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Abstract

Analysis of randomized experiments with missing covariate and outcome data is problematic because the
population parameters of interest are not identified unless one makes untestable assumptions about the
distribution of the missing data.  This paper shows how population parameters can be bounded without
making untestable distributional assumptions.  Bounds are also derived under the assumption that
covariate data are missing completely at random.  In each case the bounds are sharp; they exhaust all of the
information that is available given the data and the maintained assumptions.  The bounds are illustrated
with applications to data obtained from a clinical trial and data relating family structure to the probability
that a youth graduates from high school. 
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NONPARAMETRIC ANALYSIS OF RANDOMIZED EXPERIMENTS WITH
MISSING COVARIATE AND OUTCOME DATA

1.  INTRODUCTION

This paper is concerned with nonparametric analysis of randomized experiments with observational

problems.  The existing literature on this subject is concerned mainly with the interpretation of

experiments in which some subjects do not comply with assigned treatments.  In general, average

treatment effects are not identified when there is noncompliance, but they can be bounded (Manski 1989,

1990; Robins 1989, Balke and Pearl 1997).  The identifiability of treatment effects within the sub-

population of persons who comply with treatment has been also studied (Bloom 1984; Angrist, Imbens,

and Rubin 1996).  Manski (1997) studied a converse problem in which subjects comply with treatment but

the problem of interest is to predict outcomes in real world settings with imperfect compliance.

Our concern here is the interpretation of experiments with missing covariate and outcome data. 

Observational problems at the point of randomization sometimes prevent experimenters from collecting

complete data on covariates of interest.  Observational problems following randomization (e.g., attrition

from a clinical trial) sometimes prevent experimenters from collecting complete outcome data.  We

suppose that outcomes are binary.  The extension to more general outcomes can be carried out by using

methods like those of Horowitz and Manski (1998) but is beyond the scope of this paper. 

Section 2 characterizes the inferences on population parameters of interest that are possible without

making untestable assumptions about the distribution of the missing data.  The inferences take the form of

bounds on population parameters.  The bounds are sharp; that is, they exhaust the information that is

available from the data.  Moreover, the bounds are continuous functions of the probability that an

observation is complete (non-missing) and are informative whenever the probability of a complete

observation exceeds zero.  We also report tighter bounds obtained under the assumption that covariate data
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are missing completely at random (MCAR), with no assumption imposed on the process generating

missing outcome data. 

Section 3 illustrates the theoretical results by applying them to data obtained in a U.S. Department

of Veterans Affairs (DVA) clinical trial of treatments for hypertension (Materson, et al. 1993).  A further

illustration is presented in Section 4, which revisits a study of the effect of family structure on the

probability that a child graduates from high school (Manski, Sandefur, McLanahan, and Powers 1992). 

Section 5 presents concluding comments.  The proofs of theorems are in the Appendix.

To focus attention on the problem of missing covariates and outcomes, we abstract from other

observational problems, including noncompliance.  Note, however, that when a subject does not comply

with the assigned treatment, the experimenter observes an outcome, albeit for a treatment other than the

one assigned.  When outcome data are missing, the experimenter observes no outcome at all.  Therefore,

the bounds derived in Section 2 apply, though they may not be sharp, to settings with noncompliance. 

The analysis in this paper is deliberately conservative.  Our “worst-case” approach of asking what

inferences can be made without invoking untestable assumptions contrasts with the “best-case” approaches

that dominate the literature on estimation in the presence of missing data.  The most common practice is to

assume that covariate and outcome data are missing at random.  Occasionally, a model of non-random

missing data is asserted.  Either way, the identification problem is solved and efficiency of estimation

becomes the central matter of concern to statisticians.  See, for example, Little (1992), Robins, Rotnitzky,

and Zhao (1994), and Wang, Wang, Zhao, and Ou (1997).

In our view, it is not sufficient for empirical researchers to know the inferences that can be made if

certain distributional assumptions hold.  It is also important to characterize the inferences that can be made

without imposing these assumptions.  The conservative analysis developed here allows the establishment

of a domain of consensus among researchers who may hold disparate beliefs about what assumptions are

appropriate (Manski 1995).  Concern with establishing consensus has motivated some researchers facing
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missing data problems to perform sensitivity analyses in which they entertain a limited range of alternative

assumptions about the nature of the missing data (e.g., Little 1995, Little and Yao 1996, Nordheim 1984,

Rosenbaum 1995, Rotnitzky, Robins, and Scharfstein 1998).  Our approach is a sensitivity analysis that

encompasses all non-refutable assumptions about the nature of the missing data.

In an earlier paper (Horowitz and Manski 1998), we studied the problems of missing covariate and

outcome data in the analysis of survey response.  The present analysis complements and generalizes that

work.  Whereas Horowitz and Manski (1998) examined certain polar cases of missing data (only outcomes

are missing, only covariates are missing, or outcomes and covariates are jointly missing), here we permit

mixed patterns of missing covariate and outcome data.  Whereas the earlier paper was concerned only with

the problem of inference on outcome levels, here we analyze the distinctive problems of inference on the

variation of outcomes with treatment and with covariates. 

2. DERIVATION OF THE BOUNDS

This section derives bounds on population parameters of interest in applications such as those

described in Sections 3 and 4.  Each member of the population is characterized by the values of a treatment

indicator (a positive integer) and a random variable (Y, X, Zy, Zx).  Y is a binary outcome variable that

indicates whether treatment is successful (Y = 1) or unsuccessful (Y = 0).  X is a covariate.  Zy and Zx are

indicators of missing data.  Y is observed if Zy = 1 and unobserved if Zy = 0.  X is observed if Zx = 1 and

unobserved if Zx = 0.  Data are obtained by assigning individuals randomly to treatments and observing the

resulting values of Y and X whenever these are non-missing.

We assume that if X is a vector, then in any data record either all components of X are missing or

none are missing.  The bounds we derive apply but may not be sharp if different components of X may be

missing in different data records.  Sharp bounds for this case can be derived using methods similar to those

used here but the calculations are beyond the scope of this paper.
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Let Πt x( )  denote the probability that Y = 1 conditional on X = x for an individual who is assigned

randomly to treatment t.  Our aim is to estimate three population quantities: Πt x( ) , Π Πt sx x( ) ( )−  (the

difference between conditional success probabilities under two different treatments), and Πt x( )2 −

Πt x( )1  (the difference between conditional success probabilities with different values of x but the same

treatment).  Sections 2.1-2.3 derive sharp bounds on these quantities under the assumption that identified

features of the population are known with certainty.  Finite-sample inference is treated in Section 2.4.

2.1  Bounds on Πt x( )  and Π Πt sx x( ) ( )−

This section obtains bounds on Πt x( )  and Π Πt sx x( ) ( )−  when X is discrete.  The data are

uninformative about these quantities if X is continuous and some observations of X are missing.

Let Pt(⋅) denote the probability of the event in parentheses for an individual who is assigned

randomly to treatment t.  For j, k = 0 or 1, define E xtjk ( )  = Pt(Y = 1|X = x, Zx = j, Zy = k), Atjk  = Pt(Y =

1|Zx = j, Zy = k), G xtjk ( )  = Pt(Zx = j, Zy = k|X = x), Q xtjk ( )  = Pt(X = x|Zx = j, Zy = k), and ptjk  = Pt(Zx = j, Zy

= k).  Then

Πt
j

tjk tjk
k

x E x G x( ) ( ) ( )= ∑ ∑ . (1)

Application of Bayes’ theorem to G xtjk ( )  in (1) yields

Πt
j

tjk tjk tjk
j

tjk tjk
kk

x E x Q x p Q x p( ) ( ) ( ) ( )= ∑ ∑ ∑∑ . (2)

For (j,k) ∈ {0,1}, the sampling process identifies E xt11( ) , Q xt k1 ( ) , ptjk , and At01.  It does not identify

Q xt k0 ( ) , E xtj 0( ) , or E xt01( ) .  These quantities can have any values in [0,1].   However,

A E x Q x B x Q xt t t t t01 01 01 011= + −( ) ( ) ( )[ ( )], (3)
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where B x P Y X x Z Zt t x y( ) ( | , , )= = ≠ = =1 0 1 .  B xt ( )  is not identified and can have any value in [0,1]. 

Therefore, it follows from (3) that

max ,
[ ( )]
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( ) min ,
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01
01

01

01
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Q x
E x

A

Q x
t t

t
t

t

t
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&
'

(
)
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≤ ≤
�

!
 

"

$
# (4)

These bounds are sharp (Horowitz and Manski 1995, Corollary 1.2).  Therefore, sharp bounds on Πt x( )

can be obtained by minimizing and maximizing the right-hand side of (2) with respect to the unidentified

quantities subject to 0 ≤ Q xt k0 ( )  ≤ 1, 0 ≤ E xtj 0( )  ≤ 1 (j, k = 0, 1), and (4).  The result is:

Theorem 1:  Define

D x Q x p p A p

R x Q x p p A p

t t k t k
k

t t t

t t k t k
k

t t t

( ) ( ) ( ) ,

( ) ( ) ,

= + + −

= + +

=

=

∑

∑

1 1
0

1

00 01 01

1 1
0

1

00 01 01

1

S x E x Q x p Q x p p A pt t t t t t t t t( ) ( ) ( ) ( )= + + +11 11 11 10 10 00 01 01, L x E x Q x p D xt t t t t( ) ( ) ( ) ( )= 11 11 11 , and

Ut(x) = St(x)/Rt(x).  Then sharp bounds on Πt x( )  are L x x U xt t t( ) ( ) ( )≤ ≤Π . �

A necessary and sufficient condition for the bounds in Theorem 1 to be informative (that is, to

satisfy Ut(x) - Lt(x) < 1) is Qt11(x) > 0 and pt11 > 0.  In other words, the bounds are informative if the

probability of a complete observation with X = x exceeds zero.

Now let Ls(x) and Us(x) be the quantities obtained from Lt(x) and Ut(x) by replacing t with s.  Sharp

bounds on Πs x( )  are L x x U xs s s( ) ( ) ( )≤ ≤Π .  Because individuals are assigned randomly to treatments,

there are no further constraints on Πt x( )  and Πs x( ) .  Therefore, sharp bounds on Π Πt sx x( ) ( )−  are as

stated in the following corollary to Theorem 1: 

Corollary 1.1:  Let s ≠ t.  The inequality L x U x x x U x L xt s t s t s( ) ( ) ( ) ( ) ( ) ( )− ≤ − ≤ −Π Π  gives

sharp bounds on Π Πt sx x( ) ( )− . �
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These bounds are informative (that is, the difference between the lower and upper bounds is strictly

less than 2) whenever Qt11(x) > 0, Qs11(x) > 0, pt11 > 0, and ps11 > 0.

2.2  Bounds on Π Πt tx x( ) ( )2 1−

This section derives sharp bounds on Π Πt tx x( ) ( )2 1− .  It follows from (2) that

Π Πt t
j

tjk tjk jk
k

j
tjk tjk

k

j
tjk tjk jk

k

j
tjk tjk

k

x x

E x Q x p

Q x p

E x Q x p

Q x p
( ) ( )

( ) ( )

( )

( ) ( )

( )
2 1

2 2

2

1 1

1

− = −
∑ ∑

∑ ∑
∑ ∑

∑ ∑
. (5)

In addition,

A E x Q x E x Q x B x x Q x Q xt t t t t t t t01 01 2 01 2 01 1 01 1 1 2 01 2 01 11= + + − −( ) ( ) ( ) ( ) ( , )[ ( ) ( )] , (6)

where B x x P Y X x X x Z Zt t x y( , ) ( | , , , )2 1 1 21 0 1= = ≠ ≠ = = .  The sampling process does not identify

B x xt ( , )2 1  or the unidentified quantities described in Section 2.1.  Each unidentified quantity can have any

value in [0,1].  There are, however, additional relations among these quantities that must be maintained. 

These are:

Q x Q xt t01 2 01 1 1( ) ( )+ ≤ , (7)

Q x Q xt t00 2 00 1 1( ) ( )+ ≤ , (8)

A E x Q x E x Q xt t t t t01 01 2 01 2 01 1 01 1≥ +( ) ( ) ( ) ( ) , (9)

and

A E x Q x E x Q x Q x Q xt t t t t t t01 01 2 01 2 01 1 01 1 01 2 01 11≤ + + − −( ) ( ) ( ) ( ) [ ( ) ( )] . (10)

Inequalities (9) and (10) are obtained from (6) by letting B x xt ( , )2 1  range over [0,1].

Sharp bounds on Π Πt tx x( ) ( )2 1−  are obtained by maximizing and minimizing the right-hand side

of (5) over the unidentified quantities subject to (7)-(10) and the constraint that unidentified probabilities

must be in [0,1].  The result is stated in Theorem 2 below.  The following notation is used.  Define
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a E x Q x p Q x p A pt t t t t t t= + +11 2 11 2 11 10 2 10 01 01( ) ( ) ( ) , b Q x p Q x p A pt t t t t= + +11 2 11 10 2 10 01 01( ) ( ) ,

d E x Q x pt t t= 11 1 11 1 11( ) ( ) , f =  Q x p Q x p A pt t t t t t11 1 11 10 1 10 01 011( ) ( ) ( )+ + − ,
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p d
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0 0 0 1 0

0 1 0

  if  and 

  if  and 

The solution in  to  otherwise.

Theorem 2:  Sharp bounds on Π Πt tx x( ) ( )2 1−  are L x x x x U x xt t t t( , ) ( ) ( ) ( , )2 1 2 1 2 1≤ − ≤Π Π ,

where

U x x
a p z

b p z

d

f p zt
t

t t
( , )

*

* ( *)2 1
00

00 00 1
= +

+
−

+ −
,

and Lt(x2, x1) = -Ut(x1, x2). �

These bounds are informative whenever Qt11(x1) > 0, Qt11(x2) > 0, and pt11 > 0.

2.3  Bounds when X Is Missing Completely at Random

The bounds derived in Sections 2.1-2.2 can be tightened if X is missing completely at random

(MCAR).  The tighter bounds are derived in this section.  Formally, X is MCAR if Pt(Zx = jY = " , X = x,

Zy = k) = Pt(Zx = j) for all x in the support of X and all j, k, "  = 0, 1.  Lemma 1 states the consequences of X

being MCAR that are important for identification.

Lemma 1:  If X is MCAR, then

E x E xt k t k1 0( ) ( )= , (11)

and

Q x Q xt k t k1 0( ) ( )= (12)
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for all x in the support of X and k = 0 or 1. �

Lemma 1 implies that when X is MCAR, E xt01( )  and Q xt k0 ( )  (k = 0, 1) are identified.  Define

Ht(x) = Pt(Zy=1X = x, Zx = 1).  Then, substituting (11) and (12) into (2) yields

Πt t t t tx E x H x E x H x( ) ( ) ( ) ( )[ ( )]= + −11 10 1 . (13)

All quantities on the right-hand side of (13) are identified except E xt10( ) , which can have any value in

[0,1].  Therefore, we have:

Theorem 3:  Let Lmt(x) = E x H xt t11( ) ( )  and U x H x L xmt t mt( ) ( ) ( )= − +1 .  If X is MCAR, then

sharp bounds on Πt x( )  are L x x U xmt t mt( ) ( ) ( )≤ ≤Π .  Sharp bounds on Π Πt sx x( ) ( )−  (s ≠ t) are

L x U x x x U x L xmt ms t s mt ms( ) ( ) ( ) ( ) ( ) ( )− ≤ − ≤ −Π Π . �

The bounds on Πt x( )  are informative whenever Ht(x) > 0.  The bounds on Π Πt sx x( ) ( )−  are

informative whenever Ht(x) > 0 and Hs(x) > 0.

The MCAR condition can be used to obtain bounds on Π Πt tx x( ) ( )2 1−  that are tighter than those

of Theorem 2.  Substitution of (11) and (12) into (5) yields a version of Π Πt tx x( ) ( )2 1−  in which the

only unidentified quantities are E xt10 2( )  and E xt10 1( ) .  These quantities can have any values in [0,1]. 

Under MCAR, Π Πt tx x( ) ( )2 1−  is maximized (minimized) by setting E xt10 2( )  = 1 (0) and E xt10 1( )  = 0

(1).  Therefore, the following theorem holds.

Theorem 4:  Define U x x E x H x E x H xmt t t t t( , ) [ ( )] ( ) ( ) ( )2 1 11 2 2 11 1 11 1= − − −  and L x xmt( , )2 1 =

−U x xmt( , )1 2 .  If X is MCAR, then tight bounds on Π Πt tx x( ) ( )2 1−  are L x x x xmt t t( , ) ( ) ( )2 1 2 1≤ −Π Π

≤ U x xmt( , )2 1 . �

These bounds are informative whenever Ht(x2) > 0 and Ht(x1) > 0.  In addition, it is not difficult to

show that Theorems 3 and 4 hold if X is continuously distributed.  Thus, under the MCAR assumption, we
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obtain informative bounds even if X is continuous.  As was discussed in Section 2.1, the bounds are

uninformative if X is continuous but not assumed to be MCAR. 

2.4  Finite-Sample Inference

The discussion in Sections 2.1-2.3 assumes that identified features of the joint distribution of (Y, X,

Zy, Zx) are known with certainty.  This section treats inference when these features must be estimated from

a finite sample of size n.  We explain how to obtain consistent point estimators of the bounds and joint

asymptotic confidence intervals that have known probabilities of containing the population values of both

the lower and upper bounds.

First, consider point estimation of the bounds.  The population bounds given in Sections 2.1-2.3 are

functionals of population probabilities of components of (Y, X, Zy, Zx).  Thus, consistent estimators of these

bounds can be obtained by replacing the population probabilities with empirical probabilities.

Now consider a joint confidence interval for a pair of lower and upper bounds.  The interval of

greatest interest is one that has a known (asymptotic) probability of containing both the lower and the

upper bound on an unidentified population feature.  The interval obtained here has the form [Ln - znα, Un +

znα], where Ln and Un are estimates of the lower and upper bounds L and U on an unidentified population

feature.  The number znα is chosen so that P(Ln - znα ≤ L, U ≤ Un + znα) = 1 - α asymptotically. 

One way of obtaining znα is to derive it from an analytic expression for the asymptotic distribution

of Ln and Un.  The delta method can be used to show that for each pair (L,U) in Section 2.1-2.3, the

estimator (Ln,Un) is asymptotically bivariate normally distributed with mean (L,U) and a covariance matrix

that can be estimated consistently.  This approach is unattractive, however, because the expressions for the

asymptotic covariance matrices are very lengthy and, therefore, tedious to implement.

Asymptotically valid confidence intervals can be obtained more easily by using the bootstrap.  This

consists of carrying out a Monte Carlo simulation in which the data corresponding to the treatment(s) of

interest are sampled randomly with replacement (bootstrap sampling).  Each bootstrap sample is used to



10

compute a bootstrap estimate of (L, U), denoted (Ln*, Un*), by applying the formulae for (Ln, Un) to the

bootstrap sample.  By repeated bootstrap sampling, the distribution of (Ln*, Un*) conditional on the data

can be estimated with arbitrary accuracy.  The estimated distribution is used to find znα* such that P*(Ln* -

znα* ≤ Ln, Un ≤ Un* + znα*) = 1 - α, where P* is the probability measure induced by bootstrap sampling

conditional on the estimation data.  The bootstrap 1 - α confidence interval for (L, U) is [Ln - znα*, Un +

znα*].  It has asymptotic coverage probability 1 - α (Bickel and Freedman 1981).  The bootstrap is used to

obtain confidence intervals for bounds in the applications described in Sections 3 and 4.

To check the finite-sample accuracy of the bootstrap procedure, we carried out a Monte Carlo

experiment in which we estimated the true coverage probabilities of nominal 95% confidence intervals for

bounds on Π Πt tx x( ) ( )2 1− .  The distribution of (Y, X, Zy, Zx) used for the simulations was the empirical

distribution of the data in the DVA clinical trial that is described in Section 3.  The sample sizes were the

same as in the clinical trial.  Experiments were carried out with and without assuming that X is MCAR. 

The empirical coverage probabilities were in the range 0.93 to 0.96. 

3. AN ILLUSTRATIVE APPLICATION TO A CLINICAL TRIAL

This section applies the methods of Section 2 to data obtained in a clinical trial of treatments for

hypertension that was carried out by the DVA (Materson, et al. 1993; Materson and Reda 1994; Materson,

Reda, and Cushman 1995).  Patients at 15 DVA hospitals were randomly assigned to one of 6 treatments

for hypertension or placebo (treatment 7).  The trial had two phases.  In the first, the dosage that brought

diastolic blood pressure (DBP) below 90 mm Hg was determined.  In the second, it was determined

whether DBP could be kept below 95 mm Hg for a long time.  Treatment is defined to be successful if

DBP < 90 mm Hg on two consecutive measurement occasions in the first phase and DBP ≤ 95 mm Hg in

the second.  Treatment is unsuccessful otherwise.  The biochemical indicator “renin response” was
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measured at the time of randomization.  It has levels “low,” “medium,” and “high,” and may be related to

the probability of successful treatment (Freis, Materson, and Flamenbaum 1983).

Let X denote renin response.  The problem addressed here is to estimate Π Πt j t kx x( ) ( )−  (j ≠ k),

and Π Πt x x( ) ( )− 7  for t ≠ 7 (the treatment effect).  Some patients dropped out of the trial before success

or failure could be determined, and renin-response is missing for some patients.  Therefore, the quantities

of interest are not identified.  We use the methods of Section 2 to obtain bounds on them.  The pattern of

missing data is shown in Table 1.  

We have obtained bounds on the population quantities of interest without and with the assumption

that renin response is MCAR.  The MCAR assumption is not testable with the available data but is

plausible for reasons that will now be explained.  All randomized patients had blood samples taken for the

purpose of determining renin response.  The samples were shipped to a central laboratory for analysis. 

Missing data on renin response occurred when samples were damaged or destroyed during shipment. 

Neither the outcome of a patient’s treatment nor his renin response were known at the time of shipment. 

Thus, it is reasonable to assume that the occurrence of damage and, therefore, Zx are statistically

independent of treatment outcome and renin response, at least conditional on the hospital at which the

sample originated.  A chi-square test failed to reject the hypothesis that Zx is independent of hospital (p >

0.30).  A chi-square test using data from the patients for whom Zy = 1 failed to reject the hypothesis that Zx

is independent of Y (p > 0.5).  The tests support (but do not imply) the assumption that Zx is independent of

the other observed variables. 

We have also obtained point estimates of the population quantities of interest using only records

with complete data.  This amounts to assuming that missing data are ignorable.  We have no evidence for

or against this assumption.  We use it to illustrate the gains in precision of inference that it provides. 

The results are shown in Tables 2 and 3.  As expected, the point estimates and 95% confidence

intervals for the bounds are narrower with than without the assumption that X is MCAR and narrower still
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when only complete-data records are used.  Table 2 shows that the 95% confidence intervals for the

treatment effect conditional on low renin response exclude zero for 5 of the 6 treatments, even when no

assumptions are made about the distribution of missing data.  For each of these treatments, the hypothesis

that treatment is ineffective conditional on low renin response is rejected at the 0.05 level without making

untestable assumptions.  The 95% confidence intervals for the treatment effect conditional on medium

renin response exclude zero for 2 treatments without the MCAR assumption, 4 treatments with MCAR,

and 5 treatments when missing observations of Y and X are assumed to be ignorable.  With high renin

response, the hypothesis of ineffective treatment is rejected for one treatment with no assumptions about

the distribution of the missing data, 3 treatments with MCAR, and 4 treatments when missing observations

of Y and X are assumed to be ignorable.  The results shown in Table 3 provide little support for the

proposition that the probability of success varies with renin response.  The 95% confidence intervals for

Π Πt j t kx x( ) ( )−  contain zero even when only complete-data records are used.

4. AN ILLUSTRATIVE APPLICATION TO A QUASI-EXPERIMENT

Social scientists have long sought to understand how family structure during childhood affects

childrens’ outcomes later in life.  Experiments in which family structure is purposefully randomized across

children are not possible, but observational data from longitudinal surveys are often analyzed as quasi-

experiments in which statistical associations between family structure and children's outcomes are

interpreted as estimates of treatment effects.  Such quasi-experimental studies have usually analyzed only

cases with complete covariate and outcome data, thus effectively assuming that missing data are ignorable.

 See, for example, Astone and McLanahan (1991), Hogan and Kitagawa (1985), Krein and Beller (1988),

and McLanahan and Sandefur (1994).

Manski, et al. (1992) used data from the National Longitudinal Study of Youth (NLSY) initiated in

1979 to estimate the effect on high school graduation of living in an intact two-parent home during
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adolescence.  The objective was to assess the sensitivity of inferences to assumptions about the process

determining family structure.  Manski, et al. (1992) did not examine the sensitivity of their inferences to

assumptions about the process generating missing data.  Relying on the findings of Sandefur, McLanahan,

and Wojtkiewicz (1989), they analyzed only cases with complete data.  The results in Section 2 can be

used to assess the identification problem posed by missing data in the quasi-experiment in which family

structure is assumed to be randomly assigned conditional on certain covariates.  To illustrate, we re-

examine the finding of Manski, et al. (1992, p. 35) that the effect of family structure on high school

graduation tends to decrease with parents’ schooling.

We focus on the 1578 female NLSY respondents born in the years 1961-1964 whose race/ethnicity

is neither black nor Hispanic.  Family structure is a binary treatment, with t = 1 if the respondent lived with

both parents at age 14, and t = 2 otherwise.  The outcome variable Y = 1 if the respondent received a high

school diploma or GED certificate by 1985.  Y = 0 otherwise.  The covariates measure parents’ schooling. 

They are mother’s (X1) and father’s (X2) years of schooling in 1979.  They are coded here as less than 12,

12, and greater than 12 years of schooling. The data on birth year, sex, race/ethnicity, and family structure

are complete, but there are missing values of Y, X1 and X2.  The pattern of missingness is as follows:

                                        Missing                             
                  Only   Only   Only    Only     Only     Only
Treatment  None     Y      X 1     X 2    (Y, X 1)  (Y, X 2)  (X 1, X 2)  (Y, X 1, X 2)

    1      1021    51     21     30      0        1         9          1    

    2       314     9     16     81      0        4        20          0

Missing outcome data are caused by attrition of respondents between 1979 and 1985.  Missing covariate

data are caused by item nonresponse in the 1979 baseline survey.  Data are missing more often for father’s

than for mother’s schooling, especially for respondents in non-intact families.  This may reflect the fact

that in the 1970s, children in single-parent homes almost always lived with their mothers.

Table 4 presents two sets of results, one using X1 as the covariate (upper panel) and the other using

X2 (lower panel).  Manski, et al. (1992) used (X1, X2) as a two-dimensional covariate, but here we want to
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illustrate how different numbers of missing observations of X1 and X2 affect inference.  The point estimates

using only the complete cases yield the earlier study’s finding that the effect of family structure on high

school graduation decreases with parents’ schooling.  The hypothesis that the effects of family structure

are the same with X1 < 12 and X1 > 12 can be rejected at the 0.05 level.  However, the hypothesis that

treatment effect is independent of X2 cannot be rejected at the 0.05 level.  The estimates assuming that X1 is

MCAR continue to indicate that the effect of family structure decreases as X1 increases.  With no

assumptions on the distribution of missing data, the point estimates weakly suggest that the effect may

decrease with increasing X1.  The confidence intervals are very wide however, and it is not possible to

reject the hypothesis that the effect of family structure is independent of X1. 

5.  CONCLUSION

Inference from clinical trials or quasi-experiments is problematic when some data are missing

because population parameters are not identified unless one makes untestable assumptions about the

distribution of the missing data.  This paper has shown how population parameters can be bounded without

making untestable distributional assumptions.  The bounds are sharp; that is, they exhaust all of the

information available from the data.  Two illustrative applications have demonstrated the sensitivity of

substantive conclusions to the assumptions that are made about the process that generates missing data.

APPENDIX:  PROOFS OF THEOREMS

Proof of Theorem 1:  To obtain the sharp lower bound on Πt x( ) , minimize the right-hand side of

(2) over Q xt00( )  ∈ [0,1], E xtj 0( )  ∈ [0,1] (j = 0,1), and E xt01( )  satisfying (4) while holding Q xt01( )

fixed. This yields
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Now minimize the right-hand side of (A.1) with respect to Q xt01( )  ∈ [0,1].  This can be done by

observing that the minima with respect to Q xt01( )  ∈ [ , ]0 1 01− At  and Q xt01( )  ∈ [ , ]1 101− At  are both at

Q xt01( )  = 1 01− At .  Hence the lower bound on Πt x( )  is obtained by substituting Q x At t01 011( ) = −  into

(A.1).  The upper bound is obtained by similar methods after replacing minimization operations with

maximizations and observing that the maxima with respect to Q x At t01 010( ) [ , ]∈  and Q x At t01 011( ) [ , ]∈

are both at Q x At t01 01( ) = .  Q.E.D.

Proof of Theorem 2:  The upper bound is obtained through a sequence of 7 steps.  STEP 1:

Maximize the right-hand side of (5) with respect to E xt k10( )  and E xt k00( )  (k = 1, 2) while holding all

other quantities constant.  STEP 2:  Maximize the result of Step 1 with respect to Q xt00 1( )  subject to (8). 

STEP 3:  Maximize the result of Step 2 with respect to E xt01 2( )  subject to (9).  STEP 4:  Maximize the

result of Step 3 with respect to Q xt01 2( )  subject to (7) and (10).  STEP 5:  Maximize the result of Step 4

with respect to E xt01 1( ) .  STEP 6:  Maximize the result of Step 5 with respect to Q xt01 1( )  subject to (7)

and (10).  STEP 7:  Maximize the result of Step 6 with respect to Q xt00 2( )  subject to 0 100 2≤ ≤Q xt ( ) . 

The lower bound is minus the upper bound on Π Πt tx x( ) ( )1 2− . Q.E.D.

Proof of Lemma 1:  Only part (a) is proved.  The proof of part (b) is similar.  Part (a) asserts that

E x E xt k t k1 0( ) ( )=  for k = 0 or 1.  To prove this, observe that
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Therefore, E xtjk ( )  is independent of j.  Q.E.D.

Proof of Theorem 3:  The bounds on Πt x( )  are obtained by maximizing and minimizing the right-

hand side of (13) with respect to E xt10 0 1( ) [ , ]∈ .  To obtain the bounds on Π Πt sx x( ) ( )− , observe that

(13) holds for each treatment.  Now maximize and minimize the difference between the two versions of

(13) with respect to E xt10( )  and E xs10( ) .  Q.E.D.

Proof of Theorem 4:  Equation (13) holds for X = x1 and X = x2.  Therefore,
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E xt10 2( )  and E xt10 1( )  are the only quantities on the right-hand side of (A.2) that are not identified by the

sampling process.  The right hand side of (A.2) is maximized by setting E xt10 2 1( ) =  and E xt10 1 0( ) = ,

which gives the upper bound in the theorem.  The right-hand side of (A.2) is minimized by setting

E xt10 2 0( ) =  and E xt10 1 1( ) = , which gives the lower bound.  Q.E.D.
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Table 1:  Pattern of Missingness in the DVA Data

              Number    Observed    None    Missing   Missing    Missing
    Treatment   Randomized  Successes  Missing   Only Y    Only X    Y and X

       1          188         100       173       4         11         0

       2          178         106       158      11          9         0

       3          188          96       169       6         13         0

       4          178         110       159       5         13         1

       5          185         130       164       6         14         1

       6          188          97       164      12         10         2

       7          187          57       178       3          6         0
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Table 2: Bounds on Πt (x) – Π7(x) for DVA Clinical Trial a

              No Assumptions
            about Missing Data                X is MCAR             Complete Records Only
                        95%                           95%                      95%
        Estimate of  Conf. Interval    Estimate of   Conf. Interval            Conf. Interval
       Lower  Upper   Lower  Upper   Lower  Upper   Lower  Upper    Point    Lower  Upper
t  x   Bound  Bound   Bound  Bound   Bound  Bound   Bound  Bound   Estimate  Bound  Bound

1  L   0.226  0.311   0.102  0.435   0.250  0.275   0.126  0.399    0.265    0.142  0.390
1  M   0.147  0.350  -0.053  0.550   0.201  0.245  -0.027  0.473    0.225    0.002  0.448
1  H  -0.120  0.222  -0.364  0.466  -0.050  0.017  -0.326  0.291   -0.007   -0.281  0.267

2  L   0.202  0.330   0.074  0.458   0.224  0.296   0.092  0.428    0.266    0.138  0.395
2  M   0.277  0.469   0.077  0.669   0.337  0.384   0.117  0.604    0.370    0.150  0.589
2  H   0.243  0.584   0.007  0.820   0.353  0.499   0.105  0.747    0.461    0.221  0.701

3  L   0.112  0.233  -0.003  0.347   0.126  0.182   0.011  0.298    0.154    0.030  0.278
3  M   0.205  0.412  -0.029  0.646   0.270  0.272   0.022  0.520    0.271    0.034  0.508
3  H   0.155  0.472  -0.079  0.706   0.252  0.319  -0.008  0.579    0.295    0.032  0.558

4  L   0.262  0.370   0.140  0.492   0.290  0.321   0.166  0.445    0.310    0.182  0.438
4  M   0.177  0.421  -0.029  0.627   0.228  0.303   0.004  0.527    0.273    0.051  0.494
4  H   0.230  0.566  -0.011  0.806   0.372  0.439   0.095  0.717    0.416    0.166  0.665

5  L   0.344  0.469   0.228  0.585   0.377  0.434   0.257  0.554    0.418    0.300  0.536
5  M   0.353  0.583   0.147  0.789   0.483  0.484   0.251  0.716    0.484    0.268  0.699
5  H   0.145  0.506  -0.097  0.748   0.265  0.371   0.017  0.619    0.335    0.084  0.586

6  L   0.219  0.353   0.097  0.475   0.241  0.311   0.115  0.437    0.283    0.156  0.410
6  M   0.087  0.375  -0.117  0.579   0.134  0.246  -0.081  0.460    0.192   -0.042  0.425
6  H  -0.057  0.312  -0.297  0.552  -0.002  0.137  -0.254  0.389    0.071   -0.184  0.327

a With no assumptions about missing data and the assumption that X is MCAR, the confidence ingerval is
obtained with the bootstrap and contains the population lower and upper bounds with asymptotic probability
0.95.  With complete records only, the confidence interval is obtained by the delta method.
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Table 3: Bounds on Πt (x 2) – Πt (x 1) for DVA Clinical Trial

                 No Assumptions
               about Missing Data                X is MCAR             Complete Records Only
                            95%                           95%                      95%
           Estimate of  Conf. Interval    Estimate of   Conf. Interval            Conf. Interval
          Lower  Upper   Lower  Upper   Lower  Upper   Lower  Upper    Point    Lower  Upper
t  x 2 x 1   Bound  Bound   Bound  Bound   Bound  Bound   Bound  Bound   Estimate  Bound  Bound

1  M  L  -0.136  0.078  -0.308  0.250  -0.059  0.0    -0.232  0.172   -0.029   -0.205  0.147
1  H  L  –0.325 –0.043  -0.517  0.150  -0.234 –0.217  -0.456  0.005   -0.227   -0.455  0.002
1  H  M  –0.340  0.031  -0.558  0.248  -0.217 –0.174  -0.467  0.076   -0.198   -0.455  0.060

2  M  L  -0.024  0.221  -0.190  0.387   0.056  0.166  -0.106  0.328    0.115   -0.060  0.290
2  H  L   0.019  0.344  -0.169  0.532   0.149  0.292  -0.043  0.484    0.241    0.052  0.430
2  H  M  -0.096  0.262  -0.310  0.476   0.047  0.172  -0.177  0.396    0.126   -0.091  0.343

3  M  L   0.001  0.255  -0.164  0.419   0.104  0.150  -0.078  0.332    0.129   -0.064  0.322
3  H  L   0.028  0.322  -0.164  0.514   0.162  0.209  -0.040  0.411    0.187   -0.028  0.402
3  H  M  -0.128  0.222  -0.354  0.448   0.058  0.058  -0.198  0.314    0.058   -0.200  0.317

4  M  L  -0.160  0.107  -0.326  0.273  -0.078  0.018  -0.260  0.200   -0.026   -0.203  0.152
4  H  L  -0.031  0.260  -0.207  0.436   0.143  0.166  -0.059  0.368    0.152   -0.049  0.352
4  H  M  -0.056  0.339  -0.260  0.543   0.148  0.221  -0.088  0.457    0.178   -0.052  0.407

5  M  L  -0.085  0.189  -0.247  0.351   0.065  0.112  -0.097  0.274    0.077   -0.085  0.240
5  H  L  -0.215  0.117  -0.399  0.301  -0.077  0.010  -0.273  0.206   -0.037   -0.233  0.160
5  H  M  -0.305  0.102  -0.503  0.300  -0.142 -0.102  -0.360  0.116   -0.114   -0.340  0.111

6  M  L  -0.231  0.100  -0.387  0.256  -0.162  0.011  -0.340  0.189   -0.080   -0.271  0.112
6  H  L  -0.298  0.044  -0.478  0.224  -0.222 -0.087  -0.422  0.112   -0.166   -0.372  0.041
6  H  M  -0.288  0.161  -0.494  0.367  -0.171  0.013  -0.401  0.243   -0.086   -0.333  0.161

7  M  L  -0.046  0.029  -0.230  0.213   0.006  0.014  -0.186  0.206    0.012   -0.173  0.196
7  H  L  -0.039  0.106  -0.229  0.296   0.018  0.090  -0.188  0.296    0.046   -0.150  0.242
7  H  M  -0.045  0.130  -0.271  0.356   0.011  0.076  -0.234  0.322    0.035   -0.208  0.277
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Table 4: Bounds on Π1(x) – Π2(x) for Analysis of Effects of Family Structure

            No Assumptions
          about Missing Data                X is MCAR             Complete Records Only
                      95%                           95%                      95%
      Estimate of  Conf. Interval    Estimate of   Conf. Interval            Conf. Interval
     Lower  Upper   Lower  Upper   Lower  Upper   Lower  Upper    Point    Lower  Upper
x    Bound  Bound   Bound  Bound   Bound  Bound   Bound  Bound   Estimate  Bound  Bound

X is mother’s schooling

<12  0.226  0.311   0.026  0.389   0.173  0.262   0.095  0.340    0.230    0.143  0.317
 12  0.049  0.225  -0.019  0.293   0.087  0.165   0.017  0.235    0.139    0.072  0.206
>12 –0.058  0.215  -0.146  0.303  -0.011  0.039  -0.081  0.109   -0.201   -0.042  0.085

X is father’s schooling

<12 –0.023  0.352  -0.016  0.434   0.126  0.207   0.036  0.297    0.176    0.082  0.271
 12  0.018  0.370  -0.054  0.442   0.117  0.193   0.037  0.273    0.170    0.092  0.249
>12 –0.044  0.460  -0.132  0.547   0.039  0.116  -0.051  0.206    0.082   -0.002  0.166


