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ABSTRACT

This resource paper is intended to give a historical account of the development of the methodology
of disaggregate behavioral travel demand analysis and its connection to random utility maximization
(RUM).  It reviews the early development of the subject, and major methodological innovations over
the past three decades in choice theory, data collection, and statistical tools.  It concludes by
identifying some topics and issues that deserve more work, and fearlessly forecasting the future course
of research in the field.
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Disaggregate Behavioral Travel Demand’s RUM Side
A 30-Year Retrospective

Daniel McFadden

1. Introduction

"Zones don't travel; people travel!"
Slogan, Travel Demand Forecasting Project, 1972

This resource paper gives a historical account of the development of the methodology of
disaggregate behavioral travel demand analysis and its connection to random utility maximization
(RUM).  It discusses some current research topics, and concludes by identifying some issues that
deserve more work.  I am an occasional visitor rather than a permanent resident in the house of travel
demand analysis.  This has some advantages.  Like a grandparent, I get to enjoy the growth of the baby
without the daily drudgery, and distance may lend perspective.  However, it also has disadvantages
which will be evident in the course of this paper.  I do not know all the residents or the issues between
them, and will undoubtedly overlook both people and things that are important.  Also, what I know
best about the house is the baggage I bring with me.  I will attribute more significance to this baggage
than others might, and it will be up to the residents to redress the balance.

By my chronology, disaggregate behavioral travel demand analysis in the form that you now know
it was born in 1970.  Up through the 1960's, the dominant tool for travel demand analysis was the
gravity model, which described aggregate traffic between origin and destination zones in terms of zone
sizes and generalized travel cost; see  J. Meyer and M. Straszheim (1970).  This model was fairly
successful in describing flows through the highway network, but was unable to forecast demand along
some of the dimensions needed to evaluate major capital projects being planned through the 1960's.
Specifically, gravity models could not easily handle issues of mode split, trip generation, and trip
timing after introduction of new modes or other major system changes, and could not capture the
impact on behavior of fine-grained changes in the transportation system such as bus route density or
bus headways.  In the years just before 1970, driven by the Northeast Corridor Project and the San
Francisco Bay Area Rapid Transit Project, the U.S. Department of Transportation funded a number
of research studies to develop new travel demand analysis methods  that would be more flexible and
more sensitive to factors controlled by transportation policy.  A good deal of the initial research was
done around Cambridge, Mass., at Charles River Associates (CRA) under the guidance of John Meyer,
and at M.I.T. and Cambridge Systematics (CSI) under the guidance of Marvin Manheim and Paul
Roberts.  There were parallel and somewhat independent developments in England, notably in the
work of M. Beesley, D. Quarmby, and A. Wilson.
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Table 1.  RUM Theory and Origins of the MNL Model

1927 Thurstone introduces his law of comparative judgment, a model of imperfect
discrimination in which alternative I with true stimulus level V  is perceived with ai

normal error as V  +� .  Thurstone shows that the probability P (I) that alternative Ii i {i,j}

is chosen over alternative j has a form that we now call binomial probit.

1950s Marschak generalizes Thurstone’s law of comparative judgment to stochastic utility
maximization in multinomial choice sets, names it the RUM model, and analyzes the
relationships between random utility functions and choice probabilities.

1959 Luce publishes an axiomatic treatment of choice behavior which postulates that the
ratio of choice probabilities for I and j is the same for every choice set C that includes
I and j; and calls this Independence from Irrelevant Alternatives (IIA).  Luce shows that
if this axiom holds, then one can associate with each alternative a positive “strict
utility” such that choice probabilities are proportional to their strict utilities. Marschak
proves for a finite set of alternatives that choice probabilities satisfying the IIA axiom
are consistent with RUM.

1965 McFadden parameterizes the strict utilities in the Luce model in a form suitable for
econometric applications, and calls this conditional logit, now known as multinomial
logit (MNL)  Results include a computer program for maximum likelihood estimation
of the model and a simple demonstration of its consistency with RUM.

1960s Binomial and multinomial logit models without the RUM connection are used by
Warner, Theil, Nerlove, Wilson, Quarmby, and others, some with travel demand
applications.  Quandt introduces a random parameters travel demand model that is
implicitly of RUM form.

My own involvement with travel demand analysis came through a Federal Highway
Administration (FHA) research project on disaggregate modeling directed by Tom Domencich at
CRA.  Primary consultants on that project were the economists Peter Diamond and Robert Hall from
M.I.T.  From the economic principles of consumer demand, they developed a behavioral travel
demand model that emphasized separable utility and multi-stage budgeting, so that the complex
dimensions of trip generation, timing, destination, and mode choice could be broken into manageable
segments, with "inclusive values" tying the segments together in a coherent utility-maximization
framework.  In the style of the times, they developed this theory for a representative utility-
maximizing consumer, and were then faced with the problem of putting the model together with data
on individual trips from trip diaries.  I was visiting M.I.T. in 1970-71, and Diamond and Hall asked
me if I could make their model empirically operational.  I was recruited for this task because I had a
machine in hand for analyzing discrete choice.  In my graduate student days at the end of the 1950's,
I had been very interested in axiomatic choice theories developed by mathematical psychologists,
including the RUM model introduced by Thurstone and studied by Marschak, and Luce's 1959 theory
of individual choice behavior.  In 1965, I was asked by a Berkeley graduate student, Phoebe
Cottingham, for suggestions on how to analyze her thesis data on freeway routing decisions by the
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Luce’s axiom in its most general form states that for each I � A � C, P (I) = P (A)�P (I); this allows probabilities to1
C C A

be either positive or zero.  When they are positive, this condition is equivalent to (1).  The strictly positive case is relevant for

experimental or field data where one can never definitively rule out improbable events.  
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California Department of Transportation.  I suggested developing an empirical model from Luce’s
choice axiom.  Letting P (I) denote the probability that a subject confronted with a set of mutuallyC

exclusive and exhaustive alternatives C will choose I, Luce’s axiom states that the ratio of choice
probabilities for I and j was the same for every choice set C that included I and j; i.e.,

(1) P (I)/P (j) = P (I)/P (j).C C {i,j} {i,j}

Luce called the axiom written in this form Independence from Irrelevant Alternatives (IIA).   Luce1

showed that if this axiom holds, then one can associate with each alternative a positive “strict utility”
w  such thati

(2) P (I) = .C

Taking the strict utility for alternative I to be a parametric exponential function of its attributes x , wi i

= exp(x�), gave a practical statistical model for individual choice data.  I named this the conditionali

logit model because it reduced to a logistic in the two-alternative case, and had a ratio form analogous
to the form for conditional probabilities.  I set about writing a computer program to produce maximum
likelihood estimates for this model, a difficult exercise in the early days of FORTRAN when linear
algebra and optimization routines had to be written from scratch.  The program was finally finished
in 1967, too late for Phoebe's thesis.  However, I was then able to put her data through the conditional
logit machine; see McFadden (1968, 1975).

Figure 1 summarizes the time line of development of RUM theory.  The concept was originally
put forward by Thurstone (1927) as a law of comparative judgment to describe imperfect
discrimination in tasks such as choosing the loudest sound.  It pictured an alternative I with true
stimulus level V  being perceived as V  +� , where the �  are independent normally distributedi i i i

perception errors.  Thurstone observed that the probability that I would be judged louder than j would
satisfy P (I) = Prob(V  + �  � V  + � ), and showed that this probability had what we now call a{i,j} i i j j

binomial probit form.  Marschak (1960) and Block & Marschak (1960) generalized this model to
stochastic utility maximization over multiple alternatives, and introduced it to economics.  I believe
Marschak is responsible for naming RUM.  Marschak explored the testable implications of
maximization of random preferences, and proved for a finite set of alternatives that choice
probabilities satisfying Luce’s IIA axiom were consistent with RUM.  An extension of this result
established that a necessary and sufficient condition for RUM with independent errors to satisfy the
IIA axiom was that the �  be identically distributed with a Type I Extreme Value distribution, Prob(�i i

� c) = exp(-e ), where � is a scale factor.  The sufficiency was proved by A. Marley and reported-c/�

by Luce and Supes (1965).  I proved necessity, starting from the implication of the Luce axiom that
multinomial choice between an object with strict utility w  and m objects with strict utilities w1 2

matched binomial choice between an object with strict utility w  and an object with strict utility mw ;1 2

see McFadden (1968, 1973).  The reason that the extreme value distribution appears here is its max-
stable property that the maximum of two independent extreme value random variables with the same
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scale factor is again an extreme value random variable with this scale factor; see Domencich &
McFadden (1975, p. 63).  

I initially interpreted the conditional logit model as a model of a decision-making bureaucracy,
with random elements coming from heterogeneity of tastes of various bureaucrats.  It was then
transparent that in an empirical model with data across decision-makers, the randomness in utility
could come from both inter-personal and intra-personal variation in preferences, and from variations
in the attributes of alternatives known to the decision-maker but not to the observer.  This led me to
emphasize in my 1973 paper on the conditional logit model the idea of an extensive margin for discrete
decisions in contrast to the intensive margin that operates for a representative consumer making
continuous decisions.  I knew, from the work of John Chipman (1960), and from a review of Luce's
book by my Berkeley colleague Gerard Debreu (1960), that Luce's axiom could give implausible
results when groups of alternatives were similar in their unobserved characteristics.  In my work with
Domencich, we recast an example due to Debreu as the "red-bus, blue-bus" problem; see McFadden
(1973), Domencich & McFadden (1975, p.77).  

For the implementation of the Diamond-Hall model in Domencich’s FHA project, I adapted
my conditional logit machinery, and Domencich and I successfully estimated a disaggregate urban
travel demand model that encompassed both work and shopping trips, mode choice, destination
choice, and trip generation.  This appeared as a Federal Highway Administration report in 1972, with
excerpts in papers that I published in 1973 and 1974.  The FHA report was eventually published as
the book Urban Travel Demand by Tom Domencich and myself in 1975.  The empirical travel demand
model from this study is not much cited, but the key elements, random utility with the randomness
coming from heterogeneity in tastes across individuals, separable preference structures that permit
analysis of segments of complex decisions in which inclusive values are sufficient statistics for the
opportunities within a branch, and estimation from disaggregated data on individual trips, have
become everyday tools in travel demand analysis.  The conditional logit model and its nested cousins
are now sufficiently standardized so they can be estimated more or less mindlessly as options in many
statistical software packages.

The 1970 CRA study is the one that I know best, but there were a number of prior and parallel
research developments that deserve mention.  The binomial logit model as a statistical tool had been
employed, primarily in biostatistics, since the 1950's.  I believe its first use in transportation was a
study of mode choice by Stanley Warner in 1962.  Studies of the value of travel time by Beesley
(1965), Lisco (1967), and Lave (1970) applied discriminant, linearized probit, and binomial logit
methods, respectively, to disaggregate mode split data, with results similar to those obtained later from
the conditional logit model.  The multinomial logit model was developed independently as a purely
statistical model, without random utility underpinnings, by Theil (1969) and by A. Wilson (1972).
In a paper done for the Northeast Corridor project, Richard Quandt (1970) explicitly introduced a
random taste parameter demand model for mode choice.  A number of papers in the late 1960's
discussed the shortcomings of the gravity model and suggested more behavioral approaches;
particularly noteworthy are Stopher & Lisco (1970), Hartgen & Tanner (1970), and Brand (1972).
Thus, many of the elements of what we now call disaggregate behavioral travel demand analysis were
"in the air" in 1970.  My conditional logit machine provided a practical way to implement these ideas.
Perhaps more importantly, it established the connection between random utility maximization as an
organizing concept for model development, and the specification of empirical travel demand models.
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Table 2. Application of RUM to Travel Demand Analysis

1970 Domencich and McFadden estimate a travel demand system using separable utility
and multi-stage budgeting, from Diamond and Hall, and McFadden’s conditional
logit model.  Inclusive values to connect levels are calculated as probability weighted
averages of systematic utility components at the next level down in the tree.  The
system includes work commute mode, and shopping generation, destination, and
mode . 

1972 Ben-Akiva develops the log sum formula for exact calculation of inclusive values

1977 McFadden, Williams, Daly & Zachary, and Ben-Akiva & Lerman develop
independent RUM justifications for the nested MNL model.  McFadden’s analysis
yields the GEV family of models.  The Williams-Daly-Zachary analysis provides the
foundation for derivation of RUM-consistent choice models from social surplus
functions, and connects RUM-based models to Willingness-To-Pay (WTP) for
projects.

1984 Ben-Akiva & McFadden develop multiple-indicator, multiple-cause (MIMC) models
for combining revealed preference (RP) and stated preference (SP) data within a
RUM framework.  Morikawa develops this model further and applies it to intercity
travel in the Netherlands.  Extensive development and use of market research
methods for collecting stated preference data are made by Hensher, Louviere, and
others.

1989 McFadden introduces simulation methods that make it practical to estimate MNP
and other open-form choice models.

1990s The decade has seen extensive development and use of open and closed form choice
models consistent with RUM, including GEV models and mixing in the parameters
of MNL and nested MNL models.  Economists and Psychologists have explored the
cognitive foundations of RUM, and behavioral alternatives to RUM. 

Table 2 gives a time line of RUM-related developments in travel demand analysis beginning
with the model that Domencich and I implemented in 1971:  There was one significant flaw in our
analysis: While there was a random utility foundation for the ordinary conditional logit model, we did
not establish that nested logit models had this foundation, or what form the random utility theory
dictated for inclusive value terms.  Our original study constructed inclusive values using linear
averaging formulas brought over from the theory of separable preferences for a representative
consumer.  These turned out to be approximately right, but a superior exact formula that worked when
nested MNL reduced to ordinary MNL models was found by Moshe Ben-Akiva in his 1972 Ph.D.
thesis at MIT:  An inclusive value at any level of the decision tree was given in this corrected
formulation by a log sum formula, the log of the denominator of the choice model at the next level
down the tree. 



One of the contributions of TDFP was to guide a number of researchers into disaggregate travel demand analysis. 2

Several of its research assistants, including David Brownstone, Steve Cosslett, Tim Hau, Ken Small, Kenneth Train, and Cliff
Winston, went on to careers with a significant component in transportation analysis.  Its research associates, Antti Talvitie and
Chuck Manski, are also important contributors.  On the methodological front, it developed methods for choice-based sampling
and for simulation, and statistical methods for estimating and testing nested logit models, that laid the foundation for later results.
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In the early days of disaggregate travel demand analysis, its value was questioned by many
transportation policy analysts, who were skeptical that it could outperform gravity models.  Research
at M.I.T., Harvard, CRA, CSI, and Berkeley provided the push and the research results that led to its
eventual acceptance.  At Berkeley, I directed the Travel Demand Forecasting Project (TDFP), which
set out to develop a comprehensive framework for transportation policy analysis using disaggregate
behavioral tools.   TDFP used the introduction of BART as a natural experiment to test the ability of2

disaggregate travel demand models to forecast a new transportation mode.  Table 3 below, taken from
McFadden (1978), gives the work mode choice model that we estimated using data collected in 1972,
before BART began operation, and subsequently used to predict BART patronage.  The family annual
income variable in this model enters as a linear spline with knots at $7.5K, $10.5K, and $15.5K; for
comparison, median family income in 1972 was about $9.4K.  The spline is zero at zero income, and
is constant above $15.5K.  The coefficients in the model give the slope of each segment of the spline.
A number of features of this model are worthy of note.  First, a major effort was made to measure
household and alternative attributes accurately.  Detailed questions were asked about wages and
household income.  Bus travel times were calculated for each commute trip from dispatcher bus
schedules at the hour of the trip.  Walk times were measured from actual distance on detailed maps,
and took into account grade and number of streets to cross as well as length.  Automobile routes were
determined from a detailed highway network for the Bay Area, with link travel times adjusted to the
hour of the commute, and adjusted further to take into account off-network distance.

The estimated model gives substantially higher values of travel time than are typical in value
of time studies; see Lisco (1967) and Lave (1970).  In particular, the value of auto in-vehicle time is
very high, suggesting on its face that driving under commute conditions is much more onerous than
working.  Since measurement error in explanatory variables in general tends to attenuate coefficients,
some part of our high values may be the result of more accurate measurement of travel attributes.
They might also result from inaccurate measurement of the wage rate, which would tend to depress
the magnitude of the cost coefficient and inflate the value of time estimate.  One of our findings was
that the estimated value of time was quite sensitive to specification of the independent variables; a
simplified model with only time and cost variables gave values of on-vehicle time close to the 40 to
50 percent of wage that has typically been found elsewhere.  This raises the possibility that customary
values are biased downward by exclusion of some important explanatory variables.  The model shows
very little sensitivity to family income, with the spline showing no significant impact at any level.
Since autos per driver is an explanatory variable, and income is likely to influence mode choice largely
through auto ownership, this is not surprising.  The pattern of interactions of number of drivers,
number of automobiles, and commute mode indicates that adding an automobile for a fixed number
of drivers tends to strongly increase all auto-using modes, particularly drive alone, at the expense of
bus with walk access, while adding drivers without adding automobiles tends to increase use of bus
with walk access. 
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Table 3.  Work Trip Mode Choice Model, Estimated Pre-BART
Mode Description Number Percent

1 Auto Alone 429 55.6%

2 Bus with Walk Access 134 17.4%

3 Bus with Auto Access 30 3.9%

4 Car Pool 178 23.1%

Total 771 

Independent Variable Max. Likelihood T-Statistic
(Appearing for numbered modes) Estimate

Cost/Post-tax wage (Cents/Cents per min.) [1-4] -0.0284 4.31 

Auto In-Vehicle Time (min.) [1.3.4] -0.0644 5.65 

Transit In-Vehicle Time(min)  [2,3] -0.0259 2.94 

Walk Time (min) [2,3] -0.0689 5.28 

Transfer Wait Time (min) [2,3] -0.0538 2.30 

Number of Transfers [2.3] -0.1050 0.78 

Headway of First Bus (min) [2,3] -0.0318 3.18 

Family Income (thousands of $ per year) [1]

     Effect up to $7.5K -0.0045 0.05 

     Effect between $7.5K and $10.5K -0.0572 0.43 

     Effect above $10.5K -0.0543 0.91 

Number of Persons in Hh who can drive

     Auto Alone Interaction [1] -0.1020 4.81 

     Auto Access Interaction [3] -0.9900 3.29 

     Car Pool Interaction [4] -0.8720 4.25 

Dummy if commuter is Hh head [1] -0.6270 3.37 

Employment Density at Work Location [1] -0.0016 2.27 

Home Location in (2) or near (1) CBD [1] -0.5020 4.18 

Autos per Driver, ceiling of one 

     Auto Alone Interaction [1] 5.0000 9.65 

     Auto Access Interaction [3] 2.3300 2.74 

     Car Pool Interaction [4] 2.3800 5.28 

Alternative-Specific Dummy

     Auto Alone Interaction [1] -5.2600 5.93 

     Auto Access Interaction [3] -5.4900 5.33 

     Car Pool Interaction [4] -3.8400 6.36 

Log Likelihood at Convergence -1069.0 
Log likelihood with alternative dummies only -844.3 

Values of Time as a Percent of Wage
     Auto In-Vehicle Time 226.8% 3.20 

     Transit In-Vehicle Time 91.2% 2.43 

     Walk Time 242.6% 3.10 

     Transfer Wait Time 189.4% 2.01 
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The critical experiment came when our pre-BART forecasts from 1972 data, adjusted for actual
1975 travel times and costs, were compared with the observed BART mode share in 1975.  Table 4,
taken from McFadden (1978), summarizes the results.  The predictions in this table are made by
summing over the representative sample the estimated choice probabilities for each alternative, with
the new BART modes added to the list of alternatives in the MNL formula.  Thus, the number in row
I and column j is the sum, over all individuals in the sample actually choosing mode I, of the predicted
probabilities that they would choose mode j.  Diagonal elements in this table are then correct
predictions.  Coefficients of alternative-specific variables and interactions for the new BART
alternatives were assumed to be identical to the corresponding coefficients for the existing bus
variables.  This was a weak point in new mode forecasting using pure revealed preference models, and
these days one could probably do better by incorporating some stated preference information. 

The standard errors on predicted shares are substantial, and reflect parameter uncertainty which
does not average out over the sample.  Row totals give observed post-BART mode splits in the
sample, and column totals give predicted mode splits.  Dividing by sample size gives the actual and
predicted mode shares, respectively.  The Percent Correct for a mode is the ratio of a diagonal element
to the column total, and in total is the ratio of the sum of the diagonal elements to the sum of all table
elements.  The Success Index is the ratio of the percent correct obtained by the model to that which
would be obtained by a “dummies only” model that assigned observed mode shares as the choice
probabilities for every member of the sample.  The larger this index, the better the model is predicting
relative to “chance”.  It is possible for a success index to be less than one, as the forecasting model
does not have the information on actual mode shares.  Prediction Error is simply the difference in the
predicted and observed mode shares.

The model forecast a total BART share of 6.4 percent in 1975, closer to the actual share of 6.2
percent than might reasonably have been expected given the sizes of standard errors.  The model under
predicted the Auto Alone mode, and substantially over predicted transit share, 21.3% versus 18.4%.
This may be the result of the IIA property of the MNL model, which does not account for the
possibility that heterogeneous tastes induced more switching within transit modes than switching away
from Auto Alone.  In analyzing the sources of prediction failures, we found that the model
substantially over predicted demand for modes requiring walk access.  This may reflect a failure of
the model to capture the value of walk time correctly, perhaps because taste heterogeneities led those
who liked walking to locate where walk access times were moderate, so that reduced walk times
mattered only to a restricted class of commuters.

The TDFP experiment identified some more generic issues for disaggregate behavioral
forecasting:  (I)  Accurate measurement of travel time and cost components at the individual level is
critical.  Measures taken from network models, or estimates taken from users, can show large and
systematic biases which disrupt disaggregate models.  (ii) Alternative-specific effects and interactions
are difficult to handle in forecasting, particularly for new transportation alternatives.  The solution,
to replace such effects with more comprehensive generic measurements of attributes may require non-
market data on perceptions and attitudes.  (iii) The machinery required to supply realistic
demographics, socioeconomic variables, and transportation system attributes in a forecast year can
be as challenging to develop as the behavioral models themselves.  (iv) It can be a difficult modeling
exercise to translate the natural language of policy initiatives into quantitative changes in the attributes
of the alternatives each individual faces. 
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Table 4. Prediction Success Table for Pre-BART Model and Post-BART Data
Cell Counts

Actual Choices Predicted Choices
Auto Alone Bus/Walk Bus/Auto BART/Bus BART/Auto Carpool Total

1 Auto Alone 255.1 22.2 6.3 1.5 13.7 79.1 378 

2 Bus/Walk 11.6 36.4 3.0 1.7 1.4 13.9 68 

3 Bus/Auto 1.2 2.8 0.7 0.0 1.6 2.6 9 

4 BART/Bus 0.9 1.9 0.1 1.4 0.3 1.4 6 

5 BART/Auto 8.9 3.1 1.8 0.7 8.8 9.7 33 

6 Carpool 74.7 12.4 3.3 1.4 7.5 37.7 137 

Total 352.3 79 15.2 6.6 33.3 144.5 631 

  Predicted Share 55.8% 12.5% 2.4% 1.1% 5.3% 22.9%

(Std. Error) (11.4%) (3.4%) (1.4%) (0.5%) (2.4%) (10.7%)

  Actual Share 59.9% 10.8% 1.4% 1.0% 5.2% 21.7%

  Percent Correct 72.4% 46.1% 4.5% 21.0% 26.5% 26.1% 53.9%

  Success Index 1.3 3.69 1.88 21 5 1.14 1.28

  Prediction Error -4.1% 1.7% 1.0% 0.1% 1.2% 6.8%

By the end of the 1970's, the U.S. Department of Transportation had changed its focus to the
practical problems of managing transportation facilities, and research funding for travel demand
analysis dwindled.  Many of the people who had been working on these problems moved over to
energy demand modeling, and later to similar modeling problems in telecommunications, health care,
and the environment.  The flame of disaggregate travel demand modeling was kept alive through the
continued commitment of Moshe Ben-Akiva and his associates at M.I.T., and growing interest and
use of these models outside the U.S.  Some of the work in other applications has also found use in
travel demand analysis.  For example, research by Dubin & McFadden (1984) and Cowing &
McFadden (1984) on energy demand clarified how to link discrete and continuous choice behavior,
and developed simulation methods for estimation and policy analysis.  This proved useful in studies
of the demand for automobiles and their VKT or energy consumption by Berkovic (1985), Mannering
& Winston (1985), and Train (1986).  A research project on electricity demand by Ben-Akiva and
myself in 1984 set out a latent variable modeling framework for combining revealed preference and
conjoint analysis data; see McFadden (1986), McFadden & Morikawa (1986), Train, McFadden, Goett
(1987), and Goett, McFadden, Woo (1988).  Work on telecommunications demand by Ben-Akiva,
McFadden , & Train (1987) and Atherton, Ben Akiva, McFadden, & Train (1990) developed methods
for dealing with large choice sets and choice set elicitation.
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2. Developments

“Always do right - this will gratify some and astonish the rest.”
Mark Twain, 1885

What are the new and important developments since the birth of disaggregate behavioral travel
demand analysis?  The remainder of this paper tries to answer this question.  The past three decades
over which disaggregate travel demand modeling has developed more or less coincide with the period
of development of cognitive psychology, the computer revolution, and the transformation of market
research into a quantitative subject.  Each of these fields has had a substantial impact on progress and
possibilities in travel demand analysis.  In particular, cognitive psychology has provided a clearer
understanding of how decisions are made and how they are influenced by various factors.  It has also
pointed out the cognitive anomalies that distort survey and experimental data.  Better computers and
software, combined with new statistical methods that make good use of computer power, have
removed some of the barriers to natural models of travel behavior.  Market research and applied
psychology have developed methods for collecting data on choice behavior in hypothetical situations,
and illuminating the choice process through measurement of perceptions, attitudes, and motivation.
When used properly, these tools can sharpen the information revealed by actual travel behavior.  In
the following three sections, I will discuss, in order, developments in choice theory, in data, and in
statistical methods.  While I have separated these topics for purposes of presentation, they have been
closely intertwined in their development, often feeding back from one to the other. 

3. Choice Theory

“Economists have preferences; psychologists have attitudes.”
Danny Kahneman, 1998

At a choice conference in Paris in 1998, a working group (Ben-Akiva et al, 1999) laid out the
elements in a contemporary view of the theory of choice; an adaptation is shown in Figure 1.  The
figure describes one decision-making task in a lifelong sequence, with earlier information and choices
operating through experience and memory to provide context for the current decision problem, and
the results of this choice feeding forward to influence future decision problems.  The heavy arrows
in this figure coincide with the standard economic view of the choice process, in which individuals
collect information on alternatives, use the rules of statistics to convert this information into perceived
attributes, and then go through a cognitive process which can be represented as aggregating the
perceived attribute levels into a stable one-dimensional utility index which is then maximized.  The
lighter arrows in the diagram correspond to psychological factors that enter decision-making, and the
links between them.  The concepts of perception, preference, and process appear in both economic
and psychological views of decision-making, but with different views on how they work. 
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The process of household production may yield structural restrictions that influence how different variables influence3

choice.  It is possible to make the process of household production explicit; this is most readily done by considering activity
analysis models of the decision-making unit.  For some transportation applications, such as understanding the temporal
organization of trips, chaining of trips, and the interplay of trips by household members, activity models are conceptually useful,
and with sufficiently detailed data may be practical to estimate and use for forecasting.  Users of activity models in
transportation sometimes assume decision-makers follow heuristic rules that may be inconsistent with RUM.  However, there is
nothing intrinsic in activity analysis that requires this, and the suitability of RUM assumptions to characterize or approximate
behavior in activity models involves the same issues of modeling strategy and empirical accuracy that appear in less

disaggregated analysis of travel behavior. 

11

Figure 1.

Economic Consumer Theory and RUM
I will discuss the contribution of psychological elements to choice theory after first revisiting

the connection of random utility models to the economic theory of choice. The heart of the standard
economists’ theory is the idea that consumers seek to maximize innate, stable preferences whose
domain is the vector of attributes of the commodities they consume.  The desirability of commodities
will be determined by their attributes even if there are intermediate steps in which raw goods are
transformed by the individual to produce satisfactions that are the proximate source of utility. e.g.,
commute trips are an input to employment, and employment is an input to the production of food and
shelter.   An important implication of the theory is the consumer sovereignty property that preferences3

are predetermined in any choice situation, and do not depend on the alternatives available for choice.
Succinctly, desirability precedes availability. 



There is the suggestion from psychological experiments on time perception that mental accounting for time is non-4

linear and not necessarily time-consistent; see Lowenstein & Prelec (1992), Laibson (1997).
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The economists’ theory has a vaguely biological flavor.  Preferences are determined from a
taste template coded in the genes, with experience and perceptions influencing how preferences
consistent with the template are expressed.  By taking a sufficiently relaxed view of how experience
impacts perceptions and the unfolding of preferences, the economic theory of choice can be made to
mimic psychological theories in which the individual is less organized, and more adaptive and
imitative, in his choice behavior:  choices gratify desires, even if desires are the result of a moment’s
whim, buffeted by emotion and experience.  However, most applications of the economic theory leave
out dependence of perception and preference on experience, and much of the power of the economists’
approach lies in its ability to explain many behavior patterns without having to invoke experience or
emotional state. 

The original formulation of RUM as a behavioral model followed the economists’ theory of
consumer behavior, with features of the taste template that were heterogeneous across individuals and
unknown to the analyst, as well as unobserved aspects of experience and of information on the
attributes of alternatives, interpreted as random factors.  If one then parameterized preferences and the
distribution of the random factors, one ended up with a more or less tractable model for the
probabilities of choice, expressed as functions of observed attributes of travel and individual
characteristics.  It is useful to review this derivation of the RUM explanation of travel behavior, taking
a careful look at the meaning of its fundamental elements, and the scope and limitations of the models
that come out.  I believe this is particularly true for analysts who want to try to combine revealed
preference and stated preference data, or who want to bring in cognitive and psychometric effects that
are ignored in the economists' theory of choice. 

In the economists’ standard model, consumers have preferences over levels of consumption
of goods and leisure, and seek to maximize these preferences subject to budget constraints for dollars
and for time.  One can start from the following setup: A consumer is assigned a travel portfolio with
attributes (c,t,x,�), where c is travel cost, t is a vector of travel time components, x is a vector of other
observed attributes of travel, and � is a vector of unobserved attributes of travel.  The consumer has
in addition an amount of pure leisure h and an amount of consumer goods g.  The consumer’s
valuation of this allocation is given by a utility function U*(g,h+t(1-�),x,�;s,�), where s is a vector of
observed characteristics of the individual and � is a vector of unobserved characteristics, with (s,�)
together determining tastes.  The term h+t(1-�) appearing in this function is total leisure, made up of
pure leisure h plus effective leisure contained in various travel time components.  The idea is that a
travel time component that is less onerous than working will have a coefficient � that is between zero
and one, interpreted as the portion of a travel hour in this component that is equivalent to work.  Then,
a travel time component that is equivalent to pure leisure will have � = 0, a component that is exactly
as onerous as work will have � = 1, and a component that is more onerous than work will have � >
1.  The assumption that the leisure components of travel appear linearly and additively in the
perception of total leisure is rather special, and not a necessary component of the standard economic
model.   However, the linear additive form for total leisure is implicit in most travel demand models4

and allows some fruitful analysis of the structure of demand, so that I will impose it in what follows.
The utility function U* can be interpreted as a partially reduced form that incorporates travel

activities appearing as inputs to household production of satisfactions, but the consumer’s problem
of allocating time to employment in order to earn wage income to buy goods has not yet been solved.



For non-working individuals, w can be interpreted as an implicit opportunity cost of leisure foregone.5
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Then, attributes of the travel portfolio appearing in (x,�) appear as direct arguments in U*.  Travel cost
c and non-leisure components of travel time t do not appear directly in the utility function, but rather
through their impact on the consumer’s dollar and time budget constraints,

(3) a + we = g + c,

(4) 24 = h + e + t.

In these budgets, a is non-wage income and w is the wage rate, with both divided by an index of goods
prices so that they have the same units as g, e is hours of employment, h is hours of pure leisure, and
24 is the daily budget of hours.  Substitute g and h obtained by solving (3) and (4) into the utility
function U*, and define

(5) U(a-c,t�,w,x,�;s,�) = max  U*(a+we-c,24-e-t+t(1-�),x,�;s,�).e

This is an indirect utility function, and is the maximum of utility subject to the assigned travel
portfolio and the constraints (3) and (4).  It is increasing in a-c, decreasing in t�, and quasi-convex in
(a-c,w).  Conversely, any function with these properties is the solution of (5) for some utility function
U*.  Then, specification of a RUM model can start from the random indirect utility function (5).  Note
that this function depends on the wage rate w and on net non-wage income after transportation cost,
a-c, not on total income including the wage income component.   Also note that any monotone5

increasing transformation of an indirect utility function is an observationally equivalent indirect utility
function, perhaps more transparent in structure.

The functional form of U(a-c,t�,w,x,�;s,�) will depend on the structure of preferences,
including the trade-off between goods and leisure as a or w change, the role of household production
in determining the structure of trade-offs between goods, and separability arising from tastes or from
the organization of household production.  Table 5 gives some alternative forms for the dependence
of U(a-c,t�,w,x,�;s,�) on its arguments a-c, t�, and w.  The direct utility functions contain thresholds
g  and h  that help explain the sensitivity of employment to wage, but do not enter the kernel of theo o

indirect utility function.  The formulas for the indirect utility functions omit additive terms that are
uniform across travel portfolios and wash out of choice models.  The dependence of these forms on
x,�,s, and � is suppressed, but these variables can enter the parameters of the forms in the table, and/or
enter monotone increasing transformations of these forms; e.g., as additive terms.  In the RUM
analysis, discrete choice among travel portfolios is the result of each individual maximizing the
indirect utility function U(a-c,t�,w,x,�;s,�) over a finite set of alternatives distinguished by their
attributes (c,t,x,�).  The leisure-linear form in Table 5 is the one most frequently encountered in the
travel demand literature, and it and the goods-linear function can be treated as limiting cases of the
Stone-Geary function.  For a small data set, Train & McFadden (1978) analyze work mode split
models of each of the forms in this table, and estimate � to be about 0.7.  Results obtained from study
of the supply of labor suggest, if anything, a lower value for �.   Then the leisure-linear form
encountered frequently in the travel demand literature may not be the best specification.
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Table 5.  RUM Functional Forms for Travel Demand

Indirect Utility Function Direct Utility Function Properties

Leisure-Linear: Zero income effect for goods,
parameters �,  go

�[(a-c)/w - t�] log(g-g ) + �(h+t(1-�))o

Goods-Linear: Zero income effect for leisure,
parameters �, ho

�[(a-c - w�t�] �g + log(h+t(1-�)-h )o

Stone-Geary:: Goods and leisure get fixed shares of
uncommitted income,
parameters A, �, g , h , � = A� (1-�)o o

� 1-��w [a-c - w�t�] A(g-g ) (h+t(1-�)-h )-�
o o

1-� �

 
All the models in Table 5 imply that the values of time in various travel activities are

proportional to the wage rate, with the proportions �, and that when utility is maximized across
different travel profiles, higher wage individuals will tend to choose profiles that trade off added cost
in order to save time.  When combined with common specifications for unobserved components, the
leisure-linear form implies that low-wage individuals show sharper discrimination among
transportation alternatives based on time and cost differences than do high-wage individuals, with the
reverse holding for the goods-linear model.  The Stone-Geary form with � = 0.7 implies that
individuals become more sensitive to time differences and less sensitive to cost differences as wages
increase.

Several aspects of the models in Table 5 deserve further comment.  All of these models lead
to indirect utility functions that are linear in non-wage income.  When this is combined with an
assumption that unobserverables enter additively with distributions that do not themselves depend on
income, the result will be RUM choice models in which non-wage income washes out, even though
socioeconomic status continues to enter through the wage rate and possibly through factors in s, such
as education or occupation.  A theorem first suggested by Williams (1977) and Daly-Zachary (1979)
and formalized by McFadden (1981) establishes that choice behavior in this case can be described in
terms of a “representative” consumer whose utility is the expected utility function and whose choice
probabilities are given by derivatives of this function using Roy’s Identity.  This is convenient both
for the derivation of the choice probabilities and for applications of travel demand models where
willingness-to-pay (WTP) for social policies such as transportation system improvements is needed.
In economic terms, this is a case where Marshallian and Hicksian demand functions coincide and
social aggregation of preferences is possible.

The assumption that travel costs enter the indirect utility function through the dollar budget,
so that they always appear subtracted from non-wage income, is not special given the standard
economist’s model, since in this setting “a dollar is a dollar” whose only role is as a medium of
exchange.  Psychologically, individuals may violate this dictum, keeping mental accounts in which
dollars from different sources or for different uses are weighed differently.  For example, some travel
demand studies have found that out-of-pocket travel costs weigh more heavily in decisions than
indirect or uncertain costs such as depreciation, maintenance, and expected accident costs.  One could



Technically, � is a stochastic function, or random field, over the attributes (t,x) of the discrete alternatives, and with mild regularity
6

conditions it can be assumed to be a continuous uniformly distributed random field.
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extend the models above to permit some cost components to enter with coefficients other than one to
reflect their behavioral weight; i.e., c in the indirect utility function would be replaced by c	 with c
now a vector and 	 behavioral weights.  I will not introduce this generalization here, and note that
while it is straightforward to implement in empirical travel demand analysis, it has some deep and
troubling implications for economic analysis of travel demand models, such as determining WTP for
social policy changes.

Next consider the unobserved factors (�,�) in the indirect utility function U(a-c,t�,w,x,�;s,�).
I will assume that � and � are finite-dimensional.  This assumption holds in most random utility
models that are written down for applications, and imposes no loss of generality so long as the
dimension of � is at least as large as the size of the largest choice set to be considered.  Consumer
sovereignty requires that tastes be established prior to a specific choice problem; this implies that the
distribution of � cannot depend on (a-c,t�,w,x,�).  In general, one might expect the distribution of �
to depend on s, say with a distribution function H(��s).  Under mild regularity conditions one can
represent � in the form � = h(p,s), where p is a vector with the dimension of � whose components are
independent uniformly distributed random variables on (0,1) and h is almost surely continuous in p,
and then write the utility function as U(a-c,t�,w,x,�;s,h(p,s)); see McFadden & Train (1998), Appendix
Lemmas 2 and 3.  Absorb this transformation into the definition of U and consider the random utility
model U(a-c,t�,w,x,�;s,�) with � uniformly distributed on a unit hypercube.  Next, one might expect
the distribution of � to depend in general on t� and x; e.g., unobserved comfort or security of a travel
alternative may be correlated with observed variables such as travel time and the probability of getting
a seat.  As was the case for �, � can be represented as a transformation of a uniformly distributed
vector, and this transformation can be absorbed into the definition of U.  It is likely that � does not
depend on c, w, or s, because these are not intrinsic descriptors of a travel alternative and in principle
could change without changing the remaining perceived attributes of the alternative.  Also, if such
dependence is present, it introduces a fundamental confounding of the causal economic effects of
(c,w,s) and non-causal ecological effects.  This makes the task of estimating causal travel demand
models and using them for policy analysis virtually impossible.  (Note however that it may be possible
through market research methods that map the utility function of an individual to break the
confounding by spurious ecological effects, and one then has to deal only with the difficult but not
impossible task of tying stated preferences to real behavior.).  For these reasons, I will assume that the
conditional distribution of � given (t�,x,c,w,s) does not depend on (c,w,s), so that representing it as a
transformation of a uniformly distributed vector does not alter the way c and w enter the indirect utility
function, or its monotonicity and quasi-convexity properties in these variables.  Then there is no
essential loss of generality in writing the random utility function as U(a-c,t�,w,x;s,�) with � uniformly
distributed on a unit hypercube, independently of the remaining arguments.   Finally, making a6

monotone transformation if necessary, we can assume that U(a-c,t�,w,x;s,�) has all moments, or that
its range is contained in the unit interval.  This gives a canonical form that any RUM model for travel
demand must satisfy.  From here, one can get to applied models by specializing the specification of
the function U(a-c,t,w,x;s,�) in terms of its observed and unobserved variables.

In light of the preceding discussion, consider the original 1970 formulation of the RUM model
for travel demand applications, which in the notation above might be written
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(6) U(a-c,t�,w,x;s,�) = V(a-c,t�,w,x,s) + 
,

where V(a-c,t�,w,x,s) is a systematic or expected utility function and 
 summarizes the impact of all
unobserved factors.  In its implementation as a MNL or nested MNL model, the 
 were assumed to
be independent or generalized extreme value distributed, independently of the arguments in the
systematic utility function V(a-c,t�,w,x,s).  In most applications, V(a-c,t�,w,x,s) was assumed to have
a linear-in-parameters leisure-linear form,

(7) V(a-c,t�,w,x,s) = �[(a-c)/w - t�] + z(x,s)�,

where z(x,s) was a vector of transformation of the observed attributes of alternatives and
characteristics of the decision-maker.  A natural question to ask in retrospect is how special is this
specification, and to what degree can it be generalized to accommodate more general RUM-consistent
behavior.  The answer is that it is indeed quite specialized, no surprise given the strong IIA properties
of the MNL model which also continue to hold within the lowest level nests in a nested MNL model.
What is somewhat surprising is that a rather straightforward generalization of (6) and (7), to what are
called mixed MNL models, can represent any well-behaved RUM-consistent behavior to detectable
levels of accuracy.  This result is established in McFadden & Train (2000); I will provide an intuitive
summary.

Suppose choice behavior is consistent with a RUM model  of the form U(a-c,t�,w,x;s,�), where
in light of the earlier argument we can assume that � is uniformly distributed on a unit hypercube.
Suppose the model is well-behaved in the sense that the arguments (a-c,t�,w,x;s) vary over a closed
bounded domain, U is a continuous function of its arguments, the maximum number of alternatives
in a choice set is bounded, and � is a continuous random field over (t,x).  Then, U has a uniform
polynomial approximation in powers of � and of transformations Z (a-c,t�,w,x;s) of the remaining
arguments, uniformly for all possible alternatives in a choice set; this is just an application of the
Weierstrauss theorem of elementary analysis.  By collecting terms, we can write this approximation
in the form

(8) U(a-c,t�,w,x;s,�) � ,

where the Z  are transformations of the observed variables, and the �  can be interpreted as randomk k

coefficients.  The order K of the approximation can be chosen so that the probability that the
approximation orders alternatives differently than the original is as small as we please.  Further, we
can scale the original and the approximation so that when the approximation is perturbed by adding
an independent extreme value disturbance, the probability that the original and the perturbed
approximation order the alternatives differently remains as small as we please.  The choice
probabilities implied by the perturbed approximation have a mixed MNL (MMNL) form,

(9) P (i) = ,C

where � and Z are vectors with components corresponding to the terms in (8), and F is the distribution
of the � coefficients induced by the unobserved effects �.  From the construction, the distribution F
does not depend on the attributes of alternatives.  Because the perturbed approximation and the
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original order alternatives the same way except with very small probability, (9) will be as close as we
please to the true RUM-consistent choice probabilities.  It is immediate from its derivation that every
MMNL model of the form (9) is RUM-consistent, provided the function (8) is an indirect utility
function for each � in the domain of F.  The model (9) has the interpretation of a MNL model of the
usual linear-in-parameters form in which we allow the parameters to vary randomly, and in which we
allow a flexible definition of the dependence of the “strict utility” of an alternative by introducing a
sufficiently long series of transformations of the observed attributes of an alternative, interacted with
observed characteristics of the decision-maker.  If we wish, we can take F to be concentrated on a
finite set of points, with the probability weights at these points treated as parameters.  This is called
a latent class model.  If F is concentrated at a single point, MMNL reduces to MNL.  Summarizing,
I have outlined a result which says that any well-behaved RUM model can be approximated to any
desired level of accuracy by a random-parameters or MMNL model, or more particularly by a latent
class model, provided the transformations of observed variables and the random distributions that
enter these forms are sufficiently flexible; see McFadden & Train (2000, Theorem 1). The MMNL
model was first introduced by Cardell & Dunbar (1980), but was not widely used prior to the
development of convenient simulation methods for estimation.  Under the name kernel logit, it has
been employed by McFadden (1989), Bolduc (1992), Brownstone & Train (1999), and Srinivasian &
Mahmassani (2000) as a computational approximation to multinomial probit or as a general flexible
RUM approximation.  It is quite practical to apply MMNL models, and there is available good
software for their estimation using simulation methods; see Revelt & Train (1998), Train (1999), Bhat
(2000).  Thus, for many purposes, this family is an attractive alternative to multinomial probit and
other computationally demanding RUM models that are needed when ordinary MNL and nested MNL
are not satisfactory.

The dimension of the integral in (9) is the dimension of the multivariate distribution of �.  In
many applications, this dimension will not need to be large to provide a quite flexible family that can
approximate a wide range of RUM-consistent behaviors.  It is often useful to think of the random
elements as entering through a factor-analytic structure, with independent random elements loading
with various weights in the coefficients of the Z (a-c,t�,w,x;s) variables.  Then, the experience in otherk

subjects that most multivariate data dependancies can be approximated well by a factor-analytic
covariance structure with one to five factors is likely to also apply to travel demand models.  The
choice of independent extreme value perturbations in the approximation theory just outlined, leading
to the mixed MNL form (8), was not essential, and other convenient perturbations such as independent
normals could have been used instead, at a cost of adding one dimension to the integral in (8) and
modifying the integrand to a form that might be less easy to evaluate numerically.  However, I believe
that for most applications, MMNL will prove to be the most convenient model. 

It is useful to relate the approximation (8) to two approximation results that had previously
appeared in the literature.  In the early days, I gave a very elementary argument showing that any
choice model, RUM-consistent or not, could be approximated to any desired degree of accuracy by
a MNL model in which in general the attributes of all alternatives in the choice set could enter the
“strict utility” of each alternative; see McFadden, Tye, and Train (1978).  I called this the mother logit
approximation, and suggested that it could be used as an alternative against which to test IIA.  Because
there was no easy way to tell whether a mother logit model was consistent with RUM, it did not
provide a useful setup for estimating general RUM-consistent models or testing for RUM-consistency.
In contrast, the mixed MNL models in (9) are guaranteed to be RUM-consistent if the linear forms
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V(a-c,t�,w,x,s) = Z(a-c,t�,w,x;s)� 	 satisfy the necessary and sufficient

condition to be indirect utility functions:  quasi-convex in (a-c,w) and increasing in a-c.  The condition
is easy to check when an adequate approximation can be attained with a-c appearing in a linear
additive term, since then the monotonicity is satisfied if the coefficient on this term is positive and
quasi-convexity is satisfied if the combination of terms involving w is convex.  A sufficient condition
for the latter property is that the coefficients of convex [resp., concave, linear] functions of w be
positive [resp., negative, any sign].  More generally, a necessary and sufficient for quasi-convexity
is

(10) .

This condition can be checked numerically over the range of the observations, or sufficient conditions
can be imposed so that it holds globally; e.g., a sufficient condition for quasi-convexity is that each
component of Z(a-c,t�,w,x;s) is globally convex in (a-c,w) [resp., globally concave, linear] with a
coefficient that is positive [resp., negative, unsigned].  The most common specification in travel
demand applications, linear in (a-c,w), will automatically satisfy the quasi-convexity condition, so that
the only questions regarding its consistency with true RUM-consistent behavior are whether it is
increasing in a-c and approximates the observed choice behavior adequately.  As discussed earlier,
this commonly used linear-in-income approximation is special, with choice not directly influenced by
non-wage income.  Dependence on the wage rate w and on indicators of socioeconomic status s may
mimic some of the effects of income, but this is nevertheless a possibly unrealistic and empirically
refutable restriction on the choice model.

A recent approximation theorem has been obtained by Dagsvik (1994) in the context of
modeling discrete choice behavior in continuous time.  Dagsvik in effect starts from a RUM model
with additive random effects, adds to it a very large common extreme value random variable so that
all the observed choice behavior can be interpreted as the result a perturbation of this common extreme
value effect, and then argues from some fundamental results on the existence of stochastic processes
(specifically the de Haan representation of Poisson point processes) that there must exist a GEV
stochastic process whose multivariate features, and in particular choice probabilities, approximately
match those of the original stochastic process.  Applied to the general RUM family analyzed above,
Dagsvik’s results establish that there exist GEV models that are dense in a class of well-behaved RUM
models with additive disturbances.  Then, the  major difference in the Dagsvik result and the mixed
MNL result (12) is that while neither is, strictly speaking, constructive, the latter is more readily
adapted to practical approximation and computation.

Applications of travel demand models to transportation policy problems often call for
estimation of WTP for policy changes.  For example, a policy analysis may seek to determine the



�i�C yii
�PC
(i) �i�C yii��PC�(i)

19

social benefit from introduction of a new transportation service, or modification of an existing service.
When demand behavior is consistent with a RUM model with standard economic properties, WTP is
given by conventional economic measures of consumer surplus.  These measures are relatively simple
to deduce from market demands (e.g., choice probabilities) when there are no income effects, or when
the policy changes are sufficiently small so that linear corrections for income effects are accurate.  To
set ideas, suppose individuals have utility functions U(a-c ,t�,w,x ;s,�) for alternatives i in a choicei i i

set C, and a policy initiative is considered which would change transportation attributes from
(c 
,t 
,x 
) to (c �,t �,x �).  The compensating variation or WTP is the adjustment in non-wage incomei i i i i i

necessary to give each individual the same level of utility after the initiative as was enjoyed before the
initiative; i.e., the quantity y such that 

(11) max  U(a-c 
,t 
�,w,x 
;s,�) = max  U(a-y-c �,t ��,w,x �;s,�).i�C i i i i�C i i i

Note that y is a function of all the arguments in the utility function before and after the initiative, so
that in particular it depends on �.  The mean WTP in a population of consumers is the expectation of
their compensating variations with respect to the distribution of �.  One possible approach to
estimating WTP is to simulate the computation in (11), calculating y from an estimated RUM model
evaluated at a Monte Carlo draw of �, and then averaging these calculated values over a large number
of such draws.  There are some useful bounds for this calculation.  Define y  to satisfyik

(12) U(a-c 
,t 
�,w,x 
;s,�) = U(a-y -c �,t ��,w,x �;s,�),i i i ik k k k

where i and k are any alternatives, not necessarily the chosen ones.  Then, when m is the alternative
that maximizes utility before the initiative, and n is the alternative that maximizes utility after the
initiative, the compensating variation satisfies 

(13) y  � min  y  = y = max  y � y .mm k�C mk i�C in nn

The intuition for these inequalities is that maximizing after the initiative reduces the compensating
variation relative to what it would have been if the individual were forced to stay with m, and
maximizing before the initiative raises the compensating variation relative to what it would have been
if the individual had been forced to initially choose n.  It is often relatively simple to calculate an
average value y� � for the subpopulation that chooses alternative m before the initiative, and similarlymm

an average value y� � for the subpopulation that chooses alternative n after the initiative.  Then,nn

population mean WTP satisfies the bounds

(14) � WTP � ,

where P 
(i) is a choice probability before the initiative and P �(i) is a choice probability after theC C

initiative.
For many RUM models used in applications, computation of the bounds in (14) simplifies.

For example, if random utility can be written as V(a-c,t�,w,x,s) + 
, with 
 containing all random
effects, as in equation (6), then y�  satisfies V(a-c 
,t 
�,w,x 
,s) = V(a- y� -c �,t ��,w,x �,s) and isii i i i ii i i i

independent of the random effects.  If, further, the systematic utility has a linear form, including an
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additive linear income term as in equation (7), so that V(a-c,t�,w,x,s) = �[(a-c)/w - t�] + z(x,s)�, then
one obtains the explicit form

(15)  y�  = w(z(x �,s) - z(x �,s))�/� - w(t � - t 
)� - (c �-c 
).ii i i i i i i

Alternately, if V(a-c,t�,w,x,s) + 
 and the effect of the initiative is very small, one can make a
Taylor’s expansion of the post-initiative systematic utility about the pre-initiative values and drop
higher-order terms to obtain the approximation

(16) �WTP = ,

where � = �V/�z, � = �V/�t�, and � = �V/�a.  Karlstrom (1998,2000) has developed an efficient
method for computing WTP in the presence of income effects that can be interpreted as integration
of this formula over a path from the pre-initiative to the post-initiative attributes.

Consider RUM models that are linear and additive in non-wage income, with a functional form
U(a-c ,t�,w,x ;s,�) = a - c  + Q(t�,w,x ;s,�).  The Williams-Daly-Zachery theorem establishes that fori i i i i i

this family the expected utility 

(17) S (c,t�,w,x;s) 	 E max U(a-c ,t �,w,x ;s,�) = a + E max {Q(t�,w,x ;s,�) - c } C k�C k k k k�C i i k

behaves like an indirect utility function for a representative consumer, with c a column vector of travel
costs for the alternatives in C, t an array of travel times with a row for each alternative, and x an array
of other travel attributes, again with a row for each alternative.  The choice probabilities equal the
negatives of the derivatives of S (c,t�,w,x;s) with respect to the components of c.  A further result isC

that WTP is given exactly by the difference in S (c,t�,w,x;s) after and before an innovation,C

(18) WTP = S (c�,t��,w,x�;s) - S (c
,t
 �,w,x
;s).C C

If a MMNL form (9) with Z(a-c,t�,w,x;s)� linear and additive in a with a (random) coefficient �a

provides an adequate approximation to RUM-consistent choice probabilities, then one also has as a
good approximation 

(19) S (c,t�,w,x;s) = C

Then a good approximation to WTP is obtained by starting from the familiar log sum formula for
MNL and calculating its expectation with respect to �.  Note however that (18) is valid, even as an
approximation, only if a MMNL form that is linear and additive in a is a good approximation to the
true RUM-consistent choice probabilities.

The original 1970 formulation of the RUM model was a special case of the derivation outlined
in equations (3)-(19), but a number of useful elements have been added.  First, the relationship
between the functional form of the indirect utility function appearing in the RUM theory and consumer
tastes for goods and leisure has been clarified and generalized.  Second, practical methods have been
developed for implementing RUM models without imposing restrictions such as the IIA axiom unless
they are supported empirically, and the analysis has gone further to show that these methods place no
effective restrictions on the class of RUM-consistent behavior that can be modeled.  Third, the
relationship between RUM-consistent choice probabilities and WTP has been established.  Finally,
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RUM-consistent behavior has been placed in a context where the effects of experience and new
information on perceptions and the expression of preferences can, in principle, be incorporated into
the analysis.  We shall see in the discussion to follow that this is insufficient to explain the cognitive
process of making decisions, but may nevertheless be an appropriate and satisfactory tool for
representing behavior within a system that can be used effectively for travel demand forecasting and
transportation policy analysis.

The Psychology of Choice
Consider now the psychological elements that appeared in Figure 1, and the interpretation of

perceptions, preferences, and process that come out of developmental, cognitive, and motivational
psychology.  I will give a brief description of the elements that are most significant for understanding
choice behavior, and leave more detailed descriptions of theories and research findings to specialists
in these fields.  Affect and motivation are key concepts in a psychological view of decision-making,
and determine attitudes which in turn strongly influence the cognition of the decision-making task.
The lighter arrows in Figure 1 represent the linkages between these elements.  Psychological
observations and experiments establish that these factors have strong and sometimes surprising
impacts on perceptions and on choice behavior.  Many of the effects are stable and reliably
reproducible in experiments.  However, it is difficult to define and harness these psychological factors
in a system that can forecast a broad spectrum of choice behavior.  

Perceptions, attitudes, and preferences are conceptually different, but their definitions blur
when one attempts to operationalize their measurement.  Consider, for example, the four semantic
differential (agree/disagree) questions in Table 6.  

Table 6. Questions on Perceptions, Attitudes, and Preferences

1 At least once a month, there is an incident on Bus Line 7 that is a threat to personal security.

2 Personal security on public transit is a significant problem.

3 What I can save by taking the bus is not worth the risk to personal security.

4 I would pay $10 more in taxes each year to put security guards on public transit.

Question 1 elicits a perception, question 2 elicits an attitude that is primarily determined by
perception, and question 3 elicits a preference that is strongly influenced by perception and/or attitude.
The WTP question 4 elicits a preference, but the response could also be interpreted as determined by
attitudes toward personal security and toward social responsibility.  There is a clear difference
between the first two questions, which involve no element of tastes, and the last two which do.
However, all four questions reveal aspects of a constellation of beliefs, attitudes, and tastes that may
not be fully differentiated within the individual, and may or may not be stable and consistent across
time and decisions.  The major scientific challenge to development of a psychological model of choice
that can be used for travel demand applications is to find stable scales for attitudes, perceptions, and
other psychological elements and establish that these scales can be used to forecast travel behavior
more reliably than “reduced form” systems that map directly from experience and information to
behavior.
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The general view of psychologists is that behavior is highly adaptive and context-dependent.
This is due in part to the dependence of perceptions on context, but more to the impact of emotional
state (affect), motivation, and perceptions on the cognition of the task presented by a choice situation.
Psychologists use the terms problem-solving, reason-based, or rule-driven to refer to behavioral
processes that override utility-maximizing calculations, relying instead on principles or analogies to
guide choice.  Drazen Prelec (1991) distinguishes this view of decision-making from
utility-maximization models by the cognitive processes involved:  

"Decision analysis, which codifies the rational model, views choice as a fundamentally technical problem of
choosing the course of  action that maximizes a unidimensional criterion, utility.  The primary mental activity is the
reduction of multiple attributes or dimensions to a single one, through specification of value trade-offs.  For
rule-governed action, the fundamental decision problem is the quasi-legal one of constructing a satisfying
interpretation of the choice situation.  The primary mental activity involved in this process is the exploration of
analogies and distinctions between the current situation and other  canonical choice situations in which a single rule
or principle unambiguously applies.  ...  The purpose of rules must be derived from some weakness of our natural
cost-benefit accounting system, and one might expect to find rules proliferating in exactly those choice domains
where a natural utilitarianism does not produce satisfactory results."  

Psychological elements add a fluidity and dynamic to decision-making; with many choices
influenced by context, emotion, and adaptation.  Most behavioral scientists would agree that these
psychological elements are essential if one is to understand the process of decision-making, and
probably necessary if one is to explain behavior in novel choice situations.  There is no question that
human choice behavior in a variety of laboratory settings shows striking deviations from the
predictions of the economists’ standard model, at least in its simpler and more rigid formulations.
Further, the economists’ concepts of a calculus of utility assessment and maximization rarely appear
at a conscious level in self-reported decision protocols.  Economic choice theory takes for granted
that the consumer is aware that a decision is called for, and prepared to make a choice.  In
psychology, awareness and preparation are themselves substantive elements in the cognitive process.
Cognitive theories of choice emphasize processes whose consistency with maximizing behavior is
at best rough and ready, and the result of learning and conditioning rather than “rational” planning;
see for example Svenson (1998) and McFadden (1999).  There may be room within these
psychological views of decision-making for the economists’ taste template and “rational” expression
of preferences, but some psychologists would argue that the process of choice is so completely
controlled by immediate and context-dependent proximate factors that the existence or nature of a
rational taste template is essentially irrelevant to understanding choice behavior.  Both intuition and
experimental evidence support the view that heuristic rules are the proximate drivers of most human
behavior.  The question remains as to whether rules themselves develop, from genetic templates or
by learning and selection, in patterns that are broadly consistent with RUM postulates, so that RUM
models can approximate behavior.

Even for routinized, “rational” decisions such as work trip mode choice which may be
consistent with the economists’ standard model, psychological elements are likely to be important
in the construction and reinforcement of preferences.  In addition, psychological and psychophysical
measurements like perception and attitude scales can open windows to the decision-making process
that are useful for model specification and estimation, even in applications where the economists’
standard model does a good job of describing and forecasting behavior.  The cognitive psychology
of choice should be required study for all travel demand analysts, even the die-hard RUM modelers.
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Market Research Methods and Travel Choices  
In an assessment of the role of psychological elements in travel demand analysis done for

purposes of evaluating transportation policies, it is unclear whether one needs to incorporate these
elements in order to obtain reliable predictions of behavior for policy purposes, or for that matter
whether we are capable of handling the resulting complexity when they are factored in.  Economists
and psychologists should recognize that what they consider the most interesting aspects of choice
behavior are not necessarily important to transportation engineers.  What is critical for transportation
policy purposes is a “black box” that maps information about the transportation system into travel
choices; the bottom line criterion is only that the black box work reliably.  Every intervening
construct within the box, such as an attitude, perception, or preference, is useful only if it is possible
to provide both a mapping from information and experience to this construct and a mapping from this
construct to choice that in tandem are more reliable than a direct “reduced form” mapping from
experience and information to choice.  Thus, the economists’ standard model is useful for policy
purposes only if the structure it imposes on the way information is processed enhances the reliability
of policy models.  Psychological elements need to meet this same standard if they are to be helpful
for policy purposes.  Some of the relativistic, context-dependent features of psychological theories
of choice behavior which make them intuitive and natural for explaining one-off laboratory
experiments militate against their easy use as mechanisms within a modeling system for policy-
oriented travel demand analysis.  Further, travel behavior may respond to transportation system
attributes in the way that the economic theory predicts, even if the economists’ standard model is
wrong about how decisions are made.  Thus, it is possible that psychology will provide a colorful and
insightful language for describing travel behavior, but at the same time not add much to the reliability
and explanatory power of policy forecasting models.

To emphasize this point, I adapt from McFadden (1999) an illustration of how we might go
about understanding vision and forecasting visual perception in an applied task.  Consider the
simplified map of the wine-producing region around Bordeaux shown in Figure 2.  Bordeaux appears
to be closer to St. Emillion than to Margaux.  However, the reader will immediately recognize that
this is the classical Muller-Lyer optical illusion in which the distances are actually the same.  Even
after you are told this, St. Emillion looks closer.  Could this illusion affect behavior?  In fact, St.
Emillion is more crowded than Margaux, perhaps due to other enophiles' illusions, but I doubt that
anyone would claim that this is due to mass misreading of maps.  We learn to be suspicious of our
perceptions.  We may see things cock-eyed, but we adopt conservative behavioral strategies that
prevent us from deviating too far from our self-interest.  One can learn a great deal about how visual
cognition works by studying the breakdown regions where optical illusions occur, and draw from this
lessons for how "normal" vision operates.  Clearly a crude "what you see is what a camera sees"
model of vision is false.  Suppose now that you are trying to predict how people react to traffic signs
when driving.  Should you start from the library of optical illusions, or from the crude model of
vision?  I believe that it makes sense to start from a model that says that drivers will read what is
written, and after that consult the library of optical illusions to see if what is written is likely to be
misread.  By this analogy, a standard RUM theory for travel choices may be a good starting point.
One should then go on and ask whether psychological elements need to be added to explain travel
demand behavior.  Even if psychological factors are not in the end needed to explain some travel
decisions, they can be extremely useful in specifying travel demand models.  Understanding the
cognitive and psychological elements in the decision-making process is particularly important when
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Figure 2. Roads in the Wine-Producing Region near Bordeaux

market research data are used to augment revealed choice data, because then one must be able to
establish the links from market information through these psychometric variables to choice.

The most practical use of psychological concepts and measures in transportation demand
analysis has come through market research.  In studying demand for products, market researchers
have confronted the problem that revealed market behavior may not provide a sufficient “natural
experiment” to determine the mapping from experience and information into choice involving new
products.  Their remedy is to model explicitly the cognitive mechanisms that govern behavior, using
psychometric data on consumer attitudes, perceptions, preferences, and intentions.  These include
multidimensional scaling of judgment data to obtain perception indicators, factor analysis of attitude
inventories, stated preferences from hypothetical choice problems, and verbal protocols to describe
the decision process.  Conjoint analysis, the presentation of hypothetical choice tasks in an
experimental design, has proven an effective way to elicit stated preference data.

One area where there the disagreements between the economic and psychological views of
decision-making should be bridgeable is in the role of perceptions.  There is nothing in the economic
theory of consumer behavior that requires that perceptions be “rational”, although economists believe
that markets will often punish consumers who are predictably inconsistent, leading to selection
against such belief systems.  Many economists are comfortable with the idea that perceptions and
attention are sensitive to context, and preference-maximizing behavior will emerge only in the “long-
run” after experience has stabilized both perceptions and expressed preferences.   There may be room
here both for more careful attention by economists and psychologists to the formation and use of
perceptions in decision-making, and a reexamination of the idea of a genetic taste template as an
evolutionary adaptation.  However, developments in these areas are unlikely to have much impact
on the practice of behavioral transportation demand analysis in the near future. 
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4. Data

“Perception is not always reality.”
Mercedez-Benz commercial, 1999.

The 1970's prescription for the data required for disaggregate travel demand analysis was to
survey individuals on their travel behavior, through home and telephone interviews, and particularly
through trip diaries.  These data usually gave information on trips taken, and often the mode, travel
time, and out-of-pocket cost for each trip segment.  Less frequently, information was collected on
route and the composition of the travelers (e.g., accompanied by children or not).  These data usually
did not give direct information on attributes of alternatives not selected; e.g., individuals taking auto
were not asked about time and cost for a bus alternative, and individuals not taking a shopping trip
during a particular period were not asked about travel possibilities during that period.  To fill out the
attributes of all the alternatives the individual faced, the typical procedure was to turn to road and
transit networks, and use these networks to infer times and costs for all alternatives, including those
chosen and those not chosen.  There was often a gap between reported and calculated trip attributes,
attributable to subject reporting error, network errors (e.g., due to uniform coding of travel times on
secondary streets), and route assignment errors (e.g., consumers using non-optimal routes, or
networks assigning routes that were in fact infeasible).  When carefully collected, these methods gave
fairly complete and accurate revealed preference (RP) data from real choice behavior.

There have been three major innovations in travel data collection since the 1970's.  First, it
was recognized that travel data could often be collected efficiently from on-board, screen line, or
destination surveys.  These have the advantage of concentrating observations on modes, locations,
and times that are of particular interest for behavior and policy.  In addition, they offer cost
advantages over general home surveys.  To illustrate, if one is interested in transportation system
changes that will ease congestion caused by a new professional sports facility, an effective sample
may intercept fans at the sports facility, and infer their travel behavior by comparing them to a control
group of non-fans contacted at home.  These are called choice-based samples, and the problem that
they present is that they are sampling on the basis of the dependent variable, so that analysis must
avoid confounding the legitimate effects of explanatory factors and the spurious effects of sampling.
Section 5 reviews these methods.

A second innovation in data has had a major impact on travel demand analysis, and probably
receives more attention than any other topic in travel demand research.  This is the use of stated
preference (SP) data, a shorthand for a variety of data that can be collected from individuals by
offering them hypothetical choice tasks, eliciting attitudes and perceptions, and collecting subjective
reports on preferences.  Most of these variables and the methods used to measure them come from
psychology via market research.  In particular, conjoint analysis  has proven that it can give a much
more rounded view of the preferences of an individual than the one-dimension picture provided by
revealed preference data. 

The use of experiments rather than field surveys to collect data on demand has several major
advantages.  The environment of hypothetical choice can be precisely specified, with a design which
allows straightforward identification of effects.  Innovations in services can be studied.  Large
quantities of relevant data can be collected at moderate cost.  However, as with any experiment, one
can ask if laboratory behavior is a good predictor of field behavior.  Good experimental technique
can remove the most obvious sources of incongruity, but only field validation is fully convincing.
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The important next step is to provide an analytic framework in which marketing data and revealed
choice data can be combined to forecast the effects of transportation policy changes.  In Section 5,
I outline a latent variable model to handle these data  that was developed by McFadden & Morikawa
(1986) and Train, McFadden, and Goett (1987), and in various forms has been widely applied.  

Numerous travel demand studies have now been published that use market research data.
Some of the early applications are Morikawa (1989), Ben-Akiva & Morikawa (1990), Morikawa,
Ben-Akiva, & Yamada (1991), Hensher & Bradley (1993), Louviere (1993, 1999), and Hensher,
Louviere, & Swait (1989), and Brownstone & Train (1999).  These studies show that carefully
collected conjoint analysis data are on the whole measuring the same preferences as revealed
preference data, with some calibration of location and scale required to adjust for perception and
behavioral response differences between real and hypothetical choice situations.  These studies
appear to be quite successful in providing some structure to the distribution of tastes, and uncovering
preferences along dimensions where RP data shows inadequate variation in attributes.  I believe these
techniques have progressed to the point that if one has the task of forecasting demand for a new travel
alternative, it will probably be more reliable to establish the relationship between the attributes of
existing and new alternatives by a SP experiment than to match new with existing alternatives as we
did in the TDFP project in 1974.

It is my impression that data on perceptions have been collected less extensively or
systematically than SP data on preferences.  Although trip attributes collected in RP surveys are,
perforce, perceptions that may vary from objectively measured attributes, and cognitive psychology
has made us acutely aware of perceptual anomalies, I know of no study that has systematically
examined the question of whether reported travel attributes are systematically biased, and what
survey formats can be used to detect, control, and/or correct for such biases.  There are lessons to be
learned from study of survey methods in other fields; see for example Hurd, Merrill, and McFadden
(1997). 

A final major change in data for travel demand analysis comes from technologies for real time
data collection.  Starting with scanner data that can locate shopping destinations, through the use of
GPS/cellular systems for tracking trip-makers, to the monitors for Intelligent Vehicle Systems, the
possibilities are opening for observations on travel behavior at a level of fidelity and bandwidth that
was unthinkable a decade ago.  These data sources greatly expand the possibility of collecting panel
data in which observations on repeated choices provide powerful “natural experiments” in which
behavioral changes are coming primarily from changes in the choice setting rather than from
changing tastes of the decision-maker.  A major challenge in the immediate future will be to develop
models and statistical methods that can handle these data.  In marketing and other fields, this has
often meant turning to nonparametric statistical methods that use linear filters suitable for streaming
data, rather than more traditional parametric models.  I expect soon to see wavelet or neural net
models, calibrated using streams of data from trip-makers.  The challenge to behavioral travel
demand analysts will be to influence these acutely descriptive models so that they have some
congruence with our understanding of how travel decisions are made, and the ability to produce the
“what if” predictions needed for transportation policy analysis.
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5. Statistical Methods

“What we see depends mainly on what we look for.”
John Lubbock, 1952

The statistical problems presented by transportation demand applications recur throughout
empirical choice theory and applied statistics more generally:  the need to estimate model parameters
that are embedded in nonlinear and not necessarily tractable forms, and the need for diagnostic tools
to detect errors in specification and test hypotheses.  Transportation demand analysis also needs
systems for producing disaggregate and aggregate forecasts and policy scenarios that track statistical
accuracy.  Two problems that seem to be particularly irksome in transportation applications are
identifying the choice set actually considered by the decision-maker, and dealing with the large
number of possible travel portfolios when trip generation, destination,  timing, mode, and route are
all taken into account.  

Applied RUM analysis, which is non-linear in parameters except in special cases, has
generally used maximum likelihood estimation.  This remains the workhorse for estimation of choice
models, with some use of generalized method of moments estimators to incorporate market research
data on stated perceptions and preferences.  There have been incremental improvements in
optimization algorithms, mostly buried in computer code and invisible to the applied researcher, but
a few such as the E-M algorithm and Monte Carlo Markov Chain methods are available as named
options.  There have been obvious improvements in computation time and convenience.  One useful
development has been continued refinement in the theory of large sample hypothesis testing, and in
particular the use of Lagrange Multiplier tests as a diagnostic tool.  For choice model applications,
this theory has been used to develop convenient tests of the IIA property of MNL models, and of
random parameter dispersion in MMNL models.  Perhaps the most significant innovations in
statistical tools for transportation applications have come in sampling and in the use of simulation
methods for estimation.  In this section, I will review developments in the specification of RUM
models, the theory of sampling, latent variable models for market research data, simulation-based
estimation, and diagnostic tools.

RUM Families
An issue in the early disaggregate behavioral travel demand models using nested logit models

was their consistency with RUM.  I established this (for inclusive value coefficients between zero
and one) in a 1978 paper in which I introduced a Generalized Extreme Value (GEV) family of
models:  Define a GEV generating function H(w ,...,w ) to be a non-negative linear homogeneous1 J

function of w � 0 satisfying the properties that if any argument goes to +�, then H goes to +�; and
the mixed partial derivatives of H exist, are continuous, and alternate in sign, with non-negative odd
mixed derivatives.  I showed that

(20)           F(� ,...,� ) = , 
1 J

is a joint distribution function whose one-dimensional marginals are then extreme value distributions.
Consider a RUM model u  = V  + �  for a set of alternatives C = {1,...,J}, where the �'s have thei i i

distribution (20).  Then one has 

(21) E max  u  =  + 0.57721 , i i  
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where 0.57721... is Euler’s constant, and RUM choice probabilities are given by the logarithmic
derivatives of (21), with the closed form 

(22) P (i) = . 
C

One example of a GEV generating function is the linear function H = w  + ... + w ; this yields the1 J

ordinary MNL model.  More complex GEV models, including nested logit, paired combinatorial
logit, and cross-substitution logit, are obtained by repeated application of the following result:  If sets
A,B satisfy A
B = C, and w , w , and w  are the corresponding subvectors of (w ,...,w ), if H (w )A B C 1 J A

A

and H (w ) are GEV generating functions in w  and w , respectively, and if s � 1, thenB
B A B

H (w ) = H (w )  + H (w )  is a GEV generating function in w .  The parameter 1/s is called anC A B
C A B C

s 1/s

inclusive value coefficient.  Discussions of useful specializations of the GEV family can be found
in McFadden (1981), Small (1987), Bhat (1998), Papola (2000), and Fujiwara-Sugie-Moriyama
(2000).

Somewhat different approaches that also established the consistency of nested MNL models
with RUM were taken by Williams (1977), Daly & Zachary (1979) and Ben-Akiva & Lerman (1979).
The Williams-Daly-Zachary formulation established two results that are useful more generally.  First,
they showed that an extreme value distributed random variable X can be written as the sum of two
independent random variables Y and Z, with Z also extreme value distributed, if and only if the scale
factor for X is at least as large as the scale factor for Z; a formal proof of this result is given in
McFadden and Train (1998, Lemma 4).  Second, they effectively showed that in the family of RUM
models with an additive linear income term, expected maximum utility behaves like a “representative
consumer” indirect utility function with the property that its price derivatives are proportional to the
choice probabilities.  A Nested MNL model with no income effects has the property that its choice
probabilities are given by derivatives of its top level inclusive value, equation (5).  Then, one can
establish that a nested MNL model is consistent with RUM by showing, for suitable range restrictions
on inclusive value coefficients, that its top level inclusive value meets the necessary and sufficient
curvature conditions for an indirect utility function.  This correspondence is established formally in
McFadden (1981).

Probability Mixtures
An argument given earlier showed that a MMNL model is RUM-consistent if for each point

in the support of the random parameters, the underlying MNL model is RUM-consistent.  This
proposition holds generally for mixing over any family of RUM-consistent choice models, with the
mixing interpreted as taste heterogeneity in the corresponding population of RUM consumers.  In
particular, it is possible to consider mixtures over families of GEV models: If H(w ,...,w ,�) is a1 J

family of GEV generating functions with parameters � (which determine nesting structure, weights,
and/or inclusive values), and F is a distribution over �, then the function

has logarithmic derivatives that are choice probabilities for a

population whose behavior is described by this mixture of GEV models.  When F has finite support,
this function is a Cobb-Douglas combination of GEV models, with powers corresponding to the
mixing probabilities.  Since the MMNL model can approximate any RUM-consistent choice
probabilities, it is unnecessary to consider mixtures of more complex models simply to attain a good
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approximation to RUM behavior.  However, mixtures over models other than MNL may prove more
parsimonious or more interpretable in some applications.

Sampling Methods
Problems in designing transportation surveys using only home-based random samples

motivated the development of the theory of choice-based sampling.  As indicated in Section 4,
intercept, destination, and on-board surveys can provide information that is easier and less costly to
obtain than home-based surveys.  The question is then how to untangle by statistical analysis the
choice behavior of the subjects from the patterns introduced by sampling.  A solution has been
provided by Manski &  Lerman (1977), Manski & McFadden (1981), and Hsieh, Manski, &
McFadden (1985).  The setup of the estimation problem is that one has a vector of explanatory
variables z and a choice i which are distributed in the target population with a density p(z,i) 	 

P (i�z,� )p(z) 	 Q(z�i,� )q(i), where P (i�z,� ) is the choice probability, defined as a member of aC o o  C o

parametric family with true parameter vector � ; p(z) is the marginal distribution of the explanatoryo

variables, q(i) = q(i|� ) is the marginal distribution of i, and Q(z�i,� ) is the conditional distributiono o

of z given i, defined by Bayes law. 
A simple random sample draws from the target population density p(z,i).  Exogenously 

stratified samples can be interpreted as draws of z from a density that may differ from the target
population marginal density p(z), followed by draws of i from the target population conditional
density of i given z, P (i|z,� ).  Then, the effects of exogenous sampling drop out of maximumC o

likelihood estimation of the parameters �  which appear only in the conditional density.  Choice-o

based samples can be interpreted as draws of i from a density that may differ from the target
population marginal density q(i), followed by draws of z from the target population conditional
density of z given i, Q(z�i,� ) = P (i|z,� )p(z)/q(i|� ).  This formula entangles the choice probabilityo C o o

and the distribution of the explanatory variables, with the consequence that treating choice-based data
as if it were random is generally statistically inconsistent; see Manski and Lerman (1977).  One
effective solution is to pool the observations from various strata, form for this pooled sample the
conditional probability law of i given z, and then apply maximum likelihood to this conditional
probability law.

I will describe this solution for general stratification schemes that include pure choice-based
sampling as a special case.  Suppose the data are collected from strata indexed s = 1,..., S.  Each
stratum is characterized by a sampling protocol that determines the segment of the population that
qualifies for interviewing.  Define R(z,i,s) to be the qualification probability that a population
member with characteristics (z,i) will qualify for the subpopulation from which the stratum s
subsample will be drawn.  For example, a choice-based stratum s from alternative 1 has R(z,i,s) = 1
if i = 1, and R(z,i,s) = 0 otherwise.  The joint probability that a member of the target population will
have variables (z,i) and will qualify for stratum s is R(z,i,s)�P (i|z,� )�p(z).  Then the proportion ofC o

the target population qualifying into stratum s, or qualification factor, is

(23) r  = R(z,i,s)�P (i|z,� )�p(z) .  s C o  

If f  is the share of the sample in stratum s, then the conditional distribution of i given z ands

qualification into the pooled sample is 



�
S
s�1 R(z,i,s)�PC(i�z,�o)�fs /rs

�
J
j�1 �

S
s�1 R(z,j,s)�PC(j�z,�o)�fs /rs

PC(i�z,�o)�e
�i

�
J
j�1 PC(j�z,�o)�e

�j

�
S
s�1 R(z,i,s)�fs /rs

30

(24) Pr(i|z,� ) = . o

When r  is known or can be estimated from external data, the choice model parameters can bes

estimated consistently by applying maximum likelihood to these conditional probabilities; see the
CML method of Manski & McFadden (1981).  For choice-based samples in which qualification does
not depend on z, this formula simplifies to 

(25) Pr(i|z,� ) = , o

where �  = log( ) can be treated as an alternative-specific constant.  For MNLi

choice models, Pr(y|z,� ) then reduces to a MNL formula with added alternative-specific constants.o

A more complicated example that arises in applications is enriched sampling in which a stratified
exogenous sample is supplemented with a choice-based sample from alternatives that appear
infrequently in the target population.  To illustrate, take the case of a single exogenous sample that
has R(z,i,1) = 1 for z � A and zero otherwise, and a single choice-based sample that has R(z,i,2) = 1
for i � B and zero otherwise.  Then, r  = p(A) is the share of the target population meeting condition1

A, and r  = q(B) is the frequency with which the target population makes a choice from B.  Then for2

z � A, one has Pr(i|z,� ) = P (i|z,� )/P (B|z,� ), and for z � A, one has Pr(i|z,� ) = P (i|z,� )�[f /r  +o C o C o o C o 1 1

1(i�B)f /r ]/[f /r  + P (B|z,� )f /r ].  These conditional probabilities used in the CML criterion permit2 2 1 1 C o 2 2

consistent estimation of � .  For forecasts and policy scenarios, one can weight each observed z fromo

stratum 1 by r , and each observed z from stratum 2 by r /P (B|z,� ) for z � A and by r /f �P (B|z,� )1 2 C o 2 2 C o

for z � A, and then form the empirical expectation of the choice probabilities, before and after policy
initiatives, with respect to this empirical baseline distribution for the explanatory variables.

The early literature on choice-based sampling dealt only with cross-section surveys and
discrete dependent variables.  These methods have been extended to problems where some
components of the dependent variable are continuous, or the data comes from a panel in which
subjects recruited in a choice-based survey design are then followed over time through subsequent
choice situations; see for example McFadden (1997, 2000, Chap. 24). 

Latent Variable Models for Market Research Data
The combined analysis of revealed preference and market research (stated preference) data

requires statistical tools that allow for systematic and random differences.  These may arise because
of unobserved differences in real and hypothetical choice problems, including attributes of
alternatives, the framing of the choice task, and the possibility for market discipline.  I will
summarize a model developed by Ben-Akiva and McFadden in 1984, and extended by Morikawa;
see McFadden (1986), McFadden & Morikawa (1986).  This is a specialization of the multiple-
indicator, multiple-cause (MIMC) model that has been widely applied in psychology, sociology, and
economics. Consider a binomial discrete response such as a mode choice, indexed by an indicator
d = ±1.  Suppose there is a latent random utility difference u  explaining this response:  d = +1 if and*

only if u  � 0. The latent variable u  is related by an equation u  = � + �
y  - � to a k×1 vector of* * * *
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explanatory variables y , with an additive disturbance � normalized so that E(�|y ) = 0 and E(� |y )* * 2 *

= 1.  When y  is observed without error, this is the standard latent variable model underlying RUM-*

consistent discrete response analysis.  Now consider the more general possibility that y  is a latent*

vector that is not observed directly, but that multiple indicators and/or multiple causes for y  are*

observed.  Specifically, let x denote a n×1 vector of observed indicators for y , z denote a m×1 vector*

of observed variables that are causal to y , and assume a MIMC model with normal disturbances,*

(26)       x = � + Cy  + �,      and     y  = B(z-Ez) + 
.* *

 The n×k array C is a matrix of factor loadings, the k×m array B is a structural parameter matrix, and
� is a parameter vector.  Both C and B may be subject to structural restrictions.  Conditioned on z,
the disturbances � and 
 are assumed to have a multivariate normal distribution with zero means and
covariances E��
 = 
, E


  = �, E�

 = 0, and are assumed independent of �.  Then, given z, y*

is multivariate normal with mean zero and covariance matrix �, and x is multivariate normal with
mean � + CB(z - Ez) and covariance matrix 
 + C�C
. 

In a typical application such as mode choice, y  is a vector of perceived attributes of the*

modes, x is a vector of psychometric ratings, and z is a vector of measured product attributes. For
example, in a choice between automobile and bus, y  may contain factors like "comfort" and "safety";*

x may contain psychometric data such as ratings of autos on "steering responsiveness" and
"smoothness of ride", attitude scales for the importance of various factors, or stated preferences; and
z may contain variables like weight, horsepower, and braking distance, as well as consumer
characteristics like income, age, and number of exposures to advertising.  In general, the model (26)
implies 

(27) E(y |z) = � + CBz,    and       Cov(x|z) = C
�C + 
. *

There are n(m+1)+n(n+1)/2 sample moments, sufficient to identify this many parameters between
�, C, B, �, and 
 unless there are deficiencies in rank.  Then, at least n(k-m)+mk+k(k+1)/2
restrictions on the parameter arrays are necessary for identification. Provided the model is identified,
the parameters in C, B, 
, and � can be estimated by a LISREL or factor analysis program.  These
programs either minimize the distance between the sample moments and their population analogs in
(3), using some distance metric, or else maximize the likelihood of the sample of observed x vectors,
conditioned on z.  An example of (26) is 

(28) =  and = ,
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where three unobserved factors with five indicators have factor loadings and other parameters that
are identified by exclusion restrictions, the normalizations c  = c  = c  = 1, and an assumption that11 22 33

the matrix 
 is block-diagonal between the first three indicators and the last two indicators.  One can
show constructively that the specified restrictions are sufficient for identification:  Substitute the
second set of equations in (26) into the first set, and estimate the resulting linear system by ordinary
least squares.  The regression on the first block of indicators identifies B.  Given B, the regression
on the second block of indicators identifies C.  Given C and the assumption that 
 is block-diagonal
between the first and second blocks, the covariance between the regression residuals in the first and
second block identifies �.  Given � and C, the within-block covariances identify 
. 

Let F(�) denote the cumulative distribution function of the disturbance �. Assume F has the
symmetry  property F(�) = 1 - F(-�), as is the case for normal or logistic disturbances.  Then, P(d|y )*

= F(d(�+�
y )).  If y  is observed without error, then this is the standard binomial discrete response* *

formula.  For latent y , the probability law for the data is obtained by conditioning on x and z:*

 
(29) P(d|x,z) = E{P(d|y |x,z} 	 E{F(d(�+�
y ))|x,z}. * *

Given z, the vectors y  and x are joint normal.  Then, the conditional distribution of y  given x, z is* *

(30)       y |q ~ N(Rq,�)*

 
with   

(31) R =  ,     q = , 

and 

(32) � = � - �C
(C�C
+
) C�. -1

In particular, if � is standard normal, corresponding to a probit model for the discrete
choice, one has
 
(33) P(d|y ) = �(d(�+�
y )).* *

 
From (30), one has 

(34) (�+�
y -�)|x,z ~ N(�+�
Rq,1+�
��),*

 
implying
 
(35) P(d|q) = �(d(�+�
Rq)/[1+�
��] ). 1/2

Given consistent estimates of R and � obtained from the LISREL analysis, one can estimate � and
� in (35) by maximum likelihood.  It is necessary to correct the usual asymptotic standard errors to
account for the presence of estimated variables.  The framework in equations (27)-(35) can be
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generalized to multivariate choice problems, but simulation methods may be required to make the
estimation problem tractable.

In the model formulation above, the x indicators are treated as continuous.  For stated
preferences, this could correspond to rating data on alternatives.  Alternately, in hypothetical choice
problems, components of x may be latent utility levels for which there are discrete indicators for
stated choices that maximize latent utility.  This adds another layer of nonlinearity to the statistical
analysis and produces multivariate normal integral expressions for conditional probabilities of
observed RP and SP choices that in general will necessitate simulation-based estimators. How to
maintain the tractability of the normal linear MIMC model structure without creating probabilities
of essentially multinomal probit form that are difficult to work with is an open research question. 

Computation and Simulation  
From an era where estimation of a single multinomial logit model was a major

time-consuming computational task, we have progressed to the point where simple multinomial logits
are virtually instantaneous, even for massive numbers of alternatives and observations.  This is nearly
true for nested multinomial logit models, or logit models containing other non-linear elements, via
general purpose maximum likelihood programs, although achieving and verifying convergence in
such problems remains an art.  What has remained a computationally hard problem is the evaluation
of choice probabilities that cannot be  expressed in closed form, but require numerical integration of
moderately high dimension.  For example, the multinomial probit model with an unrestricted
covariance structure continues to resist conventional computation except for small problems.

Use of simulation methods has provided the most traction in obtaining practical
representations and estimates for these computationally hard models.  The first development of these
methods for the multinomial probit model, by Manski & Lerman (1981), was followed by a paper
of mine (McFadden, 1989) that clarified the statistical theory of estimation using simulation methods.
This approach to estimation has benefitted from a great deal of research in the last decade on various
practical simulators, including the use of Gibbs, Metropolis-Hastings, and other Monte Carlo Markov
Chain samplers, use of pseudo-random and patterned random numbers such as Halton and Sobel
sequences, and tools such as the simulated EM algorithm and the Method of Simulated Moments; see
Bhat (2000), McFadden (1997), Train (1999).  These methods have made it feasible to work with
quite flexible models, such as multinomial probit and mixed multinomial logit and extreme value
models.  Considerable room for improvement in simulation methods remains.  The problem of
multidimensional numerical integration remains computationally hard, and this virtually guarantees
that practical approximations based on a simulation of reasonable size are sometimes going to be
quite poor.  It is helpful in the design of simulation-based statistical inference to realize that there is
an analogy between real data generated by a true data generation process and simulated data
generated by a proposed model for this process, and statistical procedures that have good properties
when applied to real data will often also have good properties when applied to simulated data, or to
pooled real and simulated data.  In particular, some of the statistical methods for dealing with
measurement error and outliers in real data may prove useful for processing simulated data.

A model where simulation methods are usually needed, and relatively easy to apply, is the
mixed MNL model.  From the theory in Section 3, MMNL models can approximate any well-
behaved RUM model, but their calculation requires specification and calculation of the expectation
of MNL probabilities with respect to a probability distribution on the MNL model parameters.
Because the MNL model itself is smooth in its parameters, the following procedure gives positive,



�
R
r�1

e
Z(a�ci,w,ti�,xi,s)�h(�r,�)

R�j�C e
Z(a�cj,w,tj�,xj,s)�h(�r,�)

34

unbiased, smooth simulators of the MMNL probabilities, and smooth simulators of their derivatives:
Let � denote the vector of MNL parameters, and suppose � is given by a smooth parametric inverse
mapping � = h(�,�), where � parameterizes the distribution of � and � is uniformly distributed in a
hypercube.  This works easily for cases where the � are multivariate normal, or transformations of
multivariate normals (e.g., log normal, truncated normal), and with somewhat more difficulty for
other common distributions.  The simulation procedure is then to draw a simulated sample of �’s, of
size R, either at random or using some patterned random numbers such as Halton sequences, fix this
sequence for all subsequent analysis, and treat the choice probabilities as if they are given exactly by
the approximation 

(36) P (i) = .C

A modest rate requirement on R, that it rise more rapidly than the square root of sample size, is
sufficient to guarantee that either maximum likelihood or method of moments applied using the
formula (36) will contain a negligible error arising from simulation in sufficiently large samples.  To
avoid misleading estimates of precision when sample sizes and R are moderate, one should use the
statistical covariance formulas for possibly misspecified models; see McFadden & Train (1998).  In
applications where the inverse transformation � = h(�,�) is not tractable, one can instead use
importance sampling methods or a Metropolis-Hastings sampler to simulate (12).

Specification Testing:  IIA Tests
The MNL model, with its IIA or “red-bus, blue bus” property, is a powerful tool for travel

demand analysis when the IIA property is satisfied by an application, since it is easily estimated,
allows drastic reduction of data collection and computation by sampling subsets of alternatives (see
McFadden (1981, Atherton, Ben-Akiva, McFadden & Train, 1987), and gives an easy formula for
forecasting demand for new alternatives.  On the other hand, as the “red bus, blue bus” example
illustrates, the model could produce seriously misleading forecasts if IIA fails.  For this reason, there
was an early interest in developing specification tests that could be used to detect failures of IIA.  The
first proposed test, due to McFadden, Tye, & Train (1978) and Hausman & McFadden (1984)
required that one estimate the MNL model twice, once on a full set of alternatives C, and second on
a specified subset of alternatives A, using the subsample with choices from this subset.  If IIA holds,
the two estimates should not be statistically different.  If IIA fails, then there may be sharper
discrimination within the subset A, so that the estimates from the second setup will be larger in
magnitude than the estimates from the full set of alternatives.  Let �  denote the estimates obtainedA

from the second setup, and �  denote their estimated covariance matrix.  Let �  denote the estimatesA C

of the same parameters obtained from the full choice set, and �  denote their estimated covarianceC

matrix.  (Some parameters that can be estimated from the full choice set may not be identified in the
second setup, in which case �  refers to estimates of the subvector of parameters that are identifiedC

in both setups.)  The quadratic form HM = (�  - � )
(�  - � ) (�  - � )  was shown by Hausman &C A A C C A  
-1

McFadden to have a chi-square distribution when IIA is true.  In calculating this test, one must be
careful to restrict the comparison of parameters, dropping components as necessary, to get a non-
singular array �  - � .  When this is done, the degrees of freedom of the chi-square test equals theA C
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rank of �  - � .  The simple form of the covariance matrix for the parameter difference arisesA C

because �  is the efficient estimator for the problem.  C

A generalization of this test which is particularly easy to compute was proposed by McFadden
(1987).  Estimate the basic MNL model, using all the observations; and let P (i) denote the fittedC

model.  Suppose A is a specified subset of alternatives.  Create new variables in one of the following
two forms for each observation:

(a) If x  are the variables in the basic logit model, define new variables  i

(37) z  = ,i  

The variables z  can be written in abbreviated form as z  = � (x  - x ), where �  = 1 iff i � A andi i iA i A iA

x  = P (j)�x  and P (j) is calculated from the base model.  A A j A

(b) Define the new variable

(38) z  = 
i

where P (j) is calculated from the basic model.  A numerically equivalent form is obtained byA

first defining the systematic utility at the basic model estimated parameters,, V  = x�, and theni i

defining the new variable

(39)  z  = ,i  

or more compactly, z  = � (V  - V ).i iA i A  

Estimate an expanded MNL model that contains the basic model variables plus the new variables z .i
Then test whether these added variables are significant.  If there is a single added variable, as in the
construction (b), then the T-statistic for this added variable is appropriate.  More generally, one can
form a likelihood ratio statistic

(40)  LR = 2    

If IIA holds, this likelihood ratio statistic has a chi-square distribution with degrees of freedom equal
to the number of added z variables (after eliminating any that are linearly dependent).

The test using variables of type (a) is statistically asymptotically equivalent to the
Hausman-McFadden test for the subset of alternatives A.  The test using variables of type (b) is
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equivalent to a one-degree-of-freedom Hausman-McFadden test focused in the direction determined
by the parameters �.  It will have greater power than the previous test if there is substantial variation
in the V's across A.  It is also asymptotically equivalent to a score or Lagrange Multiplier test of the
basic MNL model against a nested MNL model in which subjects discriminate more sharply between
alternatives within A than they do between alternatives that are not both in A.  One minus the
coefficient of the variable can be interpreted as a preliminary estimate of the inclusive value
coefficient for the nest A.  If there are subset-A-specific dummy variables in the basic model, then
some components of the variables z  of type (a) are linearly dependent on these original variables, andi

cannot be used in the testing procedure.  Put another way, subset-A-specific dummy variables can
mimic the effects of increased discrimination within A due to common unobserved components.  One
may get a rejection of the null hypothesis either if IIA is false, or if there is some other problem with
the model specification, such as omitted variables or a failure of the logit form due, say, to asymmetry
or to fat tails in the disturbances.  Rejection of the IIA test will often occur when IIA is false, even
if the nest A does not correctly represent the pattern of nesting.  However, the test will typically have
greatest power when A is a nest for which an IIA failure occurs.

The tests described above are for a single specified subset A.  However, it is trivial to test the
MNL model against several nests at once, simply by introducing an omitted variable for each
suspected nest, and testing jointly that the coefficients of these omitted variables are zero.
Alternative nests in the test can be overlapping and/or nested.  The coefficients on the omitted
variables and their T-statistics provide some guide to choice of nesting structure if the IIA hypothesis
fails.

Specification Testing:  Mixing in MNL Models
In light of the theoretical result in Section 3 that any well-behaved RUM model can be

approximated by a mixed MNL model, satisfaction of the IIA property can be recast as a condition
that there be no unobserved heterogeneity in the MNL model parameters.  This suggests that a test
for the validity of the IIA property, and specification test for the explanatory power to be added by
introducing mixing, can be constructed using a Lagrange Multiplier approach.  The advantage of this
method is that the test procedure requires only estimation of basic MNL models, so that simulation-
based estimators are not needed, and that it can test against a battery of alternatives at the same time.
To describe the test, consider choice from a set C.  Let x  be a 1×K vector of attributes of alternativei

i.  Suppose from a random sample n = 1,...,N one estimates the parameter �  in the simple MNLe

model L (i;x,�) = , using maximum likelihood; constructs artificial variables forC

selected components t of x ,i

(41) z  = (x  - x ) /2     with     x  = x �L (j;x,� ) ; 2
ti ti tC tC tj C e  

and then uses a Wald or Likelihood Ratio test for the hypothesis that the artificial  variables z  shouldti

be omitted from the MNL model.  This test is asymptotically equivalent to a Lagrange multiplier test
of the hypothesis of no mixing against the alternative of a MMNL model

P (i�x,�) = L (i;x,h(�,�))�d� with mixing in the selected components t of � = h(�,�)).  TheC C

degrees of freedom equals the number of artificial variables z  that are linearly independent of x.ti  

McFadden & Train (1998) also generalize the preceding test so that an estimated MMNL model with
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some mixing components can be tested against the alternative that additional mixing components are
needed.

6. A Look Ahead

Looking back over the past 30 years, how successful is disaggregate behavioral travel demand
analysis based on the RUM hypothesis?  I believe that it has shown itself to be capable of addressing
a broad array of policy questions within a modeling framework that has generally promoted sensible
models and helped avoid blind alleys.  I believe that RUM analysis has been in net a good thing for
travel demand modeling, despite the fact the dictates of tractability have sometimes led to implausibly
restrictive models and abuse of data, as it has forced analysts to think consistently about how
decision-makers respond to attributes of alternatives across a spectrum of travel decisions. Forecast
accuracy is uneven, but I believe no more so that in most applied areas where complex phenomena
are modeled with limited data and a fairly open field for model specification.  

Some early possibilities have not yet been realized.  The program to develop a unified
comprehensive behavioral transportation demand system has not been completed, perhaps because
such systems are now viewed as too unwieldy, or perhaps because funding agencies do not see the
value.  Where demand systems are used, in simulation models of transportation networks, they have
tended to draw piecemeal from behavioral results and rely heavily on engineering calibration.  This
may be good enough for policy work, but it has not led to cumulative refinement of behavioral
models and feedback between behavioral studies and policy outcomes.  The statistical theory of
simulation provides a framework in which engineering calibration can be systematized and integrated
with behavioral studies, but this is not yet done in the transportation models I have seen.

The RUM foundation for travel demand models has been only lightly exploited.  Models have
generally conformed to the few basic qualitative constraints that RUM imposes, but have not gone
beyond this to explore the structure of consumer preferences or the connections between travel
behavior and other consumer demand behavior.  The potentially important role of perceptions,
ranging from classical psychophysical perception of attributes such as security and comfort, through
psychological shaping of perceptions to reduce dissonance, to mental accounting for times and costs,
remains largely unexplored.

What lies ahead for disaggregate behavioral travel demand analysis?  Between the extreme
arguments that psychological elements are on one hand essential to understanding choice behavior
and on the other hand impossible to incorporate into transportation planning models, where does the
future lie?  I believe the answer is that the standard RUM model, based on a mildly altered version
of the economists’ standard theory of consumer behavior that allows more sensitivity of perceptions
and preferences to experience, augmented with stated preference, perception, and attitude measures
that uncover more of the process by which context molds choice, will increasingly become the
dominant methodology for behavioral travel demand analysis.  At present, the weak links in this setup
are the lack of reliable scales for stated preferences, perceptions, and attitudes, and reliable mappings
from experience and information to perceptions and attitudes.  It would be useful to have a
comprehensive research effort that identified the attitudes that are most relevant to travel behavior,
and devised reliable methods for scaling these attitudes and relating them to experience.

Is the RUM model eventually doomed by the accumulation of psychological evidence that
the cognitive process for decision-making is more complex and context-dependent, and by market
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research methods that measure the factors that RUM treats as random?  I hope so.  It would be
disappointing if we cannot reach a deeper understanding and measurement of choice behavior than
this model can provide.  However, one should not rush to throw it out.  RUM based on the
economists’ standard model may look rather old-fashioned at this point, and some might be tempted
to cast about for a non-RUM framework as soon as an initial RUM specification works badly.  My
guess is that in fact for most travel demand applications, there is a RUM setup, perhaps enriched by
some explicit structure to account for the formation and interaction of perceptions and attitudes, that
will do a good job of representing behavior.  This may not be a conventional MNL model with the
usual measures of travel time and cost as explanatory variables, but I believe there is still a lot of
room for travel demand analysts to develop richer and more realistic models of behavior within the
paradigm of RUM, with consumers strongly motivated to maximize the desirability of perceived
alternatives within a psychological context that may influence perceptions and tastes, and with
modest extensions of traditional MNL functional forms to families like MMNL models.
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