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ABSTRACT

Gilboa and Schmeidler (1989) provide axioms on preferences that imply a set of distributions

and a preference ordering based on the minimum expected utility with respect to this set. We

consider joint distributions for data and for the random variables that, together with the agent's

choice, determine utility-relevant outcomes; for example, a joint distribution for data that will be

available when a portfolio decision is made and for future returns that will determine the value of

the portfolio. The set of distributions is generated by combining a parametric model with a set of

prior distributions. We seek a decision rule (a function of the data) that maximizes the minimum

expected utility (or, equivalently, minimizes maximum risk) over the set of prior distributions. An

algorithm is provided for the case of a �nite set of prior distributions. It is based on �nding the

Bayes rule for a given prior and then solving a concave program to �nd the least-favorable prior

distribution. The minmax value we obtain for the �nite set of priors is a lower bound on the

minmax risk for a larger set, such as the in�nite set that includes all point masses on a Euclidean

space, as in Wald (1950). An upper bound can be obtained by �xing a decision rule and �nding its

maximum risk. These bounds are applied to an estimation problem in an autoregressive model for

panel data.
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ECONOMETRIC APPLICATIONS OF MAXMIN EXPECTED UTILITY

1. INTRODUCTION

Consider an individual making a portfolio choice at date T involving two assets. The (gross)

returns at t per unit invested at t � 1 are y1t and y2t. The individual has observed these returns

from t = 0 to t = T . He has also observed the values of the variables y3t; : : : ; yKt, which are

thought to be relevant in forecasting future returns. So the information available to him when

he makes his portfolio choice is z � f(y1t; : : : ; yKt)g
T
t=0. He invests one unit, divided between an

amount a in asset one and 1� a in asset two, and then holds on to the portfolio until date H. Let

w = f(y1t; y2t)g
H
t=T+1 and let h(w; a) denote the value of the portfolio at t = H:

h(w; a) = a

HY
t=T+1

y1t + (1� a)

HY
t=T+1

y2t: (1)

How should a be chosen?

Consider an econometrician who observes a sample vector z drawn from a distribution F� for

some value of the parameter � in the parameter space �. He is interested in a function g(�) and

would like an estimator that is optimal under a mean-square error criterion. How shall he choose

an estimator?

In Section 2 we develop a framework that covers both of these problems. An algorithm for im-

plementing the framework is developed in Section 3, and there is an application to an autoregressive

model for panel data in Section 4.

2. FRAMEWORK

2.1 Preferences

Consider an individual making a decision under uncertainty. Suppose that he will observe the

value z of a random variable Z before making his choice. The outcome given choice a depends

upon a random variable W , whose value w is not known when the choice is made. Z �W is the
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range of (Z;W ), A is the set of possible choices, and X is the set of outcomes.

Let Y denote the set of probability distributions over X with �nite support, corresponding to

lotteries with prizes in X . The probabilities in these lotteries are exogenously given, as in a roulette

lottery. Consider y1 and y2 in Y, with the union of their supports equal to fxjg
k
j=1; y1 assigns

probabilities fpjg
k
j=1 to these outcomes, and y2 assigns probabilities fqjg

k
j=1. Then for � 2 (0; 1),

the mixture �y1 + (1� �)y2 2 Y assigns probabilities f�pj + (1� �)qjg
k
j=1 to these outcomes.

Let L denote the set of mappings from Z �W to Y. An element l 2 L can be regarded as a

lottery in which the prize corresponding to state (of nature) (z; w) is a roulette lottery. l resembles

a horse lottery in that the probabilities are not exogenously given. Let Lc denote the set of constant

functions in L. We shall identify the roulette lotteries Y with Lc. If � 2 (0; 1) and f; g 2 L, then

�f + (1��)g denotes the horse lottery in L whose prize in state (z; w) is the roulette lottery in Y

corresponding to the mixture �f(z; w) + (1� �)g(z; w).

A (randomized) decision rule is a mapping from Z to A�, the set of probability distributions

on A with �nite support. (We shall identify A with the subset of A� consisting of degenerate

distributions.) Let D denote the set of all such decision rules. The mapping h : W � A
�
! Y

determines the outcome distribution as a function of (w; a�). For example, if a� assigns probabilities

fpjg
k
j=1 to the choices fajg

k
j=1, then h(w; a�) is the roulette lottery that assigns probabilities

fpjg
k
j=1 to the outcomes fh(w; aj )g

k
j=1. A decision rule d 2 D corresponds to a horse lottery

ld 2 L: ld(z; w) = h(w; d(z)).

Gilboa and Schmeidler (1989) consider a preference relation � over L that satis�es certain

axioms. A key axiom is certainty-independence: for all f , g in L and r in Lc and for all � 2 (0; 1),

f � g if and only if �f +(1��)r � �g+(1��)r. So the horse lottery f is strictly preferred to the

horse lottery g if and only if the (element by element) �-mixture of f with a roulette lottery r is

strictly preferred to the corresponding mixture of g with r. Gilboa and Schmeidler show that their

axioms are equivalent to the existence of an a�ne function u:Y ! R and a non-empty, closed,
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convex set S of probability measures on Z �W such that: for all f; g 2 L,

f � g i� min
Q2S

Z
u � f dQ � min

Q2S

Z
u � g dQ:

If the certainty-independence axiom is strengthened so that it holds not just for the constant

functions but for all r in L, then we have the Anscombe and Aumann (1963) version of the Savage

(1954) axioms, and the set S consists of a single distribution.

The preference relation on L induces a preference relation on the set D of decision rules, and

we shall take the decision maker's problem to be:

max
d2D

min
Q2S

Z
Z�W

u(ld(z; w)) dQ(z; w):

We shall not be explicit about measurability and integrability restrictions. Such issues can be

avoided by taking the state space Z �W to be a �nite set.

2.2 Mixture Models

In order to make the maxmin problem operational, we shall consider mixture models in which

the distribution Q for the random vector (Z;W ) has the following form:

Q(A�B) =

Z
�

P�(A�B) d�(�);

where � is a (prior) probability distribution on the parameter space �. The probability distribution

P� can be decomposed into a marginal distribution F� for Z and a conditional distribution G� for

W given Z:

P�(A�B) =

Z
A

G�(B j z) dF�(z):

We shall assume that F� has density f(z j �) with respect to the measure �:

F�(A) =

Z
A

f(z j �) d�(z)

for all � 2 �.
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We shall consider a set � of prior distributions �. Then the set S of distributions for (Z;W ) is

S = f

Z
�

P� d�(�) : � 2 �g:

Now the decision maker's problem can be written as:

min
d2D

max
�2�

r(�; d)

with risk function r:

r(�; d) =

Z
�

Z
Z

L(�; z; d(z))f(z j �) d�(z) d�(�)

and loss function L:

L(�; z; a�) = �

Z
W

u(h(w; a�)) dG�(w j z):

The use of loss, with a minus sign, and hence a minmax criterion is traditional, dating back to

Wald (1950).

The connection of this framework to the portfolio choice problem is quite direct. Z corresponds

to the data available when the portfolio is chosen. W is a vector of future returns on the assets,

and Q is the joint distribution for (Z;W ). The function h is given in (1) (for a 2 A), and u is a von

Neumann-Morgenstern utility function de�ned over roulette lotteries with monetary prizes. The

speci�cation of the parametric family fP� : � 2 �g might be based on a vector-autoregression with

multivariate normal innovations, and � would be a family of prior distributions for the parameters

of the vector-autoregression. In this application, the focus would not be on the parameter vector

�; the role of the parametric model is to generate a joint distribution for the observables Z and W .

Now consider an estimation problem. Here the focus typically is on a function of the parameter,

which we shall denote by g(�). In this case, we set W equal to �. The function h is given by: h(�; a)

= (g(�); a) for a 2 A. The loss function could be L(�; z; a) = (g(�) � a)2, with mean-square error

for the risk function. Or the loss function could have a piecewise linear form:

L(�; z; a) =

�
c1jg(�)� aj; if a � g(�);

c2jg(�)� aj; otherwise,
(2)
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with c1; c2 > 0. Then choosing c1=(c1 + c2) = .025 and .975 could give estimates corresponding to

a traditional con�dence interval.

3. ALGORITHM

We shall consider a �nite set of prior distributions: f�1; : : : ; �Jg, and � is the convex hull:

� = f

JX
j=1

�j�j : 0 � �j � 1;

JX
j=1

�j = 1g:

Consider a zero-sum game in which the decision maker chooses d 2 D, nature chooses � 2 �, and

the payo� to the decision maker is �r(�; d). The minmax (or upper) value of the game is

V = inf
d2D

sup
�2�

r(�; d):

A minmax decision rule d0 satis�es sup�2� r(�; d0) = V . The maxmin (or lower) value of the game

is

V = sup
�2�

inf
d2D

r(�; d):

A least-favorable distribution �0 satis�es infd2D r(�0; d) = V . A decision rule d0 is Bayes with

respect to the distribution � if

r(�; d0) = inf
d2D

r(�; d):

A decision rule d generates a vector of risk values (r(�1; d); : : : ; r(�J ; d)). The risk set S consists

of all such vectors as d varies over D:

S = f(r(�1; d); : : : ; r(�J ; d)) 2 R
J : d 2 Dg:

The risk set is convex, since we have allowed randomized decision rules. The minmax theorem

states that if the risk set is bounded, then

inf
d2D

sup
�2�

r(�; d) = sup
�2�

inf
d2D

r(�; d);
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and there exists a least favorable distribution �0. If in addition the risk set is closed, then there

exists a minmax decision rule d0, and it is Bayes with respect to �0. [See Blackwell and Girshick

(1954, Theorem 2.4.2) and Ferguson (1967, Theorem 1, p. 82)]. We shall assume that the risk set

is closed and bounded.

The �rst step in our algorithm is to �nd a Bayes rule with respect to a given prior distribution

�. Note that

r(�; d) =

Z
Z

Z
�

L(�; z; d(z))f(z j �) d�(�) d�(z) �

Z
Z

[ inf
a2A

Z
�

L(�; z; a)f(z j �) d�(�)] d�(z)

for all d 2 D. We shall assume that the in�mum of the inner integral is in fact obtained for some

choice a 2 A, so that a Bayes rule with respect to � satis�es

d�(z) = argmin
a2A

Z
�

L(�; z; a) d��(� j z); (3)

where �� is the posterior distribution of � conditional on Z:

��(B j z) =

Z
B

f(z j �) d�(�)

� Z
�

f(z j �) d�(�): (4)

The optimal choice under � minimizes the posterior expected loss. See Wald (1950, chap. 5.1),

Blackwell and Girshick (1954, chap. 7.3), and Ferguson (1967, chap. 1.8). If the minimizer in (3)

is not unique, then a Bayes rule could randomize over the set of minimizers.

Let MJ denote the J � 1 dimensional simplex:

MJ = f� 2 RJ�1 : �j � 0;

J�1X
j=1

�j � 1g;

and let �� denote the mixture distribution:

�� =

JX
j=1

�j�j ;
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with �J = 1 �
PJ�1

j=1
�j . As � varies over MJ , �

� varies over �. The posterior distribution of �

conditional on Z under the mixture model (i.e., under the prior distribution ��) is

���(B j z) =

JX
j=1

�jfj(z)��j(B j z)

� JX
j=1

�jfj(z); (5)

where ��j is the posterior distribution of � given Z under model j (i.e., under prior distribution �j),

and fj is the likelihood under model j:

fj(z) =

Z
�

f(z j �) d�j(�):

Let d� denote the Bayes rule with respect to ��. Consider the minimized risk:

�(�) � min
d2D

r(��; d) = r(��; d�):

Since r(��; d) is a linear function of � for each d, it follows that � is a concave function. So

maximizing � over the convex set MJ is a concave program:

�0 = arg max
�2MJ

�(�): (6)

The least favorable prior distribution is �0 =
PJ

j=1
�0j�j .

Let @�(�) denote the subgradient of � at �. Let �� 2 R
J�1 have jth component equal to

r(�j ; d
�)� r(�J ; d

�). We shall show that �� is a subgradient of � at �. Note that

�(�) = h��; �i+ r(�J ; d
�);

where ha; bi denotes
Pk

i=1
aibi for a; b 2 R

k. For any �0 2MJ ,

�(�0) = min
d2D

�J�1X
j=1

�0j(r(�j ; d) � r(�J ; d)) + r(�J ; d)

�

�

J�1X
j=1

�0j(r(�j ; d
�)� r(�J ; d

�)) + r(�J ; d
�)

= h�� ; �
0
i+ r(�J ; d

�) = h��; �i + h��; �
0
� �i+ r(�J ; d

�)

= �(�) + h��; �
0
� �i:
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Hence �� 2 @�(�).

We can write the program in (6) as

min
�
��(�) subject to g1(�) � 0; : : : ; gJ (�) � 0; (P )

where gj(�) = ��j (j = 1; : : : ; J � 1) and gJ (�) =
PJ�1

j=1
�j � 1. The Lagrangian of (P ) is the

following function J on RJ
�R

J�1:

J (�; �) = ��(�) +

JX
j=1

�jgj(�)

if � 2 RJ
+ (nonnegative components), with J = �1 if � =2 RJ

+.

In order for �0 to be an optimal solution to (P ), it is necessary and su�cient that there exist

an �0 such that (�0; �0) is a saddle point of the Lagrangian J of (P ). Equivalently, �0 is an optimal

solution if and only if there exist Lagrange multiplier values �j which, together with �0, satisfy the

Kuhn-Tucker conditions for (P ):

�j � 0; gj(�0) � 0; �jgj(�0) = 0 (j = 1; : : : ; J) (a)

0 2 �@�(�0) +

JX
j=1

�j@gj(�0) (b)

[Rockafellar (1970), Corollary 28.3.1].

Given the form of the constraint functions gj , these Kuhn-Tucker conditions become

�j � 0; �0j � 0; �j�0j = 0 (j = 1; : : : ; J � 1); (a)

�J � 0;

J�1X
j=1

�0j � 1; �J

�J�1X
j=1

�0j � 1

�
= 0;

0 2 �@�(�0) +

0
@

�J � �1
...

�J � �J�1

1
A : (b)

Since ��0 2 @�(�0), (b) is implied by

r(�j ; d0)� r(�J ; d0) = �J � �j (j = 1; : : : ; J � 1); (b0)

8



where d0 is a Bayes rule with respect to ��0 . So (a) and (b0) are su�cient for �0 to be an optimal

solution to (P ). If � is di�erentiable at �0, then ��0 is the unique subgradient [Rockafellar (1970),

Theorem 25.1], and so (a) and (b0) are necessary for �0 to be an optimal solution to (P ). Since � is

concave, the subset of the interior of MJ where � is not di�erentiable has Lebesgue measure zero

[Rockafellar (1970), Theorem 25.5].

Let B be the set of integers j such that: 1 � j � J�1 and �0j > 0, or j = J and
PJ�1

j=1
�0j < 1.

It follows from (a) that �j = 0 if j 2 B. Then it follows from (b0) that

r(�j ; d0) = r(�0; d0) if j 2 B (c)

r(�j ; d0) � r(�0; d0) if j =2 B;

where �0 = ��0 . Conversely, (c) implies that there exist Lagrange multiplier values �j which,

together with �0, satisfy (a) and (b0) (hence (a) and (b)). To see this, set

�j = r(�0; d0)� r(�j ; d0) (j = 1; : : : ; J);

so (b0) holds. Also �j � 0 (1 � j � J) and �j = 0 if j 2 B, so (a) holds.

Once we have obtained the least favorable prior �0, the minmax rule d0 is a Bayes rule with

respect to �0. So d0(z) solves

d0(z) = argmin
a2A

Z
�

L(�; z; a) d��0(� j z); (7)

where ��0 is the posterior distribution corresponding to the least favorable prior �0. If the minimizing

value in (7) is not unique, then the minmax rule d0 may involve randomization.

Minmax Bounds

The minmax value r(�0; d0) is with respect to the set � of prior distributions. If we consider

a larger set of distributions �0, with �0 = � [ �, then

V = inf
d2D

sup
�2�

r(�; d) � inf
d2D

sup
�2�0

r(�; d) = V
0

:

So the minmax value relative to � provides a lower bound for the minmax value relative to �0.
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Now �x a decision rule d, and construct an upper bound:

V
0

� sup
�2�0

r(�; d) = maxf max
1�j�J

r(�j ; d); sup
�2�

r(�; d)g:

This upper bound is useful in that it may be feasible to maximize r(�; d) over � 2 � for a �xed d,

even though it is not feasible to compute the inf sup over D and �.

Suppose, for example, that the parameter space � equals Rp
��2. Let �� denote the point-

mass distribution that assigns probability one to the point �. Let � consist of the set of product

measures formed from point masses on Rp and a �xed distribution � on �2:

� = f�� � � : � 2 Rp
g:

Then by identifying �1 with the distribution ��1 � �, we can index the risk function by �1:

r(�1; d) =

Z
�2

Z
Z

L((�1; �2); z; d(z))f(z j (�1; �2)) d�(z) d�(�2); (�1 2 R
p):

Maximizing r(�; d) over � reduces to maximizing r(�1; d) over R
p:

sup
�2�

r(�; d) = sup
�12R

p

r(�1; d):

This is a �nite-dimensional maximization problem, and gradient methods may be e�ective provided

that r(�1; d) is a smooth function of its �rst argument.

4. APPLICATION: AUTOREGRESSIVE MODELS FOR PANEL DATA

We shall work with the following parametric family:

Yit = Yi;t�1 + �i + Uit (8)

�i j fYi0 = yi0g
N
i=1

ind
� N (�1 + �2yi0; �

2
v)

Uit j f�i; Yi0 = yi0g
N
i=1

i:i:d:
� N (0; �2) (i = 1; : : : ; N ; t = 1; : : : ; T );

with � = (; �1; �2; �
2;  ) and  � �2v=�

2. We shall focus on the estimation of , using a squared-

error loss function. The observation Z is fYit; 1 � t � TgNi=1. The F� distribution for Z is given
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by (8); it is conditional on fyi0g
N
i=1, which is observed. We set W = �, since � combined with an

action (an estimate) determines the utility-relevant outcome. Given a prior distribution � on �,

the joint distribution Q of (Z; �) is given by

Q(A;B) =

Z
B

F�(A) d�(�) =

Z
B

Z
A

f(z j �) d�(z) d�(�):

The loss function is L(�; z; a) = ( � a)2. The Bayes rule d�(z) in (3) is the posterior mean of

:

d�(z) = E��( j z) =

Z
 d��(� j z);

where ��(� j z), the posterior distribution of � given Z = z, is given in (4). When the prior distribution

is a mixture: �� =
PJ

j=1
�j�j ; it follows from (5) that the posterior mean is a convex combination

of the posterior means under the components, �j , of the mixture:

d�(z) = E���( j z) =

JX
j=1

�jfj(z)E��j ( j z)

� JX
j=1

�jfj(z); (9)

where fj(z) =
R
f(z j �) d�j(�) is the likelihood under model j. The risk under �� for an estimator

d is

r(��; d) =

JX
j=1

�jr(�j ; d); (10)

where

r(�j ; d) =

Z Z
[ � d(z)]2f(z j �) d�(z) d�j(�) (11)

=

Z �Z
[ � d(z)]2 d��j(� j z)

�
fj(z) d�(z)

=

Z h
Var��j ( j z) + [E��j ( j z)� d(z)]2

i
fj(z) d�(z);

and Var��j (� j z) is the conditional variance under the posterior distribution ��j(� j z).

The prior distributions we consider have the following structure: 1=�2 has a gamma distri-

bution; conditional on �2, the components of (; �1; �2) are independent normals with variances

11



proportional to �2; the prior distribution for  assigns unit mass to a single point. This family of

priors is convenient in that E��j ( j z), Var��j ( j z), and fj(z) have closed-form expressions. They

are simple to compute with no need for numerical integration.

We can approximate r(�j ; d) by Monte Carlo simulation. Obtain independent and identically

distributed (i.i.d.) draws fZ(j; k)gKk=1 by drawing �(j; k) from the prior distribution �j and then

drawing Z(j; k) from f(� j �(j; k)). Then we have

r(�j ; d) �=
1

K

KX
k=1

h
Var��j ( jZ(j; k)) + [E��j ( jZ(j; k)) � d(Z(j; k))]2

i
: (12)

Now we can approximate r(��; d) using (10). This is how we calculate �(�) = r(��; d�), with d�

obtained from (9). A numerical optimization routine is used for the constrained maximization of �

over the J � 1 dimensional simplex. [The routine is nag nlp sol, from the NAG Fortran 90 library;

it is based on the subroutine NPSOL described in Gill et al. (1986)]. The maximizing value �0 gives

the least favorable prior, �0 =
PJ

j=1
�0j�j , and �(�0) is the minmax value for risk, relative to the

set of models f�jg
J
j=1.

In order to start with a more tractable problem, I decompose the parameter space � into

the product �1 � �2, put a prior distribution on �2, which is held �xed, and do the minmax

analysis with respect to �1. Judging  and  to be particularly important, I set �1 = (;  ), �2 =

(�1; �2; �
2), with �1 = R� [0;1) and �2 = R

2
�(0;1). The prior distribution for (�1; �2; �

2) is the

same in all the models. The minmax analysis is with respect to (;  ). The prior distribution for

(�1; �2; �
2) is motivated by work in Chamberlain and Hirano (1999) using residuals from regressions

of log earnings on education and age in the Panel Study of Income Dynamics. It speci�es that

1=�2 � �2(10)=:9, so that the .1 and .9 quantiles for � are .24 and .43. The mean of �1 is 0, the

mean of �2 is .25, and the standard deviations of �1 and �2 in the (unconditional) t-distribution are

.20. The values for fyi0g
N
i=1 are obtained by drawing from a normal distribution with mean 0 and

standard deviation .45; these values for yi0 are then kept �xed in evaluating risk.

I began by calculating minmax risk values over sets of forty to �fty models. I found that a

similar minmax value could be obtained using considerably fewer models. Consider the case with
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N = 100, T = 2, and nine models formed by combining three priors for  with three priors for  .

The priors for  have means equal to .2, .5, .8 and standard deviations equal to .2. The priors for

 have unit mass at .0, .4, and 1.0. These models were chosen based on examining the �0 weights

in the least-favorable prior based on larger sets of models. Panel (a) of Table 1 gives the �0 weights

for these nine models in the least favorable prior. (The Monte Carlo simulation uses K = 10,000

draws.) Note that the solution is on the boundary of the simplex, with four of the models receiving

zero weight. Panel (b) of the table gives the square root of the mean-square error (MSE) of the

minmax estimator d0, under each of the nine models. Note that the risk is equalized (at :1112) for

the models that receive positive weight in the least-favorable prior. The risk is less for the other

models. So the Kuhn-Tucker conditions are in fact satis�ed by this solution.

Table 1. Minmax: N = 100, T = 2

(a) least-favorable prior: �0;j (b) root-MSE:
p
r(�j ; d0)

 = �2v=�
2  = �2v=�

2

E(); std() .0 .4 1.0 .0 .4 1.0

:2; :2 .000 .000 .463 .102 .103 .111

:5; :2 .008 .350 .000 .111 .111 .107

:8; :2 .147 .032 .000 .111 .111 .100

I have tried augmenting this set of nine models in various ways. For example, keep the three

priors for  and obtain forty-�ve models by combining them with the following �fteen point mass

priors for  :  = (:0; :1; : : : ; 1:0; 1:5; 2:0; 3:0; 5:0). Or keep the original three point mass priors for

 and obtain forty-�ve models by combining them with the following �fteen priors for : E() =

(:0; :1; : : : ; 1:4) with standard deviations equal to .2. Then decrease the standard deviation to .05,

and then to essentially the point mass case with std() = 10�6. These four sets of forty-�ve models

all give minmax values for root-MSE that are close to the .111 value based on the nine models in

Table 1. The increase in maximal root-MSE was in all cases less than .002. This was also the case

in checking a wide range for E(), with �fteen values between �10 and 10, and std() = .2.
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Table 2 has the results for N = 100, T = 4. The three priors for  again have means equal

to .2, .5, .8 and standard deviations equal to .2. The priors for  have unit mass at .0, .3, and

.8. The solution for the weights �0 in the least-favorable prior again occurs on the boundary of

the simplex, with four of the nine models receiving zero weight. The root-MSE of the minmax

estimator is equalized across the models that receive positive weight (at .065 or .064), with a lower

root-MSE for the other models. There are similar results in Table 3 for N = 100, T = 10, with

a minmax root-MSE of .032, and in Table 4 for N = 1000, T = 2, with a minmax root-MSE of

.061. As before, I tried augmenting the nine models in various ways, and found little increase in

the maximal root-MSE. For example, with N = 100 and T = 4, the increase in maximal root-MSE

across the four sets of forty-�ve models was at most .002.
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Table 2. Minmax: N = 100, T = 4

(a) least-favorable prior: �0;j (b) root-MSE:
p
r(�j ; d0)

 = �2v=�
2  = �2v=�

2

E(); std() .0 .3 .8 .0 .3 .8

:2; :2 .000 .000 .415 .064 .064 .065

:5; :2 .000 .445 .007 .061 .065 .065

:8; :2 .066 .068 .000 .064 .065 .054

Table 3. Minmax: N = 100, T = 10

(a) least-favorable prior: �0;j (b) root-MSE:
p
r(�j ; d0)

 = �2v=�
2  = �2v=�

2

E(); std() .05 .2 .4 .05 .2 .4

:1; :2 .000 .042 .128 .032 .032 .032

:2; :2 .000 .468 .021 .032 .032 .032

:4; :2 .340 .000 .000 .032 .032 .032

Table 4. Minmax: N = 1000, T = 2

(a) least-favorable prior: �0;j (b) root-MSE:
p
r(�j ; d0)

 = �2v=�
2  = �2v=�

2

E(); std() .0 .2 .5 .0 .2 .5

:5; :1 .000 .000 .398 .053 .060 .061

:7; :1 .000 .355 .014 .060 .061 .061

:9; :1 .195 .038 .000 .061 .061 .050
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These minmax risk values are in each case relative to the �nite set of nine models. The risk

values are lower bounds relative to a larger set of models, such as the in�nite set that includes

point masses on every point (;  ) 2 �1. In order to obtain an upper bound for that case, I shall

consider some particular estimators and calculate their maximum risk over �1. This calculation is

based on (12), where now the prior � (which replaces �j) is not restricted to a �nite set. The prior

for �2 = (�1; �2; �
2) is �xed as before, but the prior for �1 = (;  ) can place unit mass on any point

in �1 = R� [0;1). So we can index � by �1 and (12) becomes

r(�1; d) �=
1

K

KX
k=1

[ � d(Z(�1; k))]
2: (13)

The i.i.d. draws fZ(�1; k)g
K
k=1 are obtained by drawing �2(k) from its (�xed) prior, and then

drawing Z(�1; k) from f(� j (�1; �2(k))). Then for a given estimator d, we maximize r(�1; d) over

�1 2 �1. This gives an upper bound on the minmax risk over �1, given the �xed prior on �2.

We consider three estimators for . (1) Empirical Bayes. For a given value of  , we impose

the �xed prior on �2 = (�1; �2; �
2) and an essentially uniform prior on  [std() = 1000]. We

integrate over this prior distribution for (; �2) to obtain a marginal likelihood function for  ,

which is maximized to obtain  ̂. Then the estimate of  is the posterior mean conditional on the

data and on  , evaluated at  =  ̂. (2) Uniform Prior . The second estimator for  is the posterior

mean based on the �xed prior for �2 with an essentially uniform prior for (;  ) [std() = 1000,

constant density for  on [0;1)]. (3) Point-Mass Prior . The third estimator for  is the posterior

mean based on the �xed prior for �2, an essentially uniform prior for  [std() = 1000], and a

prior distribution for  that assigns point mass of .10 to  = 0, and probability of .90 to a gamma

distribution with mean 12.5 and standard deviation 11.9. (The shape parameter is 1.1.) This

prior distribution for  was motivated by examining the least-favorable priors, which tend to place

substantial probability near 0.

The computation of the three estimators is described in Chamberlain (1998). The risk at a

given value of (;  ) is calculated using (13). Then the maximum risk over (;  ) 2 R � [0;1) is

calculated using a grid search. We ensure that the approximation in (13) gives a smooth function
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of �1 by using a single set of normal and gamma draws, which are then used to calculate r(�1; d)

for the various values of �1. In fact the risk function appears to be very well-behaved in �1, and

gradient maximization routines should be e�ective in working with a higher dimensional problem.

The maximum root-MSE values for the three estimators are shown in Table 5.

Table 5. Maximum root-MSE for (;  ) 2 R� [0;1)

(N;T )

Estimator (100; 2) (100; 4) (100; 10) (1000; 2)

(1) empirical Bayes .136 .079 .035 .074

(2) uniform prior .160 .097 .039 .090

(3) point-mass prior .137 .098 .051 .097

minmax lower bound .111 .065 .032 .061

These values are greater than the maximum root-MSE values for these estimators over the nine

models that were used to obtain the minmax lower bounds. The minmax lower bounds, from Tables

1{4, are shown again in Table 5. The empirical Bayes estimator and the point-mass prior estimator

have similar maximal risk when N = 100 and T = 2, but the point-mass prior estimator does

not do as well at the other sample sizes. Of the three estimators, the empirical Bayes estimator

provides the sharpest upper bound on root-MSE. Combining that upper bound with the minmax

lower bound, we have a fairly good bound on the minmax value for (;  ) 2 R � [0;1). Given

the focus on the two-dimensional subproblem for (;  ), and given the �xed prior for the other

parameters, our tentative conclusion is that the maximum risk of the empirical Bayes estimator is

fairly close to the minmax value.
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