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Summary. We propose a single-index di�usion model in this paper. This

model can avoid the `curse of dimensionality' in estimating a multivariate

nonparametric conditional variance. We adopt an absolute deviation es-

timation method to estimate the model. Comparing with the commonly

used estimators, the absolute deviation estimator is more stable and ef-

�cient. Some simulations and applications to real data are reported.
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1. INTRODUCTION

Di�usion models, albeit commonly described in continuous time, has a long history

in stochastic processes (e.g. Doob, 1953). Recently, much attention has been paid to

the study of di�usion in �nancial time series. Di�usion may exhibit itself in many

di�erent ways. One commonly adopted approach is to focus on the conditional

variance. Its estimation may be considered either within the parametric framework
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as e.g. the ARCH model of Engle (1982) or the nonparametric framework as e.g. in

Masry and Tj�stheim (1995). Consider the nonparametric model

yi = �(xi) + �(xi)"i; (1.1)

where f(yi;xi)g is a two dimensional strictly stationary process having the same

marginal distribution as (y;x) and f"ig are i:i:d: random variables having the same

distribution as " with E" = 0; �(x) and �(x) (> 0) are unknown `drift' and `di�usion'

functions. If we take xi = yi�1, then (1.1) is a nonparametric generalization of the

ARCH model. We call it a drift-plus-di�usion model. There is much literature

concerning the estimation of �(x) (e.g. Tj�stheim, 1994 and the references therein).

Here we are interested in the nonparametric estimation of the di�usion function

�(x). Fan and Yao (1998) is a recent study in this area.

If we extend model (1.1) to the multivariate case, we encounter the problem

of the `curse of dimensionality'. Not surprisingly, the existing estimation methods

perform badly except in very low dimension. One approach to this problem is to

restrict the functional form of the di�usion functions. In order to select a suitable

form, we �rst take a look at the ARCH model of Engle (1982),

yi = �TZi + (c0 + TXi)
1=2"i; (1.2)

where Zi = (yi�1; � � � ;yi�p)T and Xi = (�2i�1; � � � ; �2i�q)T with �i = yi��TZi. Model

(1.2) is useful for many practical situations including those which motivated Engle

(op. cit.). To extend this model to a more exible form, we follow the single-indexing

idea (e.g. Ichimura, 1993) and propose a single-index drift-plus-di�usion model as

follows

yi = �(�TZi) + �(TXi)"i; (1.3)

where f(Xi; Zi; yi)g is a strictly stationary and strongly mixing sequence. If �(�) is
piecewise linear and �(TXi) = (c0 + c1

TXi)1=2 with Xi = (y2i�1; � � � ;y2i�q)T , then
(1.3) is the SETAR-ARCH model (Tong, p.116, 1990). Another obvious extension is

the additive model (e.g. Linton and H�ardle, 1997). However, we shall not investigate

the latter in this paper.

2



H�ardle et al. (1993) investigated the estimation of �(�) and � in model (1.3)

under an i:i:d: assumption. Their results can be extended to model (1.3). See Xia et

al. (1997) for more details. In this paper, we mainly concentrate on the estimation

of �(�) and . First, we consider the univariate case (1.1). If E"2 = 1, then the

usual estimate of �(x) is given by

�̂20(x) =

Pn
i=1Kn:h(xi � x)y2iPn
i=1Kn:h(xi � x)

� �̂2(x);

or

�̂22(x) =

Pn
i=1Kn:h(xi � x)(yi � �̂(xi))2Pn

i=1Kn:h(xi � x)
; (1.4)

where �̂(x) is a kernel estimator of �(x),K(�) is a kernel function, h is the bandwidth
and

Kn:h(xi � x) = Kh(xi � x)
nX

j=1

Kh(xj � x)(xj � x)2

�Kh(xi � x)(xi � x)
nX

j=1

Kh(xj � x)(xj � x);

with Kh(�) = K(�=h). Here, �̂20(x) and �̂22(x) are local linear smoothers. The

corresponding local constant smoothers (i.e. N-W estimators) can be similarly given.

Now, �̂20(x) or its N-W form has been investigated by Masry and Tj�stheim (1995)

and H�ardle and Tsybakov (1997). Further, �̂22(x) has been investigated by Fan and

Yao (1998), who have further pointed out that �̂22(x) has some advantages over

�̂20(x).

It is well known that the smoothers of the second order polynomial y2 or (y �
�̂(x))2 are sensitive to aberrant observations. Furthermore, Masry and Tj�stheim

(op. cit.) and Fan and Yao (op. cit.) have both proved that the asymptotic

distributions of �̂20(x) and �̂22(x) depend on the fourth moment of ", which may

impact on their practical utility. Therefore, it is worthwhile considering a more

robust estimation method.

Since E(jyi � �(xi)j
���xi = x) = �(x) if Ej"ij = 1, an alternative estimate of the

di�usion function is

�̂1(x) =
nX
i=1

Kn:h(xi � x)jyi � �̂(xi)j
. nX

i=1

Kn:h(xi � x): (1.5)
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We call �̂1(x) the absolute deviation estimate. It is easy to see that �̂1(x) needs

weaker moment assumptions than �̂2(x) and is more robust.

In this paper, we �rst investigate the absolute deviation estimate of �(x) under

model (1.1). Compared with the estimators �̂20(x) and �̂22(x), �̂
2
1(x) is more stable

and e�cient. We then extend this idea to the single-index di�usion model and the

single-index drift-plus-di�usion model (1.3). As applications of these models and

estimation methods, some �nancial data sets will be analyzed.

2. NONPARAMETRIC PURE DIFFUSION MODEL

2.1. Univariate Pure Di�usion model

In this section, we consider �rst the simple case that �(x) is known or simply the

model yi = �(xi)"i, where �(�) (> 0) is unknown. This is a nonparametric pure

di�usion model, also known as the volatility model in econometrics. See Examples

5 and 6 below. Notice that an alternative model can be written as

jyij = �10�(xi) + �(xi)(j"ij � �10) (2.1)

or

y2i = �20�
2(xi) + �2(xi)("

2
i � �20); (2.2)

where �20 = E"2 and �10 = Ej"j. With these expressions, the estimation of the

di�usion function is replaced by the estimation of a (conditional) mean function

leading to the simpler forms

�̂1(x) =

Pn
i=1Kn:h(xi � x)jyij

�10
Pn

i=1Kn:h(xi � x)
and �̂22(x) =

Pn
i=1Kn:h(xi � x)y2i

�20
Pn

i=1Kn:h(xi � x)
:

Notice that we are only interested in the relative variation of �(x). Therefore we

do not have to pay much attention to the estimation of the constants �10 and �20.

Usually, we may assume �10 = 1 or �20 = 1 for convenience.

With no loss of generality, we only consider those x 2 [a1; a2] and further assume

that x 2 [a1; a2] with density function f(x). From (a.3) and (a.4) in the appendix,

if E"2 = 1 and (C1)-(C6) hold, then we have

E(�̂21(x)� �2(x))2 = [�(x)�00(x)]2h4 +
4

nhf(x)
�4(x)(��210 � 1)�2 + o(h4 +

1

nh
);

E(�̂22(x)� �2(x))2 = [(�0(x))2 + �(x)�00(x)]2h4

+
1

nhf(x)
�4(x)(�40 � 1)�2 + o(h4 +

1

nh
);
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where �40 = E"4 and �2 =
R
K2(x)dx. From these equations, the corresponding

optimal variable bandwidths for �̂21(x) and �̂22(x) are respectively

h1(x) =
n�2(x)(��210 � 1)�2

[�00(x)]2f(x)

o1

5n�1=5

and

h2(x) =
n �4(x)(�40 � 1)�2
4[(�0(x))2 + �(x)�00(x)]2f(x)

o 1

5n�1=5:

In practice, these bandwidths can be estimated by the method of Fan and Yao

(1998).

Another simple result from (a.3) and (a.4) is that �̂1(x) and �̂2(x) have the same

uniform convergence rate. However, more detailed analysis in the following reveals

some essential di�erence between them. By Theorem 3.3 of Masry and Tj�stheim

(1995), the following asymptotic normality follows from (a.3) and (a.4) immediately.

Theorem 1. Suppose that conditions (C1)-(C6) hold and E("2) = 1. Then

p
nhf�̂21(x)� �2(x)� [�(x)�00(x)]2h2g D�! N(0; 4�2(�

�2
10 � 1)f�1(x)�4(x));

p
nhf�̂22(x)� �2(x)� [(�0(x))2 + �(x)�00(x)]2h2g

D�! N(0; �2(�40 � 1)f�1(x)�4(x)):

The second part of Theorem 1 was earlier obtained by Fan and Yao (1998). If

Ej"j = 1, then we have

p
nhf�̂1(x)� �(x)� �00(x)h2=2g D�! N(0; �2(�20 � 1)f�1(x)�2(x)):

Notice that the asymptotic distribution of �̂1(x) only depends on the second

moment of ". In contrast, the fourth moment of " is needed for �̂2(x). From

Theorem 1, we can list the biases and variances of �̂21(x) and �̂22(x) as follows,

biasf�̂21(x)g : [�(x)�00(x)]2h2; varf�̂21(x)g :
4�2
nh

(��210 � 1)f�1(x)�4(x);

biasf�̂22(x)g : [�(x)�00(x) + (�0(x))2]2h2; varf�̂22(x)g :
�2
nh

(�40 � 1)f�1(x)�4(x):

Generally, �(x) is assumed to be (�0 + �1x
2)1=2 or exp(�00 + �1x

2) with �0; �1 > 0.

See, e.g., Tong (1990, p.116). In these cases, we have �00(x) > 0 and therefore

�̂22(x) has a bigger bias than �̂21(x). More generally, if �(x) is convex, then �̂22(x)
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has a bigger bias than �̂21(x). Let b1 = [�(x)�00(x)]2, b2 = [�(x)�00(x) + (�0(x))2]2

and E = (b1=b2)1=5. Note that E < 1 in the convex case. Further, assume that

both �̂21(x) and �̂22(x) are taken at the respective optimal bandwidths. Let v1 =

4(��210 � 1) and v2 = �40 � 1. Then the variance ratio of �̂21(x) relative to �̂22(x)

is var(�̂21(x))=var(�̂
2
2(x)) = (v1=v2)4=5E. We have listed the variance ratios for a

number of distributions in Table 1. Generally, when the distribution of " has a

kurtosis greater than 3, then �̂21(x) tends to be more e�cient than �̂22(x).

TABLE 1: The variance ratios of �̂21(x) with respect to �̂22(x)
for di�erent distributions

Distribution of " kurtosis v1=v2 variance ratio
Uniform 1.8 1.6667 1.5048E
Normal 3 1.1416 1.1118E
t(5) 9 0.4359 0.5146E
t(10) 4 0.8860 0.9077E
t(15) 3.545 1.0082 1.0066E
t(20) 3.375 1.0426 1.0339E

Logistic 4.2 0.8898 0.9108E
Laplace 6 0.8003 0.8368E
�2(5)� 5.4 0.6218 0.6838E
�2(10)� 4.2 0.7702 0.8115E
�2(15)� 3.8 0.8709 0.8953E
�2(20)� 3.6 0.8884 0.9097E

� The distribution has been centralized.

Next, we give two examples to illustrate the robustness of �̂1(x) and compare

�̂21(x) with �̂22(x).

Example 1. We �rst take a look at the robustness of the absolute deviation estimate.

Consider the following model,

y = exp(2x)"; (2.3)

where " � N(0; 1) and x � U(0; 1). Here �(x) = exp(2x). Independent samples

are generated from (2.3) each with sample size n = 200 and �̂1(x) and �̂2(x) are

calculated. Figures 1(a) and 1(c) are typical examples. Both estimates appear to

be reasonable. Next, we add an outlier to the data set as shown in Figures 1(b) and

1(d). Figure 1(b) shows that the outlier does not signi�cantly a�ect the estimate

�̂1(x). However, Figure 1(d) shows that �̂2(x) is quite badly a�ected by the outlier.
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Figure 1: Simulation Results of Example 1. The solid lines denote the real �(x) and the

dash lines in (a) and (b) denote �̂1(x) and those in (c) and (d) denote �̂2(x). The data

in (a) and (c) are a typical data set from (2.3). The data in (b) and (d) are the same

data set but contaminated by an outlier.

Example 2. Consider the following models

y =
p
a+ bx2" (2.4)

and

y = (1 + exp(�rx2))"; (2.5)

where x is uniformly distributed on [�1; 1] and " is independent of x. We consider

two cases: " � N(0; 1), and " � L(0; 1) with the density function exp(�jxj)=2, i.e. a
Laplace distribution. We use the mean integrated squared error (MISE) to compare

�̂21(x) with �̂22(x). De�ne

MISE(�̂2i (x); h) = E
Z 1

�1

h
�̂2i (x)� �2(x)

i2
dx; i = 1; 2:

We generate 500 samples from these models each with sample size n = 400. Using

the standardized Epanechnikov kernel, K(x) = 3(1 � x2=5)I(x2 � 5)=(4
p
5), the
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empirical MISE's are shown in Figure 2. The form of (2.4) is very common in

practice. Let r = b=a; the shape of the MISE(�; h) only depends on r. From Figure

2(a), we can see that �̂2(x) shows no particular advantage over �̂1(x) even when "

is normally distributed. On the other hand, when " has a long tail, e.g. a Laplace

distribution, �̂2(x) is much worse than �̂1(x) in the sense of MISE. Although model

(2.5) is uncommon in practice, it is instructive to see the e�ect of the degree of

di�usion on the estimation of the di�usion function. Now, r controls the degree of

the di�usion and Figure 2 shows that the larger is r, the better is �̂1(x) than �̂2(x).
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Figure 2: Results of Example 2 for models (2.4)-(2.5). The dash lines denote the MISE's

of �̂22(x) and the solid lines denote the MISE's of �̂21(x). In (a) and (c), " � N(0; 1).
In (b) and (d), " � L(0; 1).

2.2. Single-index Pure Di�usion model

Here we consider the single-index pure di�usion model, namely yi = �(T0 Xi)"i,

from which

jyij = �10�(
T
0 Xi) + �(T0 Xi)(j"ij � �10) (2.6)
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and

y2i = �20�
2(T0 Xi) + �2(T0 Xi)("

2
i � �220); (2.7)

where Xi = (xi1; � � � ;xip)T and 0 is an unknown parameter vector with k0k = 1.

Let � be the parameter space. We can take (2.6) and (2.7) as extensions of (2.1)

and (2.2) respectively. Now, (2.6) and (2.7) are two single-index regression models;

the unknown function and the unknown parameter can be estimated following the

method proposed by H�ardle et al. (1993). Again, we call the estimate from expres-

sion (2.6) the absolute deviation estimate. Similarly, denote the estimators using

(2.6) by ̂1 and �̂1(�) and the estimators using (2.7) by ̂2 and �̂2(�). The asymptotic

properties of these estimators can be obtained using standard arguments. Here we

consider only the case of (2.6) and list the results below. For detailed proofs, see

Xia et al. (1997). Throughout the rest of this paper, we assume that the random

sample f(Xi;yi); i = 1; � � � ng is strictly stationary having the same distribution as

(X;y), f"ig are i:i:d: random variables de�ned as before. Let f(X ) denote the den-

sity function of X and f(v) that of TX. Further, for simplicity, let A � R
p be

the union of a number of open convex sets. Given � > 0, let A� denote the set of

all points in Rp each at a distance no farther than � from A. Assume f(X ) > 0 for

X 2 A�. We will concentrate on the region A. Let U = fv = T0 X : X 2 Ag.
Let �(v) denote

argmin
�

E
n
(jyj � �)2

���TX = v
o
: (2.8)

In particular, �(v) is just the solution of (2.8) at  = 0. Following the idea of local

linear smoothing, the estimator of �(v) is the solution of the following minimization

problem

min
c1

nX
i=1

h
jyij � c1 � c2(

TXi � v)
i2
Kh(

TXi � v): (2.9)

The solution of (2.9), i.e. the estimator of �(v), is

�̂(v) =
nX
i=1

Kn:h(
TXi � v)jyij

. nX
i=1

Kn:h(
TXi � v): (2.10)

In the case that [
Pn

i=1Kn:h(TXi � v)]�1 does not exist or is too large, we may only

consider the subset A. Let

Ŝn(; h) =
X
Xi2A

h
jyij � �̂<i>(

TXi)
i2
;
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where �̂<i>(v) is constructed by (2.10) using the data set f(Xj ;yj); j 6= ig. See

H�ardle et al. (1993). We will estimate the parameter vector  and the bandwidth

h by minimizing Ŝ(; h). Let (̂; ĥ) denote the pair of solutions. Finally, we obtain

the absolute deviation estimates ̂1 = ̂ and �̂1(�) = �̂̂(�) in (2.10) with h replaced

by ĥ.

We expect that ̂ ! 0 and ĥ=h0 ! 1 a:s:, where h0 is the theoretically optimal

bandwidth which minimizes

J(h) =
Z
A
E
h
�̂(T0 X )� �(T0 X )

i2
f(X )dX ;

where �̂(v) is constructed by (2.10) with  replaced by 0. It is not di�cult to see

that h0 / n�1=5. Next, we only consider the following case

min
2�n;h2Hn

Ŝn(; h); (2.11)

where �n = f : k�0k � Cn��g with � > 0, Hn = fh : C1n
�1=5 � h � C2n

�1=5g
for some constants C and C1 < C2. Similar to H�ardle et al. (1993), we take

� = 1=2. These regions are motivated by the following fact. Since we anticipate

that ̂ is root-n consistent, and we expect ĥ to be close to h0 / n�1=5, we should

look for a minimum of Ŝn(; h) which involves  di�ering from 0 by the order n�1=2

and h is approximately equal to a constant multiple of n�1=5. Our restriction of 

to the cone �n does not exclude any minima of interest and is thus made without

loss of generality. Following the proofs of H�ardle et al. (1993) and Xia et al. (1997),

we have the following results.

Theorem 2. Suppose that (C10)-(C50) and (C6) (in the appendix) hold and Ej"j = 1.

Then

ĥ = h0 + op(n
�1=5);

n1=2(̂ � 0)
D! N(0; V �);

where h0 = fA1=(4A2n)g1=5 with A1 = �20�2
R
A f0(

T
0 X )�1�(T0 X )2f(X )dX and

A2 =
1
4

R
A �

00(T0 X )2f(X )dX ,

V = (�20 � 1)
Z
A
fX � E(XjT0 X = T0 X )gfX �E(XjT0 X = T0 X )gT

�[�0(T0 X )�(T0 X )]2dX
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and V � denotes a generalized inverse of V . Consequently, we have

�̂1(v)� �(v) = Op(n
�2=5(log n)1=2)

uniformly for v 2 fT0 X : X 2 Ag.

Example 4. We simulate 500 random samples of size n from the following model

y = exp(r(01x1 + 02x2))"; (01 = 0:6; 02 = 0:8); (2.12)

for r = 1; 2 and 4, where x1;x2
i:i:d:� U(0; 1) and " � N(0; 1). We set n = 100; 300

and 500. The means and standard deviations of estimated 01 and 02 are shown in

Table 2, from which, we �nd that the parameter estimates are quite reasonable and

their variability depends on the curvature of the curve of the di�usion function �(�).
The bigger is the curvature the better is the estimates. This is intuitively obvious.

Results from a typical data set with r = 2 and n = 300 are plotted in Figure 3.

0 0.5 1 1.5
−40

−30

−20

−10
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Figure 3: Results of Example 4. The solid line denotes the real di�usion function �(�) =
exp(2 �). The dash line denotes the estimated di�usion function �̂1(�). The dots denote

yi plotted against ̂TXi.
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TABLE 2: Means and standard deviations (in the parentheses) of estimated 01
and 02 for model (2.12)

n = 100 n = 300 n = 500
r

01 02 01 02 01 02
0.5677 0.7685 0.5883 0.7892 0.5936 0.7930

1
(0.0487) (0.0291) (0.0199) (0.0112) (0.0119) (0.0068)
0.5990 0.7817 0.5992 0.7942 0.6020 0.7948

2
(0.0191) (0.0110) (0.0064) (0.0038) (0.0038) (0.0021)
0.6073 0.7815 0.6088 0.7886 0.6088 0.7905

4
(0.0126) (0.0075) (0.0046) (0.0028) (0.0028) (0.0016)

Example 5. As an application to real data, we �rst investigate the daily closing Hang

Seng index from 1987 to 1997. To induce approximate stationarity, we consider the

�rst di�erence of the logarithmically transformed Hang Seng indices. The trans-

formed data (yt) are plotted in Figure 4(a), which shows three possible `outliers':

the two largest crashes on 26/10/87 and 5/6/89, as well as the largest re-bound on

29/10/97. No trend in yt is discernible and the sample autocorrelation function is

not signi�cantly di�erent from the Kronecker delta function. Thus, we can assume

that �(x) = 0. Consequently, we consider the following nonparametric pure di�usion

model

yt = �(TXt)"t;

where Xt = (y2t�1; � � � ; y2t�5)
T . The chosen lags are motivated by some back-

ground knowledge of the index. Using the above method and the transformed data

set, we obtained estimates of  as ̂1 = (0:221; 0:161; 0:556; 0:126; 0:775)T and

̂2 = (0:049; 0:164; �0:138; �0:309; 0:783)T . Note that the estimate ̂1 satis-

�es the non-negativity assumption of  in Engle (1982). The estimated functions

�̂1(�) and �̂2(�) are shown in Figures 4(b) and 4(e). Next, we removed the out-

liers by replacing each of them with a zero. We obtained the estimates ̂1 =

(0:276; 0:291; 0:565; 0:412; 0:592)T and ̂2 = (0:043; 0:117; 0:253; �0:016; 0:959)T .
The estimate ̂1 continues to satisfy the non-negativity assumption. The estimate

̂2 now practically satis�es the non-negativity assumption. The estimated functions

�̂1(�) and �̂2(�) are shown in Figures 4(c) and 4(f). Figures 4(d) and 4(g) show that

the outliers have a strong e�ect on �̂2(�). In contrast, the outliers show no signi�cant

e�ects on the absolute deviation estimates. Further, as expected from Theorem 1,
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Figure 4: Results of Example 5. (a) is the transformed data. The solid line in (b) and the

dash line in (d) denote �̂1(�) using the transformed data. The solid line in (e) and the

dash line in (g) denote �̂2(�) using the transformed data. The solid lines in (c), (d) and

(h) denote �̂1(�) using the transformed data with the outliers removed. The solid lines in

(f), (g) and (i) denote �̂2(�) using the transformed data with the outliers removed. The

dash-dot lines in (b), (c), (e) and (f) denote the approximate 95% pointwise con�dence

intervals for �(�). The dots in (h) are the yt plotted against ̂T1 Xt. The dots in (i) are

the yt plotted against ̂T2 Xt.
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we can construct a narrower pointwise con�dence interval for �(�) by using �̂1(�)
than �̂2(�). This is con�rmed by Figures 4(b), 4(c), 4(e) and 4(f).

Example 6. Next, we consider the daily closing S&P 500 index from 29/7/94 to

29/7/97. The original data (xt) are plotted in Figure 5. After the transformation

yt = log(xt) � log(xt�1), again no trend in yt is discernible and the sample auto-

correlation function is not signi�cantly di�erent from the Kronecker delta function.

Thus, we can assume that �(x) = 0. Consequently, we consider the same nonpara-

metric pure di�usion model as in Example 5. Using the same method, we obtained

̂1 = (0:809; 0:054; 0:385; 0:438; �0:052)T . The results lend some support to the

model proposed by Engle (1982). The function �(x) estimated by the absolute

deviation estimation method is shown in Figures 5(b) and 5(c).
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Figure 5: Results of Example 6. (a) is the original data. The solid lines in (b) and

(c) denote the estimated di�usion function �̂1(�). The dash lines in (c) denote the

approximate 95% pointwise con�dence intervals for �(�). The dots in (b) are the yt

plotted against 1000 � ̂T1 Xt.

From Figures 5(b) and 5(c), we �nd that �(�) is not a simple increasing function
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of TXt as is often assumed in the literature. One tentative explanation is that

after a few days of high di�usion, the investors may become more conservative, thus

reducing the di�usion. We have made some investigations to the other foreign ex-

change data sets and similar results are obtained. This kind of non-monotonicity was

earlier noticed by Engle and Bollerslev (1986) and Higgins and Bera (1992). They

proposed quadratic ARCH models and non-symmetric ARCH models to model the

non-monotonicity. Here, we discern the non-monotonicity using a purely nonpara-

metric setup.

3. SINGLE-INDEX DRIFT-PLUS-DIFFUSION MODELS

In this section, we consider the drift-plus-di�usion model (1.3). We assume that

f(Xi; Zi;yi)g is a strictly stationary and strongly mixing sequence and they have

the same marginal distribution as (X;Z;y). Denote the density function of Z by

g(Z) and the density function of �TZ by g�(v). We �rst use the local linear smoother

to estimate the unknown drift function �(�) and parameter �0 following the method

of H�ardle et al. (1993). Following the procedure of (2.9)-(2.10), we de�ne

�̂�(v) =

Pn
i=1 Vn:b(�TZi � v)yiPn
i=1 Vn:b(�TZi � v)

; (3.1)

where

Vn:b(�TZi � v) = Vb(�
TZi � v)

nX
j=1

Vb(�
TZj � v)(�TZj � v)2

�Vb(�TZi � v)(�TZi � v)
nX

j=1

Vb(�
TZj � v)(�TZj � v);

Vb(�) = V (�=b), V (�) being another kernel function and b another bandwidth. Similar

to A, let D � Rq be the union of a number of open convex sets. Given � > 0, let

D� denote the set of all points in Rq each at a distance no farther than � from

D. We assume g(Z) > 0 for Z 2 D�. We will concentrate on the region D. Let

V = fv = �T0 Z : Z 2 Dg and

M̂n(�; b) =
X
Zi2D

h
yi � �̂�<i>(�

TZi)
i2
;
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where �̂�<i>(v) is constructed by (3.1) using data set f(Zj ;yj); j 6= ig. We estimate

� and b, �̂ and b̂ say, by

min
�2�n;b2Bn

M̂n(�; b); (3.2)

where �n = f� : k� � �0k � Cn�1=2g, Bn = fb : C1n
�1=5 � b � C2n

�1=5g for some

constants C and C1 < C2. See section 2.2. Let

A0
1 = �2(�20 � 1)E

h
g�0 (�

T
0 Z)

�1�(T0 X)2I(Z 2 D)
i
;

A0
2 =

1

4
E
h
�00(�T0 Z)

2I(Z 2 D)
i2

and

W = E
nh
Z � E(Zj�T0 Z)

ih
Z �E(Zj�T0 Z)

iT
�0(�T0 Z)

2�(T0 X)2I(Z 2 D)
o
:

From Xia and Li (1997) (see also H�ardle et al, 1993), we have the following theorem.

Theorem 3. Suppose that (C10)-(C50) and (C6) (in the appendix) hold, we have

p
n(�̂ � �0)

D! N(0;W�);

b̂ = b0 + op(n
�1=5);

sup
Z2D

����̂�̂(�̂TZ)� �(�T0 Z)
��� = Op(n

�2=5(log n)1=2);

where W� denotes a generalized inverse of W and b0 = fA0
1=(4A

0
2n)g1=5.

Given , let

�(v) = E(jy� �(�T0 Z)j
���TX = v):

We estimate �(v) by

~�(v) =
nX
i=1

Kn:h(
TXi � v)jyi � �̂�̂(�̂

TZi)j
. nX

i=1

Kn:h(
TXi � v): (3.3)

Next, we obtain the estimates of  and h by minimizing (2.11) with jyij replaced by
jyi � �̂�̂(�̂

TZi)j and �̂<i>(�) replaced by ~�<i>(�), where ~�<i>(�) is constructed by

(3.3) using data set f(Xj ; Zj ;yj); j 6= ig.
Following the same procedure as in section 2, we can obtain the estimators

of ~ and therefore ~�~(v). For these estimators, we have the following asymptotic
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properties. The proof is tedious but can be obtained by following the method of Xia

and An (1998).

Theorem 4. Suppose that (C10)-(C50) and (C6) (in the appendix) hold and Ej"j = 1.

If � = 3=10 (see Hall, 1989) in �n (de�ned after (2.11)), then k~ � 0k = Op(n�2=5)

and

~�~(v)� �(v) = Op(n
�2=5(log n)1=2)

uniformly for v 2 fT0 X : X 2 Ag.
Example 7. We simulate the following models

yt = sin(2�(�1yt�1 + �2yt�2)) + e�8(1yt�1+2yt�2)
2

"t; (3.4)

where �1 = 0:6, �2 = 0:8, 1 = 0:707, 2 = 0:707 and "t's are independent N(0; �
2 ).

We generate 400 independent samples each of size n = 200 and 500. The simulated

results are listed in Table 3. From Table 3, we see that the estimates of the param-

eters are quit reasonable. Therefore accurate estimates of the unknown functions

can be obtained. Figure 6 gives the estimated functions from a typical data set with

sample size n = 200. The �t appears to be good.

−1 −0.5 0 0.5 1
−2

−1

0

1

2

(a)
−1 −0.5 0 0.5 1
0

0.5

1

1.5

(b)
Figure 6: Simulation results of Example 7. The solid lines in (a) denotes the real mean

function and that in (b) denotes the real di�usion function. The dash line in (a) denotes

the estimated mean function and that in (b) denotes the estimated di�usion function. The

dots in (a) are the yi plotted against �̂1yt�1 + �̂2yt�2. The dots in (b) are absolute

values of residuals plotted against ~1yt�1 + ~2yt�2.

TABLE 3: Means and standard deviations (in the parentheses) of the estimated �
and  for models (3.4) with di�erent sample size n
n = 200 n = 500

� 0.6070(0.0109) 0.7803(0.0117) 0.6039(0.0012) 0.7950(0.0021)
 0.6812(0.0086) 0.7217(0.0065) 0.6848(0.0053) 0.7237(0.0019)
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An obvious approach to improve the estimation is to iterate the procedure and

use the weighted local linear smoother as follows. First, use the above method to

obtain �̂�̂(�̂Zi) and ~�~(~TXi). Then, re-estimate ��(v) by minimizing

X
Zi2D

Vb(�
TZi � v)

h
(yi � c1 � c2(�

TZi � v))=~�~(~
TXi)

i2
:

Denote the solution of c1 to the above minimization by ~��(v). We estimate � by

minimizing (3.2) with �̂�<i>(v) replaced by ~��<i>(v). Denote the estimate by ~�~�(�).
Finally, replace �̂�̂(�̂

TZi) in (3.3) by ~�~�(
~�TZi) and obtain the estimate of �(�). Repeat

this procedure until the estimates become stable. The following example is an

application of the idea to a linear autoregression model with a di�usion function

which is unknown.

Example 8. We simulated the following models

(i) yt = �1yt�1 + �2yt�2 + exp(�8(yt�1 + yt�2)
2)"t;

(ii) yt = �1yt�1 + �2yt�2 + (0:1 + sin2(
�

2
(y2t�1 + y2t�2)))"t;

(ii) yt = �1yt�1 + �2yt�2 + (0:1 + sin2(
�

2
yt�1yt�2))"t;

where �1 = 0:5, �2 = 0:4 and "t
i:i:d:� N(0; 1). We may estimate � = (�1; �2)T

by simple least squares method (LS). Denote them by �̂ = (�̂1; �̂2)T . We can also

estimate � iteratively as follows. First, use fyt � �̂1yt�1 � �̂2yt�2g and the above

single-indexing method to estimate the di�usion functions with Xi = (yi�1; yi�2)T .

Then, use the estimated di�usion functions as weight functions to obtain weighted

least squares estimates of �, ~�(1) say. Replace �̂ in the �rst step with ~�(1) and repeat

the above procedure to obtain ~�(2), ~�(3) and so on. We stop when the ~�(i)'s stabilize.

We call this procedure nonparametric re-weighted least square method (NRWLS).

For the above models, we generate 200 samples with sample size n = 50 and 100.

Table 4 shows the simulation results. Table 4 tells us that the NRWLS method can

improve estimation of an autoregression model even if the di�usion function is not

in a single-index form (models (ii) and (iii)).
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TABLE 4: Means and standard deviations (in the parentheses) of
estimated � = (�1 �2)T for models (i)-(iii)

n = 50 n = 100
model

LS method NRWLS method LS method NRWLS method
0.5298 0.5191 0.5165 0.5075
(0.0215) (0.0131) (0.0123) (0.0029)

(i)
0.3742 0.3817 0.3819 0.3933
(0.0208) (0.0105) (0.0123) (0.0029)
0.4598 0.5108 0.4656 0.4781
(0.0334) (0.0392) (0.0243) (0.0163)

(ii)
0.3108 0.3573 0.3287 0.3779
(0.0324) (0.0479) (0.0251) (0.0150)
0.4341 0.4676 0.4616 0.4733
(0.0219) (0.0454) (0.0154) (0.0178)

(iii)
0.3348 0.3558 0.3352 0.3607
(0.0301) (0.0408) (0.0225) (0.0136)

Example 9. We here report the USD/MARK daily closing exchange rate (xt) from

5/1/75 to 19/9/89. See Figure 7(a). We �rst make the transformation yt = log(xt)�
log(xt�1). We then use the single-index model to �t the mean function and the

di�usion function as

yt = �(�TZt) + �t

with

�t = �(TXt)"t;

where Z = (yt�1; � � � ;yt�5)
T , X = (�2t�1; � � � ; �2t�5)T . Using the estimation method of

H�ardle et al. (1993) and the method of this paper, we obtain �̂ = (0:182 0:581 0:177

�0:754 � 0:174)T and ̂1 = (0:767 0:512 0:303 � 0:059 0:234)T . The estimated �(�)
and �(�) using the absolute deviation estimation method are shown in Figures 7(b)-

7(e). From Figures 7(d) and 7(e), we can draw similar conclusions as in Example

6.

Conclusions: In this paper, we use the single-index model to approximate the un-

known di�usion functions and propose the single-index di�usion model. This ap-

proximation is helpful for other purposes, e.g. Example 7. The idea of the absolute

deviation estimation method is simple but has many advantages over the existing
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Figure 7: Results for Example 9. (a) is the original data. The solid lines in (b) and

(c) denote the estimated mean function and those in (d) and (e) denote the estimated

di�usion function �̂1(�). The dash lines in (d) and (e) denote the approximate 95%
pointwise con�dence intervals for �(�) and �(�) respectively. The dots in (b) are the yt

plotted against 1000 � �̂TXt. The dots in (d) are the residual yt� �̂(�̂TXt) plotted

against 1000 � ̂T1 Xt.
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methods as shown in the paper. Following the idea of Friedman and Stuetzle (1981),

we can further use projection pursuit regression method to approximate the di�u-

sion functions. The calculations can be easily carried out with the module `PPREG'

in S-plus. From yi = �(Xi)", it follows that jyij = �(Xi) + �(Xi)(j"ij � 1), which

is a regression model. We conjecture that other semiparametric regression models

can be extended to provide suitable di�usion functions. Since the estimation of the

di�usion function is very important for �nancial data sets, these extensions are of

interest.

APPENDIX. ASSUMPTIONS AND PROOFS

To discuss the asymptotic properties of the univariate model (1.1), we need the

following assumptions.

(C1) �(x) has a bounded and continuous third order derivative on [a1; a2];

(C2) f(xi;yi)g is a strictly stationary and strongly mixing sequence with mixing

coe�cient �(k) = O(ck) for some 0 < c < 1;

(C3) M < f(x) < M 0 for some positive constants M and M 0 and has bounded

derivative on [a1; a2];

(C4) The conditional density functions fx1 jy1(xjy) and f(x1;xl)j(y1;yl)(x1; xljy1; yl)
are bounded for all l > 1;

(C5) For each i, "i is independent of fxj+1;yj; j < ig and Ej"jl < 1, Ejyjl < 1
for some large enough l > 0;

(C6) K(v) and V (v) are two symmetric probability density functions supported on

the interval (�c0; c0) with bounded derivatives and
R
v2K(v)dv =

R
v2V (v)dv = 1.

Furthermore, the Fourier transforms of K(v) and V (v) are absolutely integrable.

These assumptions are satis�ed by most time series models. For detailed discus-

sions, see H�ardle and Tsybakov (1997) and Fan and Yao (1998).

To discuss the single-index di�usion model in section 2.2, we need the following

assumptions.

(C10) �(v) and f(v) (��(v) and g�(v)) have bounded continuous third order deriva-

tives in U� (V�) for all  2 � (� 2 �);
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(C20) f(Zi;Xi;yi)g is a strictly stationary and strongly mixing sequence with mixing

coe�cient �(k) = O(ck) for some 0 < c < 1;

(C30) M < f(X ); g(Z) < M 0 for some positive constants M and M 0 and have

bounded second derivatives in A� (or D�);

(C40) The conditional density functions fT
0
X1jy1(vjy), f(T0 X1;T0 Xl)j(y1;yl)(v1; vljy1; yl),

g�T
0
Z1jy1(vjy) and g(�T

0
Z1;�T0 Zl)j(y1;yl)

(v1; vljy1; yl) are bounded for all l > 1;

(C50) For each i, "i is independent of fXj+1; Zj+1; yj; j < ig and Ej"jl < 1,

Ejyjl <1 for some large enough l > 0.

Following the proofs of Theorems 5 and 6 of Masry (1996), we can easily show

that
Pn

i=1Kn:h(xi � x)�(xi)Pn
i=1Kn:h(xi � x)

= �(x) +
1

2
�00(x)h2 + o(h2) a:s: ;

Pn
i=1Kn:h(xi � x)�(xi)(j"ij � �10)Pn

i=1Kn:h(xi � x)
=

1

nhf(x)

nX
i=1

Kh(xi � x)�(xi)(j"ij � �10) + o(h2) a:s:

uniformly for x 2 [a1; a2]. Therefore

�̂1(x) = �(x) +
1

2
�00(x)h2

+
1

nhf(x)

nX
i=1

Kh(xi � x)�(xi)(�
�1
10 j"ij � 1) + o(h2) a:s:

uniformly for x 2 [a1; a2]. Thus,

�̂21(x) = �2(x) + �(x)�00(x)h2

+2�(x)
1

nhf(x)

nX
i=1

Kh(xi � x)�(xi)(�
�1
10 j"ij � 1) + o(h2) a:s: (a.1)

uniformly for x 2 [a1; a2]. Similarly,

�̂22(x) = �2(x) + [(�0(x))2 + �00(x)�(x)]h2

+
1

nhf(x)

nX
i=1

Kh(xi � x)�2(xi)(�
�1
20 "

2
i � 1) + o(h2) a:s: (a.2)

uniformly for x 2 [a1; a2].

Following the proofs of Theorems 5 and 6 of Masry (1996), we can easily show

that
Pn

i=1Kn:h(xi � x)�(xi)Pn
i=1Kn:h(xi � x)

= �(x) +
1

2
�00(x)h2 + o(h2) a:s: ;
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Pn
i=1Kn:h(xi � x)�(xi)(j"ij � �10)Pn

i=1Kn:h(xi � x)
=

1

nhf(x)

nX
i=1

Kh(xi � x)�(xi)(j"ij � �10) + o(h2) a:s:

uniformly for x 2 [a1; a2]. Therefore

�̂1(x) = �(x) +
1

2
�00(x)h2

+
1

nhf(x)

nX
i=1

Kh(xi � x)�(xi)(�
�1
10 j"ij � 1) + o(h2) a:s:

uniformly for x 2 [a1; a2]. Thus,

�̂21(x) = �2(x) + �(x)�00(x)h2

+2�(x)
1

nhf(x)

nX
i=1

Kh(xi � x)�(xi)(�
�1
10 j"ij � 1) + o(h2) a:s: (a.3)

uniformly for x 2 [a1; a2]. Similarly,

�̂22(x) = �2(x) + [(�0(x))2 + �00(x)�(x)]h2

+
1

nhf(x)

nX
i=1

Kh(xi � x)�2(xi)(�
�1
20 "

2
i � 1) + o(h2) a:s: (a.4)

uniformly for x 2 [a1; a2].
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