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This paper proposes a new approach to modeling financial transactions data.  A new
model for discrete valued time series is proposed in the context of generalized linear
models.  Since the model is specified conditional on both the previous state, as well as the
historic distribution, we call the model the Autoregressive Conditional Multinomial
(ACM) model.  When the data are viewed as a marked point process, the ACD model
proposed in Engle and Russell (1998) allows for joint modeling of the price transition
probabilities and the arrival times of the transactions.  In this marked point process
context, the transition probabilities vary continuously through time and are therefore
duration dependent.  Finally, variations of the model allow for volume and spreads to
impact the conditional distribution of price changes.  Impulse response studies show the
long run price impact of a transaction can be very sensitive to volume but is less sensitive
to the spread and transaction rate.
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1.  Introduction

The recent development and distribution of high frequency transaction by
transaction financial data has generated a large amount of research from both theoretical
and empirical market microstructure perspectives.  Frequently, empirical market
microstructure issues cannot be addressed on intertemporally aggregated data since the
questions at issue involve the potentially dynamic impact of characteristics of individual
trades such as volume, whether the trade was buyer or seller initiated, or the impact of
particular sequences or frequency of trades.

Our primary econometric interest is the dynamics of the price process and
potentially its interaction with other features of the market.  The price is only observed,
however, at particular points in time when transactions occur.  These transaction times are
not equally spaced in time and Engle and Russell (1998) provide strong evidence that the
arrival rate of traders is intertemporally correlated.  That is, trades tend to cluster in time
in both a deterministic and stochastic manner.  In addition to observing the price at these
points in time, each point has other associated characteristics such as the volume and the
spread.  Following Engle and Russell(1998) we treat the arrival times as a point process
consider jointly modeling arrival times and price changes possibly as a function of
predetermined or weakly exogenous variables.

We propose decomposing the joint distribution of price changes and arrival times
into the product of the conditional distribution of price changes and the marginal
distribution of the arrival times.  Engle and Russell (1998) suggest the Autoregressive
Conditional Duration (ACD) model for the marginal distribution of arrival times so we
now turn our attention to the conditional distribution of price changes.  Since transactions
prices are required to fall on discrete quantities, usually 1/8ths of a dollar1, we view the
discrete price changes as multinomial time series data. Market microstructure issues such
as bid ask bounce, inventory control behavior of the specialist, price smoothing
requirements of the specialist, and dynamic strategic behavior all suggest a rich class of
dynamics will be required to successfully capture the price dynamics.  While bid ask
bounce induces strong negative correlation in price changes at high frequencies the other
characteristics mentioned above are likely characterized by longer range dependence.  We
therefore propose a new class of models for multinomial time series data that is able to
account for these dynamic features.  Because the model depends on both the historic
distribution of the data as well as past realizations, the model is called the Autoregressive
Conditional Multinomial (ACM) model.

We show that the model can be interpreted in the context of a competing risks
model.  The waiting time associated with the ith transaction can exit into one of several
states corresponding to discrete price movements.  We also develop measures of the
instantaneous expected price change and the instantaneous expected volatility.  Expressing
the transition probabilities in continuous time we examine the relationship between price
distribution and trading rates.  From these expression it can be seen that transaction rates
have potentially two ways of affecting the volatility.  First, the distribution of price
changes from one transaction to the next may depend on the contemporaneous duration or
on the expected duration.  Second, this expression provides an explicit link between
                                                       
1 For the IBM data analyzed in this paper, 99.3% of the price changes fall on just 5 unique values.
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transaction rates and the rate at which the process evolves.  This idea has been referred to
as time deformation as studied by Tauchen and Pitts, Andersen, and Ghysels to name a
few.  Hence simply speeding up or slowing down the transaction rates can affect volatility
when measured in calendar time as is traditionally done.

Estimation is performed on the joint likelihood function.  The relationship between
price changes and the arrival rate of traders is examined.  We show that both the expected
duration and the realized duration affect the distribution of price changes at the transaction
level.  Price dynamics are further examined via impulse response studies.  We find that
while spreads and expected duration between transactions can affect the long run price
impact of a transaction or sequence of transactions the affects of volume can be much
more pronounced.

The paper is organized as follows.  Section 2 introduces the ACM model.  Section
3 suggests some parameter restrictions motivated by economic intuition.  Section 4
examines the model from a continuous time perspective with duration dependence.
Section 5 introduces the data.  Section 6 presents results for various models and section 7
examines volume and impulse response functions.  Finally, section 8 concludes.

Section 2.  The Autoregressive Conditional Multinomial Model

In this paper we view the transaction price process as a marked point process.  In
this context the arrival times of the transactions are denoted by ti.   At each transaction
time ti there is an associated realization of the price of the asset denoted by yi.  It is
convenient to measure these as changes from the previous transaction price.  Since
transaction prices fall on discrete values we assume that yi can take on K values
(k=1,2,… ,K). We are interested in modeling the conditional joint distribution of price
changes and arrival times denoted by:

(1) ( ) ( )( )11 ,, −− ii
ii tytyf

 where ( ) ( ),..., 21
1

−−
− = ii

i yyy  and ( ) ( ),..., 21
1

−−
− = ii
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 In the spirit of Engle (1996) we decompose the joint distribution of the mark and
the arrival time into the product of the conditional distribution of the mark and the
marginal distribution of the arrival times.
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 where g(⋅) denotes the density function associated with the discrete valued random
variable yi conditional on the current arrival time and the filtration of y and t.  q(⋅) denotes
the density function of the waiting time between the ti-1 and ti arrival times conditional on
just the filtration of y and t.  Engle and Russell (1998) propose the Autoregressive
Conditional Duration (ACD) model specification for q(⋅) and find the model is able to
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explain transaction arrival rates for IBM transactions data.  Hence, we now focus our
attention on the conditional distribution g(⋅).
 Toward this end, we restrict our attention to the class of observation driven
models in the sense of Cox (1981)2.  We propose a new class of multinomial time series
models.  The probability of each state is modeled via a multivariate ARMA structure
allowing for complex dynamic structure in the conditional distribution.  A similar structure
is proposed by Shephard(1995) as a GLAR, a generalized linear autoregression.

 Let xi denote a (K-1) dimensional random vector where the kth element of xi is one
if yi=k [k=1,… ,K-1]occurred and zero otherwise.  In this example, the state will
correspond to a particular transaction price change and uniquely determines yi.  Denote
the conditional expectation of xi by

(3) ( )( )π i i i
iE x Z x≡ −| , 1

 where Zi might consist of ti or other weakly exogenous variables in the sense of Engle
Hendry and Richard (1987) or perhaps deterministic functions of time. We arbitrarily omit
state K since the probability of state K is given by ( )1- i′1 π where 1 denotes the (K-1) unit
vector. Hence, π i uniquely describes the distribution of yi conditional on the filtration of x
and Z.  The conditional covariance matrix of x can similarly be defined as
(4) ( )( ) { } ',| 1

iii
i

iii diagxZxVV πππ −=≡ −

 We now consider parameterizations for (3).  Of course, π i must satisfy all the usual
conditions associated with a distribution function for a discrete valued random variable
and must have no error term since it is defined as a conditional expectation.  In particular,

′ ≤1 π i 1 and the jth element of π i denoted by π i
j  must be positive for all i and j.  A natural

modeling strategy would be to assume that an appropriate transformation of the
conditional expectation π i is some function of the conditioning variables.  That is, for some
appropriate link function ( )h K K⋅ − → −:( ) ( )1 1  such as the logistic or probit, and a
measurable function η ,

(5) ( ) ( )( )( ) ( )( )11| −− == ii
ii xxxEhh ηπ

 
 Equation (5) is a type of Generalized Linear Model in a time series context.  Clearly the
success of (5) in characterizing the dynamics of xi lies in the choice of η  and h().

 We define the ACM model specification as a linear function of its own past and the
innovations in x, potentially interacted with Z.  That is,

                                                       
 2 Many models have been suggested in the context of parameter driven models and associated hidden
markov models.  While this literature is rich the models are often difficult to estimate and forecast.  See
MacDonald and Zucchini (1997) for a recent survey.  Relatively little work has been done on discrete
valued observation driven models.  Jacobs and Lewis pursued a class of models for discrete valued time
series data called DARMA models.  These models often have unrealistic properties such non-negative
autocorrelation restrictions.  Furthermore, these models appear better suited for marginally Poisson, or
Binomial data.  The model proposed here is applicable to multinomial data.  Given the success of ARMA
models for continuous valued time series we are optimistic in our approach which will provide an ARMA
structure for discrete valued time series.
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 Since the probability structure at time i depends both on the historic distribution as well as
the past realizations we call this model the Autoregressive Conditional Multinomial model.
The most simple version of the model which only depends on the history of the price
process might be referred to as an ACM(p,q,r) model. The matrix M can be taken as

2/1−V , with V the conditional covariance matrix of x, or as the diagonal elements of this
covariance matrix, or simply as the identity matrix.  In some applications it could even be
taken to depend upon predetermined variables.

 The structure of this equation is recursive.  At the time of the i-1 transaction,
knowing all past x and π  gives from (6) a calculated value of the next π .  Consequently,
subject to some starting values, the full history of π  can be constructed from observations
on x and z.  This allows evaluation of the likelihood function and its numerical derivatives.
 Several particular cases of this specification are familiar.  Static models of
probabilities have this form with A=B=C=0.  When K=2, and the link function is simply
the identity function, this is the linear probability model. In the same setting, if

 ( )( )πππ −= 1/log)(h ,
 the log odds ratio, then the model is the logistic.  For the probit, h()=F-1() where F is the
cumulative standard normal distribution function. For more than two states, the natural
models are multinomial logit and probit. Hausman Lo and MacKinlay (1992) for example
used an ordered probit to analyze financial transaction prices.  In the logit case,
(7) 1,...1for  ),/log()( −== Kjh Kjj πππ

 Dynamic models of course must include lagged information. A Markov chain
requires only one past state to initiate all future probabilities.  In this case, h() is the
identity function and A=C=0, Z=1 and q=1.  Higher order Markov chains set q>1.  For
full generality, additional terms in jiki xx −− ⊗ for j,k>0 may then be needed.  In this notation
the first order Markov chain can be expressed as3

(8) µπ += − 1ii Bx

 This model has a steady state set of probabilities ( ) µπ 1−−= BI  as long as all eigenvalues
of B lie inside the unit circle.  The parameterization of such a Markov chain in terms of
transition probabilities insures that all probabilities will lie between zero and one.
Substituting for µ  gives
(9) ( )πππ −+= − 1ii xB
 and multistep forecasts:
(10) ( )πππ −+= +

−
+ 1

1
i

k
kii xBE

 The introduction of additional information from the past, relaxes the Markov
structure and may improve the performance of the model.  Consider the simple linear
ACM model with  B= 0, Z=1 and p=r=1, in the following parameterization:
(11) ( ) ( ) µπµπππ +−+=++−= −−−−− 11111 iiiiii ACAxCxA
 When C has all its eigenvalues within the unit circle, this model also has multistep
forecasts and steady state probabilities given by
                                                       
 3 The intercept appears because of the elimination of the equation for the Kth state.
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(12) ( ) ( ) ( ) µπππππ 1
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 Defining πε −= x , an innovation, equation (11) is seen to be a vector ARMA:
(13) ( ) iiii CACxx εεµ +−++= −− 11

where clearly the eigenvalues of C control the long run properties.  The parameters in A as
well as those in C determine whether all probabilities lie in the unit interval and the
dynamic response to particular states.

LEMMA 1 The probabilities in (11) will all lie between zero and one if
a) All elements of A, C-A and µ  are non-negative
b) { } { } 1)sum(column A)-(C sumscolumn maxA sumscolumn max ≤++ µ
Proof : Appendix

When other variables are included in the model such as Z or more lags, it becomes
very difficult to ensure that the probabilities lie in the unit interval.  Hence it is attractive to
use a link function h() to bound the probabilities. Just as for the static model, the logit
specification (7) is a very simple and attractive link. However it becomes more difficult to
investigate the dynamic properties of the ACM4.

Consider first the version of (6) with only one lag and no exogenous variables or
lags of x by itself.
(14) ( ) ( ) ( ) µπππ ++−= −−− 111 iiii ChxAh
 The multistep forecasts of h can be obtained exactly as before.  If all eigenvalues of C lie
inside the unit circle, then
(15) ( )( ) ( )( ) ( ) µππ 1

1
1 , −

+
−

+ −=−+= CIhhhChhE i
k

kii

 Because h is a 1-1 mapping from probabilities to RK-1, (15) can be uniquely solved for the
steady state probabilities, π .  These probabilities have the property that if x and π  are
equal to the steady state probabilities in period i, they also will in the next period.
Furthermore, the average fraction of periods spent in each state will approach π .  This
conjecture follows from the ergodicity of h, which further implies that π  is ergodic. Such
results and the corresponding conditions must be developed more rigorously.
 With more lags in (14), conditions can easily be found for a stationary solution for
h and for π .  If the innovations in (14) were multiplied by M, as in equation (6),
completely similar results are available.  However in the more general set-up of (6) it does
not appear possible to find an explicit formula for the steady state probabilities although
often they can be computed.

 The log likelihood of the ACM model expressed as the sum of the conditionals is
simply

(16) ( )( ) ( )L x xi
j

i
j

k

K

i i
i

N

i

N

= = ′
= ==

∑ ∑∑ log logπ π
1 11

.

                                                       
4 Some special cases have been considered in the literature.  If K=2, h is the log odds, and
p=r=0 the model reduces to a qth order linear logistic model first suggested by Cox (1971,
1981) and more recently discussed by Zegar and Qaqish.
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 If the data are irregularly spaced and the conditional distribution of price changes depends
on the timing of transactions then joint estimation of (2) may be required.
 
 
 
 
 3.  Parameter Restrictions and Price Dynamics
 
 
 Depending on the number of states and number of lags there are potentially a large
number of parameters to be estimated.  Economic intuition may guide us in imposing
certain restrictions in the model specification.  In particular, there is a certain type of
symmetry that we might expect in the dynamic process of price movements.  In particular,
the marginal impact of the state “down 1 tick” on the conditional probability of a
subsequent “up tick” may be the same as the marginal impact of the state “up 1 tick” on
the conditional probability of a subsequent “down tick”.  Similar relations might be
expected to hold true for other states.
 Consider the case for the linear probability model in (11).  Without loss of
generality, arrange the elements of x in the natural ordering implied by the transaction
prices (i.e. lowest to highest).  We omit the zero price movement state.  As an example
consider a simple 3 state model of transaction prices.  One  possible ordering is state 1 is a
downward price movement, state 2 is a zero price movement and state 3 is an upward
price movement.   Now restrict our attention to the simple linear model specified in (11).
If state 2 is the base state the symmetry intuition suggests the following parameter
restrictions in an ACM model with q=r=1 and p=0.

(17) 



=

1

1

µ
µ

µ A = 





α α
α α

1 2

2 1

 C =






χ χ
χ χ

1 2

2 1

 We see that α 1 characterizes the impact of a lagged downward (upward) price movement
on the probability of another downward (upward) price movement.  Similarly, α 2

characterizes the impact of a lagged downward (upward) price movement on the
probability of another upward (downward) price movement.  The parametrization of C
implies a similar symmetry for the impact of the historic probability on the future
distribution.
 We might also expect higher order lags of A and C to have this symmetric
response structure.  We emphasize that these restrictions do not in any way imply that the
conditional distribution will be symmetric.  The shocks and their persistence will determine
the shape of the distribution.  It is only the marginal impact of the shocks and their decay
rate that is assumed to be symmetric. The following definitions help to generalize these
restrictions.
 Definition 1:  An NxN matrix Z is response symmetric if for the NxN matrix Q defined by

(18) Q =
















0 1

1 0
N

QZ ZQ= .  That is, Q and Z commute.
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Definition 2:  A vector z of length N is symmetric if Qz z= .

A generalization of the symmetric parameter restrictions in (11) to a (K-1) state vector is
then defined by the requirement that A and C are (K-1)x(K-1) response symmetric
matrices and ω  is a symmetric vector of dimension K-1.

The symmetry restrictions have an additional implication about the unconditional
transaction price distribution described in the following theorem:
Theorem 1

Consider the a linear ACM(1,1,1) model defined using the identity link
function.  If the following conditions hold:
i.  (B+C) has eigenvalues inside the unit circle,
ii.  ω  is a symmetric vector, and
iii.  B and C are response symmetric
then ( )π i k i k iE x I+ +=  converges to a symmetric vector.

Proof in appendix.
This theorem implies that as we forecast farther out and the impact of past shocks

die out, the expected transaction price change approaches zero while the cumulative price
change is potentially non-zero. For these very short time periods, the riskless rate is
essentially zero so the Martingale assumption is plausible.  In implementing these
symmetry conditions it is convenient (but not necessary) to choose the zero price change
state as the omitted state for purposes of estimation.  Clearly this restriction reduces the
number of parameters to be estimated by half.  If this restriction is valid there are
potentially large gains in efficiency by imposing them.

The intuition surrounding the symmetric response restrictions still holds for the
logistic model.  In particular, the log odds is parameterized as response symmetric when
the logistic link function is used rather than the probabilities themselves as in the linear
probability model.  While the Theorem above is only proven for the linear ACM model,
simulations as well as our intuition suggest that similar results hold for the logistic link
function.  The non-linearities associated with the logistic link function, however, greatly
complicate the proof.  These more complicated scenarios are currently being pursued.

A final model restriction that we consider in this paper is diagonal matrix
specification for Cj.  In this case, shocks to the log odds decay at a geometric rate
determined by the diagonal elements of the Cj matrices.  Thus the impact of new
information is generously specified while the long run decay is more parsimoniously
formulated.

4.  A closer look at the ACM model with duration dependence.

Section 2 developed a flexible framework for modeling the dynamics of discrete
price changes conditional on the filtration of price changes and the past distribution of
price changes and Z.  We now return to the  joint distribution of arrival times and price
changes.  Following (1) we consider the joint distribution as the product of the marginal
distribution of durations and the distribution of price changes conditional on not only the
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filtration of arrival times and the historic distribution, but also on the contemporaneous
duration.

Equation (1) can be viewed as a competing risks model.  Classic multiple failure
time data with competing risks models used in the analysis of unemployment spells,
strikes, or medical studies generally consist of large cross section and short time series
dimensions.  The joint model of arrival times and discrete price changes developed in this
paper is a competing risk model for time series data.

The hazard function characterizes the instantaneous probability of exiting to state k
at time τ+− 1it  conditional on the ith transaction not having occurred by time τ+− 1it .
Expressed as a function of the duration τ, the hazard function for state k can as follows:

(19)  ( ) ( )
dt

ITkYdt
I i

dt
ik

1

0
1

,|,Pr
lim −

→
−

>=+<Τ≤= ττττθ

 

 So for small dt, ( )θ τk iI − 1 dt is the probability the ith transaction is at price k and occurs

by time τ+dt given survival to time τ.  Let ~π i  denote the full K dimensional vector where
the kth element is the conditional probability that the kth state is realized.  That is, if the Kth

state was omitted then.

(20) ( ) ( )
( )

~π τ
π τ

π τ≡ − ′






i

i1 1
 where 1 is a (K-1) vector of ones.  Noting that the conditional probability that the ith event
has not occurred by time  τ+− 1it  is obtained from the marginal distribution of τ  the K
dimensional vector of transition intensities can be expressed as:
(21) ( ) ( ) ( )θ τ τ π τ| ~I h Ii i i− −=1 1
 
 where

(22) ( ) ( )
( )dsIsq

Iq
Ih

i

i
i

∫ −

−
−

−
= τ

ττ

0
1

1
1

1
 .

 ( )1−iIh τ  is the hazard function5 that characterizes the waiting times and q is given in (2).
Loosely speaking, ( )h I iτ − 1  describes the conditional arrival rate of traders.  When the
hazard function is determined by the ACD specification of Engle and Russell (1998) we
refer to this model as an ACM(p,q,r)-ACD(s,t).
 The transition intensities in (21) provide an interesting perspective of the
relationship between the traditional distribution of price changes measured in calendar
time and transaction rates.  First, suppose that the price changes were i.i.d.  Then roughly
speaking the volatility as measured in calendar time would be proportional to the number
of transactions that occurred in that time interval which is proportional to the transaction
rate.  Hence even if time didn’t affect the distribution of price changes from transaction to

                                                       
 
 5 See Kalbfleish and Prentice or, more recently, Lancaster for references on duration models.
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transaction we would expect classical calendar time measures of volatility to be positively
related to the trading frequency as observed in empirical studies such as Jones, Kaul and
Lipson (1994) or McInish and Wood (1991).
 A primary feature of this paper, however, is that the distribution of price changes
from transaction to transaction is not likely to be i.i.d., but rather depends on, among
other things, the waiting time between transactions as (21) suggests.  Hence, trading rates
have two potential impacts on the distribution of price changes as measured in calendar
time.  On the one hand the transaction price process evolves at a stochastic rate.  On the
other, the arrival rate of traders has an impact on the transaction by transaction
distribution of prices.  The proposed model captures both features.

 Engle and Russell (1998) show that the ACD model is in the class of accelerated
failure time models.  In particular, if λ0  is the baseline hazard then the hazard function can
be expressed as:

(23) ( )h Ii
i i

τ ψ λ τ
ψ− =







1 0

1

 The arrival rate of traders as characterized by the expected ith waiting time ψ i affect time
flow in two ways.  The rate at which time progresses through the baseline hazard varies
with the inverse of ψ i.  Additionally, the level of the baseline hazard is inversely related to
ψ i.  If the arrival rate of traders controls the flow of time then it would be reasonable that
π  depends not only on τ but also on ψ i as in6:

(24) ( )θ τ ψ λ τ
ψ π τ

ψIi
i i

i
i

− =














1 0

1 ~

 Now, the flow of calendar time is proportional to the arrival rate of traders.
 To examine various relationships between the price distribution and arrival rates
define ∆ p  and ∆ p2 , be K dimensional vectors with kth elements given by the price change
if state k occurs and the square of that price change if state k occurs respectively.  Then
the expectation of the transaction price change at time ti− +1 τ  over the next instant (the
instantaneous conditional mean) is given by
(25) ( ) ( ) ( )µ π τ τt p h Ii i= ′ −∆ 1

 where t ti= +− 1 τ
 Similarly, the instantaneous expected volatility is given by

(26) ( ) ( ) ( )σ π τ τ2 2
1t p h Ii i= ′

−∆
 The unconditional mean and squared transaction price change over the ith duration
can be obtained by integrating τ  out of (25) and (26) respectively:

                                                       
 6 Since most  link functions introduce a nonlinear relationship between probabilities and the conditioning
variables the exact form of the dependence of the probabilities on ψ  in (24) may be difficult to impose.
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(27) ( ) ( )µ πi i ip s z s I ds= ′ −

∞

∫∆ 1
0

(28) ( ) ( )σ πi i ip s z s I ds2 2
1

0
= ′

∫ −
∞

∆ .

 The relationship between prices and trading rates can be examined over more than
one transaction but calendar time results (such as volatility per unit time) will in general
require simulations.
 
 
 5.  The IBM Transaction Data
 
 
 This section of the paper applies the ACM model to transaction data for IBM.
The data were extracted from the Trades Orders Reports and Quotes (TORQ) data set
constructed by J. Hasbrouck and the NYSE.  58,944 transactions were recorded for IBM
over the 3 months of trading on the consolidated market from November 1990 through
January 1991.  The average transaction price for the sample is $111.04 with a standard
deviation of $2.80.  A histogram of the transaction price changes is presented in figure 1.
We see that 69% of the transaction prices are unchanged from their previous value.  The
distribution is relatively symmetric with 14.0% and 14.2% up one tick and down one tick
respectively.  Up and down two ticks occurred with almost identical frequency at 1.0%.
Up and down by more than two ticks occurred with frequency 0.3% and 0.4%
respectively.

 Of the 58,944 transactions there are only 53,857 unique times.  Of the transactions
occurring at non-unique trading times, 87% corresponded to a zero price movement.  This
suggests that these transactions may reflect large orders that were broken up into smaller
pieces.  It is not clear that each piece should be considered a separate order, hence the
zero second durations were considered to be a single transaction and were deleted from
the data set.  In the case where the prices differ, the transaction price for that time is taken
as the first transaction price observed in the sequence of zeros.

 Following Engle and Russell (1998) the first half hour of the trading day is
omitted.  This is to avoid modeling the opening of the market which is characterized by a
call auction followed by heavy activity.  The dynamics are likely to be quite different over
this period.  The entire first half hour is deleted since the opening auction transactions are
not recorded at the same time each morning.

 Finally, the data set has 46,047 remaining observations with 64.3% corresponding
to zero price movement and 15.8% corresponding to 1 tick and down and one tick up
each.  Finally, up 2 ticks and down 2 ticks correspond to frequencies 1.3% and 1.4 %
respectively.  All other price movements greater than 2 ticks have a combined frequency
of 1.4%.
 In order to keep the number of parameters manageable and to avoid problems of
data sparseness we choose a five state model.  Following the discussion of response
symmetric matrices our model will be identified by normalizing with respect to the zero
price change.  The state vector is defined as follows:
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(29) 

[ ]
[ ]
[ ]
[ ]
[ ]

xi =

′

′ ≤
′

′ ≤
′

















1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

, , ,

, , ,

, , ,

, , ,

, , ,

 if p < -.125 

 if -.125 p < 0

 if p = 0

 if 0 < p .125

 if p >.125

 

i

i

i

i

i

∆

∆

∆

∆

∆
 Hence state 1 occurs if the transaction price changes by more than one tick down.  State 2
occurs if the price moves by just one tick down.  State 3 occurs for a zero price move and
states 4 and 5 occur when the price increases by 1 tick and more than one tick
respectively.

 A natural measure of intertemporal dependence is based on the intertemporal cross
correlations of the vector xi.  In order to present the (cross) correlation structure in  a user
friendly way we adopt a method proposed by Tiao and Box(1981).  The intertemporal
cross correlations are presented in matrix form with the numbers replaced by the symbols
“+”, “-“, and “⋅”.  A dot indicates that the (cross) correlation is not significant at the 1%
level.  A plus and minus indicate a positive and negative significant (cross) correlation
respectively.  The 99% confidence intervals7 are calculated using the approximation of
2.58*n-1/2.

 Denoting the sample mean of xi by x , the mth sample cross correlation matrix is
calculated by

(30) ( )( )
Ρm m

m i i m
i m

N

R R

R
N m

x x x x

=

= − + − − ′∑

−

−
= +

0
1

1

1
1

where      
( )

 Figure 2 presents the Box Tiao representation for lags 1 through 15.  The r,s element of
the mth matrix gives the correlation of state r with state s lagged m periods.  The sample
cross correlations for m=1 are easily interpreted in the context of bid ask bounce.  The
upper right and lower left quadrants represent price reversals.  The positive signs are
reflective of bid ask bounce.  The upper left quadrant and lower right quadrant correspond
to price continuations.  For example, the (1,4) element suggests that the probability of
moving down two ticks (state 1) is positively correlated with the event up two ticks last
period (state 4).  Examining row 2 we find that the probability of moving down 1 tick
(state 2) is negatively correlated with the event down 1 last period (suggested by the (2,2)
element) and positively correlated with the events up 1 last period and up 2 last period
(suggested by the (2,3) and (2,4) elements respectively).
 Moving to lags beyond the first we see the 4 plus signs in the center of the matrix
suggest that states 2 and 4 (corresponding to down 1 and up 1 tick respectively) are not
correlated with past occurrence of the 2 tick price movements but are correlated with each
other.  This is indicative of the bid ask bounce as the price “bounces” back and forth
between buy and sell orders for many transactions at a time.

                                                       
 7 Due to the very large number of observations we use a 99% confidence level.
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 Finally, only the diagonal elements and the elements corresponding to the
correlation between the two extreme states of up and down 2 remain positive and
significant out through lag 15.  The extreme states appear to exhibit the strongest
intertemporal correlation since they are significant (and positive) for every lag.  This raises
the intuitively appealing possibility that it is the occurrence of the extreme states that carry
the most information about the future of the price distribution.
 Finally, we notice a particular symmetry in the correlations.  For many of the
correlations, the signs of the correlation reflected through the origin are the same.  This is
exactly what we would expect to see if the symmetry restrictions suggested in section 3
are correct.
 
 
 6.   Model Estimates for IBM Transaction Price Data
 
 
 In this section we estimate various ACM models using a logistic link function.
There are several reasons that we chose the logistic link function over other possibilities.
Russell (1996) found that the linear ACM model suggested in (11) does not satisfy the
conditions stated in Lemma 1 that ensure all the probabilities lie between zero and one.
The logistic model will ensure that all probabilities lie in [0,1].  Also, the logistic ACM
model has the nice interpretation that the log odds follows an ARMA type structure.
 Choosing the logistic link model is only the first step.  It is clear that a very rich
class of models are given in (6).  Furthermore, the models are estimated using numerical
maximization techniques of the likelihood function which can be time consuming for the
large sample sizes and potentially large numbers of parameters to be estimated.  Hence we
choose simple to general model selection procedure. Initially we restrict our attention to
“pure” ACM(p,q,r) model, that is, models that only depend on the history of the price
process.  Later we consider the affects of the contemporaneous duration and then other
predetermined variables such as volume and spreads.  Hence we begin by estimating
models of the form

(31) ( ) ( ) ( )h A V x B x C hi i j i j
j

p
i j i j j i j

j

q
j i j

j

r
π µ π π= + ∑ − + ∑ + ∑−

=
− − −

=
−

=

− 1
2

1 1 1
.

 Here, Vi is the (K-1)x(K-1) diagonal matrix with the (k,k) element given by the kth element

of ( )diag i iπ π1 − ′



 .  Initially we set p=q=r=2.  We maintain the 5 state model of up 2 or

more ticks, up 1 tick, no change, down 1 tick and down 2 or more ticks.  The state vector
is defined by (29) and we implement the symmetry conditions discussed in section 3.
Hence the model is identified by normalizing the log odds of the zero price change to unity
and omitting that state.  Imposing the symmetric response restrictions discussed in section
3 and restricting the matrix C to be diagonal yields the following structures:
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The dynamic structure of the data associated with two consecutive trades from the
closing transaction one evening to the opening transaction the next morning is unlikely to
be the same as the dynamic structure associated with two consecutive trades within the
same day.  Hence, we reinitialize variables to their unconditional means at the beginning of
each day.  Furthermore, as in Engle and Russell (1998) we omit the opening trades since
they are not generated by the same trading mechanism.  This is done by omitting the first
half hour of recorded trades each morning from 9:30 to 10:00.

The models are estimated by maximum likelihood using the Berndt, Hall, Hall and
Hausman (1974) (BHHH) algorithm.  Numerical derivatives are necessary because the
analytic expression for the scores is defined recursively as function of past partial
derivatives similar to the GARCH class of models for volatility studied by Bollerslev
(1985).

6.1  Parameter Estimates for the simple ACM(p,q,r) model

In the interest of saving space parameter estimates for only selected models will be
presented.  We first estimate an ACM(2,2,2) model. Since the dimension of h and x is
equal to the number of states less one the coefficient matrices A, B, and C are 4x4.  ω  is a
vector with dimension 4.   The symmetry condition implies that we only need to estimate
(K-1)/2+(p+q+r)(K)(K-1)/2.  With K=5 and p=q=r=2 this corresponds to 62 parameters.
Imposing the diagonal restriction on Cj suggested in section 3 the number of parameters to
be estimated is reduced to 46.

The LM test for an additional lag of each term yields a test statistic of 70.53.  The
test statistic is calculated by taking the R2 from the first iteration of the BHHH algorithm
with the initial values of the parameters set to the maximum likelihood estimates of the
restricted model8.  Due to the very large sample size we use a 1% critical value.  With 22
degrees of freedom the 1% critical value is 40.29 hence the null hypothesis is easily
rejected in favor increasing the order of the model.

The LM test associated with the null of an ACM(3,3,3) against the alternative of
an ACM(4,4,4) is not rejected.  The test statistic is 20.72 with a corresponding p-value of
about 40%.  We present the estimated parameters of the ACM(3,3,3) model in table 1.  In
the interest of saving space only the upper half of the matrices are presented.

States 1 and 5 are the extreme states of down and up two ticks or more
respectively.  States 2 and 4 correspond to down one and up one tick respectively.
Generally all the parameters are significant at the 5% level with only a few parameters
corresponding to states 2 and 4 not significant.

As a further diagnostic check, we turn our attention to the K dimensional vector of
residuals defined by

                                                       
8 See Berndt, Hall, Hall, and Hausman (1974) for a more complete description.



14

(33) iii xv π̂* −=
 where iπ̂ denotes the estimated conditional expectation of xi.

 Standardized residuals are then obtained by pre-multiplying xi by the Cholesky
factorization of the conditional variance covariance matrix associated with xi :

(34) IUVUvUv iiiiii ==   where*
 i tat time  ofmatrix  covariance  variancelconditiona  theis ii xV  given by (4).
 Correct specification and true parameter values imply that
(35) ( )E v Ii i − =1 0  and ( )E v v Ii i i′ =− 1 I

 The sample cross correlations associated with the standardized residuals are calculated by

(36) P
N m

v vm i i m
i m

N
= − + ′∑ −

= +

1
1 1( )

        

 The cross correlations are presented in figure 4.  The first and second order cross
correlations still have several significant elements.  A formal test of the null hypothesis that
the elements of the standardized vector are white noise can be done with a multivariate
version of the Portmanteau statistic. Li and McLeod (1981) propose a test based on the
statistic

(37) ( )Q N Trace P Pm m
m

M
= ′∑

=1

The test statistic has a χ 2  distribution with (K-1)2*M degrees of freedom.
The test statistic based on the first 15 sample cross correlations is 423.0.  The 1% critical
value is 293.1 so the null is rejected9.  The Q-statistic based on the original series,
however is 23324.5.  So while the test suggests remaining intertemporal correlation the
model has accounted for a great deal of the intertemporal correlation.  Additional lags do
not significantly improve the statistic.

Figure 3 is a Tiao Box plot for the cross correlations of the standardized residuals.
The long sets of positive cross correlations are not apparent in this series. Furthermore,
the vast majority of the correlation matrices contain no significant correlations.  We see
that for the first two lags there are 5 significant correlations suggesting we might consider
a more elaborate model.  Rather than pursue further dynamic lag structures investigate
modeling strategies that allow the contemporaneous duration to affect the conditional
distribution of price changes.

6.2  Parameter Estimates for Models with Duration Dependent Probabilities.

                                                       
9 We are concerned about the validity of this test statistic.  In particular, since the conditional probabilities
of the extreme states (up and down 2 or more ticks) are frequently very small (on the order of 10-5) the
standardization by premultiplying by the inverse of the cholesky factor may be problematic.  In the
univariate case it would be as if we were dividing  a number that is occasionally 1 but often near zero by
(roughly) the square root of 10-5.   This test statistic or perhaps another one that is better suited is the
subject of current research.
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In this section we expand the simple ACM(p,q,r) model to allow for duration
dependence.  We allow durations to enter both in terms of the realized duration and the
expectation of the duration.  We use the ACM(3,3,3) specification discussed in the
previous section and add several variables.  We allow the contemporaneous duration and
the expected duration obtained from the ACD model to enter linearly into the log odds
specification of (6).   Additionally, we put in the expected duration as a measure of the
current market activity as well as the logarithm of the ratio of the duration and the
expected duration.  Since we are using a logistic link function, any variable entering in the
logarithm implies a relationship between the percent change in that variable and the
percent change in the log odds.

(38) 
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where τ i  is the waiting time associated with the ith transaction.  That is, τ i=ti-ti-1.  ψ i is the
conditional expectation of the ith waiting time.  Given the success in Engle and Russell
(1998) we model this conditional expectation with the exponential ACD(2,2) model
expressed as

(39) ( )ψ τ ω α τ α τ β ψ β ψi i i i i i iE t t= = + + + +− − − − − −| , ...,1 2 1 1 2 2 1 1 2 2

The parameter vectors g1, g2, g3, and g4 are restricted to be symmetric in the sense of
definition 1 stated above.  Since we don’t have any reason to suspect that the
contemporaneous duration or its expectation should have an asymmetric impact on the
distribution of price changes, this symmetry restriction appears to be a reasonable starting
point.

The expected contemporaneous duration enters the conditional likelihood of the
transaction price changes so the durations cannot be considered weakly exogenous in the
sense of Engle Hendry and Richard (1987).  Hence we efficiently estimate by maximum
likelihood using the joint distribution of price changes and arrival times.  The durations are
first deseasonalized using a two step procedure suggested in Engle and Russell (1995).
After the deseasonalization, the durations have an unconditional expectation of unity.

In the interest of saving space, we only present the estimated parameters for the
duration and expected duration terms in table 2.   An LM test for the addition of these
variables strongly rejects the null of the ACM(3,3,3) in favor of this expanded model.  The
test statistic is 156.4 with a critical value of 20.9.  The economic impact appears to be
small given the level of the estimates.

To get a better understanding of the impact of these variables on the conditional
distribution of price changes, we set all the explanatory variables equal to their sample
means and plot the conditional distribution of price changes as a function of the realized
duration in figure 4 and the expected duration in figure 5.  The probability is on the
vertical axis and the normalized duration is on the horizontal axis.  The normalized
durations should be interpreted as the fraction above or below the mean duration by time
of day.  The realized duration appears to have only a slight impact on the price
distribution.  We see that very short durations suggest relatively smaller probabilities of 1
tick price moves.  Although it is difficult to see in the graph, the probabilities associated
with two tick moves are slowly falling a total of 10% as the duration ranges from .25 to 5.
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The expected duration, however, has a very noticeable impact on the price distribution.
Very rapid transaction rates (short expected durations) are associated with a higher
probabilities of price movements.  This is obvious in the one tick probabilities and the two
tick probabilities increase by 8.6% as the expected duration ranges from .25 to 5.

Figure 6 plots the expected squared price change associated with the distributions
in the previous plots. The normalized durations take on a larger range of values in sample
than do their expectation so the scaling on these plots are not the same.  The volatility
plotted against the realized duration is a concave function.  Very short and very long
durations imply smaller volatility.  Short durations may be associated with large trades that
have been broken up into smaller pieces and perhaps should not be considered as separate
transactions.

Figure 7 is a plot of volatility versus the expected duration.  We see that volatility
is a monotonically decreasing function of the expected duration.  A slower market is
associated with lower volatility all else equal.  This is very much in agreement with
predictions from Easley and O’Hara (1992) who suggest that more frequent transaction
rates are due to a larger fraction of informed traders.  In a rational expectations
environment the specialist knows this and will make prices more sensitive to order flow
when transactions are frequent.

7.  Models with Other Weakly Exogenous Variables and an Impulse Response
Study

At the heart of modern theoretical market microstructure is the question of how
new information is incorporated into asset prices.  If all relevant information were publicly
available and all agents agreed on the impact this information should have on the price
then prices would adjust immediately to any new information.  On the other hand, if not all
agents have equal access to the information, or disagree about the impact of the
information then information may not have a full and immediate impact.  In a rational
expectations setting with better informed agents trading strategically the specialist or other
traders may learn by observing trading characteristics of the transaction process.  Models
by Easley and O’Hara (1987) suggest that better informed agents should trade larger
volume so as to capitalize on short lived information.  Easley and O’Hara (1992) suggest
that the timing of transactions should also influence the price process.  More traders
implies a higher ratio of privately informed traders in the market hence prices should
adjust more quickly when transaction rates are high.  Numerous other studies suggest that
the specialist will widen the spread if informed trading is likely, hence wide spreads may be
correlated with more rapid price adjustment10.

Empirical investigation of these theories can be carried out by including variables
such as the spread and volume in the ACM model.  One way of doing this is to include
weakly exogenous variables in the form of predetermined variables.  Hence we now
consider a model that includes lagged volume and spreads.  A simple model might include
these lagged variables linearly in the log odds specification just as was done for the
duration variables in the previous section as in:

                                                       
10 See O’Hara 1995 for a very good summary of theoretical microstructure models.
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where ln(vol) is logged volume, spd is the spread calculated as the percent difference
between the bid and the ask price, and ψ  is the conditional expectation of the duration as
defined in (39). Vi-1 is the diagonal matrix of conditional variances as defined for (31) and
g5 and g6 are response symmetric parameter vectors.  The response symmetric restriction
seems reasonable since we have little reason to expect that large spreads, volume or arrival
rates should affect the probability of an up tick differently from the probability of a down
tick11.

This linear specification is simple and we might expect that we need a richer
specification.  For example, a large (two tick) price movement with large volume may
have a different affect on the conditional distribution of the next price change than large
volume with a small (1 or zero tick) price movement.  Similarly, we might think the impact
of a price movement on the subsequent conditional distribution of price changes might
depend on the spread, or on the transaction rate12.  One way of allowing for these
possibilities is to interact the volume, spread, and expected duration with the state vector.
Another intuitively appealing possibility is to interact these variables with the residual

( )V xi j i j
−

− −−1 2 π .  This way, the marginal impact of the “surprise” on the log odds will

be a linear function of the spread, (logged) volume, and the expected duration.  We
restrict the parameter matrix for these vectors to be response symmetric13.   In summary,
we estimate the following ACM model:
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The LM test for the addition of the interacted terms and the linear volume and
spread strongly rejects the null of the model presented in section 6.2.  The test statistic is
206 with 28 degrees of freedom and a p-value of .0000.  The parameter estimates are
presented in table 3.  The coefficients on the non-interacted spreads are positive
suggesting that wider spreads, all else equal, increase the probability of non-zero price
movements.  The coefficient on the non-interacted volume is less intuitive suggesting that,

                                                       
11 Diamond and Verrecchia, 1987 suggest that short selling constraints could induce a negative
correlation between trading frequency and price movements.  This is beyond the scope of this paper
however.
12 The microstructure models mentioned above, for example,  suggest that larger spreads, larger volume
transacted should be correlated with informed trading. In a rational expectations setting,  the specialist
will make price movements more sensitive to order flow when volume, spreads, or transaction rates are
higher.
13 It is important at this point to recall that the symmetric response does not imply that the marginal
impact of , for example, up one tick in large volume to be the same for states 1 and 5 and 2 and 4.  Rather
it restricts the marginal impact of, for example, a large volume 2 tick up price movement on the
probability of a subsequent down 1 tick to be the same as the marginal impact of a large volume 2 tick
down price on the probability of a subsequent up 1 tick.
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all else equal, large lagged volume decreases the probability of a price movement.  Of
course this is just examining the marginal impact of the linear component of logged
volume and spreads.  To get a more complete picture we have to consider both the linear
component as well as the interacted terms.

Before considering the full picture it is interesting to note how the probability of a
price reversal is affected by the interacted terms.  For each matrix G, gi,1 and gi,2 for i=1,2
gives the marginal impact of the interacted term on the probability of a price continuation.
gi,3, and gi,4 denote the marginal impact of the interacted term on the probability of a price
reversal.  With the exception of a single insignificant parameter we find that shorter
durations, larger volume, and wider spreads all decrease the conditional probability of a
price reversal.  This suggests that the price change is more likely to be permanent when
transaction rates are high, spreads are wide, or volume is large.  Of course this affect is
only on the one step conditional distribution.  To examine the long run or permanent
impact we would need to consider multiple step forecasts. Analytical solutions to the
impulse response functions are not available so we now consider a simple simulation
study.

While it is feasible to construct forecasts of the entire price distribution we restrict
our attention to the conditional mean here.  In particular, we are interested in examining
the expected cumulative price change following a particular sequence of price movements.
Here we consider the sequence of price movements down 1 tick followed by another
down 1 tick.  We examine how volume, spreads, and transaction rates impact the long run
expected cumulative price change of these initial two price movements.

To this end, we consider simulations where the expected duration, the spread, and
the logged volume are all set to their median values.  Four simulations are run.  The first
considers the long run impact of two consecutive down ticks when all variables are set to
their median values.  Simulations are then run setting each variable, one at a time, equal to
its 90th percentile value for the 2 consecutive down ticks only and then back to the median
value.  Hence the 90th percentile values are only used for the two consecutive down ticks,
not for the subsequent steps in the simulation.  For the initial conditions of h() and x we
use the in sample values.  Since we have 46,047 observations we use 46,047 iterations for
each of the four simulations.

Figure 8 presents the expected cumulative price change for all four simulations.
The first two price changes are always two consecutive down ticks (12.5 cents each) for a
total of –25 cents.  The price changes appear to stabilize quickly so we consider the
cumulative price change after 50 transactions to be the long run impact.  The long run
price impact when spreads, volume, and durations are all set to their median values is just
under 15 cents.  That is the entire first tick is expected to be permanent and about 15
percent of the second price move is expected to be permanent.  The long run price impact
for the high transaction rate and wide spreads are slightly larger.  For the large volume
simulation we see that over 40 percent of the second price move is permanent in
expectation.

A more convenient way to examine the results is to look at how the expected
cumulative sums for the 90th percentiles differ from the cumulative sums for the median
simulation.  These results are presented in figure 9.  We see that two consecutive down
ticks when the spread is wide or transaction rates has a larger expected permanent impact
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decreasing the price by .85 and .7 of a cent more respectively.   90th percentile volume has
the largest expected permanent impact on the price which is 3 cents greater than the
impact when all variables are set to their median values.

These simulations suggest that spreads, volume, and transaction rates can all affect
the expectation of the permanent impact of a price movement.  Large volume, however,
has a greater impact on the expectation of the permanent impact of a price movement than
large spreads or high transaction rates.  Future research might consider how robust these
results are to different transaction sequences as well as different parameterizations and
perhaps various quantiles.

8.  Conclusion

This paper views financial transactions data from the context of a marked point
process.  That is, traders arrive at irregular time intervals.  The time of each trade has
several characteristics such as volume, spreads, or transaction prices.  A model is
proposed for the joint distribution of arrival times and prices conditional the filtration of
arrival times, prices, and potentially other weakly exogenous variables.

The majority of the price changes fall on just 5 values so discreteness is a dominant
feature of the data.  Decomposing the joint likelihood of arrival times into the product of
the conditional distribution of price changes given arrival times and the marginal
distribution of arrival times we propose a new model for discrete valued time series data.
The model admits a rich dynamic structure which is necessary for the financial transactions
data analyzed.  The model can be viewed in the context of generalized linear models with
an ARMA type structure.

Symmetry restrictions are suggested that greatly reduces the number of parameters
to be estimated and give the model some intuitive properties; namely forecast distribution
converges to a symmetric distribution as the forecast horizon becomes large.  These
results are rigorously proved for the linear ACM model while simulations and our intuition
suggest these results must also hold for the nonlinear logistic models estimated here.  We
continue to pursue these results identity as well as the asymptotic properties of the
estimator for link functions other than the identity link.

Maximum likelihood estimates given for several models for IBM transactions data.
A simple ACM(3,3,3) model suffices based on LM tests.  More interestingly, models for
the joint distribution of arrival times and price changes suggest that the transaction price
variance is small for the shortest and longest durations between trades.  We also find that
the variance of the transaction price is negatively related to the expected waiting time.
This is consistent with predictions from Easley and O’Hara (1992) where active markets
are indicative of a larger than normal fraction of informed traders.

A model that includes volume and spreads is also considered.  We find that the
probability of price moves increases as the spread widens.  Simulations suggest that the
full affect of a transaction is not realized for many trades.  As an example we ask “What is
the long run impact of two consecutive transactions that move the price down one tick
each?”  We find that while spreads, and trading rates can affect the expected long run
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impact volume appears to be the most important. We view these simulation results as a
possible starting point for more robust studies.
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Appendix
Proof of lemma 1:  All probabilities will be non-negative under condition a) since they will
be the sum of three non-negative terms.  The omitted state will have positive probability if
the sum of the π  in (11) is less than unity.  This also insures that each element of π  is less
than unity.  The column with the greatest sum gives the maximum that Ax can be.  The
weighted average of the columns of C-A will be less than the maximum column.  If these
two numbers plus the sum of µ  is less than 1 this is sufficient that the probability of the
omitted state is non-negative.

Proof of Theorem 1
We have the linear ACM(1,1,1) model defined as:
(*) ( ) µπππ +++−= −−−− 1111 iiiii CBxxA
For the K state system let the (K-1) dimension vector ( )π = E x .  Then taking
expectations on both sides of equation (*) and rearranging terms yields
(1’) ( ) µπ =+− )( CBI
Premultiplying both sides of (1’) by Q yields
(2’) ( ) µπ Q)(IQ =+− CB
It is easily verified that if B and C are both response symmetric then (B+C) is response
symmetric.  Since (B+C) is response symmetric and µ  is symmetric
(3’) ( ) µπ =+− Q)(I CB
follows from (2’).
Since ( ))( CBI +−  is of full rank equations (1’) and (3’) imply that Qπ π= .
Hence, π  is symmetric.

If all the eigenvalues of (B+C) lie in the unit circle then the usual dynamic analysis implies
that

( ) µππ 1)(lim −
+∞→

+−=→ CBIkik

QED
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Table 1: Parameter estimates for ACM(3,3,3)-ACD(2,2) model

State 1&5 State 2&4 State 1&5 State 2&4
µ 1 -0.04086

(-4.59)
µ 2 -0.09232

(-4.40)
α 11 -2.2074

(-8.62)
α 21 -1.93178

(-10.80)
β 11 0.418793

(10.32)
β 21 0.111428

(3.06)
A1 α 12 -1.76827

(-8.50)
α 22 -2.24194

(-22.04)
B1 β  12 0.394214

(6.73)
β  22 0.303763

(8.18)
α 13 2.216657

(17.18)
α 23 3.08897

(46.33)
β  13 0.010252

(0.32)
β  23 -0.44707

(-19.98)
α 14 3.557097

(19.17)
α 24 2.122032

(15.15)
β  14 0.250657

(10.75)
β  24 0.019691

(0.88)
α 11 1.897501

(4.17)
α 21 1.06814

(3.19)
β  11 -0.68123

(-9.97)
β  21 -0.18547

(-3.34)
A2 α 12 0.77655

(2.13)
α 22 1.083212

(3.96)
B2 β  12 -0.3261

(-3.21)
β  22 -0.17269

(-2.62)
α 13 -1.98998

(-8.60)
α 23 -2.40172

(-9.56)
β  13 -0.15693

(-2.90)
β  23 0.399623

(8.72)
α 14 -3.61868

(-12.54)
α 24 -1.35097

-5.93)
β  14 -0.31318

(-6.51)
β  24 -0.01818

(-0.54)
α 11 0.29167

(1.08)
α 21 0.465187

(2.50)
β  11 0.273505

(7.56)
β  21 0.074599

(3.01)
A3 α 12 0.916703

(4.37)
α 22 0.71281

(3.70)
B3 β  12 -0.0405

(-0.77)
β  22 -0.0657

(-1.76)
α 13 -0.19488

(1.16)
α 23 -0.16672

(-0.85)
β  13 0.159475

(4.68)
β  23 -0.02221

(-0.70)
α 14 0.203016

(1.06)
α 24 -0.3136

(-2.23)
β  14 0.07612

(2.26)
β  24 0.002392

(0.14)
C1 χ11 1.647887

(26.14)
χ  22 1.453127

(16.56)
C2 χ  11 -0.66094

(-6.80)
χ  22 -0.38867

(-2.82)
C3 χ  11 0.002585

(.066)
χ  22 -0.11071

(-1.84)
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Table 2: Parameter Estimates for ACM(3,3,3)-ACD(2,2) with Duration Dependence
(Only the Duration parameters entering the ACM model and ACD parameters are presented here)

ACM Duration Parameters ACD(2,2) Parameters

Variable state 1 and 5 state 2 and 4 Parameter Estimate
Log(τ i) -0.02473

(-3.634)
0.11942
(2.04)

ω 0.002322
(5.69)

τ i -0.00964
(-1.67)

-0.01917
(-1.67)

α 1 0.08963
(21.98)

Log(τ i/ψ i) 0.023822
(2.84)

0.10008
(1.68)

α 2 -0.06416
(-15.92)

ψ i 0.023775
(2.54)

-0.14384
(-2.45)

β 1 1.46603
(23.41)

β 2 -0.493341
(-8.40)
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Table 3:  Parameter Estimates for ACM(3,3,3)-ACD(2,2) with Duration
Dependence, Volume and Spreads*

State 1&5 State 2&4 State 1&5 State 2&4
µ 1 -1.80653

(-6.66)
µ 2 -0.46063

(-4.51)
α 11 -1.70949

(-5.55)
α 21 -1.84436

(-7.65)
β11 -0.0167

(-.11)
β21 0.085262

(.85)

A1 α 12 -1.77127
(-6.36)

α 22 -2.00716
(17.45)

B1 β  12 -0.27813
(-1.54)

β  22 -0.07619
(-.86)

α 13 1.559506
(11.03)

α 23 2.17318
(30.04)

β  13 0.659049
(8.31)

β  23 0.313396
(6.91)

α 14 3.556916
(17.71)

α 24 1.785919
(12.28)

β  14 0.464961
(7.65)

β  24 0.197755
(2.98)

α 11 -1.09218
(-4.25)

α 21 -0.94197
(-6.43)

β  11 -0.07464
(-1.93)

β  21 -0.0414
(-1.96)

A2 α 12 -1.08803
(-4.88)

α 22 -1.06685
(-10.01)

B2 β  12 0.137849
(2.09)

β  22 0.102307
(3.29)

α 13 0.329903
(1.72)

α 23 0.880543
(9.33)

β  13 0.027287
(.49)

β  23 0.003749
(.14)

α 14 1.404484
(5.01)

α 24 1.261819
(9.86)

β  14 -0.08102
(-2.38)

β  24 0.019464
(1.14)

α 11 0.29725
(1.37)

α 21 -0.02613
(-.22)

β  11 -0.09089
(-2.87)

β  21 -0.06459
(-3.62)

A3 α 12 -0.18437
(-.97)

α 22 -0.10285
(-1.06)

B3 β  12 0.077485
(1.42)

β  22 -0.02559
(-.92)

α 13 0.089902
(.53)

α 23 0.315516
(3.89)

β  13 -0.00507
(-.10)

β  23 0.012738
(.53)

α 14 0.379977
(1.66)

α 24 0.270749
(2.40)

β  14 -0.0055
(-.16)

β  24 0.009082
(.50)

γ11 -0.09719
(-1.18)

γ21 -0.13817
(-2.36)

C1 χ11 0.354822
(.35)

χ  22 0.151845
(5.62)

Gdur γ12 0.096407
(1.60)

γ22 -0.19138
(-5.29) 2C χ  11 0.122868

(.12)
χ  22 0.120893

(4.58)
γ13 0.148172

(4.35)
γ23 0.038825

(2.06)
C3 χ  11 0.048712

(.04)
χ  22 0.045823

(2.18)
γ14 0.125698

(4.40)
γ24 0.136902

(4.41)
γ11 0.047691

(2.80)
γ21 0.012134

(.91)
g1 Log(τ i) -0.57092

(-5.03)
Log(τ i) 0.141683

(2.35)
Gvol γ12 0.087872

(4.19)
γ22 0.061953

(7.04)
g2 τ i 0.02548

(.89)
τ i -0.02125

(-1.81)
γ13 -0.08392

(-9.02
γ23 -0.07629

(-14.84)
g3 Log(τ i/ψ i) 0.722964

(6.08)
Log(τ i/ψ i) 0.101407

(1.64)
γ14 -0.04223

(-6.00)
γ24 -0.03458

(-4.41)
g4 ψ i 0.102405

(.82)
ψ i -0.23997

(-3.89)
γ11 0.045999

(.49)
γ21 0.127581

(1.68)
g5 Voli-1 -0.06329

(-3.57)
Voli-1 -0.06221

(-8.00)
Gspd γ12 0.016184

(.21)
γ22 0.223685

(5.33)
g6 Spdi 0.468306

(6.99)
Spdi 0.20852

(5.75)
γ13 -0.05747

(-1.23)
γ23 -0.04436

(-1.49)
γ14 -0.11685

(-3.31)
γ24 -0.08697

(-2.05)
( ) ( ) ( )

( ) ( )11
2/1

312111

16154321

3

1

3

1

3

2

2/1

)ln(

)ln(
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* The ACD(2,2) parameters are very similar to those presented in table 2 and are therefore not presented
here.
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Figure 1: Histogram of Transaction Prices
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Figure 2:  Box Tiao Representation of Sample Cross Correlations of x

R
N m

x x R Rm i i m
i m

N
m m= − + ′∑ =−

= +
−1

1 1
0

1
( )

        Ρ

m =     1                         2                         3                         4                          5

          

⋅ − + +
⋅ − + +
+ + − ⋅
+ + − ⋅



















+ − + +
⋅ + + ⋅
⋅ + + ⋅
+ ⋅ + +



















+ ⋅ ⋅ +
⋅ + + ⋅
⋅ + + ⋅
+ − + +



















+ − + +
⋅ + + ⋅
⋅ + + ⋅
+ + ⋅ +



















+ ⋅ ⋅ +
⋅ + + ⋅
⋅ + + ⋅
+ ⋅ + +



















+ ⋅ ⋅ +
⋅ + + ⋅
⋅ ⋅ + ⋅
+ + + +



















+ + − +
⋅ + + ⋅
⋅ + + ⋅
+ − + +



















+ + ⋅ +
⋅ + ⋅ ⋅
⋅ ⋅ + ⋅
+ + ⋅ +



















+ ⋅ + +
⋅ ⋅ ⋅ ⋅
⋅ + + ⋅
+ + ⋅ +



















+ + + +
⋅ +

           6                         7                         8                         9                          10

          
+ ⋅

⋅ ⋅ + ⋅
+ + + +



















+ + ⋅ +
⋅ ⋅ ⋅ ⋅
⋅ ⋅ + ⋅
+ ⋅ + +



















+ ⋅ + +
⋅ ⋅ + ⋅
⋅ ⋅ + ⋅
+ + ⋅ +



















+ + ⋅ +
⋅ + + ⋅
⋅ + ⋅ ⋅
+ ⋅ + +



















+ + + +
⋅ + ⋅ ⋅
⋅ ⋅ + ⋅
+ + ⋅ +
















           11                       12                       13                       14                        15

        



+ + − +
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
+ ⋅ + +



















  

Figure 3:  Box Tiao Representation of Sample Cross Correlations of Standardized
Residual Vector
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 Figure 4:  Distribution of Price Changes as a Function of Duration
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Figure 5.  Distribution of Price Changes as a Function of Expected Duration
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Figure 6.  Variance of Price Distribution as a Function of Duration
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Figure 7. Variance of Price Distribution as a Function of Expected Duration
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Figure 8.  Expected Cumulative Price Change following Two Sequential Down Ticks

Figure 9.  Expected Difference from Median Cumulative Price Change Following
Two Consecutive Down Ticks.
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