
W e are indebted to Peter Adams for research assistance, and to Ken W ise, Uirich Doraszelski,
1

and Mark Satterthwaite for useful discussions.  This research was supported in part by The Brattle Group

in conjunction with litigation support projects for AOL/Time W arner and for Sun Microsystems.  An early

version of this paper was presented at the International Conference on Industrial Organization, Chicago,

April 2004.

Department of Economics, Stanford University, Stanford, CA 94305-6072
2

The Brattle Group,  353 Sacramento Street, Suite 1140, San Francisco, CA 94111
3

Department of Economics, Northwestern University, 2003 Sheridan Road, Evanston, IL 60208.
4

Corresponding author:  Department of Economics, University of California, Berkeley, CA 94720-
5

3880, mcfadden@econ.berkeley.edu.  

The Browser War – Econometric Analysis of Markov 

Perfect Equilibrium in Markets with Network Effects1

Mark Jenkins , Paul Liu , Rosa L. Matzkin , Daniel L. McFadden2 3 4 5

April 22, 2004; revised December 31, 2004

ABSTRACT: When demands for heterogeneous goods in a concentrated market shift over

time due to network or contagion effects, forward-looking firms consider the strategic

impact of investment, pricing, and other conduct.  Network effects may be a substantial

barrier to entry, giving both entrants and incumbents powerful strategic incentives to “tip”

the market.  A Markov perfect equilibrium model captures this strategic behavior, and

permits the comparison of “as is” market trajectories with  “but for” trajectories under

counterfactuals where “bad acts” by some firms are eliminated.  Our analysis is applied to

a stylized description of the browser war between Netscape and Microsoft.  Appendices

give conditions for econometric identification and estimation of a Markov perfect equilibrium

model from observations on partial trajectories, and discuss estimation of the impacts of

firm conduct on consumers and rival firms.  

Keywords and Phrases: Oligopoly_Theory, Network_Externalities, Markov_Perfect_Equilibrium

JEL Codes: C35, C51, C53, C73, L13, L15, L41, L63

This paper is posted at http://emlab.berkeley.edu/~mcfadden

mailto:mcfadden@econ.berkeley.edu.


Contents

Section Topic Page

1 Introduction 1

2 Market Dynamics and Anti-Trust Law 2

3 The Browser War: Netscape vs. Microsoft

      3.1 Background 5

      3.2 Preliminary analysis 9

      3.3 A dynamic stochastic game model 11

      3.4 Markov Perfect Equilibrium 22

      3.5 Computation of Model Solutions and Trajectories 25

      3.6 Estimation Strategies 30

      3.7 Model Parameters and Trajectories 34

      3.8 Market “Tipping” and Damages from Microsoft “Bad Acts” 39

4 Conclusions 45

Appendices on Markov Perfect Equilibrium

1 Game Theoretic Foundations

     A1.1 Dynamic Stochastic Games with Private Information 46

     A1.2 Existence and Purity of MPE 23

2 Econometric Identification and Estimation Strategies 78

3 Data 23

References 66



1

The Browser War – Econometric Analysis of Markov 

Perfect Equilibrium in Markets with Network Effects

Mark Jenkins, Paul Liu, Rosa L. Matzkin, Daniel L. McFadden

“In the long run, there is just another short run.”

                                                      Abba Lerner

“That which is static and repetitive is boring. 
That which is dynamic and random is confusing. 

In between lies art.”
    John A. Locke

I. Introduction 

The dynamics of demand and supply often link concentrated markets for

heterogeneous goods through time.  Demand-side effects come from inertia (e.g., habit,

switching cost, and lock-in effects); contagion (e.g., bandwagon or addiction effects), and

network externalities (e.g., connectivity or interoperability effects); we will refer to these

collectively as “network effects”.  There are also supply-side effects that come from capital

sunk in production capacity, product quality, and brand promotion.  Forward-looking firms

consider the strategic possibility of pursuing market share to “tip” markets in which network

effects are important.  An Incumbent that dominates a market through share and scope

has an incentive to maintain share as a barrier that makes entry costly and risky.  A

potential entrant has an incentive to grab market share to overcome the incumbent

advantage.  These strategic incentives, and the prominent role that network effects give

to market penetration, are features of dynamic concentrated markets that are not captured

in traditional industrial organization models that picture the long run as a sequence of

myopic short-run market decisions by participants.

Quantitative analysis of firm conduct in markets with network effects requires dynamic

models of firm behavior that predict market trajectories.  The theory of Markov Perfect

Equilibrium (MPE) introduced by Maskin and Tirole (1987,1988a,1988b), and developed

as an analytic tool for industrial organization applications by Ericson and Pakes (1995),
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Pakes and McGuire (1994), and others, captures strategic behavior in evolving markets,

and provides a platform for econometric analysis of dynamic market structure.  This theory

can be used to quantify the impacts on market participants of specific “bad acts” by a firm.

This paper discusses the application of MPE to damage estimation in anti-trust litigation,

illustrates this discussion with an analysis of the browser war between Netscape and

Microsoft, and offers a framework for estimating the damages to Netscape caused by

Microsoft “bad acts”.  Section 2 discusses the relationship between anti-trust litigation and

dynamic models.  Section 3 analyzes the browser war between Netscape and Microsoft,

where network effects appear to have sharpened strategic incentives and driven a “no-

holds-barred” battle for market share in which Microsoft “bad acts” may have been decisive

in tipping the market.  Section 4 gives conclusions.  Appendices review the game theoretic

properties of MPE models and issues of econometric identification and estimation.

2. Market Dynamics and Anti-Trust Law

The fundamental goal of anti-trust law, as currently interpreted by the courts, is to

promote market efficiency and protect the welfare of market participants by limiting the

acquisition and exercise of market power; see Kovacic and Shapiro (1999).  This is

accomplished through statues that provide per se limits on firm conduct, and give

consumers and rival firms standing to sue for relief and damages from a firm’s “bad acts”.

The acquisition and exercise of market power is a dynamic process that can drive firm

behavior on the launch and positioning of new products, and influence their management

of the product cycle, where network effects can reinforce barriers to entry.   Then, anti-trust

law, and assessments of liability and damages based upon it, need to account consistently

for the dynamic evolution of concentrated markets under alternative rules for firm conduct.

This is particularly true for the task of quantifying and estimating damages.  The traditional

focus of anti-trust cases on contemporaneous damages is inadequate when illegal conduct

has strategic implications for extended market trajectories under “as is” and “but for”

conditions.  Courts have been reluctant to accept damages estimates based on future

market projections that may be speculative.  Assuring reliable projections does place heavy
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demands on the economic analysis, but a tightly specified and carefully estimated model

of market dynamics may nevertheless be the best evidence on the harm caused by “bad

acts” that have strategic consequences.

 Anti-trust law is not rooted in a comprehensive economic theory of concentrated

markets, but its evolution has been influenced by economic analysis.  Historically, the

economic theory of concentrated markets has focused on static short-run, or long-run

steady state, market outcomes without explicit dynamics, and with modest attention to

consumer behavior and the structure of demand.  The classic “workable competition”,

Cournot, Bertrand, Stackelberg, and capacity competition models of market conduct fit this

mold; see Areeda (1975), Tirole (2000), Kreps-Shenckman (1982).  

Two major developments in industrial organization offer the prospect of putting the anti-

trust law on a better dynamic foundation.  The first is the adaptation from market research

of models of demand that describe consumer behavior and welfare in response to new

products and changing product attributes, and capture network externalities and other

demand-side dynamics; see Anderson-de Palma-Thisse (1996), Weirden-Froeb (1994).

The second is the continuing development of the theory of dynamic stochastic games,

particularly the MPE solution concept, and an expanding literature on its application to

concentrated markets.  These developments have begun to influence anti-trust law through

adoption of merger models that rely on analysis of consumer outcomes rather than

mechanical measures of concentration, and consideration of the dynamics of market

definition in high-technology industries; see Federal Trade Commission (1997), Overstreet-

Keyte-Gale (1998), Scheffman-Coleman (2003), Shapiro-Kovacic (2000), Starek-Stockum

(1998), Reiffen-Vita (1995), Weirden-Froeb (2002), Varian (), United States v. Sungard

Data Systems (2001).  

Another area where market dynamics is critical are anti-trust charges of predation

through pricing, tying, bundling, and exclusionary arrangements.  Static analysis of a single

market leads to the Areeda-Turner standard that to be predatory, pricing must be below

short-run marginal cost (or, loosely, average variable cost).  Further, the courts are

skeptical of price predation claims, on the grounds that consumers benefit from low prices

in the short run, and predation must be self-defeating because recurring entry will continue
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to require predatory response, removing the prospect of long-run benefits that might offset

short-term costs.   However, when demand-side network effects link the markets through

time, neither the Areeda-Turner standard or the argument that predation is strategically

unattractive are necessarily accurate indicators for market consequences; see Doganoglu

(2003).  Suppose a firm, with deep pockets obtained from a monopoly in its primary

market, faces a threat of primary-market entry by rivals in a secondary market

characterized by network effects.  Suppose this monopolist cross-subsidizes innovation in

the secondary market, and through aggressive pricing, perhaps including bundling and

tying to its primary product, succeeds in tipping the secondary market in its favor.

Consumers benefit from low secondary market prices in the short run, and in the longer

run gain the network benefit of ubiquity, but lose from the higher prices and lower rates of

innovation the monopolist can eventually establish in both markets once the path to entry

is closed.  To determine whether the cross-subsidy was socially undesirable, one needs

to obtain “as is” and “but for” dynamic trajectories for this market, and calculate the

expected present value of the net welfare effect. 

For the anti-trust law to work effectively as a regulator of resource allocation, it must be

able to discriminate between circumstances and strategic conduct in dynamic markets that

harm consumer welfare and market efficiency, and those that are in net neutral or

beneficial.  Apparently minor announcement effects, exclusions, or delays that the law

currently treats as inconsequential may be sufficient to tip a market with strong network or

scale effects, and result in its monopolization. On the other hand, some conduct that is

illegal under current anti-trust law, such as an industry’s promulgation of proprietary

product standards in order to exclude entry, may increase market efficiency if the benefits

of ubiquity offset the losses associated with increased market power. These examples

suggest that the interpretation of firm behavior in the “as is” world, and projection of “but

for” behavior when some acts are disallowed, needs to take into account the incentives

created by the market dynamics, the strategic elements in firm response, and intertemporal

consumer welfare.  MPE models of the type studied by Hall-Royer-Van Audenrode (2004)

and by this paper provide templates for such analysis.
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3. The Browser War: Netscape v. Microsoft

3.1. Background.  We study the market for web browsers, software programs that allow

the user to view over the Internet a particular type of web content called Hyper Text Markup

Language (HTML).  In early 1993, Marc Andreessen and a group of fellow students

developed the first graphical web browser, called Mosaic, while working for the National

Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-

Champaign (UIUC).   Word about6

Mosaic spread rapidly and by the end

of 1994, Mosaic had been downloaded

about two million times.   The7

introduction into the marketplace of a

graphical browser was pivotal in

spurring interest in the Internet; Figure

1 shows that the number of internet

users grew from less than 10 million in

mid-1995 to over 190 million in the

second quarter of 2002.

In April 1994, Andreessen partnered with James Clark to form Netscape

Communications.   The Netscape team developed a commercial Internet browser, called8

Netscape Navigator, which had a beta release in October 1994 and an official release in

December 1994.  Navigator was immediately successful.  By February 1995, it had

captured 60 percent of the fledgling market, and it was the leader of the “Internet

Revolution”.  By January, 1996, its share of the browser market was 90 percent.  9 10
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Navigator’s quality was a large factor in its success ; another contributing factor was11

Netscape’s innovative “free but not free” concept in which fully functional versions of

Navigator could be downloaded for a free trial period and then users were asked but not

required to pay $39 per copy.  12

Microsoft was late in entering the internet software business.  Although it did plan to

introduce a rudimentary browser in its Windows 95 operating system, it apparently did not

initially perceive internet software as a significant market or threat to its Windows operating

system core business.   Nonetheless, in June 1995, Microsoft and Netscape had a13

meeting at which Microsoft offered Netscape the option of either entering into a “special

relationship” with Microsoft and agreeing to develop only non-Windows 95 browsers, or

being regarded as a competitor and treated as such.   Netscape declined, as the special14

relationship would have foreclosed them from developing for Microsoft’s soon-to-be

ubiquitous Windows platform.  In December 1995, Microsoft CEO Bill Gates publicly

declared that Netscape had “awakened a sleeping giant” and that Microsoft would reverse

course and become “hard core” on “embracing and extending” the Internet.  Thus began15

the “browser wars.”  Over the years that followed, Netscape and Microsoft would

repeatedly one-up each other with new and improved versions of their respective browsers;

see Table 1.  The initial versions of Microsoft’s Internet Explorer (IE) lacked the full

functionality of Netscape Navigator, and it was common for consumers to download

Navigator in preference to Internet Explorer even when IE came pre-installed on their new

computers.  However, with Version 3.0 of IE released in August 1996, the two browsers

were generally viewed by reviewers and the public as comparable in features and quality.
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Table 1

Windows Internet Explorer Netscape Navigator

Version Final Release Date Version Final Release Date

1.0 December 1994

1.1 April 1995

1.0 August 1995

2.0 November 1995

2.0 March 1996

3.0 August 1996 3.0 August 1996

4.0 October 1997

4.5 October 1998

5.0 March 1999

5.5 July 2000

6.0 November 2000

6.0 October 2001

7.0 August 2002

Source: http://www.blooberry.com/indexdot/history.bro

In bundling Internet Explorer with every copy of Windows, making Internet Explorer

separately available for free downloading, and investing substantial resources into

improving the quality of its browser, Microsoft sought to “cut off Netscape’s air supply”16

and undermine Netscape’s “free but not free” strategy.   Microsoft had good reasons to17

go after Netscape.  Internet activities and commerce were emerging as a major component

of computer use, offering profit opportunities to the firms controlling internet software

development.  In addition, internet software and user interfaces were a serious threat to

Microsoft’s dominance in the market for operating systems, raising the possibility of

internet-based cross-platform middleware that could marginalize and commoditize the
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Windows operating system.  If Microsoft could control the internet software market, then

its operating system monopoly would be protected from entry through this channel. 

Demand side network effects, in which familiarity, compatibility, and availability of

connections solidify the customer base of a successful browser and make its market

difficult to penetrate, raised the stakes for both Netscape and Microsoft.  With deep

pockets, Microsoft could engage in an R&D blitz that might leapfrog ahead of Netscape.

Beyond this, Microsoft engaged in a combination of acts that the trial court in U.S. v.

Microsoft found anticompetitive, We exclude acts where the trial court findings were

reversed on appeal, but not those where the issue was remanded for further adjudication.18

Microsoft bundled Internet Explorer with Windows, and required its presence on the

desktop, making it unlikely that consumers and Original Equipment Manufacturers (OEM’s)

would seek alternative browsers.   It provided free downloads of Internet Explorer,19

essentially eliminating the possibility that Netscape Navigator could be sold at a profitable

price.  In January 1998, Netscape was finally driven to lower the official price of its browser

to zero.   Both bundling and predatory pricing claims are difficult to pursue under the20

existing anti-trust law, but in a market with strong network effects, they may in tandem have

been what was needed to tip the browser market in Microsoft’s favor.

  In addition, Microsoft attempted to cut off the primary channels through which Netscape

distributed its browsers.   First, Microsoft entered into agreements with many Internet21

Service Providers (ISP’s) that restricted their ability to distribute alternative browsers such

as Netscape Navigator.   Second, Microsoft entered into agreements with Online Services,22
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Internet Content Providers, and Independent Software Vendors that induced greater use

of Internet Explorer.   Third, Microsoft contracts with OEM’s restricted the placement of

non-Microsoft content on the desktop, or gave price discounts to OEM’s that provided

exclusively Microsoft content.  These acts individually affected only small parts of the

market, but their impact during a period where there was intense competition for market

share and the network benefits of ubiquity made them potentially quite important in

determining whether the browser market would “tip” in Microsoft’s favor.

3.2. Preliminary Analysis.   The U.S. v. Microsoft case and the Netscape v. Microsoft23

case produced considerable data on the browser war, but only a limited portion of this is

in the public domain.  In the analysis that follows, the authors have pieced together and

squared off fragmentary information from the public record to reconstruct investment and

market share series from the first quarter of 1996 through the second quarter of 2002.  The

accuracy of this reconstruction is problematic.  Consequently, our analysis based on these

data must be treated as illustrative.  Future analyses with access to company records

might reach substantially different conclusions.

An oft-cited figure in the U.S. v.

Microsoft case held that Microsoft

invested approximately $100 million

a year in the development of

Internet Explorer. Netscape’s total

annual investment (including its

investment in server software) was

at most a third of that amount, with

its browser investment amounting to

perhaps no more than a quarter of

the total, or approximately $10



While Netscape initially focused almost exclusively on browser development, later efforts
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to enter various server software markets led to sharp declines in browser R&D as a percent of total
investment.

The transformation chosen for “quality” is the result of a limited econometric search for
25

functional forms that best explain demand response to investment.

The sources for Figures 3 and 4 are public records in the U.S. v. Microsoft case and internet
26

activity tracking services.  The final series are adjusted by the authors, and should be treated as illustrative

rather than definitive.,

 Figures from 27 http://www.cen.uiuc.edu/bstats/latest.html.
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million.   Figure 2 shows quarterly browser R&D investment levels for the firms, pieced24

together by the authors from fragmentary public data; the resulting series should be treated

as illustrative rather than definitive.  This figure also shows “Quality” indices  defined by25

the following transformation that exhibits sharply diminishing returns to R&D for “mature”

software and reflects in part the lag between investment and the release of a new version:

 (Quality index in quarter) = 1 - 1/(Cumulative investment at beginning of quarter).

As a result of Microsoft’s activities in the browser market, Microsoft’s market share of

installed browsers rose steadily; see Figure 3.  The curve for Netscape in this figure

includes all non-Microsoft browser; the “other” category was initially nearly ten percent of

the market, but quickly fell to less than two percent.   26

During this period, the total number of

internet users and the installed customer

base for each browser grew rapidly; see

Figure 4. By the time Microsoft’s

restrictions on OEMs and ISP

agreements were lifted in 1998, the

browser war was effectively over.  Even

though Netscape still had 58 percent

installed browser market share in the first

quarter of 1998,  27  Microsoft dominated

the distribution channels and had

considerable momentum.  

http://www.cen.uiuc.edu/bstats/latest.html
http://www.cen.uiuc.edu/bstats/latest.html


 [Cite DOJ Complaint.]28

 [Cite Findings of Fact, Appeal Court Opinion]29

 See Final Judgment, viewed at 30 http://www.usdoj.gov/atr/cases/ms_index.htm on March 4, 2004.
 See Complaint in Netscape v. Microsoft, viewed at31

http://legal.web.aol.com/decisions/dlother/Netscape%20v.%20Microsoft.pdf on March 4, 2004.
 See 32 http://money.cnn.com/2003/05/29/technology/microsoft/.
 We were engaged by Netscape to calculate damages in Netscape v. Microsoft.33

11

The actions by Microsoft against

Netscape were the focus in the U.S.

Department of Justice’s antitrust suit

against Microsoft in 1997.   However,28

even though the District Court and the

Court of Appeals found many of the

Microsoft actions to be illegal,  the final29

sett lement between the U.S.

Department of Justice and Microsoft in

November 2002 provided little relief to

Netscape.   Netscape filed a separate30

civil antitrust suit against Microsoft in

January 2002.   That suit was settled in May 2003 for $750 million.   By July 2002,31 32

Microsoft had a 87 percent of the browsers in use.  However, the barriers to entry in the

browser market are not impermeable.  By December 2004, fueled by security problems

with IE, the Mozilla family of browsers, which include Firefox and the latest release of

Netscape, had whittled IE’s share of the market down to 71.7 percent.

3.3 A Dynamic Stochastic Game Model.  The question of how to estimate the impact

of Microsoft’s illegal actions raises the question as to what constitutes a proper model for

analysing firm behavior in this market.   Traditional static industrial organization models33

fail to capture network effects and dynamic features of the market such as the importance

of investment on future profits; as a result, a dynamic market model is likely to be

necessary.  In this paper, we have developed and estimated a dynamic Markov Perfect

http://www.usdoj.gov/atr/cases/ms_index.htm
http://legal.web.aol.com/decisions/dlother/Netscape%20v.%20Microsoft.pdf
http://money.cnn.com/2003/05/29/technology/microsoft/
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Equilibrium (MPE) model which is motivated by the following browser market

characteristics:

1)  Firms.  The browser market consisted primarily of Netscape’s Navigator and

Microsoft’s Internet Explorer for most of its history.  While there have been other browsers

in the market (e.g., Opera, Mozilla), these were not significant during the 1996-2002 period.

However, these minor players constituted a fringe that would have limited the ability of

Netscape and Microsoft to raise prices substantially.  We simplify our analysis by treating

Netscape and Microsoft as duopolists in the browser market, and lumping the fringe

browsers together with Netscape.

2) Browser Acquisition and Use.  An important distinction in browsers is between

acquisition by either pre-installation or initial download, or subsequent download of new

versions, and use.  This is potentially a complex consumer decision problem, as acquisition

choices may be made with the option value of future choices and expectations of future

environments in mind.  However, it seems fairly realistic to simplify this drastically, and

assume that consumers make a single initial browser choice at the time a new PC or new

operating system is purchased, and then use this chosen browser (with updates) for the

life of the PC.  We will assume further that the consumer makes the initial browser choice

myopically on the basis of costs and qualities prevailing at the moment.  (Note that this

assumption is consistent with an MPE model of consumers as active market participants

whose policy decisions are functions only of current state.  However, we will not exploit this

modelling option, and will instead treat consumer behaviour as myopic and non-strategic.)

Assume that when both browsers are available pre-installed, the consumer simply chooses

the one that will be used.  Similarly, when neither are available pre-installed, the consumer

simply downloads the preferred browser.  Finally, when only one browser is available pre-

installed, the consumer then decides whether to use this browser, or to abandon it and

download the other browser (at an added time cost).  

3)  Demand Equation – Inclusion of Network Effect.  The browser market is

characterized by strong network effects.  As the Findings of Fact stated, “[Microsoft]

believed that a comparable browser product offered at no charge would still not be

compelling enough to consumers to detract substantially from Navigator’s existing share
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of browser usage.  This belief was due, at least in part, to the fact that Navigator already

enjoyed a very large installed based and had become nearly synonymous with the Web

in the public’s consciousness.”34

4)  Demand Equation – Exclusion of Price.  Price was not a primary consideration in

choice of browser.  Published browser price did not reflect the actual price typically paid

by a user, as users mostly did not pay the voluntary license fee.  Netscape received only

a small revenue stream from browser licenses.  Once Microsoft entered the market and

priced its browser at zero, Netscape found it had to respond by doing similarly, thus

extinguishing browser licenses as a revenue source.  One aspect of browser pricing is that

the effective price to the consumer exceeded the license price by the cost of downloading

and installing the software (if required).  This is potentially relevant in assessing consumer

response to exclusion of Netscape from distribution on new computers.  It would be useful

to include prices in the model if predation were an issue and estimates of market prices

under “but for” conditions were needed.  If prices are policy variables, then the distinction

between browser acquisition and use becomes important.  However, pricing was not a

focus of the legal case, and we do not include prices in the model analysed in this paper.

5)  Demand Equation – Inclusion of Quality.  Beyond the network effects, consumers

cared primarily about the quality of their Internet experience.  Newspaper and magazines

regularly reviewed the then-current versions of Netscape Navigator and Internet Explorer

in head-to-head matchups.  Technologically-savvy computer users promoted the browser

they viewed most favourably.  Quality is determined to a large extent by the amount of

investment placed in upgrading each incremental version of the browser.  We were unable

to obtain consistent historical direct measures of browser quality, and instead have chosen

an empirical transformation of cumulative investment that explains well the evolution of

market shares.

6) Demand Equation – Symmetry.  Fully informed, rational consumers will choose

among products on the basis of their generic hedonic attributes (including network



Rational but incompletely informed consumers, or irrational ones, may use brand identification
35

as a token for unobserved quality.  W e assume as a working hypothesis that browser users are rational

and informed.

 Cusumano and Yoffie, p. 25, state “The key was to build market share and create the standard. 36

Profits would eventually follow.”  They also state, at p. 7, that “Initially, Netscape’s business
model called for developing two sets of products—the browser, which would catapult Netscape
to fame, and Web servers, which would pay the company’s bills.”
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attributes), independently of non-generic brand effects.   Then, when the hedonic35

attributes of the products are captured in the model, the demand function will be generic,

with symmetry across products in its dependence on hedonic attributes.

7)  Profit Equation – Inclusion of Derivative Revenues per Browser.  Browser revenues

were always a relatively small portion of Netscape’s business plan.  Netscape intended to

leverage its success in the browser business into other sources of revenue such as server

software sales and advertising revenue from its Internet portal.   Microsoft could use36

Internet Explorer to solidify its Windows monopoly and establish its own Internet portal.

Thus Internet browsers were viewed as software with insignificant direct revenues but with

substantial revenues via linkages to other markets.  These indirect revenues would likely

be in direct proportion to the number of browsers, and could potentially be larger for

Microsoft than for Netscape (to reflect the benefits to Microsoft’s Windows monopoly).

The following paragraphs give the model specification; a summary listing of the

variables is given in Table 2.  The exogenous variable N(t) represents the total installed

base of browsers.  We assume that each Internet user utilizes exactly one browser to

access the Internet, so that N(t) also represents the number of internet users, and that the

only choice made by the user is which browser to adopt.  We simplify the model by

assuming that there was no feedback from changes in browser quality to the total number

of computers purchased or upgraded, and the frequencies with which browsers were

installed or replaced.  This is accurate only if the initial version 1.1 of Navigator would have

been sufficient to fuel the full internet revolution without further quality improvements in

browsers.  This may be an acceptable first approximation, but it would be interesting to

elaborate our simplified model to allow some overall internet use and browser demand

response to quality.
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0 The Microsoft “bad acts” variables are a (t) = IAP, defined as the proportion of new

Internet Access Provider accounts that were subject to Microsoft agreements prohibiting

1distribution of Navigator, and a (t) = WINDOW, defined as the proportion of all new

computers that were delivered with IE, but not Navigator, preloaded.  Once IE had been

bundled into the Windows 98 operating system, which was introduced in July 1998 and

within three quarters had displaced earlier operating systems including Windows 95, the

variable WINDOW was one.  In earlier periods, WINDOW is the proportion of computers

delivered by OEM’s who had signed restrictive agreements with Microsoft that precluded

supplying Navigator.  The policy variables determined within the model are the investments

0 1in development, i (t) and i (t).
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Table 2.  List of Variables

Symbol Type Description

j = 0,1 firms, j = 0 for Netscape, j = 1 for Microsoft 

t = 0,1,..,T observation time periods, T = 25 (1996 Q1 through 2002 Q2)

t = T+1,...,H forecast time periods from T+1 to horizon H # 4

T* a time period, T* # T, following which all exogenous variables

are stationary

H* a finite terminal time period, T # H* # H, chosen as an

(artificial) computational horizon

0B (t) SO Netscape installed base of browsers at beginning of period t

N(t) XO Total installed base of browsers at beginning of period t

0S (t) DO Netscape share of installed base at beginning of period t

jK(t) SO accumulated browser investment for firm j at beginning of

period t

jQ(t) DO browser quality for firm j at beginning of period t

ji (t) PO current browser R&D investment for firm j

n(t) DO number of consumers choosing a new browser in period t

0s (t) DO share of new browsers in period t going to Netscape

jr (t) XO current revenue in period t per firm j browser used

ka (t) XO intensity of Microsoft’s bad acts in period t, where k = 0 = IAP

and k = 1 = Windows

g(t) XU preference-side, market-level demand shifter

j. (t) XU firm j private investment cost

Types: State (S), Policy (P), Exogenous (X), Observed (O), Unobserved (U), (D) Derived

j The variable r (t) represents the indirect revenue that a firm derives from each browser

user in a given period; e.g., from advertising, fees for directing users to e-commerce sites,

and the marginal indirect profit from sales of enterprise and server software and operating
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systems.  Indirect revenue per user need not be the same for both firms.  The observed

j kexogenous variables N(t), r (t), and a (t), and the unobserved variable g(t), are known to

both firms when they make their investment policy decisions in period t.  The unobserved

jexogenous variable . (t) is private information known only to firm j, and not to its rival, at the

time its investment decision is made; this are interpreted as a component of the firm’s unit

cost of R&D investment.  When the model is considered in counterfactual circumstances

with the “bad acts” turned off, we assume that all remaining exogenous variables take on

the same values that they did in the “as is” world, and follow stationary Markov processes

that hold for at least part of the observation period and all periods beyond.  We assume

that the firms know these Markov processes and use them in forming expectations.  We

0 1will assume that the shocks g(t), . (t), and . (t) are independent of each other and

independent across time.  (It complicates the predictions of firms if the shocks instead

follow Markov processes, so that some information on the distribution of current and future

shocks may be embedded in past equilibria.  Our independence assumption avoids having

to deal with this issue.) 

0This model determines three state variables: the Netscape installed base B (t) and the

0 1accumulated R&D investment of each firm, K (t) and K (t).  In addition, the observed and

0 1 0 1 0 1unobserved exogenous variables N(t), R (t), r (t), a (t),a (t), g(t), . (t), and . (t) can be

interpreted as state variables with equations of motion characterized by Markov transition

probabilities that are determined outside the model.  From these variables, one can derive

0 0 1 0the variables S (t), Q (t), Q (t), s (t), and n(t).  In the following analysis, it will be convenient

to formulate the model using some of the derived variables. In the following analysis, we

will repeatedly use ramp functions D(x,y,z) defined by

(1) D(x,y,z) = max{x,min{y,z}}.

 Accumulated R&D investment and the total number of browser users satisfy the

equations of motion

j j j(2) K (t+1) = i (t) + K (t),
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B(3) N(t+1) = n(t) + (1-d )N(t),

Bwhere d  denotes the rate at which existing browser users reconsider their browser

selection, and n(t) is exogenous.  “Quality” is defined by

j j(4) Q(t) = 1 - 1/K (t).

Firm 0's share of the browser installed base is

0 0(5) S (t) = B (t)/N(t).

0The heart of the model is the share s (t) of new users choosing browser 0, which must

0satisfy 0 # s (t) # 1.  This will determine the equation of motion for installed base,

0 B 0 0(6) B (t+1) = (1-d )B (t) + n(t)s (t).

These equations combine to give an equation of motion for firm 0's share of installed base,

0 B 0 0 B(7) S *(t+1) = (1-d )S (t)N(t)/N(t+1) + s (t)[1-(1-d )N(t)/N(t+1)]

0 0S (t+1) = D(0,1,S *(t+1)),

where the “*” denotes a latent variable and the ramp mapping restricts the share to the unit

interval.  We assume that consumer choice of a new browser is influenced by a network

0 0 1effect S (t), the quality difference between the alternatives, Q (t)-Q (t), the “bad acts”

variables, and the public shock g(t).  We assume a simple linear specification with the

share restricted to the unit interval,

0 1 0 2 0 1 3 4(8) s *(t) - ½ = " (S (t) - ½) + " (Q (t)-Q (t)) + " IAP(t) + " WINDOW(t) + g(t)

0 0s (t) = D(0,1,s *(t)).
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We write (8) without a constant term, consistent with the principle that informed, rational

consumers will choose between the two browser brands symmetrically, once network

effects, relative quality, and other hedonic attributes of the market are included in the

1model.  We anticipate that this demand model will show a network effect ("  > 0), a

2 3 4response to relative quality ("  > 0), and an impact of the Microsoft “bad acts” (" , "  < 0).

The profit of each firm in period t is

j j j j j jj(9) B  = r (t)B (t) - (1+. (t))i (t) - (i (t)  .2

The first term in the profit function reflects the advertising and other revenue earned as a

result of having an installed base of browser users, the second reflects the firm’s

investment in browser development, modulated by the private costs associated with

jinvestment.  The third term is a cost penalty for crash R&D, with a coefficient (  determining

its significance.  The investment policy variable in this equation is bounded below by zero.

It is also possible to bound it above when n(t) and r(t) are stationary by noting that

investment will never exceed the present value of maximum possible industry profit.

The firms play the market game defined by the payoff functions (9).  Firm j seeks to

maximize its expected discounted profit stream at each time t,

j -j,t j(10) EPV (t) = E   B  $ ,m-t

-j,twhere $ < 1 is a discount factor and the expectation E  is taken with respect to the firm’s

beliefs about all future and unobserved variables and the strategy of its rival, and is

conditioned on the information known to the firm when the investment choice must be

made, including the state of the system, the history of play, the public information g(t), and

jits private information . (t).  This is then a stochastic dynamic game with the following

properties:

1) The payoff functions and equations of motion are continuously differentiable in the

j k jpolicy and state variables, and time-invariant.  It the variables n(t), r (t), a (t), g(t), . (t) are
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stationary for t $ T* and H = +4, the discount factor $ is less than one, and the depreciation

Brate d  is positive, then the game is stationary for t $ T*.

2) If the horizon H is finite,and the exogenous observed and unobserved variables n(t)

j k jr (t), a (t), g(t), . (t) have compact support, and there is an upper bound on investment, then

the policy space is compact, and the existence of (mixed) open-loop Bayes-Perfect-Nash

(BPN) solutions is a standard game theory result; see Federgruen (1976), Whitt (1980).

Further, these open-loop solutions have closed-loop feedback representations.  If the

horizon is infinite and the game is compact and stationary with a discount factor $ < 1, the

existence of (mixed) closed-loop feedback BPN solutions is obtained under some

restrictions on how players form expectations, and with the possible use of random events

extrinsic to the model as coordination mechanisms; see Duffie, Geanakoplos, Mas-Colell,

McLennan (1994), Mertens, Parthasarathy (2003), and Appendix 1. 

j j3) The expected present value of profit EPV(t), optimized in i (t) given beliefs regarding

jfuture variables and conjectures on the response of its rival, is a convex function of . (t),

jand consequently is almost everywhere twice continuously differentiable in . (t).  Since

j j jEPV(t) is linear decreasing in . (t)i (t), the derivative of its optimized value with respect to

j j. (t), when it exists, equals the negative of a unique value of i (t) that achieves this optimum;

j jsee McFadden (1978).  Therefore, for almost all . (t), a BPN strategy is pure.  If the . (t)

have continuous CDF’s, this implies that a BPN solution to the game is pure with

probability one.  A more general version of this result is stated formally in Appendix 1.

4) In general, the structure of the game does not guarantee that a closed-loop feedback

Bayes-Nash solution is unique, or that there are not open-loop Bayes-Nash solutions that

cannot be represented as closed-loop feedback solutions.  For some symmetric initial

conditions, there can clearly be multiple solutions in which one firm or the other captures

the market.   

The specification (4) of the mapping from cumulative investment to product quality

jimplies that the marginal impact of additional investment on EPV(t) is bounded.  From (7),

for tN > t,
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(11)  .

Then, if t $ T*, 

(12)

jA similar inequality holds for firm 1.  If the . (t) are bounded above -1, then these

inequalities establish upper bounds on Kj(t), above which R&D investment is unprofitable

and further investment is zero. 

Suppose the cumulative R&D investments of both firms approach their upper bounds.

Then relative quality approaches a limit and optimal investment levels approach zero.

Suppose, in addition, that the bad acts variables are turned off for t $ T* and the number

of installed browsers N(t) reaches a finite limit.  Then the market will eventually approach

1stationarity, with a limiting distribution whose characteristics depend on "  and the limiting

2 0 1 1value 6 of " (Q (t) - Q (t)).  Assume positive network effects, "  > 0.  Substituting (8) into

(7) yields the limiting equation of motion for installed base share,

0 B 0 B 1 0(13) S (t+1) = (1-d )S (t)  + d D(0,1,½+6+" (S (t)-½)+g(t)}}.

1 0When 0 < ½+6+" (S (t)-½)+g(t) < 1, this is a linear difference equation in which the

0 B 1 1coefficient of S (t) is 1-d (1-" ).  If 0 < "  < 1, then this coefficient is positive and less than

one, and in the absence of the barriers at 0 and 1, this linear difference equation has a

1stationary solution centered at ½ + 6/(1-" ).  When the barriers are present, the support

1of a stationary solution will be centered around ½ + 6/(1-" ) if it is between the barriers,

1 1and otherwise will include the barrier nearest ½ + 6/(1-" ).  If "  $ 1, then the coefficient

0of S (t) in the linear difference equation is at least one, and in the absence of barriers, the

equation has no stationary solution.   The equation with barriers will have a stationary

solution whose support includes one barrier or the other, or both.  To analyze the behavior
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of (13) further, let G denote the CDF of g(t), which we assume to be continuous with a

1 2support [-c ,+c ].  Then (13) defines a Markov chain with a transition CDF P(qN|q) =

0 0Prob(S (t+1) # qN|S (t)=q) satisfying 

(14) P(qN|q) = 

0 0 1The probability of a transition with S (t+1) # S (t) = q < 1 is G((1-" )(q-½)-6).  In the case

1 10 < "  < 1, the probability of a non-increasing transition rises with q, while if "  > 1, the

1 2 0probability of a non-increasing transition falls with q.  If (1-" )/2+6 < -c , then S (t) = 0 is an

1 1 0absorbing state; and  if (1-" )/2-6 < -c , then S (t) = 1 is an absorbing state.  It is possible

1 2 1for both extremes to be absorbing states (e.g., c  = c  = ¼, 6 = 0, "  = 2), in which case the

process is non-ergodic, with the early history of the market leading it to “tip” permanently

to one firm or the other.  However, if the support of g(t) is sufficiently broad, the chain is

irreducible, and will have a unique invariant distribution F satisfying

(15) F(qN) / P(qN|q)F(dq)

         = .

The distribution F can be computed as the limit of repeated iterations of (15) from any initial

distribution, or alternately by solving the system of linear equations obtained by taking for

qN and q a sufficiently fine grid on [0,1].  In the limiting case where the model is stationary

and the effect of quality is negligible so that (15) characterizes the limiting distribution of
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shares, the expected present values of profit at an artificial termination period HN are

0 0 1 1EPV (HN) = r (HN)N(HN)[1 - F(q)dq]/(1-$) and EPV (HN) = r (HN)N(HN) F(q)dq /(1-$). 

3.4. Markov Perfect Equilibrium.  A one-shot stochastic game is defined by policy

spaces for the players, and payoff functions of a profile of policies from these spaces and

random factors that are unknown to some or all of the players when they choose their

policies.  A (mixed strategy) Bayes-Nash solution to a one-shot stochastic game is defined

by a profile of conditional probabilities on the policy spaces of each player, where the

conditioning is on the information available to the player, with the property that each

player’s probability maximizes his expected payoff, given the probabilities of his rivals and

given his beliefs about random factors in the game.  A mixed strategy solution is pure if the

support of each player’s probability is a singleton.

A dynamic stochastic game is one played in a series of stages, with equations of motion

that transform the state of the system and policy choices into updated states.  At each

stage a player has information on the state of the system and the history of play.  Random

factors can enter current and future payoffs, and the equations of motion.  A Bayes-Nash

solution is perfect, and is termed a Bayes-Perfect-Nash (BPN) solution, if at every stage

of the game, the profile of conditional probabilities given the information then available

continues to be a Bayes-Nash solution.  A BPN solution to a dynamic stochastic game is

Markov, and is termed a Markov Perfect Equilibrium (MPE), if the conditional probabilities

at each stage have an closed-loop representation as functions solely of “payoff relevant”

history encapsulated in state variables for the system over a finite period.  In finite horizon

games, every BPN can be formally written in closed-loop form, but this is not true of

infinite-horizon games.  However, the class of BPN solutions that are of MPE form with

specified, low-order “payoff-relevant” histories is quite rich and behaviorally appealing, with

substantial computational advantages, justifying their adoption in applications to markets

with network effects.

0 1 0 1Let  Z(t) = (n(t),r (t),r (t),a (t),a (t)) denote the vector of exogenous variables in the

0 0 1 0 1 0 1model, let S(t) = (S (t),B (t),B (t),K (t),K (t),Q (t),Q (t),N(t),min(t,T*)) denote the vector of
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state variables, including the number of periods of market operation min(t,T*) where the

0 1exogenous variables were not all stationary, and let x(t) = (i (t),i (t)) denote the vector of

policy variables.  Let

(16) S(t+1) = h(S(t),Z(t),x(t),g(t))

denote the vector of equations of motion for the state variables.  Let

j j j j(17) B (t) = g (S(t),Z(t),x(t)) - (1+. (t))i (t)

jdenote the profit of firm j in period t, from (9).  Let f  denote an open-loop mixed strategy

jfor firm j; it is a conditional CDF, depending on S(t), Z(t), g(t), and . (t), whose support is

jcontained in the range of possible investment levels i (t).  A MPE is a profile of strategies

0 1(f ,f ) with the property that for firm 0, at each time t every point in the support of

0 0 -0,t 0f (@|S(t),Z(t),g(t),. (t)) is a maximizer of  E   B  $ , where the expectation is takenm-t

1 1with respect to the strategy f  of its rival and the rival’s private shock . (t) in the current and

future periods, and all variables in future periods, including exogenous variables and public

and private shocks; and a symmetric condition holds for firm 1.  We will assume that the

0 1private shocks . (t) and . (t) have continuous CDF’s.  Then, as noted above, the mixed

jstrategies f  will be almost surely pure, and can be represented as functions from S(t), Z(t),

jg(t), and . (t) into the interval of possible investment levels.  The maximized value of

-0,t 0 0 0expected present value, E   B  $ , is denoted V (S(t),Z(t),g(t),. (t)) and is termedm-t

the valuation function of this firm in period t.  Similarly, firm 1 has a valuation function

1 1V (S(t),Z(t),g(t),. (t)). 

The MPE and the valuation functions of the firms are characterized by Bellman’s

backward recursion.  Define
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0 0 0(18) 8 (S(t),Z(t),i (t),g(t),. (t)) 

-0,t 1 1 1 0 0 j/ E f (di (t)|S(t),Z(t),g(t),. (t))[g (S(t),Z(t),x(t)) - (1+. (t))i (t)],

-0 1where X  is the domain of the policy i (t) of firm 0's rival.  This is the expected value of firm

0's current profit, given the information it has on the current state and its current policy.

Define    

0 0(19) : (S(t),Z(t),i (t),g(t))

-0,t 1 1 1 0 0             / E f (di (t)|S(t),Z(t),g(t),. (t))V (h(S(t),Z(t),x(t),g(t)),Z(t+1),g(t+1),. (t+1)).

This is the expectation as of period t of the expected present value in period t+1 of firm 0's

0optimal profits from period t+1 on.  Then, the valuation function V  satisfies the Bellman

equation    

0 0 (20) V (S(t),Z(t),g(t),. (t)) 

0 0 0 0 0=   {8 (S(t),Z(t),i (t),g(t),. (t)) + $: (S(t),Z(t),i (t),g(t))}.  

Analogous definitions hold for firm 1.  

Let 2 denote the vector of parameters of the model.  These include the parameters of

1 5 0 1 Bthe share equation, "  to " , and the profit functions, (  and ( , the evaluation rate d  on

installed browsers, the discount rate $, and the parameters characterizing the Markov

0 1 0 1 1processes for the exogenous variables Z(t) = (n(t),r (t),r (t),a (t),a (t)) and shocks g(t), . (t),

2and . (t).  We first discuss computation of the model for given parameter values, and after

that estimation of the parameters by matching observed and computed features of the

market trajectories.

3.5. Computation of MPE Solutions and Trajectories.  To compute MPE, we follow the

program developed by Pakes and McGuire (1994,2001), utilizing the adaptation by Judd

(1999) of classical functional approximation by orthogonal polynomials; see Jackson
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(1941), Lorentz (1966), Press et al (1986).  The first step constructs the terminal (for H

finite) or asymptotic (for H infinite) valuation function for each firm.  The second step uses

the Bellman equation (15) and backward recursion to find the Bayes-Nash optimal policy

functions, and recursively the earlier period valuation functions.  The third stage rolls the

model forward one or more times, given these functions, the initial state, and draws of the

random variables g(t) and .j(t), to compute simulated trajectories under “as is” or “but for”

conditions.  

The first stage is trivial when the market closes after period H < +4, since then

j 0V(S(H),Z(H),g(H),. (H)) = 0.  However, if H = +4, or if for computation one chooses H* <

H, it is necessary to construct terminal or asymptotic stationary state valuation functions.

One can interpret the Bellman recursion as a mapping from the space of valuation

functions and strategies into itself.  A fixed point of this mapping will give the valuation

function for the stationary model.  The computational technique is to approximate the

family of valuation functions using Chebyshev polynomials, and approximate the state

space using a finite grid, and then to solve the fixed point problem in the finite-dimensional

space spanned by these approximations.  The following paragraphs outline the basic

properties of Chebyshev approximations, and go on to describe a method for augmenting

the grid that is computationally straightforward and permits the approximation error to be

controlled on the observed trajectory of the game. 

Univariate Chebyshev orthogonal polynomials of degree j = 0,...,m are defined by the

recursion

0 1 t+1 t t-1(21) T (x) = 1, T (x) = x, and T (x) = 2xT (x) - T (x) for t = 2,3,...

i j ij i1They satisfy the orthogonality condition T (x)T (x)(1-x ) dx = B* (1+* )/2, and the roots2 1/2

t tiof T (x) are x  = cos(B(I-1/2)/t) for t > 0 and i = 1,...,t.  Further, for j,k # m, they satisfy the

finite orthogonality condition

i mi k mi ik j0 (22)  T (x )T (x ) = m* (1+* )/2.
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Approximate a valuation function V(x) on the d-dimensional cube  [-1,1]  by a lineard

combination of these polynomials

 (23) V(x) = ,

mjwhere <(t) is the approximation error.  Suppose z , j = 1,...,m+1, are the roots of the

m+1polynomial T (z), and are used to form a grid on the cube [-1.1]  in which the coordinatesd

in each dimension are these roots.  Reindex the polynomials and coefficients with a single

running index j, and grid points with a single running index k.  Then, the system above

evaluated at the grid points can be written

k(24) Y  = , k = 1,...,K

kj kwhere A  is the value of the j  polynomial at the k  grid point, Y  is the value of V at the kth th th

kgrid point, and <  is a residual.  We allow the possibility that some polynomials are omitted,

so that the number of grid points K = (m+1)  exceeds the number of polynomials M.  If Kd

= M, the system can be solved exactly, while if K > M, we assume the solution that

minimizes the sum of squared residuals.  Written in matrix notation, (24) is Y = AB + < and

the least squares solution is

(25)                     B = [ANA] ANY.-1

The orthogonality property of Chebyshev polynomials implies that ANA is a diagonal matrix

D, so that this solution can be obtained without matrix inversion.  Note that D has a simple

form, with diagonal elements m /2 , where m is the order of the Chebyshev polynomialsd p

and p is the number of univariate polynomials in the product for a given term in the

approximation that are of degree greater than zero.

Suppose now that we start from a Chebyshev system with K evaluation points and M

polynomials, with K $ M, and add k additional evaluation points and m additional

polynomials, with k $ m.  (Note that the notation k and m for the augmentation dimensions
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are not the same as the running index for grid points and the order of the Chebyshev

polynomials that appeared in (23).)  The additional evaluation points will be data-driven

rather than polynomial roots, chosen so that observed states are in the grid.

Consequently, there is no advantage to taking the additional polynomials to be orthogonal

or Chebyshev.  For example, they may be simple powers higher than the maximum degree

of the included Chebyshev polynomials.

The system we seek to solve is an augmented version of (24) which can be written in

partitioned matrix form

(26)                       ,

where Y is K×1, y is k×1, A is the K×M array of Chebyshev polynomials evaluated at the

original grid points, F is the K×m array of augmented polynomials evaluated at the original

grid points, G is the k×M array of Chebyshev polynomials evaluated at the augmented grid

points, H is the k×m array of augmented polynomials evaluated at the augmented grid

points, B is M×1, and b is m×1.  The least squares solution solves

(27)                      .

Define the M×M matrix

k(28)                       Q = D  - D GN[I +GD GN] GD .-1 -1 -1 -1 -1

Note that Q is the inverse of ANA + GNG / D + GNG.  Since D is diagonal, the computation

kof Q requires only the k×k inverse [I +GD GN] .  The formula for a partitioned inverse is-1 -1
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(29)              = ,

22 21 11 12where R = C  - C (C ) C .  Apply the formula (29) to solve for the Chebyshev-1

coefficients in (26).  Note that

11 11                      C  = ANA + GNG,  implying (C )  = Q,-1

12                      C  = ANF + GNH

21                      C  = FNA + HNG

22                      C  = FNF + HNH  

Then R is the m×m matrix

                      R = FNF + HNH - (FNA + HNG)Q(ANF + GNH).

Computation of the solution to (26) requires inversion of the m×m matrix R, as well as

kcomputation of the matrix Q which contains the k×k inverse [I +GD GN] .  The matrices to-1 -1

be inverted are symmetric positive definite, so a fast Cholesky inversion method can be

used.  When m = k = 1, no matrix inversion is required.

The first stage computation of the valuation functions can now be summarized for the

case that H = +4.  For the finite grid of evaluation points in the augmented Chebyshev

approximation, trial values Y for the valuation functions and trial values for optimal policy

functions map via the Bellman recursion (15) into new trial values for Y and the optimal

policy responses for each firm in (15).  A fixed point of this mapping is then an

approximation to the stationary state valuation function and policy functions.  The policy

functions and valuation functions are uniformly bounded, so that the domain of this

mapping is compact and convex.  Then, a fixed point exists, and may be approximated

using a gradient search, although convergence is not guaranteed and in practice can be
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problematic.  An alternative is to use a pivot method of the Scarf type, which would

guarantee convergence, but would be computationally demanding.  In our application, the

0fixed point approximation will be simplified first because the exogenous variables n(t), r (t),

1 0 1r (t), a (t), and a (t) are assumed to be constant in the stationary state, and do not become

added dimensions of the grid, and second because at the critical grid points where

cumulative investment levels are large, the optimal policy response of both firms is zero.

The second stage of the MPE calculation is to recurse the model backward, from a

given finite H with terminal valuation functions that are identically zero, or a computational

terminal period H* at which the stationary valuation function is calculated from the first

stage, using the Bellman recursion (15) and finding the fixed point for the profile of optimal

policy functions.  These will be modified only through dependence on new levels of

exogenous variables that did not appear in later periods.

The third stage of the MPE calculation is to roll the model forward, starting from the

initial state of the system, with draws from the distributions of shocks, using the optimal

policy functions obtained in the second stage.  This produces trajectories for the state and

policy variables in the model.  These calculations, done in parallel for “as is” and “but for”

settings for exogenous variables, provide comparative trajectories that then can be used

as a basis for approximating the expected present value of lost profit due to “bad acts” by

one firm.

3.6. Estimation Strategies.   The MPE model developed in Section 3.3 has a vector of

1 2 3 4 5 0 1parameters 2 = (" ." ," ," ," ,( ,( ) that appear in the specification of the equations of

Bmotion and the profit functions of the firms.  In addition, it contains the parameters d  and

$ that can be calibrated from external sources, and the parameters characterizing the

0 1 0 1Markov processes for the exogenous variables Z(t) = (n(t),r (t),r (t),a (t),a (t)) and shocks

1 2g(t), . (t), and . (t). 

We divide the econometric problem into three stages, as is done by Bajari, Benkard,

and Levin (2003).  The first stage is structural estimation of the equation of motion and

profit functions.  This is done prior to computation of the MPE, so that at this stage the

firms’ policy functions are not specified structurally.  The second stage is computation of
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the MPE, incorporating estimation of parameters not identified in the first stage, using a

minimum distance criterion to match observed and computed trajectories of states and

policies.  The third stage is a one-step iteration of both first and second stage estimates

to obtain minimum distance estimators for the complete system.  

The motivation for this estimation sequence is that the equation of motion and profit

functions contain most of the parameters and shocks of the system, and their estimation

within the limits of identification determine these partially or fully.  The parameters

estimated consistently in the first stage can be held fixed during stage two, substantially

reducing the burden of estimation search within the computation of the MPE.  Finally, all

the parameters of the system are updated in a single stage three iteration that does not

require extensive recomputation of the MPE.  A one-step theorem (Newey-McFadden,

1994) will assure that the three-stage procedure is asymptotically equivalent to direct

minimum distance estimation of the full system. 

In the first stage estimation, the equations of motion and profit functions in general

include both exogenous shocks, and current policies that the firms choose knowing these

shocks, so that the current policy variables are endogenous.  To deal with this, reduced

form estimates of the policy functions may be usable as instrumental variables, but several

econometric issues are involved.  First, the policy variable reduced form equations are in

general not parametrically specified at this stage, even if the equation of motion and profit

functions are fully parametric, since their form depends on the solution of the game.

Second, natural specifications of the structural equations may involve non-additive shocks,

making it necessary to use econometric methods appropriate to this situation.  Third,

identification will depend on functional restrictions or the availability of exogenous variables

that influence the determination of policy choices, but are otherwise excluded from some

of the structural relationships.  Suitable instruments will be variables observed

retrospectively by the econometrician that are related to the private information of the firms,

but independent of market-level shocks.  Note that leads and lags of observed exogenous

variables, and nonlinear transformations of predetermined variables, are not in general

potential instruments for this problem.  Under the Markov assumptions, lagged exogenous

variables are not predictive given current values.  Leading exogenous variables should also
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not be predictive, since otherwise the players would form these predictions and incorporate

them into their behavior.  Finally, non-linear transformations of predetermined variables are

valid instruments only if one can be confident of the functional specification and their

exclusion within this specification.  It the equations of motion and profit functions are fully

identified, then the empirical distributions formed from these equation residuals are

1 2consistent estimator of the distributions for the shocks g(t), . (t), and . (t).

Consider the first-stage identification and estimation of the equation of motion (8) and

the profit functions (9) in the model in Section 3.3.  In this equation of motion,

0 1 0 2 0 1 3 4(30) s *(t) - ½ = " (S (t) - ½) + " (Q (t)-Q (t)) + " IAP(t) + " WINDOW(t) + g(t)

0 0s (t) = D(0,1,s *(t)),

0 0 1the explanatory variables S (t) and Q (t)-Q (t) are predetermined, and IAP(t) and

WINDOW(t) are exogenous.  If our assumption is correct that g(t) is independent across

time, and the support of g(t) is sufficiently narrow so that at the observed configurations of

0explanatory variables, the dependent variable satisfies 0 < s (t) < 1 with probability one,

then (30) can be estimated consistently by ordinary least squares.  Otherwise, if g(t) is

serially correlated, lagged exogenous variables in the system can be used as instruments

0 0 1 0for S (t) and Q (t)-Q (t).  If at some observations there is a positive probability that s *(t) lies

1 0outside (0,1), then (30) has a two-sided Tobit form.  Letting w(t) / ½ + " (S (t) - ½) +

2 0 1 3 4" (Q (t)-Q (t)) + " IAP(t) + " WINDOW(t) as a shorthand, the observations not at the

boundaries satisfy 

0(31) s (t) = w(t) - w(t)[G(1-w(t)) - G(-w(t)] - G(g)dg + >(t),

where G is the CDF of g(t) and >(t) is a disturbance that is orthogonal to the remaining

terms in (31).  If G is fully parameterized, then (31) can be estimated by nonlinear least

squares, or if instruments are required, by GMM.  If G is not parametric, consistent

estimation requires the methods of Appendix 2.
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j j j j j jjNext consider estimation of the profit functions B  = r (t)B (t) - (1+. (t))i (t) - (i (t) .  Rewrite2

these as

j j j j j jj j(32) [B  - r (t)B (t) - i (t)]/i (t)  =  - (i (t)  - . (t). 

jThis equation has an additive disturbance, but the policy variable i (t) is determined in the

j j j jMPE solution of the model as a function i (t) = I (S(t),Z(t),g(t),. (t)) that depends on . (t), and

jhence is endogenous.  Potential instruments for i (t) include the investment policies of

jrivals, which are independent of . (t).  Appendix 2 discusses estimation of generalizations

of equations like (32) using the methods of Matzkin (2004).

Let R denote the subvector of parameters that were not identified in stage one.  In

stage two, with estimates of the identified stage one parameters, trial values for R, and

draws from the empirical distributions of the shocks, the MPE is calculated using the

algorithms of Section 3.5, and trajectories are computed.  The parameters R are chosen

to minimize a distance criterion defined in terms of differences of observed and calculated

states and policies over observed partial trajectories.  (Alternately, we could have used the

distance of the calculated MPE first-order conditions from zero when evaluated at the

observed policy variables.)  This is a form of Method of Simulated Moments estimation

(McFadden, 1989), and the protocols of that method are followed to ensure consistent

estimates of the identifiable R parameters.  (Unidentified R parameters have no effect on

model trajectories, and can be arbitrarily normalized without loss of generality.)  In practice,

we carry out the MPE dynamic computations using an iterative search for the distance-

minimizing parameters.  Such a search is facilitated by the smooth behavior of the

valuation functions and policy functions with small changes in R, provided the solutions to

Bellman’s equations are regular.  Schematically, we have

jt jt(33)                     V (s,z,2) . A(s,z)B (s,z,2),

where A(s,z) is the augmented polynomial approximation (26).  Suppose one starts from

a solution to the MPE problem at an initial R .  Differentiate the first-order conditions for the1
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Bellman equations and the equations of motion to determine the derivatives of the B’s and

x’s with respect to R, and plug these derivatives into the expression for the derivative of the

estimation criterion with respect to R.  For convenience, the derivatives can be done

numerically.  Then, do a gradient search to minimize the criterion.  In principle, it is not

necessary to re-solve the original problem, but in practice, periodic resolving should be

done to correct the cumulative drift in the approximation from the MPE solution.  

One major difference between our formulation of the estimation problem and that of

Bajari et al (2003) is that they concentrate on models where the current payoff functions

and equations of motion are linear in unknown parameters.  That is not necessarily the

case for the model in our application, due to the boundaries, adding to the computational

burden of finding the Nash fixed points.  Also, we do not require symmetry for the Nash

solution, as that is appropriate only if all the players are similarly situated.  In the

application to Netscape and Microsoft, there were substantial differences in the firms that

can not be conveniently described by model variables. 

 The final stage of estimation is a one-step Gauss-Newton iteration in all parameters to

reduce the generalized distance.  Asymptotic statistical theory implies that a single step

from initially consistent estimators, utilizing estimation of second derivatives of the

generalized distance with respect to the parameters, yields estimators that are efficient

within the class of minimum distance estimators, see Newey-McFadden (1994).  A side

benefit of this procedure is that it gives ready estimates of asymptotic standard errors of

the parameter estimates.  (If the number of simulation repetitions does not grow with

sample size, then there is some loss of asymptotic efficiency.)  In practice, linear search

within the final one-step iteration may be needed to guarantee an improvement in minimum

distance in a finite sample.

Some studies using MPE models have found that it is computationally advantageous

to use polynomial approximations for the policy functions as well as the valuation functions.

We have not done so in this paper, but note that for problems where convergence of the

numerical search to a fixed point is difficult, such approximations may facilitate solution.

Bajari et al (2003) estimate policy functions as well as the equation of motion in the first

stage, assuming that these functions are linear in parameters.  Because these policy
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functions depend structurally on the valuation functions derived in the second stage, all

one can hope to get at the first stage are (nonparametric) reduced forms.  The Bajari

estimators may nonetheless be useful, as their estimated values may be proper

instruments for the policy variables that appear endogenously in the equation of motion,

and they may provide good starting values for second-stage computations.

3.7 Model Parameters and Trajectories.  We estimate the equation of motion (30) by

ordinary least squares. The results are given in Table 3.  We note that further econometric

analysis is required to obtain consistent estimators if either serial correlation is present or

0 1there is a positive probability of hitting a boundary.  The parameters (  and (  in the profit

functions are not estimated in stage 1 because profits are not observed in our database.

BThe parameter d  = 0.3 is calibrated from data on the rate at which operating systems are

upgraded or computers replaced.  The parameter $ = 0.9 is selected near the upper limit

of stability for our current Chebyshev approximation, and is below Netscape’s actual

quarterly rate of return to financial capital

Table 3. OLS Estimates of Equation of Motion Parameters

Variable Variable

  Mean      Std. Dev.

Coeff. Std. 

Error

T-Stat P-Value

Netscape new browser share

0(depend. variable, s (t) - ½)

-0.05 0.2715 --- --- --- ---

0Base share (S (t) - ½) 0.035 0.275 0.7725 0.044 17.58 0.00

Quality difference (IINVDIF) 0.017 0.0935 0.2855 0.1049 2.72 0.01

IAP 0.0032 0.0062 -4.9276 1.1544 -4.27 0.00

W INDOW 0.5852 0.4566 -0.1161 0.011 -11.00 0.00

Std. Dev. of Residuals 0.0326

R-Squared 0.9873

0The observed values of s (t) range from a minimum of 0.12 to a maximum of 0.96.  The

empirical distribution of the residuals from the Table 3 model is contained in the interval
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[-0.085,0.038].  This supports informally the hypothesis that the support of g(t) is sufficiently

narrow so that the correction (31) to the OLS regression is unnecessary.  A Breusch-

Godfrey test for serial independence is accepted.  We also test for the presence of a

constant term in the model in Table 3, and accept the hypothesis that it is zero.  We note

however that in the presence of a constant term, the WINDOW coefficient becomes

insignificant.  Consequently, it is difficult to distinguish econometrically between the

hypothesis that Microsoft’s penetration of the market was due to the tying of IE to the

operating system, and the alternative hypothesis that consumers have a “brand

preference” for Microsoft.  

The coefficients of the model are of expected sign, with a significant positive network

effect that is less than one, so that the model tends to an equilibrium share.  If the “bad

acts” variables are eventually turned off, and both browsers converge to the same quality

level, then the Netscape share will be centered around ½.  However, If the tying of the

operating system and IE continues indefinitely, so that WINDOW remains one, then the

4 1Netscape share will tend toward ½ + " /(1-" ) = -0.0104, which corresponds to a complete

tipping of the market to Microsoft, aside from sufficiently positive g(t) shocks that would

keep Netscape in the market at a small expected share.  

Figure 5 plots the “as is”

predicted model market

shares and the observed

shares for new browsers; the

model with stage one

estimated parameters tracks

well the observed trajectory

of sales share, but does not

at this stage impose

consistency requirements

be tween ac tua l  and

predicted investment.
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It is premature to consider “but for” scenarios, as we have not yet done the MPE model

calculations required to predict firm policies in these alternative environments.

Nevertheless, it is somewhat useful to calculate trajectories for Netscape market share

under “but for” alternatives, holding the firm’s investment levels fixed at their “as is” levels.

This gives some indication of the partial effect of “bad acts” before the firms adjust their

investment policies to their absence.  Figure 6 plots these “as is” and “but for” predicted

models.  In these trajectories, the “but for” predictions assume that investment and quality

levels remain at “as is” levels.  This misstates the “but for” scenario obtained from the MPE

solution, in which Microsoft  will optimize its R&D investment taking into account the

additional difficulty of overcoming the incumbent advantage without using “bad acts”.   On

the basis of this partial analysis,  one would conclude that the effect of IAP was relatively

temporary, causing Netscape’s share to fall two to four quarters earlier than it would have

otherwise, but having no effect on asymptotic shares.  On the other hand, WINDOW was

critical to tipping the market to Microsoft; otherwise as a consequence of the modeling

assumption that the firms were symmetrically positioned in the browser market once all

quality and network effects are accounted for, shares would have tended asymptotically

to equality.  Of course, in addition to these conclusions being based on a partial analysis,

there are two other reasons to interpret them with caution.  First, the data are interpolated

from partial public records, and are not consistently reliable.  Second, only first stage model

estimates are used, and the

estimated models are not very

robust.

We next compute a MPE solution

to the model, using the steps

described in Section 3.5, and carry

out the stage 2 and 3 estimation

steps to obtain model parameters.

Since we do not have data on the

browser profits of the firms, we are

unable to recover empirical



38

0 1distributions for the private information variables .  and . .  Table 4 gives the parameter

estimates obtained from the third estimation stage.

Table 4.  Parameter Estimates from Stages 1 and 3

Parameter Symbol Stage 1 Stage 3

0 1Base share, S (t) - ½ " 0.7725 0.4761

0 1 2Quality difference, Q (t) - Q (t) " 0.2855 0.3563

3IAP " -4.9276 -5.8218

4WINDOW " -0.1161 -0.1399

0Netscape Invest. Cost ( ---- 1

1Microsoft Invest. Cost ( ---- 0.05

BBrowser replacement rate (calibrated) d 0.3 0.3

Discount rate (calibrated) $ 0.9 0.9

 

Estimation from fitted trajectories imposing the consistency requirements of MPE

equilibrium investment policy has an economically important impact on parameter

estimates.  The network effect is weaker, and the effect of quality is stronger.  The effects

of “bad acts” are stronger.  We have not yet computed standard error estimates for the

stage 3 parameter estimates, but note that for several reasons they are not necessarily

smaller than those associated with the stage 1 estimates.  First, stage 3 standard errors

will be obtained by a bootstrap procedure, and will incorporate simulation error and to

some extent, finite sample error.  Second, the stage 3 estimates impose additional

information, from investment, and additional restrictions, from the requirement that the

observed trajectory approximate a MPE solution.

Figure 7 gives the observed and fitted firm installed base shares from the model fitted

to the “as is” trajectory, and the stage 3 parameter estimates.  The first quarters of 1996,

1998, 2000, and 2002 are numbered 0, 8, 16, and 24, respectively in this chart.  With the

exception of some deviation of the model from actual shares in the final two quarters, the

model fits well the relatively smooth decline in Netscape share over the observation period.
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3.8. Market “Tipping” and Damages from Microsoft “Bad Acts”. Once the MPE model

has been estimated, so that it fits baseline “as is” trajectories over the observed history of

the market, it can be used to estimate trajectories under alternative “but for” conditions

where “bad acts” are excluded, and from this estimate damages attributable to these “bad

acts”.  A few precautions, applicable to many damage studies, apply here.  First, prediction

of trajectories in these models generally requires simulation of unobserved shocks.  For

example, the empirical distribution of the fitted shocks obtained in estimation of the model

may be the basis for simulation draws.  To reduce the variance of damage estimates,

common draws should be used under baseline and “but for” conditions.  Second, if the

natural experiment provided by the observed market trajectory is insufficient to identify

reliably the demand response to changes in “bad acts”, then it may be necessary to use
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external studies, such as market

research studies, to estimate these

effects.  Third, the statistical reliability

of damage estimates should be

provided as part of the analysis.  In

principle, the delta-method can be

applied to linearize the model in its

parameters around their fitted values,

and this linearization can be combined

with the asymptotic covariance

estimate for the parameter estimates from the estimation phase to produce standard errors

for the damage estimates.  In practice, a bootstrapping procedure, with a common

resample used for both baseline and “but for” scenarios, is likely to do a better job of

capturing the second-order non-linearities of model, and is thus likely to be more robust.

We next solve the model for an MPE with one or both of the Microsoft “bad acts”

eliminated.  Figure 8 shows the effect of removing the IAP restriction, where Microsoft

contracts with internet access providers required that they not provide Navigator.  The

figure compares the actual base shares trajectories with the “but for” prediction when IAP

is always zero, but the WINDOW variable, reflecting the tying of Internet Explorer to the

Windows operating system, remaining in place.  The figure shows that the effect of IAP

was to accelerate the decline of Netscape’s share from mid-1997 until the end of 1999 by

one to three quarters, but that even in the absence of IAP, the market would have

eventually tipped to Microsoft as a result of the WINDOW tying of Internet Explorer to the

operating system.
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Next consider the effect of removing the WINDOW tying arrangement, but leaving the

IAP exclusionary contracts in place.  The predicted MPE trajectories in this scenario are

given in Figure 9.  Here, the market tends in the long run to equal shares, but the effect of

IAP and the Microsoft investment program to improve the quality of IE would have been

to make Microsoft the browser market leader starting in mid-1999, with a base share rising

to nearly 60 percent.

Finally, Figure 10 gives the predicted market share trajectories with both IAP and

WINDOW removed.  In this case, the two firms tend to long run equal market shares, but

with Microsoft overtaking Netscape in mid-2000 and attaining a share near 58 percent due

to a quality difference between Internet Explorer and Navigator.  The investment pattern

is related to the model parameters for

the cost of “crash R&D”, with

0Netscape’s cost (  = 1.00 much higher

1than Microsoft’s cost (  = 0.05.   The

MPE model’s overall ability to predict

investment trajectories is modest, and

the investment data are problematic,

so that this parameter difference must

be interpreted with caution.  However,

it seems to indicate that the Microsoft

organization was able to take on R&D projects at a substantially larger scale than Netscape

without substantial diminishing returns.  This implication is consistent with the relative sizes

of the two companies, and the presumable ability of Microsoft to move software developers

between browser and operating system projects.  We conclude that the effect of the

WINDOW tying of Internet Explorer to the Windows operating system “tipped” the browser

market to Microsoft, and that in the absence of this “bad act” and the IAP exclusionary

contracts, Netscape would have lost browser share more slowly, retaining the largest share

until mid-2000, and retaining a market share above 40 percent, with a very long run

tendency toward equal shares.  
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 We have indicated that the MPE model is only modestly successful in fitting the

observed “as is” investment trajectories.  A significant issue is the difficulty in determining

both R&D investment levels and timing for Netscape and Microsoft.  Public records do not

give a reliable breakdown of total

investment for either firm between

b r o ws e r  d e ve l o p m e n t  a n d

development of other products.  This

is a particular problem for Microsoft,

where the lines of operating system

and browser development are blurred,

and for both firms, where the

development of browsers occurred in

parallel with development of enterprise

server software products and web

developer tools.  Also, because we

have no public profit center data for browsers, we do not observe profits for the two firms

from browser operations, and hence are unable to refine the models for investment cost

for the firms, or identify the effects of private investment costs.  Finally, lack of consistent

independent data on product quality

does not allow us to determine

empirically the relationship between

cumulative R&D investment and

browser quality as perceived by

consumers.  With these caveats, we

give in Figures 11-14 the observed and

model trajectories for investment for

the two firms, first in the “as is” case,

and then in the respective “but for”

scenarios without IAP, without

WINDOW, and without both. 
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The optimal investment trajectories

from the MPE solution to the model

have the gross qualitative features of

the observed trajectories, with a rapid

runup in Microsoft R&D investment,

followed by a substantial decline once

Navigator was no longer a factor in the

market.  However,  the MPE solution

shows a delay in investment by both

firms beyond initial levels that is not

observed, and a lower level of

Netscape investment than observed.

This presumably occurs in the MPE

solution because with a relatively steep

discount rate and the prospect that

Microsoft could tip the market in its

favor, it was in the interest of Netscape

in the “as is” world to abandon the

market to Microsoft rather than

contesting it, extracting as much profit

as possible in the short run from its

existing base. 

In Figure 12, with WINDOW in place

but IAP removed, the MPE optimal

investment strategies are virtually

unchanged from the “as is” world.

However, Figures 13 and 14, with

WINDOW removed, show greater

Microsoft investment from mid-1998 to

the end of 2000, the result of an
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increased effort by Microsoft to penetrate the market by improving the quality of Internet

Explorer when the option of tying it to the operating system is removed.  This points out a

possible impact on consumer welfare of “bad acts” by a firm in a concentrated market –

these acts may substitute for quality competition that benefits consumers. 

It is possible to use the projected

trajectories for base shares and

investment under “as is” and “but for”

conditions to estimate trajectories of

Netscape revenues, assuming that the

revenue per browser used remains at its

observed trajectory in the “as is” world,

and from these trajectories estimate the

lost revenue to Netscape from these

acts.  We have done this, and in Figure

15 plot the Netscape revenue estimates

“as is” and “but for” IAP, or both IAP and WINDOW, for the observation period, the first

quarter of 1996 through the second quarter of 2002.  From these trajectories and their

stationary state extension into the future, the expected present value, as of the second

quarter 2002, of Netscape browser revenue calculated at a quarterly discount rate of 2.5

percent is $355 million under “as is” conditions.  The present value of lost revenue from IAP,

with WINDOW remaining in place, is $21 million, and the present value of lost revenue from

both IAP and WINDOW is $365 million.  These are then rough estimates of damages to

Netscape in the browser market from Microsoft “bad acts”.  A number of caveats are

necessary.  These estimates do not include losses to Netscape’s enterprise software and

server software businesses, the potentially large but difficult to measure loss in option value

to Netscape from its potential as a middleware platform that would have been directly

competitive to the architecture of personal computing and the Windows operating system

monopoly, or losses associated with the eventual sale and restructuring of the diminished

Netscape business.  Further, these numbers come from problematic data pieced together

from public sources, and from a model of limited robustness.  With these cautions in mind,
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we note that the Netscape-Microsoft settlement in June 2002 for approximately $750 million

was about three-forths of the trebled Netscape lost revenue in the browser market, and

perhaps about one-half of trebled damages if other provable Netscape losses were

accounted for.  Thus, this settlement appears to be at the upper end of the typical range for

civil anti-trust settlements.   

4.  Conclusions

The results of this paper show that it is feasible to use the tools of Markov-perfect

equilibrium models combined with observed trajectories for firms in a concentrated market

to estimate models and approximate Markov perfect equilibria to assess the impact of firm

conduct and estimate damages from “bad acts”.  Employing an MPE model that was

motivated by observed characteristics of the browser market, and piecing together from

public sources data on the browser war between Netscape and Microsoft, we have

estimated the effects of network externalities and product quality on market trajectories, and

used it to provide predictions of market outcomes under “but for” scenarios in which

particular “bad acts” are eliminated.  We conclude that Microsoft’s exclusionary contracts

with Internet Access Providers, found illegal by the Appeals Court in U.S. v. Microsoft, was

by itself a modest source of Netscape lost revenue, about $21 million before trebling.

However, Microsoft’s tying of Internet Explorer to the Windows operating system, and the

arrangements under which it was difficult or inconvenient for OEM’s to preinstall another

browser, was sufficient to tip the market to Microsoft, and the source of substantial

Netscape lost revenue, about $369 million before trebling.  The issue of the legality of

Microsoft’s tying conduct was remanded by the Appeals Court, and DOJ’s settlement with

Microsoft left it unresolved.  Had the Netscape civil anti-trust case gone to trial, this would

have been the critical issue in dispute. 



Technically, our model is a continuous-state hidden Markov process when time is discrete, and
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a hidden Markov random field when time is continuous.  Kunsch-Geman-Kehagias (1995) show that the

class of stationary hidden Markov random fields is dense in the space of all stationary stochastic

processes.
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APPENDICES ON MARKOV PERFECT EQUILIBRIUM

Appendix 1. Game Theoretic Foundations

A1.1.  Dynamic Stochastic Games with Private Information.  A time-linked concentrated market for

heterogeneous goods can be modeled as a dynamic stochastic game, whose elements are the market

participants and their policy spaces, information sets, and payoff functions, the state of the system, and its

equation of motion.  Both stochastic games and their application to dynamic markets have been the subject

of extensive literatures; see  Erickson-Pakes (1995), Fudenberg-Tirole (2000), Kydland (1975), Maskin-Tirole

(1988a,b), Pakes-McGuire (1994, 2001), Tirole (2003).  W e re-examine with an econometrician’s eye the role

of various assumptions on information and structure that give equilibria in pure strategies, with the objective

of specializing the general stochastic game model to a form that is useful for computation and econometric

analysis.  Several basic theoretical, econometric, and practical considerations enter our model specification:

 (1) The Markov Perfect Equilibrium modeling approach that we adopt restricts the information of firms to

the “payoff-relevant” history of the market, summarized in state variables that follow a first-order Markov

process, and restricts response to “closed-loop” or “feedback” functions of each firm’s information.

Important motivations for the MPE assumption are econometric and computational tractability.  However,

the MPE approach is also behaviorally plausible in its relatively limited requirements for commitment,

coordination, and rationality.  W ithin the MPE framework, it is possible to obtain a rich variety of models

by varying assumptions on what firms know about the structure of the market and about exogenous

shocks, what information is public or private, and what firms believe about their rivals’ information and

behavior.  W e will assume below that the structure of the market game is stationary given observed

external driving variables that themselves become stationary some time before observations on market

trajectories end, and justify this as a necessary condition for obtaining an identifiable model that is useful

for applications.  An implication of this restriction is that the Markov assumption, which ensures that a finite-

dimensional state vector is a sufficient statistic for the relevant history of the game, is not a substantial

additional restriction.   However, the restriction of Markov states to “payoff-relevant” history, and the37

restricted dimensionality of states in any practical model, significantly limit the possible solutions.  In

principle, one can test a particular MPE specification against more general solutions within the GMM

estimation framework discussed later, and if necessary augment the state variables in the Markov model

to accommodate observed strategic behavior.
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 (2) In applications, one will have more or less complete observations on market state and on firms’ policies

over a specific time interval.  This may be augmented with data from outside the market that is informative

on structural features of the market, such as market research studies on consumer preferences and

engineering studies of production technology, and external factors that influence the market and potentially

provide natural experiments, such as changing levels of foreign trade and other demand shifters.  A critical

criterion for MPE model specification is that the model be rich enough to encompass these observations,

and lean enough so that these observations are sufficient to identify the model structure and enable

estimation of “but for” market outcomes.  The first of these requirements will be met by introducing

exogenous shocks that correspond to the non-systematic statistical variations present in market data.  In

this connection, it is necessary to detail assumptions on what firms know and when they know it, and what

the econometrician knows from the observed historical record.  Note that when policy choices are made,

shocks may be public information to all firms, private information to a single firm, or unknown to all firms.

Further, the econometrician may be unable to observe some information that was known to the firms

during historical market operation, and in other cases may be able to observe retrospectively information

that was unknown to the firms at the time decisions were made.  In general, shocks that are known to firms

will enter their policy response functions, while shocks that are unknown are omitted from their policy

functions but enter their outcome functions.  Further, the form of policy functions will be influenced by

beliefs about unknown shocks.  A classic literature in econometrics provides a template for these

considerations; see Mundlak and Hoch (1965), and Fuss-McFadden-Mundlak (1978).  The second

requirement, that the structure of the MPE model be identified from observations on the market over a

specified time interval, places conditions on what firms can know that the econometrician does not.  Events

subsequent to a firm’s policy choice can influence those choices only if they are predictable by the firm at

the time of the choice.  A successful econometric model of firm behavior must incorporate the predictions

of events that do influence choice.  Thus, it is critical that the econometrician have all the information that

is available to firms and predictive of future events.  Put the other way around, information that is available

to the firm and not to the econometrician must be non-predictive, or in econometric terminology, Granger

non-causal, given the information that is common to the firm and the econometrician.  W ith this

assumption, events beyond the observation period that are not predictable by the econometrician cannot

influence observed behavior, and by Occam’s razor should be excluded from the model.  A natural

assumption consistent with this conclusion is that the market becomes stationary before the end of the

observation period, once all predictable effects are built into the state vector.

 (3) Private information for each firm that enters the cost of its policy will, under quite general conditions,

be sufficient to guarantee that MPE are almost surely pure.  This property will, in turn, guarantee

reasonable approximation properties for restricted classes of continuous policy functions; e.g., polynomials.
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 (4) MPE are unique only under extremely restrictive assumptions that are difficult to meet in applications.

W hen there are multiple MPE, there are substantive issues of how the players could use tacit coordination

to select among them, and what econometric analysis can identify regarding selection and coordination

rules.  W e seek to resolve the indeterminancies of selection and coordination econometrically.

W ith these considerations in mind, we write down a dynamic concentrated market model in fairly general

terms that can be specialized to the browser war model in Section 3.3.  All factors that might make the model

time-variant are incorporated into vectors of exogenous variables, so that the equation of motion and payoffs

in the game, given these exogenous variables, are time-invariant.  Let n = 1,...,N index firms, which may be

incumbents or potential entrants.  Let t = 0,1,...,T,...,H index time periods, with T < H # +4, where the

econometrician observes the market in periods t = 1,...,T and H is a horizon after which the market is closed.

Let T* # H denote a period after which all exogenous variables are stationary.  The market is described by the

following notation and accompanying assumptions:

t s    a state vector in a compact subset S of a finite-dimensional Euclidean space that is endowed with

its Borel F-field and relative Lebesgue measure 

tz   a vector of observable exogenous variables in a compact subset of a finite-dimensional

zt tEuclidean space Z that is endowed with its Borel F-field and a probability g .  The vector z  will

incorporate all time-varying elements in the dynamic process, so that the model conditioned

ton z  is time-invariant. 

t tg ,0   public exogenous shocks in a compact subset S  of a finite-dimensional Euclidean space endowed

g 0with its Borel F-field and probabilities g  and g .

nt.   a private firm n exogenous shock in a non-degenerate compact rectangle 7 in a finite-dimensional

.nEuclidean space with its Borel F-field and a probability g  that is absolutely continuous with respect

t 1t Nt -n,t 1t n-1,t n+1,t Ntto Lebesgue measure.  Let .  = (. ,...,. ) 0 7 . Also define .  = (. ,...,. ,. ,...,. ). N

nt nx  a policy for firm n, in a compact subset X  of a finite-dimensional Euclidean space, endowed with its

t 1t Nt  1 Nrelative Borel F-field.  Let x  = (x ,...,x ) denote a profile of policies of the firms, and X = X ×...×X .

-n,t 1t n-1,t n+1,t Nt -n 1 n-1 n+1 NDefine the profile of rivals’ policies, x  = (x ,...x ,x ,...,x ) 0 X  = X ×...×X ×X ×...×X .

nA  a profit function for firm n, a function on S×X×Z×S×7. 

h an equation of motion, a measurable map from S×X×Z×S  into S.

$  a common constant discount factor.   

tThe state s  may include both discrete and continuous payoff-relevant information such as entry status,

market size, cumulative investment in product quality, and firm market shares.  The observable exogenous

tvariables z  may include periods remaining until the horizon H, demand shifters, prices of firm inputs, and rules

of conduct that are determined outside the model.  In particular, we treat firms’ beliefs about the applicability
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and consequences of the anti-trust law, and engagement in “bad acts” that violate this law, as determined

exogenously by the legal system and a “firm culture” that promotes or discourages compliance.  W e assume

t t tthat z  is public knowledge to the firms when period t decisions are made.  The exogenous shocks g  and 0  will

t trepresent demand effects.  The distinction is that g   is assumed to be public knowledge to the firms, while 0

tis assumed unknown to all firms, when policy decisions are made in period t, but 0  is assumed known to all

t tfirms before policy decisions are made in t+1.  The exogenous variables z  and shocks g  differ only in what the

econometrician observes, and are treated as similar contemporaneously known public information by the firms.

ntThe exogenous shock .  will represent cost effects that are private knowledge to firm n when decisions are

ntmade in period t; we assume that .  enters the profit function for firm n, but not the profit functions of rivals or

t t t 1t Ntthe equation of motion.  W e will assume that the exogenous vector z  and the shocks g , 0 , . ,..., .  follow

independent first-order time-homogeneous Markov processes, and that the private cost shocks are time-

z t t-1 g t t-independent.  Then, the conditional probability of these variables, given history, has the form g (z |z )@g (g |g

1 0 t t-1 .1 1t .N Nt)@g (0 |0 )@g (. )@...@ g (. ).  The motivation for this assumption on the exogenous and stochastic elements

t t tis both theoretical and econometric.  It implies that z , g , and 0  can be treated as components of an extended

t state vector, along with s in the conventional MPE model structure.  It lim its firms’ ability to predict these

variables, and determines the structure of statistical dependence between observed variables and shocks.

In particular, the private information of a firm is not predictable by other firms from history. In general, we

tinterpret z  as including social policy instruments that are time-invariant and are changed in the “but for” world

as interventions to suppress “bad acts”.  

Policy variables may include investment, pricing, product attributes, entry and exit from product lines.  In

principle, the list of policy variables could include actions such as bundling, tying, refusals to deal, and

exclusionary contracts that are potentially “bad acts” under anti-trust law, and observed firm behavior in these

dimensions could be modeled explicitly as profit-maximizing given firm beliefs about the likelihood and potential

costs of anti-trust litigation.  In practice, the difficulty of identifying firm beliefs regarding litigation make this

timpractical.  Instead, we interpret “bad acts” policies as predetermined to the market model, thus part of z , and

analyze “but for” scenarios that result from interventions that change these predetermined policies.  

Summarizing, the payoff-relevant information of firm n when it makes its policy decision in period t is a point

t t t nt(s ,z ,g ,. ) 0 S×Z×S×7.  Firms are assumed to know the stochastic laws governing exogenous variables and

nshocks.  A Markov mixed strategy for the firm is a measurable mapping f  from this information into the space

n n t t t ntP(X ) of probabilities on X .  This strategy is almost surely pure if, given (s ,z ,g ), the set of .  for which the

nsupport of the image of f  is a singleton has probability one.  W hen a Markov strategy is almost surely pure,

n n nf  can be interpreted as a measurable mapping from S×Z×S×7 into X .  Note that f  is not the same as a best-

nresponse or reaction function, which maps the information above and the strategies of rivals into P(X ); the

latter is the mapping for which the former is a fixed point in a MPE.  

W e will assume a non-atomic population of consumers who are price-takers and do not respond

strategically.  In particular, we assume that contagion or network effects influence demand solely through the



Some markets are oligoposonistic, with atomistic buyers who can be included as active players
38

in the game.  There is also an interesting class of stochastic game extensions of the “Coase conjecture”

problem, where consumers strategically time purchases based on expectations regarding future firm

conduct.  W e will not analyze the possibility that firm announcements could become “bad acts” to promote

market power when consumers respond strategically, but note that this is a problem of interest.  
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previous period market state, and that consumers do not form expectations about future market states based

on market history or firm conduct.38

n t t t t ntThe per-period profit function A (s ,x ,z ,g ,. ) will reflect current production costs and revenues associated

with its technology and the structure of consumer demand with its embedded network effects, and investment

nand marketing expenses.  Note that A  is a function solely of information the firm knows and the realized

t npolicies of all the firms; it does not depend on unknown shocks such as 0 ,  Note that A  is time-invariant, with

tall time-varying effects captured in the exogenous vector z    

The objective of the firm will be to maximize the expected present value of its stream of per-period profits,

taking into account the information it has.  The firm may have conjectures about its rivals’ information and

behavior, but these beliefs must in the end depend only on the policy-relevant information it has available.  W e

will analyze the useful case of profit functions in which the private information has the same dimension as the

nt nt ntpolicy of the firm and appears in a single index x @. .  In this form, the .  can be interpreted as random policy

costs associated with implementing the firm’s action, such as a setup cost on entry or scrap cost on exit, or

na random surcharge on investment expenditure reflecting administrative efficiency.  Letting R  denote the

nrevenue function of the firm, and C  its cost function, the profit function in this case can be written

n t t t t nt n t t t t n t nt t nt nt ntA (s ,x ,z ,g ,. ) / R (s ,x ,z ,g ) - C (s ,x ,z ,x @. ), with revenue not depending on .  and cost not depending on

t -n,t ng  or the policies of rivals, x .    W e will not require that X  be a convex set or that the profit function be

nt n t nt t nt ntconcave in x .  However, we will assume that C (s ,x ,z ,x @. ) is concave and increasing in the index, and that

nt n nt nt.  has a continuous density.  The concavity condition is satisfied, in particular, if C  is additive in x @. , as will

ntbe the case if the .  are unit costs of policy actions.  These assumptions on the structure of private information

will guarantee that MPE solutions will be almost surely pure.  The use of private information as a device to

purify mixed strategies has been noted in the literature (Dor and Sattherwhite, 2004; Athey, 2004); our

formulation gives a very simple proof.

t+1 t t t t tThe equation of motion s  = h(s ,x ,z ,g ,0 ) maps the current state, exogenous variables, shocks, and policy

realizations into the state in the following period.  W e assume that this equation does not depend on the private

information of the individual firms, which influences the market solely through their realized policies.  W e

tabsorb all time-varying effects into z , so that h is time-invariant.  In the general theory of stochastic games, the

law of motion is usually described in terms of Markov transition probabilities.  In our notation, these would be

t t t t 0 t t t tobtained, for Borel sets A f S, from the relationship P(A|s ,x ,z ,g ) = g ({0|h(s ,x ,z ,g ,0) 0 A}).  For example, in

the special case that the state spaces are finite, the law of motion is a (controlled) Markov chain, and



If a state or exogenous vector has some discrete components, then the Lipschitz condition is
39

satisfied trivially in these components.
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t+1 t t t tP(s |s ,x ,z ,g ) denotes the transition probabilities.  W ith this basic model setup and the earlier discussion as

motivation, we make the following assumptions:

t z t t-1Assumption 1.  The observable vectors z  0 Z follow a first-order Markov process with probability g (z |z ).

t t 1t Nt g t t-The shocks (g ,0 ,. ,...,. ) 0S×S×7  follow an independent first-order Markov process with probability g (g |gN

1 0 t t-1 .1 1t .N Nt z g 0 .n)@g (0 |0 )@g (. )@...@ g (. ).  The probabilities g , g , g , and g  for n = 1,...,N are common knowledge.  At

nt t t nteach time t when policies x  are chosen, all firms know z  and g , and each firm n knows its private shock . .

-nt tContemporaneous private shocks of rivals . , 0 , and all future exogenous vectors and shocks, are predictable

tby a firm only to the extent of knowing their Markov process.  The econometrician observes z  for t = 1,...,T,

t t tbut does not observe the shocks g , 0 , or . .

Assumption 2.  The market structure is time-homogeneous.  Specifically, the state space S, the

1 N nexogenous vector space Z, the policy spaces X ,...,X , the equation of motion h, and the profit functions A  for

tn = 1,...,N are independent of t, with any time dependence contained in the exogenous vector z .

n t t t t nt nt t t t t tAssumption 3. The profit function A (s ,x ,z ,g ,x @. ) and the equation of motion h(s ,x ,z ,g ,0 ) are

continuously differentiable in their arguments, with Lipschitz derivatives.   The discount factor satisfies 0 < $39

< 1. 

 

nAssumption 4.  For firms n = 1,...,N, the profit function A  depends on private information solely through

nt nt ntthe single index x @.  and is a convex decreasing function of this index.  The private information .  has a

.nprobability g  that is absolutely continuous with respect to Lebesgue measure.   

nA Markov Perfect Equilibrium (MPE) is a profile of Markov mixed strategies f * for all firms and periods with

the subgame-perfect Nash property that for each period t and firm n, given the strategies of rivals, firm n has

n n t t t ntno incentive to alter its assigned strategy f *.  Note that f *(x|s ,z ,g ,. ) can be interpreted as a conditional

ncumulative distribution function, a measurable function from X×S×Z×S×7  into the unit interval.  Let

n t t t ntV (s ,z ,g ,. ) denote the valuation function of firm n, the maximum expected present value of its stream of

nprofits from period t forward, given its payoff-relevant information.  Note that we have made V  time-invariant

tby incorporating all time dependence into z .  The MPE and the valuation functions of the firms are

-n,tcharacterized by Bellman’s backward recursion.  Let E  denote the expectation operator with respect to

tN tN tN tNvariables that are unknown to firm n at the time of its policy decision in period t:  z  and the shocks g ,0 ,.  for
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-n,t 1t n-1,t n+1,t NttN > t, the contemporaneous private information of rivals, .  = (. ,...,. ,. ,...,. ), and the contemporaneous

tshock 0 .  The valuation functions then satisfy Bellman’s equations,

n t t t nt n t nt t t nt n t nt t t(A.1) V (s ,z ,g ,. ) =   {8 (s ,x ,z ,g ,. ) + $: (s ,x ,z ,g )},   

with the notation

n t nt t t nt -n,t j�n j jt t t t jt n t -n,t nt t t nt(A.2)     8 (s ,x ,z ,g ,. ) /E J  f *(dx |s ,z ,g ,. )A (s ,x ,x ,z ,g ,. )

for the expected value of current profit, and

n t nt t t(A.3)     : (s ,x ,z ,g )

-n,t j�n j jt t t t jt n t -n,t nt t t t t+1 t+1 n,t+1             / E J  f *(dx |s ,z ,g ,. )V (h(s ,x ,x ,z ,g ,0 ),z ,g ,. ) 

nt t t t ntfor the expected value of future profit.  Let X *(s ,z ,g ,. ) denote the maximizer correspondence, the set of

ntpoints x  that achieve the maximum in (A.1).  The Nash property of MPE requires that the support of

n t t t nt nt t t t ntf *(@|s ,z ,g ,. ) be contained in X *(s ,z ,g ,. ).  

A1.2. Existence and Purity of MPE.  Existence of subgame perfect Nash or MPE solutions to dynamic

stochastic games is the subject of an extensive and deep literature; see for example Beggs-Klemperer (1992),

Curtat (1996), Doraszelski-Satterthwaite (2003), Duffie-Geanakoplos-Mas Colell-McLennan (1994), Fudenberg-

Tirole (2000), Haller-Lagunoff (2000), Majumdar and Sundaram (1991), Maskin-Tirole (1988a,b), Mertens

(2003), Mertens-Parthasarathy (2003), Nowak (2003), Reider (1979), Rosenberg (1998), Solon (1998), Sorin

(2003).  In overview, existence in infinite-horizon discounted stochastic games is well-established for finite state

spaces, and these results are easily extended to countable state spaces; see Federgruen (1976) and W hitt

(1980).  In state spaces that are not countable, existence has been proved only under very restrictive structural

assumptions; see Amir (2001), Curtat (1996).  There are however, proofs of the existence of g-equilibrium

under quite general conditions; see Duffie et al (1994), Mertens-Parthasarathy (2003), Solon (1998).  

W e will provide a relatively simple, self-contained existence result that assumes the state space is

countable except in the special dimension of private firm information.  This result is a minor variation on

theorems of Federgruen and W hitt, and is sufficient to support our computations of MPE, which are of course

restricted to the rational numbers.  W e include a proof for completeness.  W e will also show, with an added
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assumption, that an MPE in pure strategies exists almost surely.   W e do not deal with the coordination problem

in the case of multiple MPE, or consider a supergame in which coordinating communication between players

is possible.   

t tTo connect our fundamental assumption that S ×Z ×S  is a compact metric space to an existence theory

1Kt KKt t tthat requires countability, we will assume a nested sequence of finite partitions {A ,...,A } of S ×Z ×S  for K

K tkK tkK tkK kKt6 4, and an associated set B  of partition points (s ,z ,g ) 0 A   with the property that each of these points

t tremains in all succeeding refinements, and the union B* of these points is dense in S ×Z ×S .  For each K, we

t t twill assume that the firm’s knowledge of the state (s ,z ,g ) is limited to the partition set in which appears, and

tkK tkK tkKthus indistinguishable from the partition point (s ,z ,g ) in this partition set.  As a consequence, given

nt t t t nt t t t kKtpartition K, the strategy of firm n, f (x|s ,z ,g ,. ) is piecewise constant for (s ,z ,g ) in a partition set A , and can

nt tkK tkK tkK ntbe written as f (x|s ,z ,g ,. ) for the associated partition point.   One can interpret this setup as one in which

the firm has incomplete information on the state of the system, and chooses a strategy that is Nash given this

information.  Because the information set is finite, the firm has no scope for selecting a strategy that chatters

excessively with changes in the state, precluding the possibility of non-measurable limits.  Refining the partition

increases the information, so that at least from an applied perspective, the information loss from partitioning

Kbecomes negligible.  Note that equilibria established for a given partition K are exact for B , but not for the

fundamental underlying state space.  Consequently they can be interpreted as g-equilibria, different in

construction but similar in spirit to the g-equilibria studied by W hitt (1980), Duffie et al (1994), and Mertens-

Parthasarathy (2003). 

nt ntTheorem 1.  Suppose Assumptions 1-3.  Then there exist valuation functions V  and a profile of strategies f *

for n = 1,...,N that are time-invariant for t $ T* and satisfy condition (A1.1) for a MPE on the countable dense

t t tkK tkK tkKsubset of S ×Z ×S  given by the union of the partition points (s ,z ,g ) for k = 1,...,K and K 6 4. 

KProof: Fix K, and consider the state space B ×7.  W e first establish the existence of a time-invariant valuation

function and strategy profile for the time-invariant subgame starting in period T*.  Let T denote any time greater

n T T T T nT t t t t tthan T*.  The functions A (s ,x ,z ,g ,. ) and h(s ,x ,z ,g ,0 ) are Lipschitz; let M denote a uniform bound on

these function and their Lipschitz constants, which exists since all domains are compact.  W e will use a fixed

point argument that there exist valuation functions that are reproduced by, and strategies for the firms that are

consistent with, the Bellman recursion (A.1).  W e begin by defining a series of sets and mappings, and

obtaining their properties.

n K n n[1]  Let  W  denote the set of real-valued functions V on B ×7  that are Lipschitz in 7 , with a bound M/(1-$)

non the function and on the Lipschitz constant.  Then, W  is a convex compact subset of the Banach space of

K nbounded measurable functions on B ×7 ; see Dunford and Schwartz (1965, Theorem IV.5.6).  
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n n nT[2]  Let F  denote the set of cumulative distribution functions f  on X  that are conditioned on and

K n 1 nT K nmeasurable with respect to B ×7 .  This is a subset of the Banach space L (X ×B ×7 ).  Further, for each

x K .rectangle A = A ×A ×A  in this space,

A n . K K x . . K K x xI f (x|s,z,g,.)g (d.): (A ): (dx) # g (A ): (A ): (A ),

K K x nT nwhere :  is counting measure on B  and :  is relative Lebesgue measures on X .  Then, F  is weakly

sequentially compact and convex; see Dunford and Schwartz (1965, Theorem IV.8.9). 

1 N 1 n 1 N 1 N nT T nT T T nT[3]  For each (V ,...,V ,f ,...,f )   0 W ×...×W ×F ×...×F  , the function D (s ,x ,z ,g ,. ) from (A.2) is an

-n,T nT nT nexpectation (with respect to . , whose distribution is independent of x ,. ) of the function A  which is uniformly

nT nTLipschitz in (x ,. ), and is therefore again Lipschitz in these arguments with the same constant.

1 N 1 n 1 N 1 N nT T nT T T[4]  For each (V ,...,V ,f ,...,f )   0 W ×...×W ×F ×...×F  , the function : (s ,x ,z ,g ) from (A.3) is an

-n,T n,T+1 T+1 nTexpectation (with respect to . , . , and g  whose distributions do not depend on x , and with respect to

T+1 nT n,T+1 n,T+1s  whose distribution has a Lipschitz dependence on x  and is independent of . ) of the function V  which

nT nT n,T+1 nTis independent of x .  Consequently, :  inherits the bound M/(1-$) on V , and is Lipschitz in x .

nT T nT T T nT nT T nT T T[5] The function D (s ,x ,z ,g ,. ) + $ : (s ,x ,z ,g ) in (A.1) is uniformly bounded by M + $M/(1-$) = M/(1-

nT nT$), is Lipschitz in .  with constant M, and Lipschitz in x  on its compact domain.  One implication is that the

nT T T T nT K nmaximizer correspondence X *(s ,z ,g ,. ) is non-empty and upper hemicontinuous on B ×7 ; see Hildenbrand

n T T T nT nT T nT T T nT nT T nT T T(1974).  A second implication is that V N(s ,z ,g ,. ) = {D (s ,x ,z ,g ,. ) + $: (s ,x ,z ,g )} is bounded

nT nT nT T T T nTwith constant M/(1-$).  Also, let x (. ) 0 X *(s ,z ,g ,. ) be any selection, and note that maximization implies

n n-M|. T*- . T*| 

nT T nT nT T T nT nT T nT n T T nT# D (s ,x (. O),z ,g ,. O) - D (s ,x (. T*),z ,g ,. O) 

n T T T n n T T T nT# V N(s ,z ,g ,. T*) - V N(s ,z ,g ,. O) 

nT T nT n T T n nT T nT n T T nT n n# D (s ,x (. T*),z ,g ,. T*) - D (s ,x (. T*),z ,g ,. O) # M|. T*- . T*|.

n nT n nTherefore, V N is Lipschitz in .  with constant M.  Therefore, V N 0 W .

n K n n n T T T nT[6]   Let R  denote the mapping from B ×7  into subsets of F  defined by R (s ,z ,g ,. ) =

nT T T T nTP(X *(s ,z ,g ,. )); i.e., the set of all cumulative distribution functions with support contained in the maximizer

ncorrespondence.  The correspondence R  is non-empty and convex-valued.  The upper hemicontinuity of the

nmaximizer correspondence implies that R  is upper hemicontinuous.

1 N 1 NThe preceding results establish that W ×...×W ×F ×...×F  is convex and compact, and that the mapping

given by [5] and [6] is a upper hemicontinuous convex-valued correspondence from this space into itself.  Then,

1T NT 1T NTby the Glicksburg-Fan fixed point theorem (Saveliev, 1999), there exists (V ,...,V ,f *,...,f *) 0

1 N 1 NW ×...×W ×F ×...×F  that satisfies (A.1) and returns the same valuation functions.  This completes the proof

that a stationary MPE exists in the subgame starting in period T*.
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Now proceed by backward recursion of (A.1) from period T*.  Let T be a period satisfying T # T*, and

nt ntsuppose that strategies f * and valuation functions V  have been established satisfying (A.1) for t > T.  Define

n n nF  and R  as in [2] and [6] above, and note that again by the same construction F  is convex and compact, and

n 1 NR  is a upper hemicontinuous convex-valued correspondence from F ×...×F  into itself.  Therefore, the

1T NT 1 NGlicksburg-Kakutani fixed point theorem establishes the existence of strategies (f *,...,f *) 0F ×...×F  satisfying

(A.1).  This completes the proof that a MPE exists for the full game with finite partition K.  

Now consider the sequence of MPE obtained by the proof above as K 6 4.  For each point in the union of

the partition points, the sequence of MPE has a convergent subsequence at this point.  This follows from

pointwise convergence of the sequence of uniformly bounded valuation functions, the compactness of the

strategies (which are cumulative distribution functions) at this point, and the inequalities implied by the

maximization in the Bellman recursion.  Use the Cantor diagonal process to obtain a limiting MPE that satisfies

(A.1) on the countable union of partition points B*.  ~

It is mathematically difficult to extend Theorem 1 to the fundamental compact metric state space without

countability.  To do so requires that the valuation functions and firm strategies not chatter with changes in state.

W e conjecture that empirical process methods, particularly the metric entropy conditions that give uniform

stochastic equicontinuity, can be applied to admissible mixed strategies to obtain results with relatively weak

conditions; see Pollard (1984), Shorak and W ellner (1986), McFadden (1989).  W e believe that the required

bounds on entropy can be met through monotonicity or supermodularity conditions that are not as restrictive as

those used by Curtat (1996) and Amir (1996).  Resolution of this conjecture is left for the future.

For some purposes, it may be useful to identify invariant distributions for the state of the model after time

T* when the model is time-invariant, and estimate these distributions from the empirical distribution of realized

states.  W ith the MPE strategies given by Theorem 1, the law of motion of the model is a time-invariant Markov

process, and there are some straightforward (high-level) assumptions under which it will have a unique invariant

distribution and the ergodic property that the empirical distribution from any initial state will converge weakly to

the invariant distribution.  Define a Markov transition kernel

t t t t 0 t t t tP(A|s ,x ,z ,g ) = g ({0|h(s ,x ,z ,g ,0) 0 A}).

For this discussion, assume that the state spaces are finite.  Suppose for any pair of states sO,sN, there is a set

of z,g,. occurring with positive probability on which P(sO|sN,z,g,.) < 1, and there exists a finite sequence of states

s  with s  = sNand s  = sO with the property that there are sets of z,g,. occurring with positive probability on whichk 0 K

P(s |s ,z,g,.) > 0.  Then, the process is irreducible and acyclic, has an invariant distribution which is unique,k+1 k

T Tand has the strong ergodic property that for any continuous function on S ×Z ×S×7, a time average of this

function on any realized trajectory converges to its expectation at an exponential rate.  Related results that are

much more general are given by Duffie, Geanakoplos, Mas-Colell, McLennan (1994).
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In computational approximation of MPE, mixed strategies create difficulties, so that the analysis is greatly

aided if pure strategy MPE exist.  This has been accomplished in previous literature through strong assumptions

on the profit functions, or through the introduction of private information that acts as a mixing device.  The first

ntapproach requires that the firm ’s policy set X  be convex, and the profit functions be strictly concave on this set,

or that it satisfy some strong separability and super-modularity conditions; see Curtat (1996).  It is difficult to use

the first approach in our application in which network effects influence the determination of market shares.  The

second approach has been used in specific applications by Pakes and McGuire (1994) and Doraszelski, and

Satterthwaite (2003).  W e adapt the second approach to our model, introducing a functional specification that

gives the desired result.

Theorem 2.  Suppose Assumptions 1-4.  Then, with probability one, the MPE established in Theorem 1 will

assign only pure strategies for all firms in all time periods.

nt t t t nt n t nt t t nt n t nt t tProof: Consider the function V (s ,z ,g ,. ) =   {8 (s ,x ,z ,g ,. ) + $: (s ,x ,z ,g )} from (A.1).  W e will argue

nt nt ntthat V  is a convex function of . , and that its derivative with respect to . , if it exists, is proportional to a unique

pure strategy for the firm.  But a convex function is twice continuously differentiable almost everywhere; see

.Alexandroff (1939).  This result, combined with the Assumption 4 condition that the probability g  is absolutely

continuous with respect to Lebesgue measure, ensures that the firm’s strategy is almost surely pure and

nt ntcontinuous in . .  W e complete the proof by demonstrating that V  is convex, and that when its derivative exists,

n t nt t t ntit is almost everywhere a non-zero multiple of a unique optimal policy.   First note that D (s ,x ,z ,g ,. ) is an

nt ntexpectation (independent of . ) of of the negative of a cost function that is concave and monotone in . , and

n nt n nthence D  is convex and monotone in . .  Suppose that . T* and . O are distinct points, consider a convex

n nt nt nt t t t n ntcombination 2. T*+(1-2). O, and let x * be any maximizer that gives the function V (s ,z ,g ,2. T*+(1-2). O).

Then,

nt t t t n nt n t nt t t n nt n t nt t tV (s ,z ,g ,2. T*+(1-2). O) = D (s ,x *,z ,g ,2. T*+(1-2). O) + $: (s ,x *,z ,g )

n t nt t t n nt nt t nt t t# 2{D (s ,x *,z ,g ,. T*@x *) + $: (s ,x *,z ,g )} 

n t nt t t nt nt nt t nt t t+ (1-2){D (s ,x *,z ,g ,. O@x *) + $: (s ,x *,z ,g )} 

nt t t t n nt t t t nt# 2V (s ,z ,g ,. T*) + (1-2)V (s ,z ,g ,. O).

nt nt t t t ntThis completes the proof of concavity.  Finally, let x O denote a maximizer that gives the function V (s ,z ,g ,. O),

and note that by its definition,

nt t t t n nt n t nt t t n nt nt nt t nt t tV (s ,z ,g ,2. T*+(1-2). O) $ D (s ,x O,z ,g ,[2. T*+(1-2). O]@x O) + $: (s ,x O,z ,g )

nt t t t nt + nt n nt - nt n nt$ V (s ,z ,g ,. O) - max{8 2(. O - . T*)@x O,8 2(. O - . T*)@x O} ,
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n + -for any scalar 2, positive or negative, that leaves the argument in the domain 7 , and 8  and 8  are the left and

nright hand side derivatives of D  with respect to the index, which always exist and by strict monotonicity and

convexity are almost surely signed and non-zero.  Letting 2 go to zero from above and below, the left and right

nt + nt n nt - nt n nt ntderivatives of V  bracket the expressions 8 (. O - . T*)@x O and 8 (. O - . T*)@x O.  Then, if . O is a point where

nt + - nV  is differentiable, these right and left hand derivatives coincide, implying that 8  = 8  so that D  is also

nt + nt n nt ndifferentiable at this point, and the differential of V  is 8 (. O - . T*)@x O.  Since this holds for each . T* in a small

nt nt nt nt ntball around . O, it follows that the derivative of V  is x O.  Since x O is any maximizer at . O, it is unique.  This

completes the proof of the theorem.  ~

n t t t t n t nt t nt nt n t nt t nt ntExample:  Let R (s ,x ,z ,g )  denote the revenue function of the firm, and C (s ,x ,z ,x @. ) / c (s ,x ,z ) + x @.

nt t -n,tits cost function,  with revenue not depending on .  and cost not depending on g  or the policies of rivals, x .

nt nt ntIn this setup, .  is a vector of unit costs, commensurate with x , that gives the firm’s private cost of policy  x .

n t t t t nt n t t t t n t nt t nt ntThe profit function is then A (s ,x ,z ,g ,. ) / R (s ,x ,z ,g ) - c (s ,x ,z ) - x @. , and is trivially concave and strictly

nt nt ntmonotone in x @. .  Components of .  may include entry setup and exit shutdown costs that do not otherwise

enter the technology or the determinants of firm revenue. 

The preceding results do not establish a unique MPE, nor address the coordination problem associated with

multiple MPE.  Duffie, Geanakoplos, Mas-Colell, McLennan (1994) discuss extending the market game to

include public information on “sunspots” that can be used as a coordination device.  Uniqueness results based

on game structure have been obtained only under stringent sufficient conditions; see Milgrom and Roberts

(1990).  The model we introduce for our application does not meet these conditions, and we are left with the

possibility that computational solutions in applications may find only some of multiple MPE solutions.

Appendix 2.  Econometric Identification and Estimation

In our discussion of econometric estimation of the structure of an MPE model, we will use the language of

parametric estimation, treating the equation of motion and the profit functions of the firms as fully specified up

to unknown parameter vectors.  This is the leading case for applications, where limited observations will support

only sparsely parameterized models.  However, it is also useful to think of these parametric models as method

of sieves approximations to the true structural equations which are nonparametric, and to consider questions

of identification and estimation in this more general context.  W e will impose Assumptions 1-4, so that firm

strategies are almost surely pure, and a firm’s private information enters only its cost function as a concave

function of a single index. 

As described in Section 3.6, we divide the econometric problem into three stages: (1) structural estimation

of the equation of motion and profit functions prior to the MPE calculations, (2) computation of the MPE with
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minimum distance estimation of unidentified parameters from the first stage, and (3) one or more iterations of

the complete vector of parameters from the MPE trajectories using a generalized minimum distance criterion

Consider in more detail the first-stage identification and estimation of the equation of motion,

t+1 t t t t t(A2.1) s  = h(s ,x ,z ,g ,0 ),

and the profit functions 

nt n t t t t n t nt t nt nt(A2.2) B  = R (s ,x ,z ,g ) - C (s ,x ,z ,x @. ).

By Theorem 2, the MPE strategies of the firms are almost surely pure, and hence can be written as functions

nt nt t t t nt(A2.3) x  = r (s ,z ,g ,. )

ntfor n = 1,...,N.  In the first stage of estimation, the structure of r  in (A2.3) is not yet determined.  Note however

ntthat the r  are time-invariant for t $ T*.  

W e consider identification and estimation of these equations in several cases.  The first and most

straightforward occurs when there are no shocks in the equation of motion that are known to the firms when they

t ntchoose their policies; i.e., g  is absent.  Then, the observed policies x  in (A1.1) are independent of the remaining

tshock 0 .  If this shock is additive, then (A1.1) can be estimated by nonlinear least squares.  This is also the case

if current policy choices enter the equation of motion with a lag, as is the case in our application.  If the shock

is not additive, then Matzkin (2003) shows that either a dimension-reducing functional restriction, normalization

nt T* T* tof r  (at some point s ,z ), or normalization of the distribution of 0 , is needed for identification.  This paper also

gives applicable estimators when the equation is identified.   Estimation of the profit functions is not simple40

t nt ntbecause even though g  is absent, the policy x  will depend on the shock . .  Identification can be achieved if

t nt ntthere are variables in z  such as observed input prices of rivals that are excluded from A  but influence x  via

their impact on the equation of motion and consequently on the valuation function of firm n.  Estimation of the

equation of motion may provide estimates of the structure of demand, determining the revenue portion of the

profit functions and leaving only the costs which are functions solely of the firm’s own policy choice.  Using this,

one can estimate the cost function, which depends on the endogenous policy choice, using the nonparametric

instrumental variable methods in Matzkin (2004).  In particular, the policies of rivals, which depend on their own

private information, may be used to construct “unobserved instruments”.  
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tConsider next the case where the publically known shock g  is present and correlated with the policy

functions of the firms.  W e will concentrate on estimation of the equation of motion h in circumstances where

t tthis function is not necessarily additive in the shocks g  and 0  .  Suppose there are exogenous variables in the

profit functions that influence policy choices but are excluded from the equation of motion.  Typical examples

are input prices.  If the shocks in the equation of motion are additive, the estimation problem is of standard GMM

form, with orthogonality conditions between transformations of excluded exogenous variables and excluded

instruments providing identification.  If the shocks are not additive, then the methods of Matzkin (2003) can

t t t+1 t t t t tagain be used.  Assume that h is strictly increasing in both g  and 0 .  Note that in the model s  = h(s ,x ,z ,g ,0 ),

tone could make a transformation of variables g  = R(gT*), where gT* is uniformly distributed, and then absorb

R into the definition of h.  Since this is observationally equivalent, it is clear that a normalization is needed, either

ton the distribution of g  or on the structure of the function h.  The following result normalizes the distributions of

these unobserved variables.  

1tTheorem 3.  Suppose under Assumptions 1-4 that the private cost vector of the first firm, . , is observed

retrospectively by the econometrician.  Suppose the equation of motion and profit functions are non-parametric,

t t nttime-invariant, and in general non-additive in shocks.  Suppose the distributions of g , 0 , .  for n = 2,...,N are

normalized.  Then the equation of motion (10), the reduced-form policy functions (12), and the realized values

t t ntof g , 0 , and .  for n > 1 are identified.

t t 1t t t t 1tProof:   Since (s ,z ,. ) is observable, and g  is independent of (s ,z ,. ), it follows from Matzkin (1999, 2003) that

1t t t t 1t x1|s,z,.1 g t(A2.4)    r (s ,z ,g ,. ) = g (g (g )),-1

x1|s,z,.1 1t t t 1t twhere g  is the conditional distribution of x  given s ,z ,. .  Normalizing the marginal distribution of g , this

1tshows that r  is identified.  Moreover, for any t,

t g x1|s,z,.1 1t(A2.5)    g  = g (g (x )).-1

t 1t t t 1tThis expresses the value of g  as the value of a known function of (x ,s ,z ,. ).  Hence, in (A2.3) for n > 1, we

tcan now treat g  as observable.  Applying again Matzkin (1999, 2003), this time to (A2.3) for n > 1, we get

nt t t t nt xn|s,z,g .2 nt(A2.6)    r (s ,z ,g ,. ) = g (g (. )),-1

xn|s,z,g nt t t t ntwhere g  is the conditional distribution of x  given s ,z ,g , which shows that r  is identified up to a

2tnormalization on the distribution of . .  Moreover, for any t,
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nt .2 xn|s,z,g nt(A2.7)    .  = g ( g (x ))-1

nt t t tThis expresses the value of the private information of firm n as a known function of x ,s ,z ,g . Since, from above,

t 1t t t 1t 1t nt t t 1tg  is a known function of (x ,s ,z ,. ), this can be interpreted as a known function of x ,x ,s ,z ,. .

t t t t t t    Since, from (A2.5), g  is a known number, and, by assumption, 0  is independent of s ,z ,x ,g , it follows, again

from Matzkin (1999,2003), that

t t t t t s+|s,z,x,g 0 t(A2.8) h(s ,z ,x ,g ,0 ) = g (g (0 ))-1

s+|s,z,x,g t+1 t t t t twhere g  is the conditional distribution of s  given s ,z ,x ,g ,0 , which shows that h is identified up to a

0normalization on g . The proof is completed by noting that

t t t t t 0 s+|s,z,x,g t+1(A2.9)    h(s ,z ,x ,g ,0 ) = g (g (s )).                                                                                     ~-1

Nonparametric estimators for the identified functions can be obtained by substituting nonparametric

estimators for  the conditional distributions in the expressions above.

Consider second-stage estimation.  Given parameter estimates (or nonparametric estimates of the equation

of motion and profit functions), and given trial values for any parameters or functions not identified from the first-

stage estimation, one can follow the computational algorithm outlined earlier to determine the stationary state

fixed point valuation functions, then the fixed point valuation functions in earlier periods by backward recursion,

then the realized strategies and trajectory by rolling the model forward from a given starting state.  A calculated

trajectory for states and policies can be interpreted as a simulation draw, given shocks drawn from their

estimated empirical distribution.  Repeated simulations gives an estimate of the expected trajectories.  A

generalized distance of these simulated trajectories from observed trajectories can then be computed.  One can

then iterate this process at alternative trial values for parameters to minimize this distance.  Because of the

computational burden, and lack of a guarantee of smoothness or convexity that would ensure easy convergence

of the iteration, it is extremely helpful that most parameters are estimated consistently from stage 1, and a

relatively small number have to be estimated initially in stage 2.  Note that in general any parameter that

influences the trajectories or observed outcomes of the firms is identified from the observed trajectories, within

the limits of empirical identification in finite data sets.

In practice, we carry out the second stage MPE dynamic computations using the first stage parameter

estimates plus gradient search for the remaining parameters.  The minimum distance criterion in our application

is defined in terms of differences of observed and calculated states over the observed partial trajectory.

Alternately, we could have used the distance of the calculated MPE first-order conditions from zero when

evaluated at the observed policy variables.  One method for carrying out the stage 2 minimum distance

estimation is to embed the Chebyshev approximation procedure for the valuation functions in an iterative
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algorithm to estimate the previously unidentified parameters R to minimize a criterion defined as a sum of

squared deviations of the predicted “as is” policies and states from their observed values for t = 1,...,TO.  The

search is facilitated by the smooth behavior of the valuation functions and policy functions with small changes

in R, provided the solutions to Bellman’s equations are regular.  Schematically, we have

jt jt(A2.10)                     V (s,z,R) . A(s,z)B (s,z,R),

where A(s,z) is the augmented polynomial approximation (26).  Suppose one starts from a solution to the MPE

1problem at an initial R .  Differentiate the first-order conditions for the Bellman equations and the equations of

motion to determine the derivatives of the B’s and x’s with respect to R, and plug these derivatives into the

expression for the derivative of the estimation criterion with respect to R.  For convenience, the derivatives can

be done numerically.  Then, do a gradient search to minimize the criterion.  In principle, it is not necessary to

re-solve the original problem, but in practice, periodic resolving should be done to correct the cumulative drift

in the approximation from the MPE solution.  One major difference between our formulation and that of Bajari

et al (2003) is that they concentrate on models where the current payoff functions are linear in unknown

parameters.  That is not generally the case for the models in our application, adding to the computational burden

of finding the Nash fixed points.  Also, we do not require symmetry for the Nash solution. 

The final stage of estimation is one or more Gauss-Newton iterations in all parameters to minimize the

generalized distance between observed and simulated trajectories.  Asymptotic statistical theory implies that

this single step, which requires estimation of second derivatives of the generalized distance with respect to the

parameters, yields estimators that are efficient within the class of minimum distance estimators, see Newey-

McFadden (1994).  A side benefit of this procedure is that it gives ready estimates of asymptotic standard errors

of the parameter estimates.  (If the number of simulation repetitions does not grow with sample size, then there

is some loss of asymptotic efficiency.)  In practice, linear search within the final one-step iteration may be

needed to guarantee an improvement in minimum distance in a finite sample.

Some studies using MPE models have found that it is computationally advantageous to use polynomial

approximations for the policy functions as well as the valuation functions.  W e have not done so in this paper,

but note that for problems where convergence of the numerical search to a fixed point is difficult, such

approximations may facilitate solution.  Bajari et al (2003) estimate policy functions as well as the equation of

motion in the first stage, assuming that these functions are linear in parameters.  Because these policy functions

depend structurally on the valuation functions derived in the second stage, all one can hope to get at the first

stage are (nonparametric) reduced forms.  These may nonetheless be useful, as their estimated values may

be proper instruments for the policy variables that appear endogenously in the equation of motion, and they may

provide good starting values for second-stage computations.
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Appendix 3.  Data

VARIABLE DEFINITION

date First day of Quarter (mm/dd/yyyy)

prd Period (quarters 1 to 26)

sbasens Netscape share of all browsers in use, beginning of quarter

sbasems Microsoft share of all browsers in use, beginning of quarter

sbns Netscape share of Netscape and Microsoft browsers in use, beginning of quarter

usetot Total number of computers with browsers, beginning of quarter (millions)

usenew Total number of new computers with browsers in quarter (millions)

basens Netscape total browsers installed, beginning of quarter (millions)

basems Microsoft total browsers installed, beginning of quarter (millions)

basedif Netscape - Microsoft browsers installed, beginning of quarter (millions)

salens Netscape new browsers installed in quarter (millions)

salems Microsoft new browsers installed in quarter (millions)

saledif Netscape - Microsoft new browsers installed in quarter (millions)

ssalens Netscape share of Netscape + Microsoft new browsers installed in quarter (millions)

ssalems Microsoft share of Netscape + Microsoft new browsers installed in quarter (millions)

invns Netscape browser R&D investment in quarter ($millions)

invms Microsoft browser R&D investment in quarter ($millions)

invdif Netscape - Microsoft R&D investment difference in quarter ($millions)

cinvns Netscape cumulative browser R&D investment, beginning of quarter($millions)

cinvms Microsoft cumulative browser R&D investment, beginning of quarter($millions)

cinvdif Netscape - Microsoft cumulative browser R&D investment, beginning of quarter

($millions)

qns Netscape browser quality = 1 - 1/cinvns

qms Microsoft browser quality = 1 - 1/cinvms

dqdif Netscape - Microsoft browser quality = qns - qms

verns Netscape version number

verms Microsoft version number

iap Proportion of IAP accounts covered by Microsoft exclusivity agreements

window Proportion of new computers sold with IE exclusively on desktop

revns Netscape browser-related revenue ($millions)

revms Microsoft browser-related revenue ($millions)

Sources:

1) Number of Internet Users - Quarterly data on number of Internet users were obtained from IDC.

It is assumed that every Internet user utilizes exactly one browser, meaning the number of Internet users is

equal to total installed base of browser users.

2) Browser Market Shares - Browser market shares were obtained from UIUC. UIUC measures

market share by counting the number of hits registered by each browser type on UIUC’s servers.  For this

model, it is assumed that these shares are representative of the actual shares of Internet users using each

browser.
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3) Browser Investment - Browser investment for Netscape was estimated based on total firm-wide

investment from analyst reports and on the authors’ assumptions about the percentage of firm-wide investment

devoted to browser development.  These assumptions were based in part on anecdotal evidence from

Cusumano and Yoffie.  Browser investment for Microsoft was estimated based on anecdotal evidence from the

Findings of Fact in the DOJ antitrust case. 

4) Revenue per browser - Revenue per browser was based on Internet advertising revenue trends,

and for Microsoft, a percentage of operating system revenues which may have been at risk if another browser

gained ubiquity.

5) Bad acts - The bad act intensities were calculated as described in the Section 3.2.  For the IAP act,

quarterly data on IAP subscriptions were obtained from AdKnowledge.  For the W INDOW  act, quarterly data

on OEM shipments were obtained from IDC.  The tying of IE to the W indows operating system began in the third

quarter of 1998 with the release of W indows 98 SE; we assume that this operating system was phased in over

three quarters.

date prd sbasens sbasems sbns usetot usenew basens basems basedif

01/01/96 1 0.967 0.033 0.967 1.933 0.925 1.796 0.062 1.734

04/01/96 2 0.964 0.036 0.964 2.446 1.093 2.145 0.080 2.065

07/01/96 3 0.950 0.050 0.950 3.010 1.298 2.518 0.133 2.386

10/01/96 4 0.929 0.071 0.929 3.624 1.517 2.931 0.223 2.708

01/01/97 5 0.905 0.095 0.905 4.177 1.640 3.371 0.353 3.018

04/01/97 6 0.831 0.169 0.831 4.840 1.917 3.529 0.718 2.811

07/01/97 7 0.772 0.228 0.772 5.413 2.025 3.774 1.116 2.658

10/01/97 8 0.712 0.288 0.712 6.028 2.239 3.877 1.571 2.306

01/01/98 9 0.663 0.337 0.663 7.182 2.962 4.012 2.040 1.972

04/01/98 10 0.612 0.388 0.612 8.159 3.132 4.408 2.791 1.618

07/01/98 11 0.573 0.427 0.573 9.140 3.428 4.683 3.488 1.195

10/01/98 12 0.546 0.454 0.546 9.987 3.589 4.992 4.156 0.837

01/01/99 13 0.519 0.481 0.519 10.880 3.889 5.181 4.811 0.370

04/01/99 14 0.483 0.517 0.483 11.766 4.150 5.261 5.624 -0.363

07/01/99 15 0.454 0.546 0.454 12.690 4.453 5.342 6.427 -1.084

10/01/99 16 0.428 0.572 0.428 13.651 4.768 5.432 7.260 -1.828

01/01/00 17 0.397 0.603 0.397 14.118 4.562 5.424 8.229 -2.805

04/01/00 18 0.376 0.624 0.376 14.479 4.597 5.302 8.817 -3.515

07/01/00 19 0.339 0.661 0.339 14.988 4.853 4.907 9.574 -4.667

10/01/00 20 0.300 0.700 0.300 15.505 5.013 4.502 10.487 -5.984

01/01/01 21 0.268 0.732 0.268 16.098 5.244 4.154 11.351 -7.197

04/01/01 22 0.230 0.770 0.230 16.699 5.430 3.708 12.390 -8.682

07/01/01 23 0.200 0.800 0.200 17.308 5.619 3.343 13.356 -10.013

10/01/01 24 0.174 0.826 0.174 17.926 5.811 3.014 14.294 -11.280

01/01/02 25 0.160 0.840 0.160 18.485 5.936 2.865 15.061 -12.196

04/01/02 26 0.147 0.853 0.147 19.049 6.110 2.718 15.766 -13.048
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prd salens salems saledif ssalens ssalems invns invms invdif cinvns cinvms

1 0.888 0.037 0.851 0.960 0.040 0.854 0.950 -0.097 5.850 1.800

2 1.017 0.077 0.940 0.930 0.070 0.848 1.097 -0.249 6.704 2.750

3 1.168 0.130 1.038 0.900 0.100 0.891 1.500 -0.609 7.551 3.847

4 1.320 0.197 1.123 0.870 0.130 0.847 1.489 -0.641 8.443 5.347

5 1.169 0.471 0.699 0.713 0.287 0.805 1.616 -0.811 9.290 6.836

6 1.303 0.613 0.690 0.680 0.320 0.580 1.613 -1.033 10.095 8.452

7 1.235 0.790 0.445 0.610 0.390 0.637 1.755 -1.118 10.674 10.064

8 1.299 0.940 0.358 0.580 0.420 0.623 1.890 -1.267 11.311 11.819

9 1.600 1.363 0.237 0.540 0.460 0.718 2.084 -1.366 11.934 13.709

10 1.597 1.535 0.063 0.510 0.490 0.697 1.993 -1.296 12.652 15.793

11 1.714 1.714 0.000 0.500 0.500 0.845 2.623 -1.778 13.349 17.786

12 1.687 1.902 -0.215 0.470 0.530 0.945 2.145 -1.201 14.194 20.409

13 1.634 2.256 -0.622 0.420 0.580 0.928 2.255 -1.327 15.139 22.554

14 1.660 2.490 -0.830 0.400 0.600 0.907 2.448 -1.541 16.066 24.809

15 1.692 2.761 -1.069 0.380 0.620 0.747 3.160 -2.413 16.974 27.257

16 1.621 3.147 -1.526 0.340 0.660 0.586 3.100 -2.514 17.720 30.417

17 1.506 3.057 -1.551 0.330 0.670 0.425 1.218 -0.793 18.306 33.517

18 1.195 3.402 -2.207 0.260 0.740 0.399 1.359 -0.960 18.731 34.735

19 1.068 3.785 -2.718 0.220 0.780 0.384 1.349 -0.965 19.130 36.093

20 1.003 4.010 -3.008 0.200 0.800 0.374 1.240 -0.866 19.514 37.442

21 0.800 4.444 -3.644 0.153 0.847 0.266 1.284 -1.019 19.889 38.682

22 0.747 4.683 -3.936 0.138 0.862 0.211 1.387 -1.176 20.154 39.967

23 0.674 4.945 -4.271 0.120 0.880 0.172 1.769 -1.597 20.365 41.353

24 0.755 5.055 -4.300 0.130 0.870 0.133 1.314 -1.181 20.537 43.122

25 0.712 5.224 -4.511 0.120 0.880 0.106 1.324 -1.218 20.670 44.436

26 0.794 5.316 -4.522 0.130 0.870 0.084 1.304 -1.220 20.776 45.761
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prd cinvdif qns qms qdif verns verms iap window revns revms

1 4.050 0.829 0.444 0.385 1.1 2.0 0.000 0.008 7.434 0.000

2 3.953 0.851 0.636 0.214 2.0 2.0 0.000 0.008 6.148 9.063

3 3.704 0.868 0.740 0.127 2.0 2.0 0.000 0.064 8.228 9.262

4 3.095 0.882 0.813 0.069 3.0 3.0 0.000 0.067 8.155 9.518

5 2.454 0.892 0.854 0.039 3.0 3.0 0.004 0.058 6.231 9.556

6 1.643 0.901 0.882 0.019 3.0 3.0 0.012 0.058 5.297 10.211

7 0.610 0.906 0.901 0.006 4.0 3.0 0.023 0.067 7.414 10.097

8 -0.508 0.912 0.915 -0.004 4.0 4.0 0.009 0.069 4.561 10.787

9 -1.775 0.916 0.927 -0.011 4.0 4.0 0.008 0.060 2.444 10.444

10 -3.141 0.921 0.937 -0.016 4.0 4.0 0.017 0.058 2.592 10.592

11 -4.437 0.925 0.944 -0.019 4.0 4.0 0.010 0.315 2.686 10.686

12 -6.215 0.930 0.951 -0.021 4.5 4.0 0.000 0.570 3.284 11.284

13 -7.415 0.934 0.956 -0.022 4.5 4.0 0.000 0.812 3.185 11.185

14 -8.743 0.938 0.960 -0.022 4.5 5.0 0.000 1.000 3.969 11.969

15 -10.283 0.941 0.963 -0.022 4.5 5.0 0.000 1.000 4.795 12.795

16 -12.696 0.944 0.967 -0.024 4.5 5.0 0.000 1.000 6.509 14.509

17 -15.211 0.945 0.970 -0.025 4.5 5.0 0.000 1.000 6.807 14.807

18 -16.003 0.947 0.971 -0.025 4.5 5.0 0.000 1.000 7.221 15.221

19 -16.963 0.948 0.972 -0.025 4.5 5.5 0.000 1.000 6.508 14.508

20 -17.928 0.949 0.973 -0.025 6.0 5.5 0.000 1.000 6.846 14.846

21 -18.794 0.950 0.974 -0.024 6.0 5.5 0.000 1.000 5.815 13.815

22 -19.812 0.950 0.975 -0.025 6.0 5.5 0.000 1.000 5.533 13.533

23 -20.988 0.951 0.976 -0.025 6.0 5.5 0.000 1.000 5.122 13.122

24 -22.585 0.951 0.977 -0.026 6.0 6.0 0.000 1.000 4.577 12.577

25 -23.766 0.952 0.977 -0.026 6.0 6.0 0.000 1.000 4.112 12.112

26 -24.985 0.952 0.978 -0.026 6.0 6.0 0.000 1.000 3.827 11.827
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