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Healthy, Wealthy, and Wise?

Tests for Direct Causal Paths between Health and Socioeconomic Status
Peter Adams, Michael Hurd, Daniel McFadden, Angela Merrill, and Tiago Ribeiro

1. Introduction

1.1. The Issue. The links between health, wealth, and education have been studied in a number
of populations, with the general finding that higher socioeconomic status (SES) is associated with better
health and longer life." In a survey of this literature, Goldman (2001) notes that this association has been
found in different eras, places, genders, and ages, and occurs over the whole range of SES levels, so that
it is not linked solely to poverty. The association holds for a variety of health variables (most illnesses,
mortality, self-rated health status, psychological well-being, and biomarkers such as allostatic load) and
alternative measures of SES (wealth, education, occupation, income, level of social integration).” There
has been considerable discussion of the causal mechanisms behind this association, but there have been
relatively few natural experiments that permit causal paths to be definitively identified.’ In this paper,
we test for the absence of direct causal links in an elderly population by examining whether innovations
in health and wealth in a panel are influenced by features of the historical state.

Figure 1 depicts possible causal paths for the health and SES innovations that occur over a short
period. Anindividual’s life history is built from these period-by-period transitions. First, low SES may
lead to failures to seek medical care and delay in detection of conditions, reduced access to medical
services, or less effective treatment.* Also, increased risk of health problems may result from increased
stress or frustration, or increased exposure to environmental hazards, that are associated with low SES.
These factors could provide direct causal links from SES history to health events. Second, poor health
may reduce the ability to work or look after oneself, and increase medical care expenditures, leading to
reduced income and less opportunity to accumulate assets. This could provide a direct causal link from
health to changes in SES.

There may also be hidden common factors that lead to ecological association of health and SES.
For example, unobserved genetic heterogeneity may influence both resistance to disease and ability to
work. Causal links may be reinforced or confounded by behavioral response. Behavioral factors such
as childhood nutrition and stress, exercise, and smoking may influence both health and economic activity
level. For example, tastes for work and for "clean living", whether genetic or learned, may influence
both health and earnings. Finally, rational economic decision-making may induce robust consumers to
accumulate in order to finance consumption over a long expected retirement, or unhealthy individuals
to spend down assets.

Preston and Taubman (1994), Smith and Kington (1997), and Smith (1999) give detailed
discussions of the various causal mechanisms that may be at work, and the role of behavioral response
from economic consumers. The epidemiological literature (Goldman, 2001) uses a different terminology
for the causal paths: links from SES to health innovations are termed causal mechanisms, while links
from health to SES are termed selection or reverse causation mechanisms. Apparent association due
to measurement errors, such as overstatement of the SES of the healthy or under-detection of illnesses
among the poor, are called artifactual mechanisms.® This literature classifies all common factors in
terms of their implicit initial action as either causal or selection mechanisms.’



1.2. This Study. We study the population of elderly Americans aged 70 and older, and in this
population test for the absence of direct causal paths from SES to innovations in health, and from health
status to innovations in SES. These hypotheses will in general be accepted only if no causal link is
present and there are no persistent hidden factors that influence both initial state and innovations.
Rejection of one of these hypotheses does not demonstrate a direct causal link, since this may be the
result of common hidden factors. However, in an elderly population persistent hidden factors will often
be manifest in observed covariates, so that once these covariates are controlled, the residual impact of
the hidden factors on innovations will be small. For example, genetic frailty that is causal to both health
problems and low wages, leading to low wealth, may be expressed through a health condition such as
diabetes. Then, onset of new health conditions that are also linked to genetic frailty may be only weakly
associated with low wealth, once diabetic condition has been entered as a covariate. Thus, in this
population, rejection of the hypotheses may provide useful diagnostics for likely causal paths.

The objectives and conclusions of this paper are limited. We study only elderly Americans, for
whom Medicare provides relatively homogeneous and comprehensive health care at limited out-of-
pocket cost to the individual. This population is retired, so that new health problems do not impact
earnings. Statements about the presence or absence of direct causal mechanisms in this population,
given previous health and SES status, say nothing about the structure of these mechanisms in a younger
population, where associations of health and SES emerge as a result of some pattern of causation and
operation of common factors.

Our tests for the absence of causality do not address the question of how to identify invariant
models and causal links when these tests fail. Ifa test for the absence of a direct causal path is rejected,
it may be possible through natural or designed experiments to separate causal and ecological effects; see
Angrist, Imbens, and Rubin (1996), Heckman (2000, 2001). Suppose a strictly exogenous variable is
causal to SES, and clearly not itself directly causal to health or causal to common factors. Then, an
association of this variable with innovations in health conditions can only be through a direct causal link
from SES to health. A variable with these properties is termed an proper instrument or control variable
for SES. Proper instruments are hard to find. They can be obtained through designed experiments,
where random treatment assignment precludes the possibility of confounding by common factors,
provided recruitment and retention of experimental subjects does not re-introduce confounding. For
example, an experiment that randomly assigned co-payment rates and coverage within Medicare for
prescription drugs or assisted living could provide evidence on direct causal links from SES to health
conditions, provided attrition and compliance are not problems. Occasionally, natural experiments may
provide random treatment assignment. Economic events that impact individuals differently and that are
not related to their prior SES or health are potentially proper instruments. For example, a tax change
that affects wealth differently in different States is arguably a proper instrument, as is a change in
mandated Medicaid coverage that has a differential impact across States. Individual events such as
receipt of inheritances may be proper instruments, although they would be confounded if they are
anticipated, or if the probability of their occurrence is linked to health status; see Meer, Miller, and
Rosen (2001). Weak association between SES and a proper instrument for it makes it difficult to obtain
precise estimates of direct causal effects; see Staiger and Stock (1997).

Section 2 of this paper discusses the foundation for econometric causality tests, and sets out the
models for the dynamics of health and SES that will be used for our analysis. Section 3 describes the
panel study and data that we use. Section 4 describes the association of SES and prevalence of health
conditions in the initial wave of the panel. Section 5 analyzes incidence of new health conditions, and
presents tests for non-causality of SES for the incidence of health innovations. Section 6 tests for the
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absence of a causal link from health conditions to wealth accumulation and other SES indicators.
Section 7 uses our estimated models for prevalence and incidence to simulate life histories for a current
population aged 70 under counterfactual (and unrealistically simplistic) interventions that assume a
major health hazard can be removed, or SES shifted for the entire population. This simulation accounts
consistently for co-morbidities and competing hazards over the life course. The purpose of this exercise
1s to demonstrate the feasibility of using our modeling approach for policy applications when the models
pass the causality tests described in next section. Finally, Section 8 gives conclusions and outlines topics
for future research.

2. Association and Causality in Panel Data

2.1. Testing Causality. The primary purpose of this study is to test for direct causal links between
SES and health. There is a large literature on the nature of causality and the interpretation of “causality
tests”.* Our analysis fits generally within the approach of Granger (1969), Sims (1972), and Hoover
(2001), but our panel data structure permits some refinements that are not available in a pure time series
setting.

Let Y, denote a K-vector of demographic, health, and socioeconomic random variables for a
household at date t, and interpret a realization of these variables as an observation in one wave of a panel
survey. Let ¥, be the information set containing the history of this vector through date t. Let

SN L) =AY DAY oY 1o Vi) (Yl Yo i oY) (1)

denote a model of the conditional distribution of Y, given ¥,,. Without loss of generality, we have
written this model as a product of one-dimensional conditional distributions, given history and given
components of Y, determined previously. Writing the model in this way does not imply that the
components of Y, form a causal chain, as they may be simultaneously determined, or determined in some
causal sequence other than the specified sequence. However, the model structure simplifies if the
current components of Y, in the specified order do form a causal chain or are conditionally independent.
If one takes Wold’s view that causal action takes time, then for sufficiently brief time intervals,
Jx(Yil Yoo, Yy oY) will not depend on contemporaneous variables, and what Granger calls
“instantaneous causality” is ruled out. In practice, time aggregation to observation intervals can
introduce apparent simultaneous determination. Conversely, in applications where time aggregation
is an issue, one can treat observed variables as indicators for some latent causal chain structure defined
for very short time intervals.

We shall focus on first-order Markov processes, specializations of (1) in which only the most recent
history conveys information,

SN =AY Y L) = AY DAY Y 16 Y o) AVl Yo Yier oY) 2)

Note that if (1) is a higher-order Markov process, then (2) can be obtained by expanding the variables
in Y, to include higher-order lags. Greater generality could be achieved via a hidden Markov structure
in which the observed Y, are deterministic functions of a latent first-order Markov process.” We leave
this extension for future research.



The model (2) is valid for a given history Y, , if it is the true conditional distribution of Y, given this
history. Term f a structural or causal model, or a (probabilistic) law, for Y, relative to a family of
histories if it has the invariance property that it is valid for each history in the family. Operationally, this
means that within specified domains, f has the transferability property that it is valid in different
populations where the marginal distribution of Y, , changes, and the predictability or invariance under
treatments property that it remains valid following policy interventions that alter the marginal
distribution of Y, ,. By including temporal or spatial variables in Y, it is possible to weaken invariance
requirements to fit almost any application. Done indiscriminately, this creates a substantial risk of
producing an “over-fitted” model that will be invalid for any “out-of-sample” policy interventions.
Then, proposed models should be as generic as possible. However, it may be necessary in some
applications to model “regime shifts” that account for factors that are causal for some populations or
time periods, and not for others.

Suppose the vector Y, = (H,,S,,X,) is composed of subvectors H,, S,, and X, which will later be
interpreted as health conditions, SES status, and strictly exogenous variables, respectively. We say that
S is conditionally non-causal for H, given X, if AH/H, ,X, ) is a valid model; i.e., given H,, and X, ,,
knowledge of S, is not needed to achieve the invariance properties of a causal model. Conversely, if
SAHMH, .S, X)) = fHH, ., X, ,), then knowledge of S, | contributes to the predictability of H,. Note that
either one or both conditional non-causality of S for H and conditional non-causality of H given S may
hold. Ifeither holds, then H and S can be arrayed in a (block) causal chain, and if both hold, then H and
S are conditionally independent. Writing the model (2) as a product of univariate conditional
probabilities f(H,[H,,...,.H;, ,H.,S,X.), one can test for conditional non-causality of S for each
component H;. It is possible to have a causal chain in which S is conditionally causal to a previous
component of H, and this component is in turn “instantaneously” causal to H,, yet there is no direct
causal link from S to H;. Placing S after H in the vector Y, we have conditional probabilities f{'S,|H,,H,
153, 1,X.1)- There may be instantaneous conditional independence of H and S, with the conditional
distribution of S, not depending on H,, or conditional non-causality of H for S, with the conditional
distribution not depending on H, ;, or both. The statement that X is strictly exogenous in a valid model
(2) is equivalent to the condition that H and S are conditionally non-causal for X in this model."

The conventional definition of a causal model or probabilistic law requires that f'be valid for the
universe of possible histories (except possibly those in a set that occurs with probability zero); see Pearl
(2000). It 1s possible to reject statistically a proposed causal model by showing that it is highly
improbable that an observed sample with a given history was generated by this model. It is far more
difficult using statistical analysis to conclude inductively that a proposed model is valid for the universe
of possible histories. We have the far more limited objective of providing a foundation for policy
analysis, where it is the invariance property under policy interventions that is crucial to predicting policy
consequences. We have defined validity and non-causality as properties of a model, and of the outcomes
of a process of statistical testing that could in principle be conducted on this model. Only within the
domain where the model is valid, and invariance confirms that the model is accurately describing the
true data generation process, can these limited positivistic model properties be related to the causal
structure embedded in the true data generation process. Further, we can choose the domain over which
invariance will be tested to make the definition operational and relevant for a specific analysis of policy
interventions. Similarly, our definition of conditional non-causality is a positivistic construct in the spirit
of the purely statistical treatment of “causality” by Granger (1969), and the test we will use is simply
Granger’s test for the absence of causality, augmented with invariance conditions. Thus for example,
if our analysis using this framework concludes that SES is not conditionally causal for new health events
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within the domain where the Medicare system finances and delivers health care, then this finding would
support the conclusion that policy interventions in the Medicare system to increase access or reduce out-
of-pocket medical expenses will not alter the conditional probabilities of new health events, given the
health histories of enrollees in this system. It is unnecessary for this policy purpose to answer the
question of whether the analysis has uncovered a causal structure in any deeper sense. Econometric
analysis is better matched to the modest task of testing invariance and non-causality in limited domains
than to the grander enterprise of discovering universal causal laws. However, our emphasis on invariance
properties of the model, and on tests for Granger causality within invariant families, is consistent with
the view of philosophers of science that causality is embedded in “laws” whose validity as a description
of the true data generation process is characterized by their invariance properties; see Pearl (2000),
Nozick (2001).

2.2. Some Specific Formulations. Starting from the class (2), we consider operational models of
the linear latent variable form

Y. =Y 05+ Y0t Y, B+ 6 - 08, 3)

i-1,1
with
Yi=wi(Y i Yo), 4)

where Y is a latent variable, €, is an unobserved disturbance that is standard normal and independent
across i and t, and v is a partial observability mapping that depends on the latent variable, and possibly
on the lagged variables. For example, for a chronic health condition such as diabetes, Y, will indicate
whether there has ever been a diagnosis of the disease, with Y;, = max{Y,,1(Y", > 0)}. For an acute
condition such as a heart attack, Y;, = 1(Y", > 0) indicates a new occurrence. Components of Y may be
binomial or ordered discrete variables such as health status, or continuous variables such as household
income. In this model, the a's, B, 0, and o are parameters; restrictions are imposed as necessary for
identification. In (3), the linearity in variables and parameters, the first-order Markov property, and the
triangular dependence of Y, on previous components of Y, are not, in themselves, particularly
restrictive, as one can approximate any continuous Markov model of the form (2) by a form (3) in which
Y, is expanded to include transformations and interactions to sufficient order. The normality assumption
is also not restrictive in principle. A latent random variable with conditional CDF F,(Y,[Y,,) and the
partial observability transformation (4) can be redefined using the standard normal CDF ® as Y, =
O'(F(Y [ [Y.) and Y, = y,(F(®(Y,,)|Y,)),Y,..); this gives a version of the model (3)-(4) in which
the disturbance is standard normal.!'  The same construction can be applied to the remaining
components of Y,. The causal chain assumption is innocuous when the time interval is too short for
most causal actions to operate, and the components of Y, are conditionally independent. However, the
causal chain assumption is much more substantive restriction when the time interval is long enough so
that multiple events have time to occur, as it rules out even the feedbacks that would appear in multiple
iterations of a true causal chain. Of course, the generally non-restrictive approximation properties of the
model (3)-(4) do not imply that a particular specification chosen for an application is accurate, and
failures of tests for invariance can also be interpreted as diagnostics for inadequate specifications.



In the model (3)-(4), a binomial component i of Y, with the partial observability mapping
max{Y,,,1(Y, > 0)} and the identifying restriction o; = I satisfies Y;, = 1if Y;,, = 1, and otherwise
is one with the probit probability

S =Y e, Y 6 Y) = OY o+ + Y 0+ Y By + 60). (5)
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Analogous expressions can be developed for ordered or continuous components.

2.3. Measurement Issues. A feature of the panel we use is that the waves are separated by several
years and the interviews within a wave are spread over many months, with the months between waves
differing across households. If the model (2) applies to short intervals, say months, then the transition
from one wave in month t to another in month t+s is described by the probability model

YY) = EYM Y SY Gl o fAY o Yisn)- (6)

~~~~~~

Direct computation of these probabilities will generally be intractable, although analysis using simulation
methods is possible.

A major additional complication in our panel is that interview timing appears to be related to health
status, with household or proxy interviews delayed for individuals who have died or have serious health
conditions. This introduces a spurious correlation between apparent time at risk and health status that
will bias estimation of structural parameters. To study empirical approximations to (6) and corrections
for spurious correlation, we consider a simple model of interview delay. Let p = ®(a+px) denote the
monthly survival probability for an individual who was alive at the previous wave interview, where x
is a single time-invariant covariate that takes the values -1, 0, +1, each with probability 1/3. Counting
from the time of the previous wave interview, let k denote the number of months this individual lives,
and ¢ denote the month that interviews begin for the current wave.'? There is a distribution of initial
contact times; let q denote the probability of a month passing without being contacted, and let m denote
the month of initial contact. Assume that an individual who is living at the time of initial contact is
interviewed immediately, but for individuals who have died by the time of initial contact, there is an
interview delay, with r denoting the probability of an additional month passing without a completed
interview with a household member or proxy. Let n denote the number of months of delay in this event.
Assume that m and n are not observed, but the actual inter-wave interval t, equal to m if the individual
is alive at time of initial contact, and equal to m+n otherwise, is observed. The density of k is p*'(1-p)
fork > 1. The density of mis q™(1-q) form > c. Letd be an indicator for the event that the individual
is dead at the time of initial contact. The probability of t and d = 0 is h(0,t) = q"*(1-q)p", the product of
the probability of contact at t and the probability of being alive at t. The probability of t and d = 1,
denoted h(1,t), is the sum of the probabilities that the individual is dead at an initial contact month m,
with ¢ < m < t, and the subsequent interview delay is n = t-m, or

h(L,y= Y . (1-p"g™(1-qr™(1-1). (7)



Ifr <pq, then h(1,t) = (1-q)(1-1){(q""" - r*“"N/(q-1) - p°((pq)"*"" - 1"*"")/(pg-r)}. Then, the probability of
an observed inter-wave interval t is h(t) = h(0,t) + h(1,t), and the conditional probability of d =1, given
t, is P(1]t) = h(1,t)/h(t). Absent interview delay, the conditional probability of d = 1 given t would be
simply p*!(1-p). The parameter values a=-2.47474, 3=0.3, c=22,q=0.85, and r = 0.5 roughly match
our panel. For these values, the median inter-wave interval is 25.5 months, and at t = 34, 87 percent of
the interviews have been completed.

Figure 2 plots the inverse normal transformations of the true death rate p“'(1-p) and the apparent
death rate P(1]t) against log(t) for each value of the covariate x. The frue relationship is to a reasonable
empirical approximation linear in x and in log(t). Then, in the absence of interview delay, one could
approximate p, given X, with reasonable accuracy by estimating a probit model for death of the form ®(0
+yx+Mog(t)), and then estimating p using the transformation p = (1 - ®(0 +yx+Alog(t)))"" for the
observed inter-wave interval t."> However, the figure shows that interview delay induces a sharp
gradient of apparent mortality hazard with inter-wave interval, so that an estimated model will not
extrapolate to realistic mortality hazards over shorter periods. A simple imputation of time at risk up
to initial contact leads again to models that work well with the procedure just outlined for estimation of
p conditioned on x. A simple imputed time of initial contact for those who have died is the observed
inter-wave interval less the difference in the mean inter-wave interview times for dead and living
respondents. This imputation can be adjusted further so that the extrapolated annual death rate,
®(6+Mlog(12)+yx), matches the sample average mortality rate. We do the additional adjustment for our
panel, with results that are almost identical to the simple imputation of time of initial contact.

We conducted a Monte Carlo calculation of the approximations above in a sample of 50,000. In
this simulation, the empirical approximation to observed mortality in the absence of interview delay is
®(-3.1053+0.5327-x+0.652-1og(t)). With interview delay and the simple imputation described above,
®(-2.9900+0.5349-x+0.6174-10g(t)) is the empirical approximation.'* Table 1 gives the annual mortality
rates implied by these approximations. From these results, we conclude first that in the absence of
interview delay, the probit model ®(6+Alog(t)+yx) provides an adequate approximation to exact annual
mortality rates as a function of time at risk, across values of the covariate x that substantially change
relative risk, and second that this remains true in the presence of interview delay when one imputes the
initial contact time for dead subjects.

These conclusions on the accuracy of the approximation should extend to the exact inter-wave
transition probabilities (6) in our Markov model, supporting use of the probit approximation

ST HY s Vi o Y = OCY 0 o T Y @y + Y By + 85+ Arlog(s)) (8)

where s =t, - t;; is the imputed months between initial contact for a wave and previous wave interview,
for estimation of incidence between waves. For simulation of yearly transitions, we use the
approximation

fi(Yi,mzzl|Y1t+1za---,Yi-l,mzaYt) =1-(1- CD(Yl,tﬂali Tt Y0y Y,/B;+ 6+ 7bi'log(s)))ms

i-1,1

= QY g0+ Y00 T Y By + 0+ Alog(s) 1275, (9)

i-1,i

where s is the median inter-wave interval, and the final approximation holds when the probability of a
transition is small. Formula (9) generalizes to any probability of a transition from the status quo, with
the probability of remaining at the initial state defined so that all the transition probabilities sum to one.
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We expect this formula to approximate well the probabilities of no new health conditions in a sample
population over periods corresponding to the observed inter-wave intervals.

Estimation of models based on (2)-(8) is straightforward. Because of the independence assumption
on the disturbances and the absence of common parameters across equations, the estimation separates
into a probit, ordered probit, or ordinary least squares regression for each component of Y, depending
on whether the partial observability mapping is binary, ordered, or linear. Conventional likelihood ratio
tests can be used for the significance of explanatory variables.

3. The AHEAD Panel Data

3.1. Sample Characteristics. Our data come from the Asset and Health Dynamics among the
Oldest-Old (AHEAD) study." This is a panel of individuals born in 1923 or earlier, and their spouses.
At baseline in 1993 the AHEAD panel contained 8222 individuals representative of the non-
institutionalized population, except for over-samples of blacks, Hispanics and Floridians. Of these
subjects, 7638 were over age 69; the remainder were younger spouses. There were 6052 households,
including individuals living alone or with others, in the sample. The Wave 1 surveys took place between
October 1993 and August 1994, with half'the total completed interviews finished before December 1993.
The Wave 2 surveys took place approximately 24 months later, between November 1995 and June 1996,
with half the total completed interviews finished by the beginning of February 1996. The Wave 3
surveys took place approximately 27 months after that, between January 1998 and December 1998, with
half the total completed interviews finished near the beginning of March 1998. In each wave, there was
a long but thin tail of late interviews, heavily weighted with subjects who had moved, or required proxy
interviews due to death or institutionalization. Subjects never interviewed, directly or by proxy, are
excluded from the calculation of the distribution of interview months. AHEAD is a continuing panel,
but it has now been absorbed into the larger Health and Retirement Survey (HRS), which is being
interviewed on a three-year cycle.

The AHEAD panel has substantial attrition, with death being the primary but not the only cause.
A significant effort has been made to track attritors, and identify those who have died through the
National Death Register. Figure 3 describes outcomes for the full age-eligible sample. For subjects
where a proxy interview was possible, an “exit interview”’gives information on whether decedents had
anew occurrence of cancer, heart attack, or stroke since the previous wave. From the 6743 age-eligible
individuals who did not attrit prior to death, we formed a working sample for analysis consisting of 6489
by excluding 254 additional individuals with critical missing information. Figure 4 describes their
outcomes. In a few cases, attritors in Wave 2 rejoined the sample in Wave 3, but we treat these as
permanent attritors because the missing interview makes the observation unusable.

The restriction of the AHEAD panel to the non-institutionalized elderly in Wave 1 selects against
those with the highest mortality risk, particularly at the oldest ages, but the impact of this selection
attenuates over time. For white females, Figure 5 compares the observed annual mortality rate in the
AHEAD panel with the expected annual mortality rate from the 1997 Life Tables for the United States
(U.S. Census, 1998)."° Between Waves 1 and 2, the AHEAD mortality risk is substantially below the
life table for ages above 75, reflecting the selection effect of non-institutionalization. Between Waves
2 and 3, this effect has essentially disappeared. There is a persistent divergence of the mortality risks
above age 90. In this range, the AHEAD data is sparse, so the curve is imprecisely determined.
However, the life tables derived from historical mortality experience may overstate current mortality risk
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at advanced ages. Figure 6 makes the same mortality experience comparisons for the full AHEAD
working sample, and draws the same conclusions. "’

3.2. Descriptive Statistics. The AHEAD survey provides data on health and socioeconomic status,
as well as background demographics. A list of the health conditions we study, with summary statistics,
is given in Table 2. A list of the socioeconomic conditions and demographic variables we use is given
in Table 3. Appendix Table Al lists the variable transformations used in our statistical analysis.'"® In
setting up causality tests, using the framework set out in Section 2, we will use the health conditions,
followed by the socioeconomic conditions, in the order given in these tables. We list cancer, heart
disease, and stroke first because they may be instantaneously causal for death, and because we have
information from decedent’s exit interviews on new occurrence of these diseases. We group the
remaining health conditions by degenerative and chronic conditions, then accidents, then mental
conditions, since if there is any contemporaneous causality, it will plausibly flow in this order. Similarly,
if there is contemporaneous causality between health and socioeconomic conditions, it plausibly flows
from the former to the latter.

3.3. Constructed Variables. The collection and processing of some of the variables requires
comment. AHEAD has an extensive battery of questions about health conditions, including mental
health. Most health conditions are asked for in the form “Has a doctor ever told you that you had ...?”
However, for cancer, heart disease, and stroke, subjects are also asked if there was a new occurrence
since the previous interview, and for some condition such as arthritis, incontinence, and falls, the
questions in wave 1 ask for an occurrence in the past 12 months. We note that there are some major
groups of health conditions that were not investigated in AHEAD: degenerative neurological diseases,
kidney and liver diseases, immunological disorders other than arthritis, sight and hearing problems, back
problems, and accidents other than falls. The BMI index is calculated from self-reported height and
weight. Information is collected on the number of ADL limitations, for six activities of daily living, and
on the number of IADL limitations, for five instrumental activities of daily living. A high ADL
limitation count indicates that the individual has difficulty with personal self-care, while a high IADL
limitation count indicates difficulty in household management. The study collects data on self-assessed
health status, where the subject is asked to rate his or her health as excellent, very good, good, fair or
poor. We use an indicator for a Poor/Fair response. No reference is made to other groups such as
"people your age." The study contains the CESD battery of questions measuring general mood; and
from this we form an indicator for depression.

AHEAD is linked to Medicare records. There is insufficient detail to permit reconciliation of self-
reports on objective health conditions against diagnoses in the medical records, but errors in self-reports
are anissue. We find small, but significant, inconsistencies across waves of AHEAD in reported chronic
conditions. A study of Canadian data for a younger population finds substantial discrepancies between
self-reported conditions and diagnoses from medical records, particularly for chronic conditions such
as arthritis; see Baker, Stabile, and Derl (2001). These authors also find support for a “self-justification”
hypothesis that non-workers are more likely to make false positive claims for health conditions. If this
reporting behavior carries into old age, then the reduction in SES as a consequence of spotty employment
would induce an artifactual positive association of self-reported health conditions and SES.

The study measures cognition using a battery of questions which test several domains (Herzog and
Wallace, 1997): learning and memory are assessed by immediate and delayed recall from a list of 10
words that were read to the subject; reasoning, orientation and attention are assessed from Serial 7's,
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counting backwards by 1 and the naming of public figures, dates and objects." This score reflects both
long-term native ability and health-related impairments due to health events. We carry out the following
statistical analysis to reduce the effect of native ability so that we can concentrate on health-related loss
of cognitive function. First, we analyze a “non-impaired” sample of younger individuals, born between
1942 and 1947, who were administered the same cognitive battery in the 1998 Health and Retirement
Survey as were the AHEAD subjects. For these younger individuals, where health-related impairment
of cognitive function is rare, we carry out a LAD regression of the cognitive score on education level,
sex, and race. We use this fitted regression to predict a “baseline” non-impaired cognitive score for each
member of the AHEAD sample. An additional adjustment is required because average education levels
were rising rapidly early in the Twentieth Century, due to changes in child labor laws and introduction
of compulsory education. We assign each AHEAD subject a “1923 cohort equivalent” education level
by first regressing education on sex, race, and birth cohort, using a specification search to find
interactions and non-linearities, and then adding to their actual years of education the difference in the
mean years of education for their sex-race cohort and the corresponding 1923 sex-race cohort. We then
calculate for each AHEAD sample member the deviation of their cognitive score from this adjusted
baseline. As a normalization, we assign a threshold such that fifteen percent of AHEAD subjects aged
70-74 in Wave 1 fall below the threshold. We then use the same threshold in other age groups and other
waves to define an indicator for cognitive impairment.*’

3.4. Measurement of Wealth. AHEAD individuals and couples are asked for a complete inventory
of assets and debts, and about income sources. Subjects are asked first if they have any assets in a
specified category, and if so, they are asked for the amount. A non-response to the amount is followed
by unfolding bracket questions to bound the quantity in question, and this may result in complete or
incomplete bracket responses. Through the use of unfolding brackets, full non-response to asset values
was reduced to levels usually less than 5 percent, much lower than would be found in a typical household
survey. Generally, median responses among full respondents for an asset category are comparable to
other economic surveys, such as the Survey of Consumer Finance. However, changes in reported assets
between waves contain outliers that suggest significant response errors between waves. For couples,
where both members are asked the questions on assets, there is also substantial inter-subject response
variation. Itis possible that these repeated reports could be used to control statistically for response error
in couples. However, there are systematic differences between respondents, and we use the asset
responses only from the individual that a couple says manages the household finances. There may also
be an issue of bias in responses recovered by unfolding brackets. Hurd ez a/ (1997) used experimental
variation in the bracket sequences for two financial questions on Wave 2 of AHEAD, and found that
anchoring to the bracket quantities was significant.

For complete or incomplete bracket responses in an asset category, we impute continuous quantities
using hot deck methods. In Wave 1, if information on ownership of an asset is missing for a subject,
but this subject does give ownership status in Wave 2, then we impute Wave 1 ownership by drawing
from the conditional empirical distribution of those who have the same response in Wave 2 and give a
response in Wave 1. For subjects missing ownership in both Waves 1 and 2, we draw an ownership pair
from the empirical distribution of ownership pairs for those giving responses. Given ownership and
complete or incomplete bracket information, we draw from the empirical distribution of Wave 1
continuous responses that are consistent with the subject’s bracket. In later waves, we have adopted a
first-order Markov cross-wave hot deck imputation procedure that assigns a continuous quantity within
the given response bracket. First, missing ownership is imputed by choosing randomly from
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respondents, conditional on ownership in the previous wave. Then, given ownership, we impute a
quantitative change in the item from the previous wave by drawing from the empirical distribution of
subjects with complete responses that fall in the corresponding brackets in the current and the previous
wave. This assures that imputed changes will have the same empirical distribution as observed changes,
given the conditioning information available. This procedure does not revise previous wave imputations,
so analyses based on earlier waves are not affected. We have experimented with cross-item imputation
methods, where bracket information on some asset categories would be used to refine the conditioning
used in the imputation of other asset categories. We have found that this has very little effect on the
imputed variables or on the results obtained from analyses that use these variables. Therefore, we carry
out all imputations one item at a time.

Measured wealth is accumulated over eleven asset categories, including imputed items. We
distinguish liguid wealth, composed of IRA balances, stocks, bonds, checking accounts, certificates of
deposit, less debt, and non-liquid wealth, composed of net homeowner equity, other real estate, vehicles
and other transportation equipment, businesses, and other assets. The variation in reported wealth of
AHEAD households by asset category is substantial from wave to wave, suggesting that in addition to
real volatility and reallocation of wealth portfolios, there are serious reporting problems with assets.
Values of businesses owned and real estate are problematic items, since current market valuations may
be unavailable to respondents, and subjective valuations may be unreliable. Suppose that W, is measured
wealth of household in wave t, in 1997 dollars, and that W, = W* + 1, where W*, is true wealth and 7,
is reporting error. To minimize the impact of extreme outliers in wealth and wealth changes, which we
believe are a particular problem due to gross reporting errors, our statistical analysis will use bounded
transformations of measured wealth.

The equations of motion for real wealth satisfy dW,*/dt =rW,* + S, where 1 = T,N,L indexes total
wealth or its non-liquid and liquid components, r is the instantaneous real rate of return, including
unrealized capital gains, and S, is the flow of savings to the wealth component. Make the logistic
transformation Z; = 1/(1+exp(-c; W;+d,)), where c, and d; are chosen so that in AHEAD wave 1 the
median and the semi-interquartile range of Z; are one-half. Then, Z, is a monotone transformation of
measured wealth that is less sensitive to extremes. The equation of motion for Z, is dZ/dt -
rZ(1-Z)-(log(Z/(1-Z)))y+d) =cZ,(1- Z)):S + c:Z,(1- Z,):(dn/dt - m). We assume that over an inter-wave
interval, this equation of motion can be approximated by

Zy L~ Rt—IZi,z—l(l _Zi,t—l)(log(Zi,t—l/(l _Zi,t—l)) +d,)

it -1

= S, +ov,, (10)

m,

where t indexes the wave, m, is the interval in months between waves t-1 and t, R, is the S&P real rate
of return over the given interval, S, is the measured part of ¢;Z,,(1-Z,,,)'S,,.;, attenuated at extreme
values of Z; ;, and the disturbance v, includes the measurement error ¢;Z;  ,(1-Z; .)-((M;-M;..)/m,_ - ;)
and the unmeasured part of ¢;'Z; ,(1-Z;,)'S; ;. We assume v is homoskedastic. This is consistent with
a measurement error in observed wealth that is heteroskedastic, with gross measurement errors more
likely when true wealth is near its extremes.”! The disturbance in (10) may be serially correlated,;
however, we have not incorporated this into our analysis. The effect of the transformation is to
substantially reduce the influence of outliers in the distribution of changes in measured wealth. In
application, we specify S.” to be a linear function of transformed nonliquid and liquid wealth,
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Zy o (1-Zy Dog(Zy 1 /(1-Zy 1)) and Zy (1-Zy  )Nog(Z, ., /(1-Z, 1)), and of other SES, demographic, and
health variables, scaled by Z; ,(1-Z;)

3.5. Mortality and Observed Wealth Change. A problem with the analysis of wealth changes is that
terminal wealth is not observed following the death of a single, or the death of both members of a
household, introducing a selection effect. A second problem is that a household death may have a direct
impact on the wealth of a survivor, due to the expenses associated with a death and the disposition of
the estate. There are also severe wealth measurement problems following a household death, since a
death typically requires a valuation of assets, and in many cases changes the financially responsible
respondent. For this reason, we will analyze separately wealth changes for singles and for couples, allow
a regime shift following the death of one member of a couple, and account for the selection that occurs
when there are no survivors.
For a single female, we adopt a bivariate selection model,

Y* =Y Bt &y = (Y, >0), Y = Y By T Y7 T A&+ xm, Y, observed ify, =1 (11)

where the first latent equation determines survival, y, = 1, the second equation corresponds to the
transformed wealth change equation (10) with dependence on the previous state Y, ., and the previously
determined components Y’ of the current state, with the wealth change observed for survivors. The
disturbance €, has mean zero, variance one, and a density f(¢). The disturbance 7 is independent of €,
and has mean zero and variance one. The correlation of the disturbances in the selection and wealth
change equations is p = M(A*+x?)”, and the unconditional variance of the wealth change equation is 6°
= \*+K’. When ¢ and 1 are standard normal, this is the conventional bivariate normal selection model.
However, specification tests for normality fail, and for robustness we adopt a more flexible specification,
approximating the density f(€) by an Edgeworth expansion,

fley= Y, vHE©e(E), (12)
where the y; are parameters and Hj(e) are Hermite orthogonal polynomials. Let ¥,(a) =

fa - skHj(s)(p(s)de. Then, the polynomials H;(e) and the partial moment functions ‘¥ (a) can be

constructed using the recursions

Hy(e) = 1, H,(¢) = ¢, and H(¢) = eH, ,(¢) - (j-1)H; ,(¢)/de for j > 1,
Poo(a) = D(-a), ¥,(2) = 9(a), and Py (a) = a“'p(a) + (k-1)P,.5(a) for k> 1, (13)
¥o(a) = H; ,(a)p(a) and ¥;(a) = akHj_l(a)(p(a) + k¥, (2) for k>0, for j > 0.

Appendix Table Al derives these results and gives the leading terms for H; and ‘¥;,: We require that f
integrate to one and have unconditional mean zero and variance one; this forces y,=1, y, =0, and
Y, = 0. The free parameters y; for j > 2 determine higher-order moments of €. For example, skewness
and kurtosis are determined by E€’ = 6y, and Ee* = 3+24y,. With these restrictions, we have, finally
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LDV o) = (a) wap(@) Y s 1 ¥@)

E(ele>a) =
D(-a)+Y 5 7, (a) O(-a)+Y 5 7Y, (a)

(14)

We use the Edgeworth approximation and these conditional expectations with J =4. We then have

4
(P(Yf,t—IBf) +Ej:3 ’leij( _Yf,t_lﬁf)

2 (15)
(D(Yf,t—le) +Ej=3 ’Yj\Pj()( _Yf,t—le)

E(Y*wt|£>_Yf,t—IBf) = Yw,t—IBw + Ylw,tYw + 7\’

We estimate this conditional expectation in a two-step procedure. First, the parameters 3, of the
selection equation are estimated by maximum likelihood, and substituted into the expression (15) for
the expectation of the wealth change equation.” Then, the parameters in this conditional expectation
are estimated using nonlinear least squares. The disturbance {=Ae+ km - E(|e>-Y,;) has mean zero
and variance

J
.Z V(=Y 1By
E(Cle>-YB)) =12+ 12 | 22 -

J
,2(; V(=Y 1By
i

V(=Y B

(16)

J
J
2 v¥(-Y, 1B)
L /=0 ]
We regress the squared residuals from the estimation of (15) on the right-hand-side variables in (16) to
obtain an estimate of k*. Finally, we estimate the covariance matrix for the parameter estimates using
the generalized method of moments "sandwich" formula, with the Eicker-White procedure used for
robustness against heteroskedasticity of unknown form, and the delta method used to incorporate the
effects of variance in the first-stage selection parameter estimates.

Next consider the effects of death and selection on couples. We adopt a trivariate selection model
with selection equations

Y* = YeBe &, Y* o, =Y oBn T &0 ¥a = 1(Y*:>0), v, = 1(Y* . > 0), (17)

for the female and male members of the couple, respectively, where €, and €, are assumed to be
independent with zero mean and unit variance, and densities g(¢;) and g (¢,). The independence
assumption could fail if there are hidden common factors in mortality risk for both household members;
e.g., indirect effects of smoking. However, the frequency of multiple deaths in a household between
waves is sufficiently rare in the AHEAD data so that mortality risk interactions are empirically not
identified. We distinguish three regimes (y,y,,) in which wealth change is observed: intact couples
where both members survive (11), the female survives the death her spouse (10), and the male survives
the death of his spouse (01). We will let Y°, = [Y,., Y, Yoo Y'Y s Yo' Y 1] denote the vector of
variables that explain wealth change, where Y,,,,Y;,, and Y, , are, respectively, previous wave
common, female, and male variables, Y';, are previously determined components of the current state for
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females, observed only for survivors and hence zeroed out for non-survivors, and Y’ , are the analogous
previously determined components of the current state for males, again observed only for survivors. We
assume that in an observed regime jk the wealth change model takes the form
Yo =YOBo + (e - 0GH=1))e, + (b, - 0,1GH=1)e, + K, (18)

where 1) is independent of €, and €, with zero mean and unit variance. For intact couples, unobserved
dependence of wealth change on selection is reflected in the parameters A;and A, a direct extension of
the bivariate selection model to the trivariate case with two independent selection effects. For intact
couples, the correlations of the disturbances in the selection and wealth change equations are p; =
A/ (ky AR and p, = /(e A+, D) . The coefficients By, and the standard deviation i« are
allowed to vary by regime, to capture the observed and unobserved economic effects of a death on
valuation and reporting of assets. In addition, the selection effects are allowed to shift, from A; to A-0;
for the female selection disturbance, and from A, to A, -0, for the male selection disturbance. We
incorporate these effects to accommodate an apparent interaction in which unexpected survival of a
couple (e.g., €;and €, large positive) increases dissaving, perhaps due to additional medical and living
expenses linked to overcoming high mortality hazards, but the unexpected death of a spouse (e.g., €,
large negative) also increases dissaving, perhaps because revaluations of assets tends to be more drastic
in circumstances where mortality hazard is low.

We adopt the Edgeworth approximation (12) for each of the densities g(¢;) and g,.(¢,,). In regime
jk with j+k > 0, letting s; = 2y,-1 and s, = 2y, -1, one has

(p(Y;‘;t— 1 Bj) +2:3 Yj\Pﬂ( - Y};t, 1 Bf)
¢%SAG»4B9+S55313Yfﬁm(-fzpiﬁp

0¥, B3 7,2 (-, B,
4
m) +sz:j:3 yijj0( - Ym,lf 1 Bm)

E(thl.]k) :YOthjk ts fO\'f_y fe f)

(19)

As in the case of singles, we estimate the conditional expectation (19) by nonlinear least squares after
plugging in estimates of B; and B3, from the earlier mortality models. A final stage, analogous to (16),
regresses the squared residuals from (19) for each regime on an intercept, E(e/’s,) - (E(ggs,))?, and
E(e,’Is,) - (B(g,ls,))’s the coefficient on the intercept is an estimate of k;,>. Because the number of
deaths among couples is relatively small, we impose the constraints B,,, = B,, for empirical
identification.

Household income in AHEAD is also susceptible to measurement error, and to minimize its effect,
we use income quartiles as explanatory variables. These are obtained by converting all incomes to 1997
dollars, determining the quartiles for the pooled incomes of all subjects in all waves, and using the
thresholds thus established to classify each observed subject income. AHEAD respondents rate the
safety of their neighborhood and the condition of their dwelling on a five-point scale, from poor to
excellent; we use indicators for poor or fair responses.
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4. SES and Prevalence of Health Conditions

4.1. Descriptive Statistics. We first give some descriptive statistics on the prevalence of health
conditions in the AHEAD population. Table 4 shows prevalence rates in the AHEAD sample in Wave
1, classified by age and sex, for the health conditions listed in Table 2. Generally, prevalence of health
conditions does not show a strong age gradient, indicating broadly that morbidity rates among survivors
do not increase much with age. Selection effects from initial non-institutionalization and from mortality
may be responsible. The major exception is cognitive impairment, which rises as age increases. The
prevalence of acute and degenerative conditions among survivors fall after about age 80, reflecting the
effect of selection due to deaths from these conditions. Males have higher prevalence of acute and
degenerative diseases than do females, but females have higher prevalence of mental and chronic
conditions, and accidents.

Figure 7 shows the age gradients of wealth, income, and education in wave 1 of the AHEAD
sample. These gradients reflect substantial cohort effects, as well as life-cycle and composition effects.
Work, income, and asset accumulation patterns of the AHEAD population were impacted by World War
I, and those over age 80 experienced the Great Depression during their prime working years. The U.S.
was substantially rural when the AHEAD population was born, and education was truncated for work
for many members of this population. In addition to cohort effects, the curve for assets reflects life-cycle
decumulation of assets through the retirement years, and the curve for income reflects the rising
proportion of widows in the survivors to older ages. There is an additional compositional effect from
the association of SES and mortality: higher SES is selected preferentially among survivors. However,
in aggregate cross-section, the life cycle and cohort effects dominate the compositional effects.

4.2. Models of Association. To examine the association of SES and health conditions, we estimate
a series of binomial probit models of the form

P(Y:=1[Y ..., Y1 o Wi X)), (20)

where the Y, are indicators for the prevalence of various health conditions, W, denotes a vector of SES
conditions, and X, denotes other demographic variables. The health conditions appear in the same
sequence as in Table 2, with previous conditions in (20) providing information on association among
health conditions. Included in W, are indicators for the top and bottom quartiles of wealth and income,
indicators for 10 or more years of education, (high school) and for 14 or more years of education
(college), and indicators for poor or fair neighborhood safety and dwelling condition.

The detailed estimation results are given for whites in Appendix Table A2. Sample sizes are not
adequate for comparable models for non-whites. We find the expected patterns of co-morbidity, with
a strong association of heart disease, stroke, lung disease, and arthritis, and a strong association of
diabetes, heart disease, and high blood pressure. Incontinence is associated with cancer and stroke, and
for women with diabetes, high blood pressure, and arthritis. Falls, hip fractures, and strokes are
associated. Psychiatric diseases and depression are associated with arthritis and falls. BMI is positively
associated with diabetes, high blood pressure, and arthritis, and negatively associated with lung disease.
Current smokers have lower BMI, are less likely to have diabetes, and are more likely to be depressed.
Numbers of ADL’s and IADL’s are positively associated with most acute diseases, arthritis, falls, hip
fractures, cognitive impairment, and psychiatric disease. A poor or fair self-reported health status is
associated with most acute and chronic diseases, with ADL’s and IADL’s, and with depression.
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Some covariates are associated with health conditions, and may be risk factors for these conditions.
Widowhood is associated with increased cancer and heart disease for women, increased psychiatric
disease for men, and increased lung disease and depression for both men and women. For women,
father’s age at death is associated with heart disease, and mother’s age at death is associated with high
blood pressure. For men, father’s age at death is associated with high blood pressure and arthritis.

We generally find a statistically significant association of SES and prevalence of health conditions,
as summarized in Table 5. It is noteworthy that for males the prevalence of the acute diseases, cancer,
heart disease, and stroke, are not strongly associated with SES, contrary to literature findings for younger
populations. This may be the result of early onset of these diseases, particularly among the poor and
among smokers, that selects out of the AHEAD population those males most at risk for these diseases.

Overall, wealth is the SES component most commonly associated with health conditions.
Education, neighborhood rating, and dwelling rating are occasionally significant, and income is almost
never significant. Table 6 summarizes the SES components that are individually significant in their
association with various health conditions, and indicates the sign of the correlation. For a number of
these conditions, prevalence rates are insufficient to detect the effects of SES components with
satisfactory power. However, for heart disease, high blood pressure, arthritis, cognitive impairment, and
self-rated health status, sample sizes should guarantee reliable indicators of association.

4.3. Relative Risk. To provide an indication of the direction and magnitude of the association of
health conditions and SES, we calculate relative risk for low SES versus high SES, where the definition
of low SES is bottom quartiles for income and wealth, less than a high school education, and a poor/fair
neighborhood and dwelling, and the definition of high SES is top quartiles for income and wealth, a
college education, and a good or better neighborhood and dwelling. Relative risk is defined as the
AHEAD sample average of the ratio of the two probabilities, all other variables remaining at the
observed levels for the subjects. Table 7 summarizes the relative risks for the various health conditions.
Note that the prevalence models are describing only association, not causation, so that relative risk
numbers cannot be interpreted causally. With the statistically insignificant exception of cancer and
psychiatric conditions for females, high SES is associated with lower prevalence. Thus, we confirm in
the AHEAD population the literature findings of a systematic association of SES with mortality and
morbidity risk, and show that this association extends across a variety of acute, degenerative, chronic,
and mental health impairments.

5. Incidence of Health Conditions and Tests for Causality in the AHEAD Panel

5.1. Models of Incidence. Following the format described in Section 2, we use the incidence of
new health problems (or recurrence of cancer, heart disease, stroke, incontinence, falls, and hip
fractures), conditioned on initial demographic, health, and SES status, to test for the absence of direct
causal pathways. We define incidence for a group of health conditions to be the occurrence of a
condition that was not previously reported, or a recorded reoccurrence in the case of an acute condition
(cancer, heart disease, stroke). The descriptive statistics in Table 2 provide information on rates of
incidence of these conditions between waves.”

We estimate models for incidence of each health condition, conditioned on previously considered
incidences of health conditions, the prevalence of health conditions in the previous wave of the panel,
and on SES and demographic variables in the previous wave. The models are binomial probit except
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for BMI, which is fitted with a linear model using OLS, and numbers of ADL and IADL impairments,
which are fitted as ordered probits. The estimates are given in Appendix Table A3 for whites.. Again,
the data do not permit the same analysis of non-whites. The models are estimated by stacking the data
for wave 1 to wave 2 transitions above the data for wave 2 to wave 3 transitions. Table 8 summarizes
the health conditions and covariates that are significant risk factors for the incidence of health conditions.
The associations reflect a number of known co-morbidities, but show relatively few associations of SES
components and incidence of health conditions.

5.2. Causality Tests. Figure 8 gives the structure of the invariance and causality tests we report.
We test only whether the model parameters are invariant between the wave 1 to 2 transitions and the
wave 2 to 3 transitions. We exclude intercepts, age splines, and log of time at risk terms from the
invariance test. The reason for doing so is that these terms will capture variations in survey recontact
procedure across waves. However, we find in most cases that there is no significant difference in the
age spline coefficients across the different transitions. The models are estimated unconstrained, and with
the imposition of invariance, non-causality of SES, or both. Likelihood ratio tests are conducted for
invariance, with and without non-causality imposed, and for non-causality conditioned on invariance.
Since the invariance test without non-causality of SES imposed, and the non-causality test conditioned
on invariance, are nested, they should give the same conclusion, at compatible significance levels, as a
joint test of invariance and non-causality. In accordance with Section 2, we take acceptance of the joint
hypothesis as evidence that there is not a direct causal path from SES to incidence of the given health
condition, and take this as support for the proposition that differential access to medical care and SES-
linked environmental hazards are not causing incidence rates to vary with SES.

The test results are given in Table 9. The columns of numbers in these tables are, respectively,
significance levels for the invariance test with SES variables included, the invariance test with SES
variables excluded, the non-causality test conditioned on invariance, and the joint test of invariance and
non-causality. The final columns in the table give the relative risk for high versus low SES (see Section
4.3), and the significance level of a T-test of the null hypothesis that the relative risk is one.

In a majority of cases, our test for invariance is accepted. For cancer and heart disease incidence,
it is necessary to separate models for those with and without a previous occurrence of the condition. For
females, exceptions where invariance is rejected at the one percent level are mortality and ADL count.
Exceptions for males are cancer with a previous occurrence, mortality, ADL count, BMI, and IADL
count. The failure of the mortality models to satisfy invariance may be related to the initial selection of
anon-institutionalized population in wave 1 of the AHEAD panel. Of course, in addition to the question
of the power of our test to detect invariance failures, our single test of invariance across waves falls
considerably short of the battery of invariance tests that would be desirable to establish that the model
system has the stability and sensitivity required for policy applications.

For females, the tests for non-causality of the SES variables, conditioned on a maintained
hypothesis of invariance, are rejected for arthritis and psychiatric disease at the five percent level and
for cognitive impairment and self-rated health at the one percent level. Notably, these are all chronic
or mental conditions where Medicare coverage is limited and the cost of drugs or assistance may be
substantial. For males, this test for non-causality is rejected for cancer with a previous occurrence, heart
disease with no previous occurrence, lung disease, diabetes, cognitive impairment, and self-rated health
at the five percent level, and for IADL count at the one percent level. The results of the joint test for
invariance and non-causality are roughly consistent with the separate tests. For conditions such as cancer
with a previous occurrence and IADL count for males, cognitive impairment for females, and mortality
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for both females and males, the non-causality test results may be confounded by the failure of invariance.

The relative risks in Table 9 should not be interpreted causally, since again the cases where non-
causality is rejected and the relative risks are substantially different from one may be due to a common
unobserved effect rather than a direct causal link. The pattern of 15 relative risks exceeding one and 18
less than one suggests no broad linkage between SES and health changes, given prior health, and the
direct links that may be indicated from the significance levels (lung disease and hip fractures for males
and females, some cancers and arthritis for males) appear to be related to specific features of poverty,
such as smoking history and poor dwelling environment. There are a few cases where the relative risk
for high versus low SES is substantially less than one, irrespective of statistical significance, indicating
an unproven link of sufficient magnitude to warrant further investigation: lung disease, hip fracture, and
the mental diseases for females, and lung disease, diabetes, arthritis, and the mental diseases for males.
Large deviations in relative risk from one that are not statistically significant suggest that acceptance of
the joint hypothesis of invariance and non-causality could be due to low power. Notably, death shows
no relation to SES, once previous health state is controlled, and the relative risks are insignificantly
different from one. This indicates that there are no strong direct causal links from SES to mortality,
which at the level of resolution of this study rules out differential access to medical treatment for life-
threatening illness. Thus, the association of SES and mortality among the elderly appears to come
primarily from variation in the prevalence of health conditions with SES, and more weakly from indirect
causal links from SES to incidence of health conditions that increase mortality risk.

The pattern of failures of the non-causality test for mental diseases suggests the possibility of a
direct causal link related to differential access. Medicare limits the scope of care for mental conditions,
so ability to pay may indeed be an important factor in efficacy of treatments that prevent or control these
conditions.

6. Tests for Non-Causality from Health Status to Asset Accumulation

6.1. Models of Incidence. Health may influence asset accumulation of elderly households because
of the cost of medical treatment and related services. Medicare covers acute conditions with limited
copayments, but there is the possibility of direct effects from uncovered costs of drugs and living
assistance. Also, health conditions may limit the consumption of other goods, and because health status
is an indicator of longevity, an individual planning consumption and precautionary reserves over
remaining life may adjust target wealth based on altered perceptions of longevity and anticipated medical
costs; see Alessie, Lusardi, and Kapteyn (2000), Attanasio and Hoynes (1995), Hurd (1987), Hurd and
Wise (1989), Hurd, McFadden, and Gan (1998). These effects could induce an association of SES and
health status even if there were no causal links from SES to health. In the elderly AHEAD population,
we will not observe the most likely direct causal link from health status to accumulation among workers,
the effect of health on current labor market participation and productivity.

We analyze transitions in wealth from wave to wave using the framework of Section 2 and the
model (11) for singles and (17)-(18) for couples, with demographics, previous wave health conditions,
and current wave incidence of new health conditions as explanatory variables. Statistically significant
selection coefficients are consistent with a direct causal link from death to a change in household wealth,
but also consistent with ecological factors that induce an association of mortality risk and SES. Total,
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non-liquid, and liquid wealth are analyzed separately, with the transformation (10) applied to each
component.

Appendix Table A4 gives the detailed incidence models for total, non-liquid, and liquid wealth
change. As in previous studies of savings, we find that most of the variance in wealth changes over the
population is not explained by observed economic variables. This remains true after introduction of
health conditions. We find dissaving rates out of liquid wealth, before realization of returns calculated
from the S&P 500, that are 5.3 percent for couples, 4.8 percent for singles, and 6.0 percent for survivors
whose spouses have died. The dissaving rates from non-liquid wealth, again before realization of
returns, are respectively 6.9 percent, 6.3 percent, and 8.0 percent for intact couples, singles, and
survivors. The higher dissaving rates from non-liquid assets indicates that the wealth portfolios of the
elderly are rebalanced to become more liquid as they age. These dissaving rates can be compared to an
average rate of dissaving of 8.3 percent of remaining wealth in an age 70+ population with life table
survival probabilities who consume the expected annuitized value of their wealth.”* Then, observed
dissaving rates out of wealth are not grossly lower than would be expected with pure life cycle
consumption averaging over retirement and full pooling of mortality risk. We find that low income
couples and individuals have significantly higher dissaving rates than their high income counterparts,
but the differences are not quantitatively large. Home ownership is associated with significantly less
dissaving for intact couples.

The models for both singles and couples show significant departures from normality in the selection
equations. The Edgeworth expansion parameters show positive skewness and smaller than normal
kurtosis for female singles, negative skewness and insignificantly different from normal kurtosis for
male singles. For couples, both males and females have negative skewness and larger tan normal
kurtosis. We also find significant selection effects, with p,=-0.49 for couples and -0.21 for singles, and
p, = -0.51 for couples and -0.89 for singles. These imply that households that survive despite
unfavorable mortality risks have increased dissaving, either because of increased cost of overcoming
health problems or because households at elevated risk spend down more rapidly. Equation (18)
includes shift parameters that modify the dependence of the wealth change disturbance on the
unobserved selection effects in regimes where a spouse dies. These are statistically significant, and
sufficiently large to reverse the direction of the intact couple selection effects.

Table 10 summarizes the health conditions and other covariates that are individually significant
in explaining changes in wealth. For intact couples, we find some acute conditions increase saving,
perhaps because they restrict consumption, or perhaps because couples conserve assets for a potential
surviving spouse. For the conditions that are associated with increased dissaving (cognitive impairment
and stroke for single females), costs of maintenance associated with these conditions may be directly
causal to wealth changes.

6.2. Causality Tests. Table 11 summarizes our tests for invariance and absence of direct causal
links. We test for common parameters in the wealth change models between waves 1-2 and waves 2-3,
excepting intercepts and age effects to allow for the effects of sample timing. Invariance is convincingly
rejected for each demographic group and wealth category, indicating that our model fails to capture the
structural determinants of wealth change. As a consequence, our non-causality tests to follow may
produce rejections due to model misspecification, confounding the detection of direct causal links. A
deconstruction of the invariance failures, detailed in Appendix Table AS, shows that for nonliquid and
liquid wealth, invariance passes for demographic and health prevalence and incidence variables, but fails
for female SES variables, and for all male variables including SES taken together. Thus, there was an
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unexplained regime shift before and after wave 2 of AHEAD. Possible explanations for this are an
interaction between the criterion of non-institutionalization in the initial panel recruitment and economic
behavioral response, a wealth-linked interaction in panel retention, problems in the measurement of
wealth in the AHEAD population, which exhibits unexplained mean reversion, or a true behavioral shift
with age in a single cohort that is not captured accurately by a model that pools wealth change
observations across cohorts.

We expect that terminal medical and burial expenses, estate taxes and other estate settlement costs,
insurance payments, and bequests will have a substantial impact on the size of a decedent’s estate and
surviving spouse’s reported wealth. We easily reject the hypothesis that the model coefficients for intact
couples and for surviving spouses are the same, but note that measurement problems associated with a
change in financially responsible respondent could also produce this rejection.

The hypothesis of no direct causality of health conditions for total wealth changes is rejected at the
one-percent level for intact couples and singles. For nonliquid wealth, the hypothesis is rejected for
intact couples, and for liquid wealth, the hypothesis is rejected for all demographic groups. The failure
of the invariance tests, and the possibility of confounding by persistent common factors and selection
suggest that conclusions on the health to wealth link be interpreted with caution. Appendix Table A6
deconstructs the causality tests and identifies the health conditions and genders responsible for
rejections. The pattern of results suggest that if there is indeed a direct causal link, then it is most likely
to involve liquid wealth and health conditions that require assisted living.

Appendix Table A7 estimates models of income change, given health conditions and other
covariates. One would not expect health status to have a significant impact on the incomes of retirees,
conditioned on previous wealth, and the empirical results are generally consistent with this expectation.
We have not done formal tests of invariance or causality for income. Also included in the state vector
Y, that describes individuals are changes in home ownership status, and dwelling and neighborhood
conditions. We estimate incidence models for these components; results are in Appendix Table A.8.

7. Simulation of Life Courses under Counterfactual Conditions

7.1. The Simulation Experiment. For policy analysis of interventions that alter delivery or cost
of medical services, or retirement financing, one would like to trace through the direct and indirect
causal links between wealth, health, and mortality. If Markov models of the sort developed in Sections
2-6 satisfy the required invariance properties, then they can be used to simulate the impacts of these
interventions on the life courses of a synthetic population. In this section, we develop such a simulation
analysis, and apply it to illustrative interventions. Because we have not uniformly accepted invariance,
and in a number of cases find associations that may be either direct causal links or hidden common
factors, this simulation analysis assumes more than our estimates support. It should be interpreted only
as an exercise that shows how a model of this general structure might be used in a policy application to
unravel the dynamics of co-morbidities and forecast condition-specific morbidity and mortality, and life
expectancy.

We simulate the life courses of a synthetic population in which heads of household are initially age
70-74. To synthesize this population, we start from the 1612 households in AHEAD Wave 1 whose
heads are white and age 70-74. Using the SES and demographic variables for each household in this
subsample, we make ten Monte Carlo draws from the prevalence models in Section 4 to create synthetic
initial health profiles for the household head, and spouse if present. This gives an initial synthetic
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sample of 16120 households. We then create life courses for the members of each household by drawing
recursively from the Markov incidence models in Sections 5 and 6, adjusted to annual transitions using
(9) to approximate the probabilities of moving to new states..

We first consider a base scenario (S0) in which initial prevalence and incidence transitions are
given by our models estimated on the AHEAD data. We note that the simulation outcomes can be
expected to differ to some degree from the cross-cohort patterns found in AHEAD, because the
distribution of conditions at ages 70-74 will differ from the distributions of prevalence that actually
prevailed for older individuals in AHEAD when they were ages 70-74. They should also differ to some
degree from the actual experience that the age 70-74 cohort in AHEAD will have through the remainder
of their lives, because the simulation cannot anticipate the realized future distribution of exogenous
variables, and because our models do not allow for drift in disease incidence or condition-specific
mortality hazards that will result from changes in medical care. Historically, these drifts have been very
significant, reducing morbidities and increasing life expectancies. If these trends continue, then the
baseline simulations will underestimate actual survival experience.

We next consider two stylized policy interventions. The first alternative scenario (S1) examines
the impact on life courses of the introduction of a hypothetical medical treatment that cures diabetes, for
example by stem cell and immune system therapy that rejuvenates the pancreas for both type I and type
II diabetics. In this scenario, we assume that prevalence of diabetes at the start of the simulated panel
drops to zero, and that there is zero incidence of this condition as the cohort ages. We do not alter the
historical prevalence of conditions associated with diabetes. Thus, we assume that the historical impact
on individuals of type I diabetes, notably increased prevalence of heart disease and stroke at age 70-74,
is not altered. The second alternative scenario (S2) examines the impact on life courses of reducing the
entire population from their current socioeconomic status to our definition of a low-SES individual:
bottom quartile for wealth and income, less than a high school education, and a poor or fair
neighborhood and dwelling. This alternative is obviously hypothetical, and is not even a stylized
approximation to any real policy alternative. However, it provides an extreme in which the interactions
of health and SES are permitted maximum play, giving an upper bound on the effect that SES could
possibly have on health outcomes, and providing a finger exercise that tests the plausibility of our model
system.

7.2. Baseline Simulation. Table 12 summarizes the survival probabilities and prevalence of health
conditions among survivors in the simulated cohort as it ages, under the baseline scenario (S0), the no-
diabetes scenario (S1), and the low-SES scenario (S2). Keeping in mind that we expect the simulation
model to differ from the historical cross-cohort record in AHEAD, the success of this model in plausibly
mimicking observed conditions in the AHEAD population can be judged by comparing the results for
scenario SO with life table survival probabilities. Life expectancy for a cohort of white females aged 70-
74 is 13.15 years from the 1996 Life Tables and 14.36 years in our baseline simulation. The life table
probability of survival for 15 years for the aged 70-74 cohort is 0.535, while the corresponding survival
probability in the simulation model is 0.500. For white males, the life expectancy at age 70 is 11.31
years from the Life Tables and 10.81 years from the SO simulation. The 15-year survival probability is
0.381 from the life tables and 0.279 from the simulation model. Thus, relative to the life tables, the
simulation model under-predicts female mortality and over-predicts male mortality. The comparison
of annual mortality rates for white females given in Figure 5 indicates that actual AHEAD mortality
experience was more favorable than the life tables between waves 1 and 2, presumably due to selection
in panel recruitment, and very close to the live tables between waves 2 and 3. Then, the baseline
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simulation appears to reproduce relatively accurately the cross-cohort survival experience in AHEAD.
This provides a reality check for the simulation model, but also suggests that if the survival experience
of a current cohort differs from the historical cross-cohort pattern, then the simulation model will miss
the drift in mortality hazards that a single cohort will face in the future.

A comparison of prevalence rates for various health conditions among survivors of various ages
can be made between AHEAD at wave 1, given in Table 4, and the baseline simulation in Table 12.
There are issues of comparability in the definition of prevalence for some conditions, but the pattern that
emerges is that the simulated prevalences are systematically higher than the historical prevalences, and
increasingly so at older ages. For example, for white females aged 80-84, the historical and simulated
prevalence rates are 0.168 versus 0.219 for cancer, 0.361 versus 0.442 for heart disease, and 0.338 versus
0.437 for cognitive impairment. One possible explanation for this is that the links from morbidity to
mortality are stronger than the mortality model detects, perhaps because of under-reporting of health
conditions that arise prior to death, so that the simulation model underestimates the selection effect of
mortality that reduces prevalence among survivors. A second possible explanation is that there is strong
unobserved heterogeneity in susceptibility to various health conditions, so that cumulative prevalence
is overestimated by our first-order Markov models which describe prevalence for most conditions as the
result of one or more positives in a series of Bernoulli trials. It is possible to test for persistent
unobserved heterogeneity by asking whether the frequency of a negative for a condition between waves
one and three of AHEAD is the product of the frequencies of a negative between successive waves.
When we do this, we do not find persistent unobserved heterogeneity. However, the power of the test
1s modest, and it is possible that even a limited degree of persistent unobserved heterogeneity is enough
to explain the differences in AHEAD and the simulation.

A comparison is given in Table 13 between median wealth and income by age in the AHEAD panel
and in the baseline simulation. The historical cross-cohort data shows sharply declining wealth and
income with age, and a less liquid portfolio with age, reflecting strong cohort effects as well as life cycle
and selection effects. The simulation results, which exclude cohort effects, nevertheless show even more
sharply declining wealth with age, and a strong shift toward a more liquid portfolio mix. If the
simulation is correctly describing portfolio balance of a single cohort over its life course, then there is
a strong cross-chort effect, with older cohorts starting from retirement portfolios that are more heavily
invested in housing equity and other nonliquid forms. The simulated semi-interquartile range is
narrower than its historical counterpart, particularly for older households. In the simulation, variability
(defined as the ratio of the semi-interquartile rannge divided by the median) falls with age, whereas in
the historical cross-cohort data variability rises with age. This suggests that in addition to cross-cohort
effects, that there may be persistent heterogeneity in savings behavior that is not captured in our model.

7.3. Alternative Scenarios. Table 12 gives the survival probabilities and prevalences of various
health conditions under our alternative no-diabetes scenario (S1) and the low-SES scenario (S2). In the
no-diabetes simulation, the direct mortality risk from diabetes, and the incidence of co-morbidities with
diabetes are eliminated, although our simulated population will display elevated prevalence of heart
disease and stroke at age 70 among former diabetics. Life expectancy at age 70 under this scenario
increases from 14.36 years to 14.69 years for females, and from 10.81 years to 11.26 years for males.
These rates imply in turn that a former diabetic’s life expectancy increases by 2.72 years for females and
3.32 years for males. Other health condition prevalences that fall in the absence of diabetes are heart
disease, stroke, cognitive impairment, ADL and IADL impairment, and poor/fair self-rated health.
While reduction in mortality risk from one source must as a matter of accounting eventually lead to more
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deaths from competing risks, there are no substantial movements in prevalences of the remaining health
conditions.

The alternative low-SES scenario reduces our entire age 70 simulated population to the bottom
quartile for wealth and income, gives them less than a high school education, and places them in a
dwelling in poor condition in an unsafe neighborhood. They are kept in this low-SES status for the
remainder of their lives; i.e., there is no opportunity in this simulation for households to escape low SES
by a lucky change in wealth or income. However, our population displays the patterns of prevalence of
health conditions established in their earlier lives with their historical SES status. This scenario is quite
artificial, but it demonstrates the holistic effect on the broad spectrum of health conditions of low SES.
Life expectancies at age 70 in this scenario drop dramatically, from 14.36 years to 12.27 years for
females, and from 10.81 to 9.56 years for males. Prevalences of cancer, heart disease, lung disease,
diabetes, arthritis, incontinence, hip fractures, cognitive impairment, psychiatric disease, and depression
all increase sharply, as do the number of ADL and IADL impairments. Conditions whose prevalence
is not affected substantially by low SES are stroke, high blood pressure, and falls. These results indicate
that if the associations of SES and incidence of health conditions that we find in AHEAD were entirely
the result of direct causal links from wealth to health, then the protective effect of the prevailing pattern
of higher SES is 1.26 to 2.08 years of added life expectancy. Thus, our findings that for most health
conditions the evidence is against direct causal links from SES to incidence do not appear to rule out a
substantial cumulative effect of SES over conditions and time that induce a noticeable SES gradient in
mortality. Given our specific findings against direct causal links from SES to incidence of acute
conditions and mortality, the most obvious possible source for this gradient are SES-linked differences
in genetic susceptibility and behavior.

We have emphasized that our stylized, hypothetical policy intervention and the changes in health
they produce over the life course are strictly illustrative, and should be interpreted with great caution.
These finger exercises cannot be used to draw conclusions about any real policy initiatives. This is
particularly true since we have included within our model system components that fail the invariance
tests that we have emphasized must be met by a valid policy model, and because in many cases our
models display some wealth or income gradients for incidence that we cannot with our statistical
methods identify as the sole result of direct causal links. While most of these effects are not statistically
significant, it is possible that in a larger or longer panel with greater statistical power, they will prove
to be significant. Then, it is essential to turn to the more advanced statistical methods of Heckman
(2001) and others to identify the direct causal components in these incidence associations, and improve
the models to achieve invariance. Only after this is done, and realistically detailed policy scenarios are
considered, could policy makers take our model system seriously as a policy tool. However, we believe
that our results do demonstrate that it would be useful for health policy analysis to utilize a system of
invariant models with a causal chain structure to simulate policy impacts, in a framework that takes into
account indirect impacts, competing hazards, and direct causal links between SES and health. We
believe that analysis of the broad sweep of co-morbidities and wealth effects over the life course is an
important complement to the disease-centric orientation of many medical and epidemiological studies
of health outcomes.
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8. Summary and Speculations for Further Research

This paper has used innovations in health conditions and in wealth in the AHEAD panel to carry
out tests for the absence of direct causal links from SES to health, and from health conditions to wealth.
By advancing beyond the detection of association to a framework in which there is some possibility of
detecting the absence of causal links, this paper provides a methodology that may be useful in
winnowing the list of possible direct causal mechanisms, or delimiting their domain of action. For the
AHEAD sample, a panel of U.S. elderly age 70 and older in 1993, we conclude generally that for
mortality and for acute, sudden-onset diseases, the hypothesis of no causal link from SES is accepted,
and for incidence of mental problems the hypothesis is rejected. The results for chronic and degenerative
diseases are mixed. We generally reject the hypothesis of no direct causal link from health conditions
to total wealth changes, but cannot rule out confounding of the test by invariance failures.

The pattern of results suggests that incidence of acute, sudden onset health conditions, conditioned
on existing health conditions, does not exhibit a significant SES gradient, while incidence of some
mental, chronic, and degenerative conditions appear to have an association to SES due to some
combination of direct causal links and common unobserved behavioral or genetic factors. The results
suggest that there may be an SES gradient in seeking treatment for the second class of conditions, which
may influence detection, or for maintaining preventative regimens that may maintain some conditions
below the reporting thresholds. Our findings are not inconsistent with the possibility that for mental and
chronic illnesses where the acute care procedures covered by Medicare are often inapplicable, ability to
pay may be a causal factor in seeking and receiving treatment. We do not find systematic persuasive
associations of health conditions and changes in total wealth, except for surviving spouses. Problems
in measuring and modeling wealth changes suggest caution in concluding from these results that there
is generally no direct causal link from health conditions to wealth changes.

We emphasize that our results apply only to elderly individuals in the U.S., where Medicare and
Medicaid programs limit out-of-pocket medical costs, particularly for acute care, and where retired status
eliminates a possible direct causal link from health status to ability to work. Further, in an elderly
population, common factors may be manifest in prior health conditions and economic status, so they
have little impact once incidence is conditioned on prior state. Our results provide no evidence on the
nature of the causal links at younger ages, during the stages of life where association of health and
wealth is emerging as a consequence of some causal structure.

Future waves of the AHEAD (HRS) panel will allow the hypotheses of invariance and non-
causality to be tested with greater power. This will particularly be the case when full tracking of
decedents, and determination of cause of death from medical records, become part of the data. It seems
likely that some of the associations we have found between changes in health and wealth will survive
more detailed analysis, and that suitably defined natural or designed experiments are likely to be needed
to fully unravel the causal structure underlying these associations.

The modeling structure used in this paper is parametric, and the high dimensionality of the vector
of possible explanatory variables and the relatively limited information contained in binomial outcomes
in the AHEAD panel make it difficult to move to a more robust non-parametric analysis. However, we
have been flexible in specifying the variable transformations that appear in our models, and we interpret
our analysis as conforming in spirit, if hardly in fact, to a method of sieves approach to non-parametric
analysis. One of the major limitations of our models, which would be likely to lead them to fail
invariance tests in situations where a sharp test is possible, is that they do not account adequately for the
multiple risk structure of health conditions and its implications for the duration patterns that can emerge,
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particularly over the relatively long intervals between waves. Some outcomes, such as mortality and
non-fatal heart disease, are competing risks, while others, like diabetes and heart conditions, are
complementary risks. For future research, we are investigating hidden Markov models in which a latent
vector of propensities for all health and SES conditions follows a first-order Markov process,
conditioned on demographic state, and all possible causal links across the components of this latent
vector appear in the model. Given thresholds that trigger observed states, this model provides a
consistent but computationally demanding data generation process for the vector of Markov states
month-by-month. Within this model, it is possible to carry out joint tests for the absence of classes of
causal links. The next wave of this research, incorporating Wave 4 of AHEAD, will include full
development of flexible multiple-risk duration models.
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1.Backlund, Sorlie, and Johnson, 1999; Barsky, Juster, Kimball, and Shapiro, 1997; Bosma et al,, 1997; Chandola,
1998,2000; Davey-Smith, Blane, and Bartley, 1990; Drever and Whitehead, 1997; Ecob and Smith 1999; Elo and
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Matthews, 1998; Rogers, 1991; Ross and Mirowsky, 2000; Schnall, Landsbergis, and Baker, 1994; Seeman,
McEwan, Rowe, and Singer, 2001; Shorrocks, 1975; Stern, 1983; Whitehead, 1988; Wilkinson, 1998; Woodward
et al, 1992.

2.The associations can become more complex when multiple health conditions and multiple SES measures are
studied. Competing risks may mask the hazard for late-onset diseases; e.g., elevated mortality risk from
cardiovascular diseases in low SES groups may induce an apparent reverse relationship between SES and later-
onset cancer in the surviving population (Adler and Ostrove, 1999). Longer-run measures of SES such as
education, occupation, and wealth appear to have a stronger association with health status than current income
(Fuchs, 1993). Using carefully measured wealth, we find that it explains most of the association with health, and
education conditioned on wealth is not systematically correlated with health.

3. Papers examining explicit causal mechanisms include Dohrenwend et al, 1992; Evans, 1978; Felitti et al, 1998;
Fox, Goldblat, and Jones, 1985; Goldman, 1994; and McEwen and Stellar, 1993.

4. There may be an important distinction between direct causal mechanisms influencing mortality, conditioned on
health status, and direct causal mechanisms influencing onset of health conditions. For mortality, an SES gradient
could be due to differentially effective treatment of acute health conditions. For morbidity, an SES gradient could
reflect differentials in prevention and detection of health conditions. These involve different parts of the health care
delivery system, and differ substantially in the importance of individual awareness and discretion, and allocation of
costs between Medicare and the individual.

5.For example, industrial and traffic pollution, and poor dwelling ventilation, are risk factors for lung disease, and
housing prices and household income are negatively correlated with air pollution levels in census data (Chay and
Greenstone, 2000).

6.Consider phenomena such as under-estimation of the hazard of a disease due to competing risks from other
illnesses or death. In an unfortunate discrepancy in terminology, economists would call this a selection effect while
epidemiologists would classify it as an artifactual mechanism rather than a selection mechanism.

77.Usually, One can argue that observed association must originate from some initial causal action, so that common
factors originate from some initial direction of causation. However, there is no apparent initial causal action for
genetically-linked conditions such as Downs syndrome, which increase mortality risk and preclude work. Further,
as a practical matter, it is often impossible to make observations at the high frequencies that would be required to
identify causal chains when feedbacks are nearly instantaneous. Then common factors will appear at feasible levels
of detection to operate simultaneously, and their true causal structure will not be identified. For these reasons, there
would be considerable merit in adding common mechanisms to the epidemiologist’s classifications.

8.Dawid, 2000; Freedman. 1985, 2001; Granger, 1969; Sims, 1972; Zellner, 1979; Schwert, 1979; Engle, Hendry,
and Richard, 1983; Geweke, 1984; Gill and Robins, 2001; Heckman, 2000,2001; Holland, 1986, 1988; Pearl, 2000;
Robins, 1999; Sobel, 1997, 2000; Hendry and Mizon, 1999; Woodward, 1999

9.Any discrete-time stationary stochastic process can be approximated (in distribution for restrictions to a finite
number of periods) by a first-order hidden Markov model, so there is no loss of generality in considering only
models of this form; see Kunsch, Geman, and Kehagias (1995).
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10. Econometricians have traditionally used the term strictly exogenous to refer to properties of variables in the true
data generation process, a stronger non-positivistic version of this condition.

11.For the CDF F of a random variable Y, define F(y.) = sup,.., F(y’) and F "'(p) = min{x’|F(x") > p}. Define the
random variable Z = h(Y) = ®'(F(Y) + U[F(Y) - F(Y)]), where U is a uniform (0,1) random variable. Then Z is
a.s. standard normal. Define Y* = F /(®(Z)). Then, Y* =Y a.s., so that Y is given a.s. by a non-decreasing
transformation of a standard normal random variable.

12.1t does not matter for the example if the previous wave interview month is fixed or has a distribution, provided
the relative inter-wave interval c is fixed, and current wave outcomes are independent of the timing of the previous
wave interview.

13.A Box-Cox transformation of time at risk, z = 4(t"* - 1), gives a somewhat better approximation in the probit
model than log(t),but has no appreciable effect on the accuracy of estimated monthly transition probabilities.

14.The model estimated with interview delay and without imputation, is ®(-4.6639+0.5349-x+1.1178-log(t)).

15. The AHEAD survey is conducted by the University of Michigan Survey Research Center for the National
Institute on Aging; see Soldo, Hurd, Rodgers, and Wallace, 1997.

16.The AMR for the AHEAD sample is the actual death rate between waves for each five-year segment of ages in
the initial wave, annualized using the median 25.5 month interval between the waves. The AMR from the life tables
is obtained by applying life table death rates by month to the actual months at risk for each individual in the five-
year segment of ages in the initial wave to calculate expected deaths between waves. This is annualized. For these
calculations, the distribution of months at risk for decedents is assumed to be the same as that for survivors.

17.The construction mimics Figure 5, with life table rates applied using the age, sex, and race of each subject.

18. All Appendices can be found at Attp://elsa.berkeley.edu/wp/hww/hww202. html .

19. Serial 7’s asks the subject to subtract 7 from 100, and then to continue subtracting from each successive
difference for a total of five subtractions.

20. When an interview was done with a proxy, the cognitive battery was not given, but the interviewee was asked if
the respondent was cognitively impaired. In our analysis, we treat proxy interview status as a component of the
state that appears as a contemporaneous explanation of cognitive impairment; the coefficient on this variable
compensates for differences in the definitions of cognitive impairment.

21. Heteroskedasticity in (10) will arise from selection effects, described later, as well as possibly from a failure of
the transformation to fully control the effects of gross reporting errors. When working with this model, we use
standard error estimates that are robust with respect to heteroskedasticity of unknown form, and do not attempt
direct tests of the implicit error specification underlying the transformation (10).

22. We find that the coefficients of the index in the mortality model are not sensitive to the Edgeworth
generalization, and in estimation of the model for wealth change use the first-stage probit models for mortality
estimated earlier, with invariance imposed, to obtain the indices that appear in the selection effects.

23.The incidence rates in Table.2 can be converted to crude annual rates via the formula 0.4706*log(1-+rate).
These rates are uncorrected for population composition effects.

24. This calculation is made from the 1996 life tables and assumes the historical S&P rate of return from 1993 to
1997, and a 7 percent real rate of return on assets after 1997.
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Table 1. Approximation Accuracy with Interview Delay

X Exact Annual || Approximate Annual | Error Approximate Annual Error
Mortality Rate Mortality Rate Mortality Rate with
without Interview Interview Delay and
Delay Imputed Contact Time
0 7.71% 7.90% 2.41% 7.93% 2.79%
-1 3.27% 3.06% -6.55% 3.07% -6.03%
+1 16.41% 16.71% 1.80% 16.75% 2.05%
Avg 9.13% 9.22% 0.98% 9.25% 1.34%

Note: The approximate annual mortality rate is given by 1 - (1 - ®(0 +yx+Alog(t)))'?", where t is the exact or imputed
initial contact time and the model is estimated from the data generated by the Monte Carlo experiment..
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