j nw  could be estimated. However, there are important special cases in 

which they are fixed. For example, spatial studies often use spatial autoregressive of order 1 [SAR(1)] 
error processes, which define the contiguity structure through a Boolean contiguity matrix. In this case, 

* 1ijw =  if i  and j  are contiguous and * 0ijw =  otherwise. For this specification, a 0ρ >  implies that 
errors of the same sign are grouped together. A slightly more complex specification, which requires 
estimation of a single parameter θ , is to set * ( )ij ijw d θ−= , in which the distance ijd  plays the role of a 
contiguity or proximity measure between pairs of alternatives. For examples of SAR(1) see Anselin 
(1989), and Cliff and Ord (1981). For an application of SAR(1) processes in economics, see Case (1991).  
Bolduc, Fortin, and Fournier (1996) use an SAR(1) process to estimate a logit kernel model with 18 
alternatives. 

For more details on GAR(1), including a discussion on identification issues, see Bolduc (1992). 

Random Parameters 
The MNL formulation with normally distributed random taste parameters can be written as:   

n n n nU X β ν= +  ,  where ~ ( , )n N ββ β Σ .  

nβ  is a K -dimensional random normal vector with mean vector β  and covariance matrix βΣ . Replacing 

nβ  with the equivalent relationship: n nTβ β ζ= + , where T  is the lower triangular Cholesky matrix such 
that 'TT β= Σ , leads to a general factor analytic logit kernel specification where n nF X= : 

n n n n nU X X Tβ ζ ν= + +  .  
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The parameters that need to be estimated in this model are β  and those present in T . T  is usually 
specified as diagonal, but it does not have to be (see, for example, Train, 1998, and Walker, 2001). 
Independently distributed parameters are probably a questionable assumption when variables are closely 
related, for example in-vehicle and out-of-vehicle travel time.6 Also, note that the distribution does not have 
to be normal. For example, parameters with sign constraints should be specified with a lognormal 
distribution. See the telephone case study presented later for an example of a model with a lognormally 
distributed nβ  parameter. 

Identification  
For identification of random parameter models, it is useful to separate the random parameters into two 
groups: those that are applied to alternative-specific constants and those applied to variables that vary 
across the sample.  

Alternative-specific constants 

When alternative-specific zero/one dummy variables have randomly distributed parameters, this is 
identical to the heteroscedastic, nested, and error component structures. In such cases, the order and 
rank conditions as discussed earlier hold. 

Variables that include variation across the sample 

As pointed out in the general discussion on identification, the order condition does not hold for the 
portion of the covariance matrix that varies across the sample. Rather, as many parameters as the 
data will support (without running into multicollinearity problems) can be estimated.  

 Continuous Attributes of the Alternatives 

When random parameters are specified for continuous attributes of the alternatives, there are no 
identification issues per se. Data willing, the full covariance structure (i.e., variances for each 
parameter as well as covariances across parameters) can be estimated. 

 Categorical Attributes of the Alternatives 

An interesting and unintuitive identification issue arises when categorical variables7 are specified with 
independently  distributed random parameters. Say there are M  categories for a variable. Then there 
is theoretically a mβ  and mσ  for each category m , 1,...,m M= . It is well known that for the 
systematic terms (the mβ ’s), only ( 1M − ) mβ ’s can be identified and therefore a base must be 
arbitrarily selected. However, this is not necessarily true for the disturbance terms. To do the analysis, 

                                                 
6
 Note that if a subset of the covariances are estimated, then one has to be careful about the way the structural zeros are imposed 

on the Cholesky. In order for the structure of the Cholesky T (i.e., the location of the structural zeros) to be transferred to the 
covariance structure TT’, the structural zeros must be in the left-most cells of each row in the Cholesky. See Walker (2001) for 
more discussion. 
7
 An example of a categorical variable in a housing choice context is X={street parking only, reserved parking space in a lot, 

private garage}, where each alternative has exactly one of the possible X’s associated with it. 
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the rank condition comes into play. Identification of the mσ ’s can be thought of as identification for a 
nested structure (think of it as examining the covariance structure for a particular individual). 
Therefore, if there are only 2 categories, then only one random parameter is identified and the 
normalization is arbitrary; if there are 3 or more categories, then a random parameter for each of the 
categories is identified. The key here being that, unlike the systematic portion of the utility function, it 
is incorrect to set one of the mσ ’s as a base when there are 3 or more categories. Unlike the 
identification analysis for a nested structure, the number of alternatives J  does not impact the number 
of mσ ’s that can be estimated, because of the variation across observations. Note that this analysis 
applies for a single categorical variable, and it is not immediately apparent that the conclusion 
translates to the case when random parameters are specified for multiple categorical variables in the 
model. The issue of identification for categorical variables is not addressed in the literature, see, for 
example, Goett, Hudson, and Train (2000), who include random parameters on several categorical 
variables in their empirical results.  

When covariances are estimated (as they probably should be), then a full set of variances and 
covariances can be estimated for the 1M −  mβ ’s estimated in the systematic utility.  

 Characteristics of the Decision-maker 

If a random parameter is placed on a variable that is a characteristic of the decision-maker (for 
example, years employed), it necessarily must be interacted with an alternative-specific variable 
(otherwise it will cancel out when the differences are taken). The normalization or such parameters 
then depends on the type of variable with which it interacts. If it interacts with alternative-specific 
dummy variables, then the heteroscedastic rules apply (i.e., 1J −  variance terms can be estimated, 
and the minimum variance term must be constrained to zero). If it interacts with nest-specific 
constants, then the rules for nested error structures apply, etc. Furthermore, we suspect that if the 
characteristic is a categorical variable (for example, low income, medium income, high income), then 
the rules we presented for categorical attributes also apply (although this hasn’t been verified). 

Identification of Lognormally Distributed Parameters 

Our application of the Order and Rank conditions for identification assume that the disturbance 
component of the utility can be separated from the systematic portion of the utility. With lognormally 
distributed parameters, the mean and variance of the distribution are a function of both of the 
disturbance parameters and therefore this separability does not exist. While the identification rules 
described above cannot be strictly applied, they provide guidelines for identification. And, as always, 
empirical tests such as examining the Hessian should also be applied. 

As long as the identification restrictions described above are imposed, the number of random parameters 
that can be identified is dependent on the data itself in terms of the variation and the collinearity present in 
the explanatory variables. Therefore, empirical methods are used to verify identification of random 
parameter models, for example, verifying that the Hessian is non-singular at the convergence point. An 
issue with simulation is that identification issues often do not present themselves empirically unless a large 
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number of draws are used. Therefore, other useful methods are to constrain one or more parameters and 
observe whether the likelihood changes, or to test the impact of different starting values. Also, it is 
particularly important in random parameter models to verify stability of parameter estimates as the number 
of draws increases.  

McFadden and Train (2000) note the inherent difficulty of identifying the factor structure for random 
parameter models, because many different factor combinations will fit the data approximately as well. 

Parameter Estimation 
We now describe the method that we use to estimate the joint vector of parameters ( ', ')'δ β ψ= , where 
β  is the vector of unknown parameters in the systematic portion of the utility and ψ  is the vector of 
unknown parameters in the error structure. For example, in the heteroscedastic model, only the 
alternative-specific standard deviations are included in ψ . In the GAR(1) version based on a Boolean 
contiguity matrix, the same standard deviations are estimated in addition to ρ  (the correlation coefficient). 
The factor analytic and the random parameter structures can potentially have a very large number of 
unknown parameters. 

The approach is to employ probability simulators within a maximum likelihood framework, which leads to 
Maximum Simulated Likelihood (MSL). The application of this method is straightforward and provides 
great flexibility in terms of the structure of the covariance matrix. 

Maximum Likelihood 
The log-likelihood of the sample is: 

1

( ) ln ( | )
N

n
n

L P iδ δ
=

= ∑  ,  

where ( | )nP i δ is the probability associated with the choice made by individual n . The score vector is:   

1

( | )( ) 1
( | )

N
n

n n

P iL
P i

δδ
δ δ δ=

∂∂
=

∂ ∂∑ .  

Inserting the probability equations for the logit kernel model (Equations (6) and (7)) leads to the score for 
the logit kernel model: 

1

ln ( | , )( ) 1
( | , ) ( , )

( | )

N
n

n M
n n

iL
i n I d

P i ζ

δ ζδ
δ ζ ζ ζ

δ δ δ=

∂ Λ∂
= Λ

∂ ∂∑ ∫ . (29) 

Note that we also use the relationship ( )ln( )X X Xθ θ∂ ∂ = ∂ ∂  in Equation (29) in order to make the 
derivative tractable: ln ( | , ) ln jn jn n

n

X F T
n n in in n

j C

i C X F T e β ζδ β ζ +

∈

Λ = + − ∑ , which is easy to differentiate. 
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Each factor ζ  introduces a dimension to the integral. Unless the dimension of ζ  is small ( 3)≤ , the 
Maximum Likelihood (ML) estimator just described cannot be computed in a reasonable amount of time. 
For models with ζ  of larger dimension, we use the Maximum Simulated Likelihood (MSL) methodology, 
described next. 

Maximum Simulated Likelihood 
The response probability for alternative i  is replaced with the unbiased, smooth, tractable simulator: 

1

1ˆ( | ) ( | , )d
n

d

P i iδ δ ζ
=

= Λ∑
D

D  ,   (30) 

where d
nζ  denotes draw d  from the distribution of nζ  (each draw consists of M  elements). Thus, the 

integral is replaced with an average of values of the function computed at discrete points. There has been 
a lot of research concerning how best to generate the set of discrete points (see Bhat, 2000, for a 
summary and references). The most straightforward approach is to use pseudo-random sequences. 
However, variance reduction techniques (for example, antithetic draws) and quasi-random approaches 
(for example, the Halton draws, which are used in the empirical results in this paper) have been found to 
cover the dimension space more evenly and thus are more efficient. 

Incorporating the simulated probability, the simulated log-likelihood is then: 

1

ˆ ˆ( ) ln ( | )
N

n
n

L P iδ δ
=

= ∑  , (31) 

and the simulated score is:   

1 1

ˆ ( ) 1 1 ln ( | , )
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n dn

L i
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P i
δ δ ζ

δ ζ
δ δδ= =

∂ ∂ Λ
= Λ

∂ ∂∑ ∑
D

D . (32) 

A well-known result previously obtained in Börsch-Supan and Hajivassiliou (1993), among others, indicates 
that the log-likelihood function, although consistent, is simulated with a downward bias for finite number of 
draws. The issue is that while the probability simulator (30) is unbiased, the log-simulated-likelihood (31) is 
biased due to the log transformation. This can be seen by Jensen’s inequality and the concavity of the log 
function. It can also be seen by taking a second degree Taylor's expansion of ˆln( ( ) )P i  around ( )P i , 
which gives:  

2
2

1ˆ ˆln( ( ) ) ln( ( )) ( ( ) ( ))
( )

1 ˆ( ( ) ( ))
2 ( )      .

P i P i P i P i
P i

P i P i  
P i

≈ + −

− −
 

Taking the expected value of this relationship implies that: 
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2

ˆvar( ( | ))ˆ( ) ( ) 0
2 ( | )

P i
L L

P i
δ

δ δ
δ

− ≈ − ≤  .  (33) 

This suggests that in order to minimize the bias in simulating the log-likelihood function, it is important to 
simulate the probabilities with good precision. The precision increases with the number of draws, as well 
as with the use of efficient methods to generate the draws. The number of draws necessary to sufficiently 
remove the bias cannot be determined a priori; it depends on the type of draws, the model specification, 
and the data.  

Applications 
In this section, we consider four applications: two based on synthetic data and two on real data. The first 
sample concerns a hypothetical choice situation among three alternatives; the focus is on the parameter 
identification issues of heteroscedastic models. The second sample, also using synthetic data, has 5 
alternatives and focuses on identification issues of categorical variables with random parameter. The third 
application uses a mode choice dataset that is used for logit kernel models that appear in two recent 
textbooks (Greene, 2000, and Louviere, Hensher, and Swait, 2000). We replicate the models presented in 
the texts, and use them to highlight practical issues that arise in estimating logit kernel models. The fourth 
application is based on a survey collected to predict residential telephone demand. We estimate several 
error structures for the telephone data, including heteroscedasticity, nesting, cross-nesting, and random 
parameter, and highlight many of the important identification and estimation issues of logit kernel models. 

Estimation Notes & Practical Issues 

Optimization Algorithm 
While the likelihood function for linear in the parameters logit models is strictly concave, this is not true for 
logit kernel models (note that it is also not true for the nested logit model). Furthermore, the simple Newton 
methods that are used for MNL estimation tend to lose their robustness when the optimization function is 
not concave. Therefore, modified Newton methods, which address non-concavity with techniques such as 
trust regions, should be used for logit kernel models. For details on these methods, see Dennis and 
Schnabel (1983). In the applications presented in this paper, we use the DUMIAH routine provided in 
Fortran’s IMSL Libraries. The maxlik routine provided in Gauss could also be used.8  

Direction Matrix 
To decrease estimation time, we analytically program the derivatives and approximate the matrix of 
second derivatives (the Hessian) with first order information. The most straightforward approximation of 
the Hessian is the BHHH technique (Berndt et al., 1974), which is computed as:   

                                                 
8
 Note that Kenneth Train of UC Berkeley provides Gauss-based estimation code for logit kernel (a.k.a. mixed logit) models from 

his website: http://emlab.berkeley.edu/users/train/index.html 
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1

( ) ( )N
n n

n

L Lδ δ
δ δ=

′∂ ∂  =   ∂ ∂  
∑R ,   (34) 

where the score is defined as in Equation (29) (evaluated per sample observation). For Maximum 
Simulated Likelihood, it is computed with the simulated scores (32). 

Under certain regularity conditions, BHHH can be shown to be a consistent estimator of the covariance 
matrix of parameters at the maximum likelihood estimate. There are also numerous other approximations 
that can be used, see Dennis and Schnabel (1983) for further discussion. 

Standard Errors at Convergence 
For a finite number of simulation draws, BHHH may substantially underestimate the covariance of the 
estimator due to simulation error (see McFadden and Train, 2000, for a discussion). BHHH (or some other 
approximation) is still preferred for the direction matrix due to the low cost of estimating the matrix as well 
as the robustness of estimation with regards to the direction matrix. However, it is advisable to use robust 
standard errors to generate the test statistics at convergence. A robust asymptotic covariance matrix 
estimator is 1 1− −H RH  (Newey and McFadden, 1994), where H  is the Hessian, calculated numerically or 
analytically, and R  is defined as in Equation (34). When simulation is used, the simulated Hessian and 
Score are used. We report robust t-statistics (calculated using a numerical Hessian) for all estimation 
results. 

Simulation Draws  
We primarily use Halton draws for the simulation; however, some of the specifications are also estimated 
using pseudo-random draws for comparison. (See Bhat, 2000, and Train, 1999, for more information on 
Halton draws.) We have found the Halton draws to be more efficient than pseudo-random draws. For 
each observation, we draw D  random vectors ( 1 ,...,n nζ ζ D , each ( 1)M × ) from the given multivariate 
distribution of the factors, and these draws are kept constant across iterations so that the simulator does 
not “chatter” as δ  changes  (see McFadden and Train, 2000, for more information). The probability is 
then simulated using Equation (30), the log-likelihood using Equation (31), and the derivatives using 
Equation (32).  

Simulation Bias and Identification 
Two issues critical to estimating logit kernel models are simulation bias and identification. 

As noted above, the number of draws, D , must be large enough to sufficiently reduce the bias shown in 
Equation (33). The problem is that there is no way to know a priori how large is large enough, because this 
depends on the particular model structure and data. Therefore it is always necessary, as we do in these 
applications, to verify that the estimated parameters remain stable as the number of draws is increased.  

The number of draws also plays an important role in testing for identification. Note that there are two 
forms of unidentification: structural, as indicated by the order and rank conditions, and informational, which 



33 

is when the data do not provide enough information to support the given structure (i.e., multicollinearity). It 
turns out that identification problems often do not appear (via a singular Hessian) when a small number of 
draws is used. For example, in the most extreme case, any specification (whether identified or not) will 
always appear identified when only 1 draw is used, because this is equivalent to adding explanatory 
variables to the systematic portion of the utility. This issue also emphasizes the importance of checking the 
rank condition prior to estimation, and of verifying robustness of estimates using different starting values.  

 
Figure a:  100 Halton Draws 

1st and 2nd Dimensions (Seeds=2 & 3)  
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Figure b:  100 Halton Draws 
7th and 8th Dimensions (Seeds=17 & 19) 
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Figure c:  100 Halton Draws 

20th and 21st Dimensions (Seeds=71 & 73) 
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Figure 1: 100 Halton Draws for Different Dimensions of the Integral 

Another issue with the number of draws is that as the dimension of the problem increases the number of 
draws necessary to estimate the model also increases. Conceptually, the issue is that it takes more draws 
to adequately cover the dimension space; this applies to all methods used to integrate non-closed form 
functions (for example, Gaussian quadrature or simulation via pseudo-random or quasi-random methods). 
It is interesting to note that with Halton draws, planes develop when small numbers of draws are used for 
high dimensional integrals. The generation of Halton draws is presented very clearly in Train (1999). 
Briefly, to implement Halton draws, a non-random series is developed for each dimension, each series is 
seeded with a prime number, and the seeds are implemented in order (2, 3, 5, 7, etc.). As an example of 
the problem with planes developing, take an extreme case: 100 draws are often sufficient to estimate a 
two dimensional model. As shown in Figure 1a, examination of a sample of Halton draws for a particular 
observation shows that the draws cover the 1st and 2nd dimensions of the sample space quite well. 
However, Figure 1b indicates that 100 draws for the 7th and 8th dimensions do not cover the space well, 
and Figure 1c shows that the 100 draws for the 20th and 21st dimensions are even worse.  
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To summarize, due to the issues of bias and identification, it is critical to empirically verify on a case-by-
case basis that a sufficient number of draws are being used to estimate the model. 

Synthetic Data I: Heteroscedasticity 
The first application concerns a hypothetical choice situation among three alternatives. The model 
specification is as follows.  

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

,
,
.

n n n n

n n n n

n n n n

U X
U X
U          X

α β σ ζ ν
α β σ ζ ν

β σ ζ ν

= + + +
= + + +
= + +

   

The true parameter values used to generate the synthetic data are: 

1 2 1 2 31.5, 0.5, 1, 3, 2, 1, 1.           and α α β σ σ σ µ= = = − = = = =  

The explanatory variable, X , is simulated as a normal variable with a standard deviation of 3, independent 
across alternatives and observations. The utilities for each observation are generated by drawing a single 
random draw for each jnζ  from independent standard normal distributions and each jnν  from 
independent standard Gumbel distributions. The utilities are calculated, and the alternative with the highest 
utility is then the chosen alternative. 

Estimation results using the synthetic data are provided in Table 1. Table 1a presents estimation results 
regarding selecting and setting the base heteroscedastic term. Recall that only 1J −  heteroscedastic terms 
are identified, and that it is necessary to either set the minimum variance term to zero, or set any of the 
other variance terms high enough according to the equation derived earlier (Equation (23)): 

( ) ( )
N
ff jj ii

ii

g
g

σ σ σ
σ

≥ −
+

& & & &     , 1,...,i J=  ,  

where jjσ&  is the theoretical (true) variance that is fixed to the value N
ffσ& . 

All of the models in Table 1a are estimated with 10,000 observations and 500 Halton draws. The first 
model shows estimation results for an unidentified model; this model is used to determine the minimum 
variance alternative, and it correctly identifies the third alternative as having minimum variance.9 Models 2 
through 4 show identified models in which the minimum variance alternative is constrained to different 
values (0, 1, and 2); as expected, the log-likelihoods of these models are basically equivalent and all of 
these represent correct specifications. Models 5 through 10 show identified models in which the maximum 
variance alternative is constrained to different values (0, 1, 1.5, 2.25, 3, and 4). Applying Equation (23) 
(repeated above), the model specification will be correct as long as 1σ  is constrained to a value above 

                                                 
9
 We were able to calculate t-statistics for the unidentified model here (and elsewhere) for two reasons. First, simulation has the 

tendency to mask identification issues, and therefore does not always result in a singular Hessian for a finite number of draws. 
Second, the slight difference between the Gumbel and Normal distributions makes the unidentified model only ‘nearly’ singular, 
and not perfectly singular. 
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2.2. The empirical results verify this. First, there is a severe loss of fit when the 1σ is constrained below 
2.2. Second, the parameter estimates for the mis-specified models are biased. This can be seen by 
examining the ratio of the systematic parameters (for example, 1/β α ) across models. While the scale 
shifts for various normalizations (and therefore the parameter estimates also shift), the ratio of systematic 
parameters should remain constant across normalizations. A cursory examination of the estimation results 
shows that these ratios begin to drift with successively invalid normalizations. Finally, note that these 
results indicate a slight loss of fit when the base alternative is constrained to a high value ( 3σ =2 and 

1σ =4), and this is due to the issue addressed earlier regarding the slight difference between the Gumbel 
and normal distributions. It must be emphasized that the normalization in heteroscedastic logit kernel 
models is not arbitrary. 

 

Table 1: Synthetic Data I - Heteroscedastic Models  
(3 Alternatives) 

Table a: Selecting and Setting the Base Heteroscedastic Term (10,000 Observations & 500 Halton Draws)

True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

α1 1.5     1.27 (3.4) 1.24 (15.7) 1.51 (15.9) 2.18 (15.9) 0.97 (29.1) 1.02 (27.9) 1.08 (23.4) 1.24 (5.8) 1.57 (17.2) 2.03 (17.4) 

α2 0.5     0.43 (2.6) 0.42 (8.9) 0.53 (9.2) 0.76 (9.2) 0.37 (11.1) 0.40 (11.5) 0.41 (10.4) 0.42 (2.2) 0.54 (6.8) 0.70 (7.0) 

β -1.0     -0.80 (3.8) -0.78 (14.6) -0.94 (14.1) -1.36 (13.7) -0.51 (55.5) -0.57 (65.0) -0.64 (39.1) -0.78 (16.0) -0.98 (37.1) -1.27 (37.1) 

σ1 3.0     2.32 (2.9) 2.24 (9.7) 2.84 (10.3) 4.30 (11.0) 0.00 --- 1.00 --- 1.50 --- 2.25 --- 3.00 --- 4.00 ---

σ2 2.0     1.27 (1.9) 1.21 (4.7) 1.69 (5.9) 2.80 (7.7) 0.06 (0.1) 0.03 (0.3) 0.50 (1.8) 1.22 (6.6) 1.82 (11.7) 2.58 (14.5) 

σ3 1.0     0.35 (0.2) 0.00 --- 1.00 --- 2.00 --- 0.00 (0.9) 0.00 (1.6) 0.01 -(0.5) 0.16 (0.0) 1.07 (4.4) 1.78 (7.6) 

(Simul.) Log-Likelihood: -6837  -6837  -6837  -6838  -6907  -6865  -6845  -6837  -6837  -6838  

Model:  1 2 3 4 5 6 7 8 9 10

Table b: Varying the Numbers and Types of Draws (10,000 Observations)

True True with

Parameter Value σ3=0 Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

α1 1.5     1.18 1.22 (16.5) 1.24 (15.4) 1.24 (15.5) 1.24 (14.5) 1.20 (16.5) 1.21 (16.2) 1.23 (15.6) 1.24 (15.7) 

α2 0.5     0.39 0.42 (9.1) 0.42 (8.8) 0.42 (8.8) 0.42 (8.9) 0.42 (9.3) 0.42 (9.1) 0.42 (8.9) 0.42 (8.8) 

β -1.0     -0.79 -0.77 (15.6) -0.78 (14.2) -0.78 (14.3) -0.78 (13.0) -0.75 (15.6) -0.76 (15.3) -0.78 (14.4) -0.78 (14.6) 

σ1 3.0     2.23 2.19 (10.2) 2.25 (9.5) 2.26 (9.5) 2.25 (8.7) 2.14 (10.2) 2.15 (10.0) 2.23 (9.5) 2.26 (9.7) 

σ2 2.0     1.37 1.14 (4.6) 1.22 (4.5) 1.23 (4.6) 1.23 (4.2) 1.06 (4.0) 1.10 (4.2) 1.19 (4.4) 1.22 (4.7) 

σ3 1.0     0.00 0.00 --- 0.00 --- 0.00 --- 0.00 --- 0.00 --- 0.00 --- 0.00 --- 0.00 ---

(Simul.) Log-Likelihood: -6837  -6837  -6837  -6836  -6835  -6839  -6838  -6836  

Table c: Varying the Number of Observations (500 Halton Draws)

True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

α1 1.5     2.27 (2.1) 1.64 (9.6) 1.51 (15.9) 1.45 (32.1) 1.54 (38.4) 

α2 0.5     0.91 (2.4) 0.68 (8.4) 0.53 (9.2) 0.53 (18.4) 0.52 (23.7) 

β -1.0     -1.69 (1.9) -0.99 (8.3) -0.94 (14.1) -0.95 (29.2) -1.02 (33.2) 

σ1 3.0     5.64 (1.7) 3.13 (6.5) 2.84 (10.3) 2.85 (21.3) 3.05 (24.8) 

σ2 2.0     3.58 (1.5) 1.62 (3.2) 1.69 (5.9) 1.72 (12.3) 2.08 (17.4) 

σ3 1.0     1.00 --- 1.00 --- 1.00 --- 1.00 --- 1.00 ---

(Simul.) Log-Likelihood: -655  -3369  -6837  -27499  -54944  

40000 Obs5000 Obs 10000 Obs 80000 Obs1000 Obs

10000 'Random'5000 'Random'2000 Halton

Identified: Minimum Variance BaseUnidentified

4000 Halton 500 'Random'

Identified: Maximum Variance Base

1000 'Random'

Pseudo-Random DrawsHalton Draws

200 Halton 1000 Halton
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The models shown in Table 1b were estimated to investigate the impact of the number and types of 
draws. All of these models are estimating using the normalization 3σ =0, and so we report the true 
parameters as calculated given this normalization (using Equations (15) to (17)). The model estimates 
verify that the 500 Halton draws used for the models in Table 1a are sufficient. The results also show that 
the Halton draws are more efficient then pseudo-random draws, as the parameter estimates stabilize for a 
lower number of Halton draws. Table 1c is provided to show that as the number of observations increases, 
the estimated parameters converge on their true values. Note that a potentially large number of 
observations is required to accurately reproduce the parameters of the population. However, the required 
number of observations is highly dependent on the model specification and data, and generalizations cannot 
be drawn. 

Synthetic Data II: Random parameters on Categorical Variables 
The second application, which also involves synthetic data, concerns the issue of identification of random 
parameters for categorical variables. Recall that if the variable has two categories (i.e., a 0/1 dummy) then 
one systematic parameter and one random parameter are identified, and the normalization of each is 
arbitrary. For variables with 3 (or more) categories, two systematic parameters are identified but all 3 
random parameters (one per category) are identified. Empirical results are shown in Table 2. Table 2a, b, 
and c all use slightly different datasets and model specifications. The general specification is as follows: 

[ ] [ ]1 1 1
1 2 3 1 2 3

2 2 2

3 3 3

0 0
0 0
0 0

n
in i in in in in in in in

n

n

U   X X X   X X X   
   

β σ ζ
α ν

β σ ζ
β σ ζ

     
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     
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 , 1,...,5 i  ;  n∀ = , 

where 5 0α =  (the base alternative-specific constant) and X  is a categorical variable, that is 
{0,1}kinX =  & 1 2 3 1in in inX X X+ + = , ; 1,. . . ,3; i  k   n∀ = . The data are generated using the same 

approach as described in the synthetic data above, i.e., a , ,X   and ζ ν  are sampled for each person, the 
utilities are calculated according to the model and parameters above, and the alternative with the highest 
utility is the chosen alternative. 10,000 observations are used for all of the models. 

The dataset for the models in 2a includes a categorical variable with 2 categories ( 3 0 ,inX   i n= ∀ ). While 
the covariance structure varies across individuals, identification is analogous to a nested structure with two 
nests, for example, 1, 1, 2, 2, 2 or 1, 2, 2, 2, 2 or 1, 2, 1, 2, 1, etc. depending on the values of X  for 
observation n .10 Therefore, 1 systematic parameter ( )β  and 1 random parameter ( )σ  can be estimated. 
Furthermore, the normalization of the random parameter is arbitrary. These statements are supported by 
the estimation results. The first two models show that the model with  

                                                 
10

 This concept of a categorical variable being analogous to a 2-nest nesting structure is denoted as “~1, 1, 2, 2, 2” in Table 2. 
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 Table 2: Synthetic Data II – Categorical Variables with Random Parameters  
(5 Alternatives; 10,000 Observations) 

Table a: Categorical variables with 2 categories, each enters all 5 utilities (~1, 1, 2, 2, 2)

True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

α1 0.5  0.48 (11.2) 0.48 (11.2) 0.48 (11.2) 0.48 (11.2) 0.48 (11.2) 

α2 0.5  0.44 (10.2) 0.44 (10.2) 0.44 (10.2) 0.44 (10.2) 0.44 (10.2) 

α3 1.0  0.92 (22.7) 0.92 (22.7) 0.92 (22.7) 0.92 (22.7) 0.92 (22.7) 

α4 1.0  0.98 (24.2) 0.98 (24.2) 0.98 (24.2) 0.98 (24.2) 0.98 (24.2) 

β1 0.5  0.50 (7.9) 0.50 (7.9) 0.50 (7.9) 0.50 (7.9) 0.50 (7.9) 

σ1 2.0  0.84 (2.3) 3.91 (13.9) 3.94 (14.4) 3.94 (14.4) 

σ2 4.0  3.85 (13.6) 0.47 (0.7) 3.94 (14.4) 

 (σ1 2
+σ2 2

)
1/2

4.5  3.94  3.94  3.94  3.94  3.94  

(Simul.) Log-Likelihood: -15310 -15310 -15310 -15310 -15310

Model:  1 2 3 4 5

Table b: Categorical variables with 2 categories, each enters 4 of 5 utilities (~1, 1, 2, 2, 0)

True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat

α1 0.5  0.10 (1.5) 0.41 (9.6) 0.47 (5.1) 0.47 (5.1) 

α2 0.5  0.04 (0.6) 0.35 (8.2) 0.41 (4.4) 0.41 (4.5) 

α3 1.0  0.52 (7.8) 0.80 (19.5) 0.90 (9.7) 0.90 (9.8) 

α4 1.0  0.57 (8.7) 0.86 (21.0) 0.95 (10.3) 0.96 (10.4) 

β1 0.5  0.53 (8.7) 0.11 (2.8) 0.50 (7.3) 0.50 (7.3) 

σ1 2.0  2.29 (16.0) 1.73 (8.4) 1.73 (8.5) 

σ2 4.0  3.45 (15.1) 3.55 (13.2) 3.55 (13.2) 

(Simul.) Log-Likelihood: -15398 -15537 -15378 -15378

Table c: Categorical variables with 3 categories, each enters all utilities (~1, 1, 2, 2, 3)

True

Parameter Value Est t-stat Est t-stat Est t-stat

α1 0.5  0.36 (7.7) 0.36 (7.7) 0.36 (7.7) 

α2 0.5  0.40 (8.5) 0.40 (8.5) 0.40 (8.5) 

α3 1.0  0.93 (20.5) 0.93 (20.6) 0.93 (20.6) 

α4 1.0  0.92 (20.2) 0.92 (20.3) 0.92 (20.3) 

β1 1.0  1.06 (6.4) 1.06 (6.4) 1.06 (6.7) 

β2 0.5  1.06 (7.0) 0.69 (4.4) 0.70 (4.4) 

σ1 2.0  3.47 (12.2) 2.75 (7.5) 2.77 (8.1) 

σ2 3.0  2.52 (6.8) 2.49 (6.7) 

σ3 4.0  4.74 (11.1) 4.37 (10.7) 4.38 (10.9) 

(Simul.) Log-Likelihood: -15376 -15368 -15368

1000 Halton

500 Halton500 Halton

Identified

1000 Halton

IdentifiedMisspecified

500 Halton 500 Halton500 Halton

IdentifiedMisspecified 1

1000 Halton

Misspecified 2

500 Halton500 Halton 500 Halton 500 Halton

Identified

Unidentified Unidentified
Identified: 
Base 1

Identified: 
Base 2

Identified: 
Base 2

 



38 

both random parameters is unidentified, as the fit is identical for very different estimates of the random 
parameters. The third and fourth models show that the normalization is arbitrary: the parameter and fit are 
the same for either normalization. The fifth model verifies that enough draws are being used for 
estimation. 

The dataset used for the models in Table 2b is similar to that used in Table 2a, with the exception that the 
categorical variable only applies to the first four alternatives ( 5 0 ,k nX   k n= ∀ ). In this case, identification 
is related to a nested structure with three nests (for example, 1, 1, 2, 2, 0); therefore, 1 systematic 
parameter is estimable and both of the random parameters are estimable. This is shown in the estimation 
results, where the models with either of the systematic terms fixed to 0 results in a significant loss of fit.  

In  Table 2c, the categorical variable contains three categories. Identification here is also related to a 
nested model with 3 nests (for example, 1, 1, 2, 2, 3), and therefore 2 systematic  parameters are identified 
and all 3 random parameters are identified. This is supported by the estimation results, in which 
constraining one of the random terms to zero results in a significant loss of fit. 

Empirical Application I: Mode Choice 
The logit kernel formulation is now making its way into econometric textbooks. In this section, we 
investigate the identification issues of logit kernel models that appear in Greene (2000, Table 19.15) and 
Louviere, Hensher and Swait (2000, Table B6.5). Both texts make use of the same data and present 
similar model specifications. 

The Data 
This is a revealed choice dataset containing mode choices for travel between Sydney and Melbourne, 
Australia. The choices available are air, train, bus, and car.11 There are 210 observations in the sample, 
and the explanatory variables are12: 

GCost: Generalized cost ($00)  
 = in vehicle cost + in vehicle time*value of travel time savings. 

TTime: Terminal waiting time for plane, train and bus (hours). Auto terminal time is zero. 

Income: Household income ($00,000), which is interacted with the ‘air’ alternative specific dummy 
variable. 

                                                 
11

 The dataset is actually a choice-based sample, and therefore the weighted exogenous sample maximum likelihood estimator 
(WESML, see Ben-Akiva and Lerman, 1985) should be used for the logit-based models (and the probit-equivalent for the probit 
models, see Imbens, 1992) to obtain consistent estimates. However, we did not use WESML in order to replicate the models as 
reported in the textbooks. 
12

 Note: (i) The Louviere, Swait, and Hensher model also included a ‘party size’ explanatory variable. We based our models on the 
more parsimonious specification used in Greene. (ii) We scaled the data differently than that used for the models reported in the 
textbooks. 
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Models 
In this section, we use the models presented in Greene and Louviere et al. to highlight various practical 
issues in model estimation. Greene estimated a series of models including probit as well as several logit 
kernel specifications (an unrestricted covariance structure, a heteroscedastic model, and a more general 
random parameter model). Louviere et al. present an even more general random parameter model. 

Table 3: Mode Choice Model – Probit 

Specification:  

Draws:  

Parameter
Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Air (1) 0.270  n/a  0.968  n/a  0.456  (1.2) 0.377  (0.6) 

   Train (2) 0.579  n/a  2.10  n/a  0.959  (4.8) 0.917  (3.5) 

   Bus (3) 0.486  n/a  1.76  n/a  0.805  (4.4) 0.768  (3.1) 

GCost ($00) -0.468  n/a  -1.70  n/a  -0.772  (4.0) -0.747  (4.6) 

TTime (hours) -0.662  n/a  -2.39  n/a  -1.10  (3.8) -1.03  (2.3) 

Income ($00,000) - Air (1) 0.700  n/a  2.54  n/a  1.15  (2.0) 1.16  (2.5) 

T11 0.608  n/a  2.20  n/a  1.00  ----  1.00  ----  

T21 0.131  n/a  0.476  n/a  0.216  (0.9) 0.224  (2.3) 

T31 0.0736  n/a  0.267  n/a  0.121  (0.5) 0.132  (1.5) 

T22 0.246  n/a  0.888  n/a  0.407  (3.0) 0.381  (2.9) 

T32 0.113  n/a  0.408  n/a  0.186  (1.5) 0.175  (2.9) 

T33 0.130  n/a  0.471  n/a  0.216  (2.7) 0.202  (2.4) 

Log Likelihood (simul.): -197.727  -197.727  -197.727  -197.784  

1000 'Random' 1000 'Random'

Unidentified

1000 'Random' 5000 'Random'

Identified

 

Unrestricted Probit 

The first model we present is a probit model in which the covariance matrix of utility differences ( ∆Ω ) is 
unrestricted. In this case, the parameters of the Cholesky decomposition of ∆Ω  are estimated, or: 
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31 32 33
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T T T
T T T

 
 =  
  

,  where TT ∆′ = Ω . 

Note that even with probit, one has to be careful about identification. The Order Condition states that only 
five of the six parameters can be estimated. (Greene indirectly estimates all six, and therefore reports 
results for an unidentified model.) The need for this restriction can be verified empirically, and we present 
the results in Table 3. These were obtained using the GHK simulator with pseudo-random draws. First we 
report two sets of estimation results for the unidentified model. The two models have identical fits and yet 
different parameter estimates (note that the difference is a scale shift). The models also have a singular 
Hessian and therefore t-stats could not be generated. We also report estimation results for the identified 
model (setting 111 =T ). The model is now identified: the fit is identical to the unidentified models and the 
Hessian is not singular. The 5,000 draw result is provided to verify stability. 
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Unrestricted Logit Kernel 

Greene also presents a logit kernel version of the probit model presented Table 3 (which he calls a 
‘constants random parameters logit model’). For the logit kernel version, the disturbance parameters 
include the six ijT  parameters as well as the logit scale parameter µ . The identification of this model 
presents some interesting issues. First, an application of the order condition suggests that the µ  as well as 
one of the ijT ’s must be normalized for identification. However, as we will show empirically, this is not 
exactly the case. The reason is due to the slight difference between the Normal and Gumbel distribution. 
Since there is not an exact trade-off between the probit-like term and the Gumbel, there is an optimal 
weighting between the two distributions that make up the disturbance, and this allows an extra term to be 
estimated. Nonetheless, the model is nearly singular without a constraint on a ijT , and so it is advisable to 
impose a normalization.  

The second issue relates to the manner in which ijT  is normalized. The covariance matrix of utility 
differences for this model is: 
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We want to impose a normalization such that the model can reduce to a pure MNL. Therefore we want to 
normalize some 0=ijT . Note that we cannot set 011 =T , because this will restrict two of the covariance 
terms in the probit portion to be zero. We have also found empirical evidence that it is not always valid to 
set 022 =T  due to the positive definiteness condition. However, it appears that the normalization 033 =T  
(or, more generally normalizing the lowest diagonal element of the cholesky matrix) is a valid 
normalization, and this is what we apply for this model. (See the Appendix for more information.) 

The empirical results for the unrestricted logit kernel model are provided in Table 4. The first two columns 
provide estimation results for the case in which all six ijT ’s are estimated. The model is identified as 
suggested by a non-singular Hessian and stable parameter estimates as the number of draws is increased. 
The middle columns provide estimation results for models in which 33T  is normalized to various values. 
There is marginal loss of fit due to the normalizations, but the likelihood function is fairly flat across the 
normalizations. The final column is provided to verify the stability of the normalized model with a high 
number of draws.  

Heteroscedastic Logit Kernel 

Greene also reports a heteroscedastic logit kernel model (which he calls an ‘uncorrelated random 
parameters logit model’). As with the unrestricted logit kernel model discussed above, the rank and order 
conditions suggest a normalization is necessary when this is not exactly the case. Nonetheless, a 
normalization is advisable since the model is otherwise nearly singular. Furthermore, as we emphasized 
earlier, if a normalization is imposed, the selection of the base alternative to normalize is not arbitrary.  
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Table 4: Mode Choice Model – Unrestricted Logit Kernel 

Specification:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Air (1) 5.21  (5.3) 4.42  (1.4) 4.41  (1.5) 4.42  (1.4) 4.76  (0.8) 8.28  (0.3) 25.3  (0.9) 4.41  (1.4) 

   Train (2) 3.87  (7.5) 6.09  (1.2) 6.02  (1.5) 6.09  (1.4) 8.28  (2.5) 19.0  (2.6) 41.4  (5.5) 6.09  (1.1) 

   Bus (3) 3.16  (5.8) 5.00  (1.1) 4.93  (1.4) 5.00  (1.4) 6.92  (2.5) 15.9  (3.0) 35.1  (5.8) 5.00  (1.0) 

GCost ($00) -1.55  (3.1) -4.04  (0.7) -3.97  (0.8) -4.04  (0.8) -6.22  (1.3) -15.4  (1.5) -33.1  (1.7) -4.04  (0.6) 

TTime (hours) -5.77  (6.4) -7.50  (1.8) -7.43  (2.3) -7.50  (2.2) -9.73  (3.5) -21.5  (4.6) -48.9  (5.6) -7.50  (1.7) 

Income ($00,000) - Air (1) 1.33  (1.4) 5.55  (0.5) 5.44  (0.6) 5.55  (0.6) 8.91  (0.8) 23.5  (0.5) 40.5  (0.7) 5.55  (0.5) 

T11 4.85  (0.6) 4.76  (0.7) 4.85  (0.7) 7.78  (1.0) 20.3  (0.8) 40.8  (1.5) 4.86  (0.5) 

T21 0.934  (0.4) 0.904  (0.5) 0.933  (0.5) 1.59  (0.9) 4.35  (0.6) 7.83  (1.1) 0.928  (0.4) 

T31 0.554  (0.4) 0.538  (0.5) 0.554  (0.5) 0.913  (0.7) 2.50  (0.6) 4.30  (0.5) 0.551  (0.4) 

T22 1.25  (0.3) 1.18  (0.3) 1.25  (0.3) 2.81  (1.2) 7.79  (3.5) 17.9  (3.1) 1.25  (0.2) 

T32 0.711  (0.3) 0.681  (0.4) 0.711  (0.4) 1.30  (1.4) 3.44  (1.4) 7.55  (2.2) 0.709  (0.3) 

T33 5.12E-03 (0.1) -7.88E-05 (0.0) 0.000  ---- 1.00  ---- 4.00  ---- 10.0  ---- 0.00  ----

Log Likelihood (simul.): -199.128  -195.466  -195.491  -195.466  -196.500  -197.713  -197.647  -195.481  

Identified

2000 Halton 40,000 Halton 2000 Halton 2000 Halton 2000 Halton 2000 Halton 4000 Halton

'Unidentified' (Nearly Singular) Identified with Various NormalizationsMultinomial Logit

 
 

Table 5: Mode Choice Model – Heteroscedastic Logit Kernel 

Specification:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Air (1) 5.21  (5.3) 4.65  (3.1) 5.21  (6.4) 4.65  (3.1) 4.62  (3.6) 4.69  (3.7) 

   Train (2) 3.87  (7.5) 5.19  (4.6) 3.87  (7.9) 5.19  (4.8) 5.07  (6.8) 5.08  (7.2) 

   Bus (3) 3.16  (5.8) 4.20  (3.9) 3.16  (6.4) 4.21  (4.0) 4.11  (5.4) 4.12  (5.8) 

GCost ($00) -1.55  (3.1) -3.27  (3.2) -1.55  (3.7) -3.27  (3.3) -3.17  (4.3) -3.15  (4.6) 

TTime (hours) -5.77  (6.4) -6.90  (5.4) -5.77  (10.8) -6.90  (5.7) -6.78  (7.0) -6.78  (7.8) 

Income ($00,000) - Air (1) 1.33  (1.4) 3.68  (1.4) 1.33  (1.1) 3.68  (1.4) 3.53  (1.4) 3.45  (1.5) 

σ1 3.38  (3.1) 0.00  --- 3.38  (3.2) 3.27  (3.4) 3.18  (3.6) 

σ2 0.143  (0.0) 0.0414  (0.0) 0.143  (0.0) 0.128  (0.0) 0.029  (0.0) 

σ3 0.00206  (0.0) 0.0181  (0.0) 0.00  --- 0.00266  (0.0) 0.00584  (0.0) 

σ4 0.432  (0.2) 0.0558  (0.0) 0.434  (0.2) 0.00  --- 0.00  ---

Log Likelihood (simul.): -199.128  -196.751  -199.118  -196.751  -196.768  -196.255  

1000 Halton

Heteroscedastic Models

Multinomial 
Logit

Identified:        
Base 1

Identified:           
Base 3

Identified:           
Base 4

Identified:          
Base 4

'Unidentified'

1000 Halton 1000 Halton 1000 Halton 5000 Halton

 
 

The empirical results for the Mode Choice dataset are provided in Table 5. We estimate the ‘unidentified’ 
model to determine the parameters that are candidates for normalization. The results suggest that train, 
bus, or car can be used as the base (Greene normalizes the car alternative). We then report several 
identified models with different base alternatives normalized, and show that the model in which the air 
heteroscedastic term is the base is a mis-specified model (as indicated by the loss of fit). 
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Random Parameter Logit Kernel 

Greene also reports a model that expands the unrestricted logit kernel model presented in Table 4 by 
including normally distributed random parameters for the cost, time, and income variables. 13 The primary 
issue here is that there are only 210 observations in the sample, and it is not a rich enough dataset to 
support the estimation of a large number of disturbance parameters. This is demonstrated with the 
empirical results reported in Table 6, in which we present a series of random parameter models starting 
with more parsimonious specifications. 

The first model is the multinomial logit model, provided for comparison. Model 1-2 (estimated with 2000 
and 4000 Halton draws) includes independent random parameters on the cost, time, and income variables. 
This model appears identified, and results in a large improvement in fit over the multinomial logit model.14 
The t-stats are low here due to the correlation among the parameter estimates. Model 4 shows that 
allowing for a single random parameter on the time variable achieves much of the total improvement in fit. 
Model 5-6 (estimated with 2000 and 4000 Halton draws) allows for a full set of correlations among the 
random parameters, and this results in a marginal improvement in fit over the independent model. (Note 
that the Cholesky parameters and not the variances and covariances are reported). Model 7 is estimated 
with a more parsimonious correlated structure. So far, these models all appear to be identified and provide 
significant (and similar) explanation of the disturbances. This is not the case for the remaining models. 
Model 8-9 includes the three independent random parameters along with heteroscedasticity, and the model 
appears unidentified. Model 10 is the model reported in Greene (although we normalized 33T ). It includes 
an unrestricted covariance structure as well as the three independent random parameters, and the model 
appears unidentified. Louviere, Hensher and Swait report estimation results for a model similar to Greene 
(i.e., an unrestricted covariance structure with additional random parameters), and their model, too, 
appears unidentified.  

The important points of these random parameter results are that, first, there are often several 
specifications that result in a similar improvement in fit. Second, that it is important not to overdue the 
specification, because it is easy to end up with an unidentified model. 

                                                 
13

 Note that since the time and cost parameters have a sign constraint, they should be specified with log-normally distributed 
parameters.  
14

 Note that we achieved a much larger improvement in fit than any of the models reported in Greene and Louviere et al., even 
with this more parsimonious specification. 
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Table 6: Mode Choice Model – Random Parameters  

  

Specification:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Air (1) 5.21  (5.3) 12.0  (3.6) 11.8  (2.9) 9.49  (5.7) 17.8  (2.5) 17.6  (2.6) 10.8  (3.8) 

   Train (2) 3.87  (7.5) 12.9  (3.1) 12.7  (2.5) 9.65  (5.5) 18.4  (2.4) 18.3  (2.5) 10.7  (3.6) 

   Bus (3) 3.16  (5.8) 11.6  (3.2) 11.5  (2.6) 8.69  (5.5) 16.7  (2.4) 16.5  (2.5) 9.7  (3.7) 

GCost ($00) -1.55  (3.1) -4.21  (2.0) -4.14  (1.6) -2.57  (3.3) -6.71  (1.6) -6.53  (1.8) -4.02  (1.9) 

TTime (hours) -5.77  (6.4) -16.7  (3.3) -16.5  (2.7) -12.5  (5.8) -24.1  (2.4) -24.1  (2.5) -13.4  (3.9) 

Income ($00,000) - Air (1) 1.33  (1.4) 9.61  (1.9) 9.48  (1.7) 5.93  (2.5) 14.4  (1.6) 14.3  (1.7) 5.5  (2.0) 

             T11 ( σ1)

             T21

             T31

             T22 ( σ2)

             T32

             T33 ( σ3)

          GCost 0.493  (0.4) 0.332  (0.1) 4.99  (0.9) 4.86  (1.1) 3.00  (1.3) 

          TTime 10.7  (2.5) 10.6  (2.1) 7.9  (3.7) 13.6  (2.0) 14.1  (2.0) 3.86  (0.4) 

          Income - Air 8.34  (1.3) 8.18  (1.1) 6.94  (1.0) 5.56  (1.3) 

          GCost - TTime 9.21  (1.5) 8.13  (1.8) 7.70  (2.0) 

          GCost - (Income-Air) 6.57  (0.6) 9.03  (0.9) 

          TTime - (Income-Air) -13.6  (1.3) -14.6  (1.5) 

Log Likelihood (simul.): -199.128  -177.523  -177.640  -178.680  -174.419  -174.420  -176.816  

Model:     1 2 3 4 5 6 7

2000 Halton 4000 Halton

Correlated Random Parameters

2000 Halton 4000 Halton

Multinomial Logit

4000 Halton4000 Halton

Independent Random Parameters

 

  

Specification:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Air (1) 25.7  n/a  28.2  n/a  44.1  n/a  

   Train (2) 31.3  n/a  34.2  n/a  56.0  n/a  

   Bus (3) 27.8  n/a  30.4  n/a  48.4  n/a  

GCost ($00) -13.4  n/a  -14.6  n/a  -23.0  n/a  

TTime (hours) -39.5  n/a  -43.3  n/a  -69.9  n/a  

Income ($00,000) - Air (1) 25.5  n/a  28.7  n/a  48.6  n/a  

             T11 (σ1) 12.4  n/a  11.7  n/a  24.3  n/a  

             T21 2.69  n/a  

             T31 -0.389  n/a  

             T22 (σ2) 2.16  n/a  2.07  n/a  4.90  n/a  

             T32 2.68  n/a  

             T33 (σ3) 0.57  n/a  1.60  n/a  0.00  ----  

          GCost 0.10  n/a  2.16  n/a  -2.67  n/a  

          TTime 25.5  n/a  28.1  n/a  45.8  n/a  

          Income - Air 6.69  n/a  18.69  n/a  13.1  n/a  

          GCost - TTime

          GCost - (Income-Air)

          TTime - (Income-Air)

Log Likelihood (simul.): -176.072  -176.036  -175.393  

Model:     8 9 10

2000 Halton 4000 Halton

Random Parameters & 
Heteroscedasticity

Random Param. 
& Unconstrained

2000 Halton
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Empirical Application II: Telephone Service 
In this section, we apply these methods to residential telephone demand analysis. The model involves a 
choice among five residential telephone service options for local calling. A household survey was 
conducted in 1984 for a telephone company and was used to develop a comprehensive model system to 
predict residential telephone demand (Train, McFadden and Ben-Akiva, 1987). Below we use part of the 
data to estimate a model that explicitly accounts for inter-dependencies between residential telephone 
service options. We first describe the data. Then we present estimation results using a variety of error 
structures.  

The Data 
Local telephone service typically involves the choice between flat (i.e., a fixed monthly charge for 
unlimited calls within a specified geographical area) and measured (i.e., a reduced fixed monthly charge 
for a limited number of calls plus usage charges for additional calls) services. In the current application, 
five services are involved, two measured and three flat. They can be described as follows:  

• Budget measured - no fixed monthly charge; usage charges apply to each call made.  

• Standard measured - a fixed monthly charge covers up to a specified dolla r amount (greater that the 
fixed charge) of local calling, after which usage charges apply to each call made.  

• Local flat - a greater monthly charge that may depend upon residential location; unlimited free calling 
within local calling area; usage charges apply to calls made outside local calling area.  

• Extended area flat - a further increase in the fixed monthly charge to permit unlimited free calling 
within an extended area.  

• Metro area flat - the greatest fixed monthly charge that permits unlimited free calling within the 
entire metropolitan area. 

The sample concerns 434 households. The availability of the service options of a given household depends 
on its geographical location. Details are provided in Table 7. In Table 8, we summarize the service option 
availabilities over the usable sample. 

Table 7: Telephone Data - Availability of Service Options  

Metropolitan Areas
Perimeter Exchanges 

Adjacent to Metro Areas
All Other

Budget Measured Yes Yes Yes

Standard Measured Yes Yes Yes

Local Flat Yes Yes Yes

Extended Flat No Yes No

Metro Flat Yes Yes No

Service Options
Geographic Location
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 Table 8: Telephone Data - Summary Statistics on Availability of Service Options  

Service Options Chosen Percent Total Available

Budget Measured 73                 0.168 434                 

Standard Measured 123                 0.283 434                 

Local Flat 178                 0.410 434                 

Extended Flat 3                 0.007 13                 

Metro Flat 57                 0.131 280                 

Total : 434                 1.000 1595                  

Models 
The model that we use in the present analysis is intentionally specified to be simple. The explanatory 
variables used to explain the choice between the five service options are four alternative-specific 
constants, which correspond to the first four service options, and a generic cost variable (the natural log of 
the monthly cost of each service options expressed in dollars). We investigated three types of error 
structures: heteroscedasticity, nested and cross-nested structures, and taste heterogeneity (random 
parameters).  

Heteroscedastic 

The results for the heteroscedastic case are provided in Table 9 and Table 10. Table 9 displays results 
from the unidentified model. To explore the issue of normalization of the minimum variance alternative, we 
estimated the unidentified model for various numbers of Halton draws and pseudo-random draws. The 
results suggest that there is no strong base alternative, and it could be either alternative 1, 2, 4, or 5. Table 
10 provides estimation results for identified heteroscedastic models. Again, to explore the issue of the 
minimum variance alternatives, 5 identified models were estimated, each one with a different base 
heteroscedastic term. (Note that this defeats the purpose of estimating the unidentified model, but was 
done for illustration purposes only.) As indicated by the unidentified models, the identified model estimation 
results support the conclusion that any of alternatives 1, 2, 4, or 5 could be set as the base. However, 
constraining 3σ  to zero results in a significant loss of fit, whereas constraining it to 4.0 brings it in line with 
the correctly specified model. Comparing the correctly specified heteroscedastic models with the MNL 
model, there is an obvious gain in likelihood from incorporating heteroscedasticity, primarily due to 
capturing the high variance of alternative 3. 
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Table 9: Telephone Model - Heteroscedastic Unidentified Models to Determine Base 

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.30  (6.9) -163.39  n/a  -3.28  (7.5) -3.28  (7.7) -3.27  (7.6) -3.32  (7.2) -3.29  (7.7) 

   Standard Measured (2) -2.55  (5.5) -126.84  n/a  -2.53  (6.3) -2.53  (6.4) -2.52  (6.8) -2.55  (6.4) -2.53  (6.5) 

   Local Flat (3) -1.38  (3.5) -78.09  n/a  -1.37  (3.6) -1.37  (3.6) -1.36  (3.6) -1.38  (3.7) -1.37  (3.6) 

   Extended Flat (4) -1.07  (1.3) -44.31  n/a  -1.04  (1.3) -1.04  (1.3) -1.04  (1.5) -1.06  (1.5) -1.04  (1.4) 

Log Cost -2.70  (7.2) -145.18  n/a  -2.68  (7.9) -2.68  (8.2) -2.67  (8.4) -2.70  (8.1) -2.69  (7.6) 

σ1 0.10  (0.3) 60.29  n/a  0.06  (0.3) 0.03  (0.2) 0.00  (0.1) 0.31  (0.5) 0.13  (0.4) 

σ2 0.30  (0.3) 61.19  n/a  0.21  (0.3) 0.14  (0.4) 0.06  (0.3) 0.20  (0.2) 0.08  (0.2) 

σ3 2.91  (3.2) 196.53  n/a  2.88  (3.3) 2.88  (3.4) 2.87  (3.6) 2.91  (4.3) 2.91  (3.1) 

σ4 0.39  (0.3) 16.18  n/a  0.01  (0.0) 0.04  (0.1) 0.01  (0.0) 0.11  (0.2) 0.07  (0.3) 

σ5 0.22  (0.2) 81.36  n/a  0.01  (0.1) 0.09  (0.3) 0.01  (0.0) 0.05  (0.1) 0.26  (0.2) 

(Simul.) Log-Likelihood: -471.09  -468.27  -471.16  -471.20  -471.19  -470.89  -471.38  

5000 'Random' 10000 'Random'100 Halton 200 Halton 400 Halton 1000 Halton 2000 Halton

 
 

Table 10: Telephone Model - Identified Heteroscedastic Models  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -2.46  (8.4) -3.27  (7.9) -3.27  (7.1) -5.03  (2.4) -3.28  (6.0) -3.27  (7.8) -3.91  (2.2) -3.28  (7.6) -3.28  (6.5) 

   Standard Measured (2) -1.74  (6.6) -2.53  (6.6) -2.52  (6.2) -3.85  (2.2) -2.53  (6.1) -2.52  (6.5) -3.02  (2.4) -2.53  (6.5) -2.53  (5.0) 

   Local Flat (3) -0.54  (2.7) -1.37  (3.8) -1.36  (3.2) -1.09  (2.1) -1.37  (3.6) -1.36  (3.7) -1.67  (3.3) -1.37  (3.8) -1.37  (3.4) 

   Extended Flat (4) -0.74  (1.1) -1.04  (1.3) -1.04  (1.3) -1.37  (1.5) -1.04  (1.4) -1.04  (1.4) -1.10  (1.2) -1.05  (1.3) -1.04  (1.4) 

Log Cost -2.03  (9.6) -2.68  (8.2) -2.67  (4.9) -3.24  (3.1) -2.68  (6.2) -2.67  (8.2) -3.33  (2.9) -2.68  (8.1) -2.69  (7.6) 

σ1 0.02  (0.1) 2.77  (1.8) 0.03  (0.0) 0.03  (0.3) 0.76  (0.4) 

σ2 0.13  (0.3) 3.27  (1.6) 0.14  (0.1) 0.14  (0.3) 0.70  (0.3) 0.11  (0.2) 0.10  (0.2) 

σ3 2.88  (4.9) 2.88  (2.4) 2.88  (3.3) 2.87  (3.8) 4.00  ----   2.89  (4.7) 2.91  (2.9) 

σ4 0.04  (0.1) 0.04  (0.1) 1.14  (0.5) 0.04  (0.1) 0.11  (0.1) 0.12  (0.2) 0.07  (0.1) 

σ5 0.09  (0.3) 0.09  (0.2) 0.01  (0.0) 0.10  (0.0) 1.33  (1.3) 0.03  (0.1) 0.26  (0.2) 

(Simul.) Log-Likelihood: -477.56  -471.20  -471.20  -476.66  -471.20  -471.20  -471.42  -470.92  -471.39  

10000 'Random'1000 Halton1000 Halton 1000 Halton 1000 Halton 1000 Halton1000 Halton

MNL Identified Heteroscedastic Model

5000 'Random'

 
 
 

Nested & Cross-Nested Structures 

In Table 11, the estimation results of various nested and cross-nested specifications are provided. Table 
11a reports results for identified model structures (as can be verified by the rank condition). The best 
specification is model 3, in which the first two alternatives are nested, the last two alternatives are nested, 
and the third term has a heteroscedastic term. This provides a significant improvement in fit over the MNL 
specification shown in the first column, and also provides a better fit than the heteroscedastic models in 
Table 10. The poor fit for many of the nesting and cross-nesting specifications is due to the fact that the 
variance for alternative 3 is constrained to be in line with the other variances. The heteroscedastic models 
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indicated that it has a much higher variance, and when this was added to the nested and cross-nested 
models (see Table 11b) the fit improved dramatically.15  

Table 11c provides results for the unidentified model in which the first two alternatives are nested and the 
last 3 alternatives are nested, and we attempt (incorrectly) to estimate both error parameters. The first 
model, estimated with 1,000 Halton draws, appears to be identified. However, the second model, estimated 
using different starting values, shows that this is not the case; it has an identical fit, but very different 
estimates of the error parameters. This is as expected, because only the sum of the variances 2 2

1 2( )σ σ+  
can be identified. The remaining columns show that it can take a very large number of draws to get the 
telltale sign of an unidentified model, the singular Hessian – in this case, 80,000 Halton draws. (Again, the 
actual number depends on the specification and the data.) Table 11d shows that the normalization for the 2 
nest model is arbitrary. The table presents three normalizations resulting in identical fits where: 

{ 1, 1, 0, 0, 0 } = { 0, 0, 2, 2, 2 } = { 1, 1, 2, 2, 2 with 1 2σ σ=  }. 

Table 11: Telephone Model - Nested & Cross-Nested Error Structures 

Specification*:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.63  (5.0) -3.63  (5.0) -3.79  (5.4) -3.80  (5.3) -3.80  (5.7) -3.80  (5.7) -2.83  (2.4) -2.72  (3.1) 

   Standard Measured (2) -2.85  (4.3) -2.85  (4.3) -3.00  (4.6) -3.01  (4.6) -3.01  (4.9) -3.00  (4.9) -1.90  (3.1) -1.85  (3.9) 

   Local Flat (3) -1.48  (3.1) -1.48  (3.1) -1.63  (3.1) -1.64  (3.1) -1.09  (3.6) -1.09  (3.5) -0.55  (2.3) -0.54  (2.4) 

   Extended Flat (4) -1.52  (1.5) -1.52  (1.5) -1.18  (1.3) -1.18  (1.3) -1.19  (1.4) -1.19  (1.4) -0.76  (1.0) -0.75  (1.0) 

Log Cost -3.05  (4.5) -3.05  (4.5) -3.19  (5.0) -3.20  (5.0) -3.25  (6.1) -3.25  (6.1) -2.40  (2.1) -2.29  (2.6) 

σ1 1.32  (1.1) 1.32  (1.1) 1.55  (1.5) 1.55  (1.6) 2.16  (3.0) 0.01  (0.8) 0.65  (0.6) 0.53  (0.6) 

σ2 3.02  (2.9) 3.02  (2.9) 3.34  (2.9) 3.37  (2.8) 3.04  (3.0) 

σ3 0.00  (0.0) 0.01  (0.1) 0.01  (0.2) 

(Simul.) Log-Likelihood: -471.26  -471.26  -470.70  -470.64  -473.04  -473.05  -477.48  -477.51  

1, 1, 2, 3, 3

Table a: Identified Nesting & Cross-Nesting Error Structures

1-2, 2-3, 3-4,          
4-5, 5-6                  

(all σ  equal)

Cross-Nested StructuresNested Structures

1-2, 2-3, 3-4,    
4-5, 5-6                

(all σ  equal)
1, 1, 2, 2, 0 1, 1, 2, 2, 3

1000 Halton 5000 Halton

1, 1, 2, 3, 3

2000 Halton 1000 Halton

1, 1, 1-2, 2, 21, 1, 2, 2, 2                     
( σ 1= σ 2)

1000 Halton 1000 Halton1000 Halton 1000 Halton

 

                                                 
15

 Therefore, the problem identified earlier with the cross-nested 1, 1, 1-2, 2, 2 structure does not apply to this dataset. In fact, as 
shown by the models in Table 11c, alternative 3 has an even larger relative variance than the 1, 1, 1-2, 2, 2 structure provides. 



48 

Table b: Nesting  / Cross-Nesting plus Heteroscedasticity (0, 0, 1, 0, 0)

Specification*:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.81  (5.5) -3.80  (5.3) -3.28  (7.3) 

   Standard Measured (2) -3.02  (4.7) -3.01  (4.6) -2.53  (6.3) 

   Local Flat (3) -1.64  (3.1) -1.64  (3.1) -1.37  (3.5) 

   Extended Flat (4) -1.19  (1.3) -1.18  (1.3) -1.04  (1.3) 

Log Cost -3.21  (5.2) -3.20  (5.0) -2.68  (8.0) 

σ1 3.37  (2.8) 3.38  (2.8) 2.88  (3.3) 

σ2 1.11  (1.6) 0.03  (0.3) 0.09  (0.2) 

σ3 1.55  (1.6) 

(Simul.) Log-Likelihood: -470.64  -470.69  -471.22  

1000 Halton 1000 Halton 1000 Halton

2, 2, 2-1-3, 3, 3
2-3, 3-4, 4-1-5,       

5-6, 6-7          
(σ 2… σ 7  equal)

Combined Models

2, 2, 1-3, 3, 3                     
( σ 2= σ 3)

 
Table c: Unidentified Nested Error Structures

Specification*:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.80  (5.7) -3.80  (5.7) -3.80  (5.7) -3.80  (5.8) -3.81  (5.7) -3.80  n/a 

   Standard Measured (2) -3.01  (4.9) -3.01  (4.9) -3.01  (4.9) -3.01  (4.9) -3.01  (4.8) -3.01  n/a 

   Local Flat (3) -1.09  (3.6) -1.09  (3.6) -1.09  (3.6) -1.09  (3.6) -1.09  (3.5) -1.09  n/a 

   Extended Flat (4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) -1.19  n/a 

Log Cost -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) -3.25  (6.0) -3.25  n/a 

σ1 2.65  (3.1) 0.78  (0.5) 2.55  (2.5) 2.56  (1.5) 1.83  (1.1) 1.93  n/a 

σ2 1.51  (2.2) 2.95  (3.3) 1.67  (3.8) 1.68  (0.4) 2.45  (1.9) 2.36  n/a 

 (σ1 2
+σ22

)
1/2

3.05  3.05  3.05  3.06  3.06  3.05  

(Simul.) Log-Likelihood: -473.02  -472.99  -473.02  -473.02  -472.95  -473.02  

80000 Halton40000 'Random'10000 Halton

1, 1, 2, 2, 2 (Unidentified - can only estimate (σ1 2
+σ2 2

))

1000 Halton 40000 Halton1000 Halton

 

Table d: Identical (Identified) Nested Error Structures

Specification*:  

Draws:  

Parameter Est T-stat Est T-stat Est T-stat Est T-stat

Altern. Specific constants

   Budget Measured (1) -3.80  (5.7) -3.80  (5.7) -3.80  (5.7) -3.80  (5.8) 

   Standard Measured (2) -3.01  (4.9) -3.01  (4.9) -3.01  (4.9) -3.01  (4.9) 

   Local Flat (3) -1.09  (3.6) -1.09  (3.6) -1.09  (3.6) -1.09  (3.6) 

   Extended Flat (4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) 

Log Cost -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) 

σ1 3.05  (3.0) 2.16  (3.0) 2.15  (3.0) 

σ2 3.05  (3.0)  2.16  --- 2.15  ---

 (σ1 2
+σ2 2

)
1/2 3.05  3.05  3.05  3.04  

(Simul.) Log-Likelihood: -473.02  -473.03  -473.04  -473.01  

* the specification lists the factors (and sigmas) that apply to each of the five alternatives

2000 Halton1000 Halton1000 Halton1000 Halton

1, 1, 0, 0, 0 0, 0, 2, 2, 2 1, 1, 2, 2, 2 (σ1=σ2)
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Random Parameters 

We also considered unobserved taste heterogeneity for the parameter on log of cost. Since the parameter 
has a sign constraint, a lognormal distribution is used. (Draws from a lognormal distribution are generated 
by exponentiating draws taken from a normal distribution.) The results are shown in Table 12. The first 
model shows that when there are no other covariance parameters specified, the heterogeneity on log cost 
is insignificant. However, the second model shows that heterogeneity does add slightly to the explanatory 
power of the best nested model as specified in Table 11a. The remaining 4 models report specifications 
with both heterogeneity and taste variation. While the rank and order conditions suggest that a model with 
4 heteroscedastic parameters and the lognormal parameter is identified, the estimation results show that 
there is a multicollinearity problem. Note that when only 200 pseudo-random draws are used, this model 
appears, incorrectly, to be identified. 

Table 12: Telephone Model - Taste Variation, Lognormal Parameter for Log(Cost) 

Specification*:  

Draws:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -2.46  (8.2) -3.48  (5.7) -3.50  (4.3) -24.20  n/a -4.06  (2.6) -30.36  n/a -26.84  n/a

   Standard Measured (2) -1.74  (6.5) -2.68  (4.7) -2.70  (3.5) -16.75  n/a -3.06  (2.8) -22.03  n/a -19.41  n/a

   Local Flat (3) -0.54  (2.7) -1.44  (3.1) -1.45  (2.7) -7.57  n/a -1.57  (2.4) -10.72  n/a -9.77  n/a

   Extended Flat (4) -0.74  (1.0) -0.98  (1.1) -0.98  (1.1) -3.33  n/a -1.07  (1.1) -5.11  n/a -4.75  n/a

Log Cost ** -2.03  (9.6) -3.17  (5.6) -3.18  (5.1) -23.30  n/a -3.69  (2.7) -28.38  n/a -26.02  n/a

σ Log Cost ** 0.00  (0.1) 1.18  (1.1) 1.16  (1.0) 18.39  n/a 1.65  (1.4) 18.85  n/a 18.54  n/a

σ1 0.40  (0.1) 0.50  (0.1) 12.38  n/a 1.00  (0.6) 13.72  n/a 12.19  n/a

σ2 3.56  (3.0) 3.58  (3.0) 9.06  n/a 0.72  (0.5) 11.34  n/a 9.02  n/a

σ3 0.05  (0.8) 0.01  (0.1) 24.50  n/a 4.13  (2.3) 30.45  n/a 28.96  n/a

σ4 0.49  n/a

σ5 0.88  n/a 0.24  (0.6) 1.26  n/a

Log Likelihood (simul.): -477.56  -470.36  -470.28  -469.15  -470.74  -468.69  -469.47  

** the mean and standard deviation of the lognormal are reported

2000 Halton

1,1,2,3,3 & Taste Variation 1,2,3,4,5 & Taste Variation

200 'Random'1000 Halton 1000  Halton 1000   Halton1000 Halton 1000 Halton

Taste Variation

 
 
 

Summary of Telephone Data Models 
By far the most important part of the error structure for the telephone dataset is that the Local Flat 
Alternative (3) has a significantly higher variance than the other alternatives. Note that a simple 
heteroscedastic model outperforms the most obvious nested structure in which the measured alternatives 
are nested together and the flat alternatives are nested together. Marginal improvements can be achieved 
by incorporating nesting, cross-nesting or taste variation as long as alternative 3 is allowed a free variance. 
While this dataset served its purpose in highlighting specification and identification issues, one would ideally 
like to estimate such logit kernel models with larger datasets.  
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Conclusion  
In this paper we presented general rules for specification, identification, and estimation via maximum 
simulated likelihood for the logit kernel model. We presented guidelines for examining identification and 
normalization, which consisted of three conditions: order, rank, and positive definiteness. The positive 
definiteness condition is not an issue for probit models. However, as the heteroscedastic case highlights, it 
can have important consequences for logit kernel. We emphasized that identification must be examined on 
a case-by-case basis, and that it is not necessarily intuitive. Furthermore, given the fact that simulation has 
a tendency to mask identification problems, it becomes even more critical that identification is well 
understood.  

We discussed in detail the specification and identification of many of the special cases, all within a general 
factor analytical framework, including:  

 Heteroscedasticity: nF  diagonal (fixed) ; T  diagonal.  

 Nesting (Cross-Nesting): 'n nF F  block-diagonal (fixed) ; T  diagonal.  

 Error Components: nF  fixed to 0/1 ; T  (usually) diagonal.  

 Factor Analytic: nF  unknown ; T  triangular.  

 Autoregressive Process: nF  moving average form of a GAR(1) process ; T  diagonal. 

 Random parameters: nF  a function of explanatory variables (fixed) ; T  triangular.  

 
Just as there are well-known standard rules for identification for the systematic parameters in a 
multinomial logit, we aimed to develop identification rules for the disturbance parameters of the logit kernel 
model. There are critical differences between the identification of these parameters and the identification 
of their counterparts in both the systematic portion of the utility as well as their counterparts in a probit 
model. The following summarizes these identification rules: 

 Heteroscedasticity 
 2J =  alternatives: 0  parameters identified.  
 3J ≥  alternatives: 1J −  parameters identified & 
  must constrain the minimum variance term to 0 . 

 Nesting  
 2M =  nests: 1M −  parameters identified &  
  normalization is arbitrary.  
 3M ≥  nests: M  parameters identified. 

 Random parameters 
 Beyond the specific rules listed below, can estimate   
 as many random parameters as the data will support. 

 Alternate-specific variables 
 Rules for heteroscedasticity, nesting, and error components apply. 
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 Categorical variables with independently distributed parameters  

 2M =  categories: 1M −  parameters identified &  
  normalization is arbitrary.  

 3M ≥  or more categories:  M  parameters identified. 
  (Includes a binary categorical variable that does not  
   enter all utilities.) 

 Characteristics of the Decision-maker with independently distributed parameters  

 Interacts with alternative-specific constants: Analogous to the heteroscedastic case:  
  1J −  parameters identified & must constrain the  
  minimum variance term to 0 .  

 Interacts with nest-specific constants: Analogous to nested case:  
 2M =  nests: 1M −  parameters identified.  
 3M ≥  nests: M  parameters identified. 
 
Our objectives were that through examination of the special cases we would be able to establish some 
identification and specification rules, and also highlight some of the broad themes and provide tools for 
uncovering other potential issues pertaining to logit kernel models. Clearly there are numerous 
identification issues that are not covered by the above list. Therefore, models have to be examined on a 
case-by-case basis. For the alternative-specific portion of the disturbance, it is recommended that the rank 
and order conditions be programmed into the estimation program. When the positive definiteness condition 
comes into play, it is recommended to examine the problem analytically, where possible, or empirically (by 
investigating various normalizations). For random parameter models, it is recommended to use the above 
identification rules as guidelines, and then empirically establish identification by (1) verifying that the 
parameter estimates are stable as the number of draws are increased and (2) checking that the Hessian is 
non-singular at the convergence point. 

One of the most important points of the paper is that there are critical aspects to the logit kernel 
specification that are often overlooked in the literature. It must be remembered that this is a relatively new 
methodology, and there are numerous aspects that warrant further research, including: 

• More testing and experience with applications, 

• Further exploration of identification and normalization issues, 

• Continued compilation and analysis of special cases and rules of identification, 

• Better understanding of the impact on analysis of different factor specifications (particularly since 
often several factor specification will provide similar fit to the data), 

• Investigation of analogous specifications estimated via different methods (for example, logit kernel 
versus probit, nested logit, cross-nested logit, heteroscedastic extreme value, etc.) 

• Additional comparisons with GHK and other smooth simulators, and 
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• Further examination of Halton draws as well as other pseudo- and quasi-random drawing methods. 

Finally, we also may need to look at modifying the specification of the logit kernel model to alleviate some 
of the complications. One of the issues with the logit kernel specification is that while pure logit is a special 
case of the model, pure probit is not. Our analysis assumes that it is acceptable to include the Gumbel term 
in the model. However, the Gumbel term may, in fact, have no business being in the model. For this 
reason, we would ideally want to specify and estimate the model in a way that allows the Gumbel term to 
disappear. Conceptually, such a model could be specified as a linear combination of the two error terms, 
so Equation (4) (assuming a universal choice set) would become: 

2 2( / )(1 )n n n n nU X g F Tβ µ λ ζ λν= + − +  ,  

where λ  is an unknown parameter. The covariance of the model is then a linear combination of the two 
covariance matrices: 

( ) ( )2 2 2cov( ) (1 ) ' 'n n n JU FTT F I gλ λ µ= − +  . 

Conceptually this Combined Logit-Probit (CLP) specification is an appealing model. Note that a strict 
application of the order and rank conditions lead to the conclusion that the model is not identified. 
However, as we described in the section on identification, the slight difference between the Gumbel and 
Normal distributions makes the model identified (albeit, nearly singular).  

To summarize, the logit kernel formulation has a tremendous amount of potential, because it can replicate 
any desirable error structure and is straightforward to estimate via maximum simulated likelihood. 
However, it also has some issues that must be understood for proper specification. As increased 
computational power and readily available software open up these techniques for widespread use, it is a 
critical time to understand and address the nuances of the logit kernel model. 
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Appendix 
Normalization of Unrestricted Probit and Logit Kernel Covariance Structures 
 

This appendix examines the normalization of unrestricted probit and logit kernel models. The important 
point is that while the normalization of pure probit leads to straightforward scale shifts of all of the 
parameter estimates, this is not the case for logit kernel. 

Case 1: Probit with 4 Alternatives 
The unrestricted four alternative probit model written in differenced form has the error structure nTζ , 
where: 

 T =   
11

21 22

31 32 33

/ 0 0
/ / 0
/ / /

α µ
α µ α µ
α µ α µ α µ

 
 
 
  

%
% %
% % %

  

Note that we use α ’s instead of σ ’s since these aren’t variance terms. Also µ%  is the scale of the probit 
model (i.e., not the traditional Gumbel µ ). 

The covariance structure is then (using new notation): 

TT' : theoretical  

2 2
11

2 2 2 2
11 21 21 22

2 2 2 2 2 2
11 31 21 31 22 32 31 32 33

( ) /
( ) / ( ) /
( ) / ( ) / ( ) /

α µ
α α µ α α µ
α α µ α α α α µ α α α µ

 
 

+ 
 + + + 

%
% %
% % %

 

A normalization must be made in order to achieve identification. Normalizing 33
N
ffα α= , and noting the 

unknown parameters as α  and µ , then the normalized covariance structure is: 

TT' : normalized  

( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2 2
11

2 22 2
11 21 21 22

2 2 22 2 2
11 31 21 31 22 32 31 32

/

/ /

/ / /

N
N

N N N N
N N

N N N N N N N N N
N N ff N

α µ

α α µ α α µ

α α µ α α α α µ α α α µ

 
 
 
 +
 
 

+ + +  

%

% %

% % %

 

Setting ' 'TT  normalized = TT  theoretical , leads to the following equations: 

 ( ) ( )2 22 2
11 11/ /N

Nα µ α µ=% %     

 ( ) ( )2 2
11 21 11 21/ /N N

Nα α µ α α µ=% %    
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 ( ) ( )2 2
11 31 11 31/ /N N

Nα α µ α α µ=% %  

 ( ) ( )( ) ( ) ( )( )2 2 2 22 2
21 22 21 22/ /N N

Nα α µ α α µ+ = +% %  

 ( ) ( )2 2
21 31 22 32 21 31 22 32/ /N N N N

Nα α α α µ α α α α µ+ = +% %  

 ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2 2 2 2 22 2
31 32 31 32 33/ /N N N

ff Nα α α µ α α α µ+ + = + +% %  

And solving for each of the unknown parameters in the normalized model leads to: 

Solution: ( ) ( )
22 2

11 11 2
N Nµ

α α
µ

=
%
%  à 11 11

N Nµ
α α

µ
=

%
%  

 
2

11 21
21 2

11

N N
N

µα α
α

α µ
=

%
%  à 21 21

N Nµ
α α

µ
=

%
%  

 
2

11 31
31 2

11

N N
N

α α µ
α

α µ
=

%
%  à 31 31

N Nµ
α α

µ
=

%
%  

 ( ) ( ) ( )( ) ( )2 2 22
2 21 22 21

22 2

N
N Nα α αµ

α
µ

+
= −

%
%  à 22 22

N Nµ
α α

µ
=

%
%  

 
( ) 2

21 31 22 32 21 31
32 2

22

1 N N
N N

N

α α α α α αµ
α

α µ

 +
= −  

 

%
%  à 32 32

N Nµ
α α

µ
=

%
%  

 
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

31 32 31 32 33

2 2

N N N
ff

N

α α α α α α

µ µ

+ + + +
=% %  à 

33

N
ff

N

α
µ µ

α
=% %  

Therefore, for probit, the normalization just scales all of the parameters, and any positive normalization is 
acceptable. 

Case 2: Logit Kernel with 4 Alternatives 
Now, we will show that the equivalent logit kernel case is not so straightforward. Following the same 
process, the covariance matrix of utility differences for the four alternative unrestricted logit kernel model 
is: 

'
:

TT G
theoretical

+
 

( )
( ) ( )
( ) ( ) ( )

2 2
11

2 2 2 2
11 21 21 22

2 2 2 2 2 2
11 31 21 31 22 32 31 32 33

2 /

/ 2 /

/ / 2 /

g

g g

g g g

α µ

α α µ α α µ

α α µ α α α α µ α α α µ

 +
 
 + + +
 
 + + + + + + 
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Imposing the normalization 33 ffα α=  leads to: 

'
:

TT G
normalized

+

 

( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2 2
11

2 22 2
11 21 21 22

2 2 22 2 2
11 31 21 31 22 32 31 32

2 /

/ 2 /

/ / 2 /

N
N

N N N N
N N

N N N N N N N N N
N N ff N

g

g g

g g g

α µ

α α µ α α µ

α α µ α α α α µ α α α µ

 + 
 
 + + +
 
 

+ + + + + +  

 

Setting the normalized covariance structure to the normalized structure leads to the following equations 
(the C  notation is just to clean up the math later on): 

 ( )( ) ( )2 2 2 2
11 11 12 / 2 /N

Ng g Cα µ α µ+ = + ≡  

 ( ) ( )2 2
11 21 11 21 2/ /N N

Ng g Cα α µ α α µ+ = + ≡  

 ( ) ( )2 2
11 31 11 31 3/ /N N

Ng g Cα α µ α α µ+ = + ≡  

 ( ) ( )( ) ( )2 2 2 2 2 2
21 22 21 22 42 / 2 /N N

Ng g Cα α µ α α µ+ + = + + ≡  

 ( ) ( )2 2
21 31 22 32 21 31 22 32 5/ /N N N N

Ng g Cα α α α µ α α α α µ+ + = + + ≡  

 ( ) ( ) ( )( ) ( )2 2 2 2 2 2 2 2
31 32 31 32 33 62 / 2 /N N N

ff Ng g Cα α α µ α α α µ+ + + = + + + ≡  

And solving for the estimated parameters in the normalized model leads to: 

  ( )2 2
11 1 2N

NC gα µ= −  

  
2

2
21 2

1 2
N N

N

C g

C g

µ
α

µ

−
=

−
 

  
2

3
31 2

1 2
N N

N

C g

C g

µ
α

µ

−
=

−
 

  ( ) ( )22
2 22

22 4 2
1

2
2

NN
N

N

C g
C g

C g

µ
α µ

µ

−
= − −

−
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( )( )
( )

( )
( )

2 2
2 32

5 2
1

32 22
22

4 2
1

2

2
2

N N
N

NN

N
N

N

C g C g
C g

C g

C g
C g

C g

µ µ
µ

µ
α

µ
µ

µ

− −
− −

−
=

−
− −

−

 

  
( )

( ) ( )
( )
( )
( )

( )

2
2 2

2 32
2 5 22

2132
22 2

6 1 22
4 2

1

21
2

2
2

2

N N
N

NN N
N ff

N N
N

N

C g C g
C g

C gC g
g

C C g C g
C g

C g

µ µ
µ

µµ
µ α

µ µ
µ

µ

  − −  − −
  −−   = + + +

− −
 − −
 −
 

 

Unlike probit, this is not a simple scale shift, i.e., the model must adjust to the normalization in complex, 
non-linear ways. Furthermore, it is not clear from these equations what the potential restrictions are on the 
normalization. 

Empirical results exploring the normalization issue for a 4 alternative unrestricted logit kernel model are 
shown in Table A-13. The table includes estimation results using two different synthetic datasets (the true 
parameters vary across the datasets). There are 4 alternatives, and the model is specified with three 
alternative specific dummy parameters, one explanatory variable, and then an unrestricted covariance 
structure. The final column in the first table shows that, under some circumstances, restricting 22α  to zero 
is an invalid normalization. The remaining estimation results suggest that restricting 33α  to zero is a valid 
normalization regardless of the true parameter estimates. However, these results are not conclusive. 
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Table A-13: Normalization of Unrestricted Logit Kernel Model 
(2 Synthetic Datasets; 4 Alternatives; 10,000 Observations; 1,000 Halton draws) 

Parameter True Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Alt. 1 dummy 1.0  1.38 (2.8) 0.93 (11.5) 1.02 (11.8) 1.31 (12.1) 0.76 (12.4) 

Alt. 2 dummy 1.0  1.28 (2.8) 0.85 (10.2) 0.94 (10.3) 1.21 (10.5) 0.67 (11.0) 

Alt. 3 dummy 0.0  0.03 (0.3) 0.04 (0.5) 0.04 (0.5) 0.03 (0.3) 0.02 (0.3) 

Variable 1 -1.0  -1.37 (2.9) -0.93 (23.5) -1.02 (25.6) -1.30 (28.8) -0.76 (38.5) 

α11 2.0  3.16 (2.1) 1.60 (9.1) 1.96 (11.3) 2.94 (15.7) -0.34 (3.1) 

α21 1.0  1.75 (2.1) 0.86 (3.7) 1.09 (4.7) 1.63 (6.2) -2.39 (15.1) 

α31 2.0  2.86 (2.7) 2.01 (9.1) 2.13 (9.4) 2.70 (10.9) -1.12 (8.9) 

α22 3.0  4.62 (2.6) 2.89 (14.6) 3.25 (16.2) 4.35 (19.1) 0.00 ---  

α32 1.0  1.79 (2.5) 1.16 (6.9) 1.27 (7.8) 1.69 (9.3) -0.01 (0.0) 

α33 1.0  2.20 (1.7) 0.00 ---  1.00 ---  2.00 ---  0.00 (0.0) 

(Simul.) Log-Likelihood: -7973.176 -7974.867 -7973.843 -7973.187 -7998.768

Valid Normalizations
Invalid 

Normalization
Unidentified

  

True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Alt. 1 dummy 1.0  0.94 (8.5) 0.92 (9.4) 0.92 (9.4) 0.92 (9.4) 0.94 (8.9) 

Alt. 2 dummy 1.0  0.95 (8.2) 0.93 (9.1) 0.92 (9.1) 0.93 (9.1) 0.96 (8.4) 

Alt. 3 dummy 0.0  0.18 (1.5) 0.17 (1.5) 0.17 (1.5) 0.17 (1.5) 0.18 (1.5) 

Variable 1 -1.0  -0.86 (17.1) -0.85 (31.8) -0.85 (31.8) -0.85 (31.6) -0.87 (27.7) 

α11 2.0  1.43 (5.3) 1.37 (6.9) 1.37 (6.9) -1.38 (7.0) 1.45 (7.2) 

α21 1.0  0.79 (4.6) 0.76 (5.0) 0.76 (5.0) -0.76 (5.0) 0.80 (5.3) 

α31 2.0  2.53 (3.9) 2.50 (3.8) 2.48 (3.8) -2.50 (3.9) 2.56 (3.9) 

α22 1.0  0.39 (0.9) -0.22 (1.6) -0.22 (1.6) -0.25 (1.6) 0.43 (1.9) 

α32 1.0  3.19 (1.2) -4.87 (14.2) -4.78 (13.8) -4.46 (12.0) 3.03 (5.4) 

α33 6.0  3.83 (1.5) 0.00 ---  1.00 ---  2.00 ---  4.00 ---  

(Simul.) Log-Likelihood: -8983.725 -8984.556 -8984.62 -8984.222 -8983.735

Unidentified Valid Normalizations

 

Case 3: Logit Kernel with 3 Alternatives 
The three alternative logit kernel case is a bit easier to compute. Following the same process as above: 
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Here, the restrictions are 

  ( )( ) ( ) ( )( )22 22 2
1 2 3 1 2 1 32 ( ) 4 2 3 0N N

ff ffg C C C C C C C g gα α− + + − − − − ≥  , 

  2 0µ >  , 

  2
1 2 0C gµ − >  … or … ( )22

3 2 0N
ffC gµ α− − >  , 

  ( )( ) ( )22 2 2 2
11 21 11 21 0N

ffα α α α α+ − ≥  ,  where 11 ( )N
fffα α=  and 21 ( )N

fffα α=  , 

  and only 1 of the two possible 2µ  satisfies the conditions.  

Again, it’s not clear in which cases these restrictions become limiting. Our empirical tests suggests that the 
normalization of the lowest diagonal element in the cholesky matrix is, in fact, a valid normalization 
regardless of the true parameters (unlike, for example, the heteroscedastic case).



59 

References 
Anselin, L. (1989) Spatial Econometrics: Methods and Models, Kluwer Academic Publishers.  

Ben-Akiva, M. and D. Bolduc (1996) “Multinomial Probit with a Logit Kernel and a General 
Parametric Specification of the Covariance Structure”, working paper, Massachusetts 
Institute of Technology. 

Ben-Akiva, M. and S. Lerman (1985) Discrete Choice Analysis: Theory and Application to 
Travel Demand, The MIT Press, Cambridge, MA. 

Berndt, E.R., B.H. Hall, R.E. Hall, and J.A. Hausman (1974) “Estimation and Inference in 
Nonlinear Structural Models”, Annals of Economic & Social Measurement 3, 653-665. 

Bhat, C.R. (1995) “A Heteroscedastic Extreme Value Model of Intercity Travel Mode Choice”, 
Transportation Research B 29(6), 471-483. 

Bhat, C.R. (1997) “Accommodating Flexible Substitution Patterns in Multi-dimensional Choice 
Modeling: Formulation and Application to Travel Mode and Departure Time Choice”, 
Transportation Research B 32(7), 455-466. 

Bhat, C.R. (1998) “Accommodating Variations in Responsiveness to Level-of-Service Measures 
in Travel Mode Choice Modeling”, Transportation Research A 32(7), 495-507. 

Bhat, C.R. (2000) “Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed 
Multinomial Logit Model”, forthcoming, Transportation Research. 

Bolduc, D. (1992) “Generalized Autoregressive Errors in the Multinomial Probit Model”, 
Transportation Research B 26(2), 155-170.  

Bolduc, D. and M. Ben-Akiva (1991) “A Multinominal Probit Formulation for Large Choice Sets”, 
Proceedings of the 6th International Conference on Travel Behaviour 2, 243-258. 

Bolduc, D., B. Fortin and M.A. Fournier (1996) “The Impact of Incentive Policies to Influence 
Practice Location of General Practioners: A Multinomial Probit Analysis”, Journal of Labor 
Economics 14, 703-732. 

Börsch-Supan, A. and V. Hajivassiliou (1993) “Smooth Unbiased Multivariate Probability 
Simulators for Maximum Likelihood Estimation of Limited Dependent Variable Models”, 
Journal of Econometrics 58, 347-368.  

Boyd, J.H. and R.E. Mellman (1980) “The Effect of Fuel Economy Standards on the U.S. 
Automotive Market: An Hedonic Demand Analysis”, Transportation Research A 14, 367-
378. 

Brownstone, D., D.S. Bunch and K. Train (2000) “Joint Mixed Logit Models of Stated and 
Revealed Preferences for Alternative-fuel Vehicles”, Transportation Research B 34, 315-
338. 



60 

Brownstone, D. and K. Train (1999) “Forecasting New Product Penetration with Flexible 
Substitution Patterns”, Journal of Econometrics 89, 109-129. 

Bunch, D.A. (1991) “Estimability in the Multinomial Probit Model”, Transportation Research B 
25, 1-12.  

Cardell, N.S. and F.C. Dunbar (1980) “Measuring the Societal Impacts of Automobile 
Downsizing” Transportation Research A 14, 423-434. 

Case, A. (1991) “Spatial Correlation in Household Demand”, Econometrica 59(4), 953-965. 

Cliff, A.D, and J.K. Ord (1981) Spatial Processes, Models and Application, Pion, London.  

Dansie, B.R. (1985) “Parameter Estimability in the Multinomial Probit Model”, Transportation 
Research B 19(6), 526-528. 

Dennis, J.E. and R.B. Schnabel (1983) Numerical Methods for Unconstrained Optimization 
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs. 

Goett, A., K. Hudson and K. Train (2000) “Customers’ Choice Among Retail Energy Suppliers: 
The Willingness-to-Pay for Service Attributes”, working paper, AAG Associates and 
University of California at Berkeley. 

Gönül, F. and K. Srinivasan (1993) “Modeling Multiple Sources of Heterogeneity in Multinomial 
Logit Models: Methodological and Managerial Issues”, Marketing Science 12(3), 213-229.  

Greene, W.H. (2000) Econometric Analysis Fourth Edition, Prentice Hall, Upper Saddle River, 
New Jersey.  

Hajivassiliou, V. and P. Ruud (1994) “Classical Estimation Methods for LDV Models using 
Simulation”, Handbook of Econometrics IV, R. Engle and D. McFadden, Eds., 2384-2441. 

Lerman and Manski (1981) “On the Use of Simulated Frequencies to Approximate Choice 
Probabilities”, Structural Analysis of Discrete Data with Econometric Applications, C.F. 
Manski and D. McFadden, Eds., The MIT Press, Cambridge, Massachusetts, 305-319. 

Louviere, J.J., D.A. Hensher and J.D. Swait (2000) Stated Choice Methods: Analysis and 
Application, Cambridge University Press. 

McFadden, D. (1984) “Econometric Analysis of Qualitative Response Models”, Handbook of 
Econometrics II, Z. Friliches and M.D. Intriligator, Eds., Elsevier Science Publishers. 

McFadden, D. (1989) “A Method of Simulated Moments for Estimation of Discrete Response 
Models without Numerical Integration”, Econometrica 57(5), 995-1026. 

McFadden, D. and K. Train (2000) “Mixed MNL Models for Discrete Response”, Journal of 
Applied Econometrics 15(5), 447-470. 

Mehndiratta, R.M. and M. Hansen (1997) “Analysis of Discrete Choice Data with Repeated 
Observations: Comparison of Three Techniques in Intercity Travel Case”, Transportation 
Research Record 1607, 69-73. 



61 

Newey, W. and D. McFadden (1994) “Large Sample Estimation and Hypothesis Testing”, 
Handbook of Econometrics IV, R. Engle and D. Mcfadden, Eds., 2111-2245. 

Pakes, A. and D. Pollard (1989) “Simulation and the Asymptotics of Optimization Estimators”, 
Econometrica 57(5), 1027-1057. 

Revelt, D. and K. Train (1998) “Mixed Logit with Repeated Choices: Households’ Choice of 
Appliance Efficiency Level”, Review of Economics and Statistics 80(4), 647-657. 

Revelt, D. and K. Train (1999) “Customer-Specific Taste Parameters and Mixed Logit”, working 
paper, University of California at Berkeley. 

Srinivasan, K.K. and H.S. Mahmassani (2000) “Dynamic Kernel Logit Model for the Analysis of 
Longitudinal Discrete Choice Data: Properties and Computational Assessment”, presented at 
the International Association of Travel Behavior Research (IATBR) Conference, Gold Coast, 
Queensland, Australia. 

Steckel, J.H. and W.R. Vanhonacker (1988) “A Heterogeneous Conditional Logit Model of 
Choice”, Journal of Business & Economic Statistics 6(3), 391-398. 

Stern, S. (1992) “A Method for Smoothing Simulated Moments of Discrete Probabilities in 
Multinomial Probit Models”, Econometrica 60(4), 943-952. 

Train, K.E. (1998) “Recreational Demand Models with Taste Differences Over People”, Land 
Economics 74(2), 230-239. 

Train, K. (1999) “Halton Sequences for Mixed Logit”, working paper, University of California at 
Berkeley. 

Train, K., D. McFadden and M. Ben-Akiva (1987) “The Demand for Local Telephone Service: A 
Fully Discrete Model of Residential Calling Patterns and Service Choices”, Rand Journal of 
Economics 18(1), 109-123. 

Walker, J.L. (2001) Extended Discrete Choice Models: Integrated Framework, Flexible 
Error Structures, and Latent Variables, Ph.D. Dissertation, Department of Civil and 
Environmental Engineering, Massachusetts Institute of Technology. 

 

 


