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1. INTRODUCTION

let 4 = {Xl....,XK} denote a set of K distinct random varlables, or pros-
Qects.2 Let Fk denote the (marginal) cumulative distribution function of

first-degree weakly stochastically dominates a

prospect Xk.3 A prospect X1

prospect X2 if, for all x, F2(x) S FI(X)' and gecond-degree weakly stochasti-
cally dominates X2 if, for all x, Isz(y)dy z IXFI(y)dy. The set A is first-

-0 -

degree [resp., second-degree] sgtochastically maximal If no prospect in 4 is

first~degree [resp., second-degree] weakly stochastically dominated by another
prospect in #. First-degree dominance Iimplles second-degree dominance, and
second-degree maximality implies first-degree maximality.

This paper develops a statistical test for the hypotheses that £ is not

first-degree [resp., gsecond-degree] maximal; 1i.e., first-degree [resp.,

second-degree] weak stochastic dominance holds between gome pair of prospects

in &. These tests are applicable when the distributions F, are unknown, but

k

realizations (xln""'xxn] of the prospects are observed in periods n =
1,...,N. The tests we develop do not require that the distributions F_ be in

k

parametric families, and do permit some statistical dependence between
different prospects within an observation period, and across periods. Thus,
the tests are robust with respect to the form of the F,, some patterns of
statistical dependence in the sample, and some conditioning on common
information.

The concept of first-degree stochastic dominance 1is due to Lehmann

(1955); that of second-degree stochastic dominance is due to Hadar and Russell
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{1969, 1971, 1974a,b, 1978), and Hanoch and Levy (1969). McFadden (198%)
proposes a statlstical test In the case of independent observations on two
statistically independent prospects; the test 1in this paper extends his
results.

Historic economic Interest in stochastic domlnance arose from its rela-
tionship to maximization of expected utility. Hadar and Russell (1969) esta-

if and only

blished that X, first-degree weakly stochastically dominates X

1 2

if, for all Iincreasing continuous functions u such that the expectations

exist, Eu{Xl) = Eu(Xz), and that X, second-degree weakly stochastically domi-

1

nates Xz if and only if, for all increasing continuous gtrictly concave fuﬁc-

tions u such that the expectations exlst, Eu(Xl) z £u(X2). Then, except poss-

ibly for ties, no (risk-averse) expected utility maximlzer should choose a
prospect in an available set &£ that is first-degree (second-degree) weakly
stochastically dominated by another prospect in 4.

A common economic application identifies the prospects Xk with Investment
strategies, giving the returns from a unit of investment. The economic hypo-
thesis is that investors are expected utility maximizers who choose stochasti-
cally maximal strategies. An approach to testing this hypothesis is to test
for stochastic dominance among mutual funds; see Porter (1978), who has
carried out an empirical study of stochastic dominance treating the distribu-
tilon of realized returns as exact. There are several reasons to be cautious
about the economic interpretation of such tests.

First, mutual fund managers act as agents for shareholders with hetero-
geneous VNM.utility functions who can move between funds. Then, the strategy
for a fund does not necessarily maximize a single VNM utility function, even
if all shareholders are VNM maximizers. Nevertheless, a manager following a

Pareto-satisfactory strategy should not operate a dominated fund.

In general, consumers hold mutual fund shares as part of broader port-
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follos that contain other financial and real assets. The returns on these
assets are typically not Independent of the mutual fund return, and the
consumer's positions will take these interdependencies into account. Even if
the consumer maximizes VNM utility of combined yleld, there is no guarantee
that cholces will be consistent with stochastic dominance measured in terms of
the marginal returns from the mutual funds alone. For example, suppose there
are four equally probable states of nature, X1 yvields (0,1,9,10) in the res-
pective states, Xz ylelds (0,0,10,10), and that a consumer holding one share
of elther X1 or X2 also holds another asset Z with yields (9,10,0,1). Then,
X1 strictly second-degree dominates X2. but X2+2 strictly second-degree domi-
nates X1+2. Thus, marginal domlinance of X1 over X2 does not imply that X1 is
preferred to XZ‘ To avoid this problem, it is necessary to examine comprehen-
sive asset portfolios of consumers rather than stock portfolios alone.

Consumers who are life-cycle optimizers solve a dynamic stochastic pro-
gram in which the criterion is a discounted stream of VNM utilities. This
problem produces optimal behavior that depends on available information and
remaining life, and contalns strategic elements, Then, behavior cannot be
characterized in terms of optimization of a stationary function of wealth,
except In speclal cases; see Hakanson (1971). Further, the manager 1is the
agent of a population of share-~holders, with aging, entry, and exit changing
the distribution of tastes and holdings. For VNM utility maximization to
imply stochastic maximality in mutual fund daily returns, it is necessary that
transactions cost be zero and that maximality comparisons be made conditicnal
on current information.

Other economic applications where stochastic dominance may be of interest
are choice of a geographical or occupational labor market to search for a wage
offer, or choice of strategy in a repeated market game against anonomous

opponents,
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2. STOCHASTIC MAXIMALITY

Without loss of generality for economic applications, we can assume that
prospects are bounded above and below. By an increasing affine transforma-
tion, if necessary, we can assume that they are contalned in the open unit
interval. We will assume that von Neumann-Morgenstern {VNM) utility functions
are continuous, increasing functions on {0,1], and agaln by an increasing
affine transformation if necessary will assume that their range is the unit
interval. Then, expected utility is always well~defined and finite. These

assumptions together will be called the mathematical repularity conditions.

The theorem of Hadar and Russell (1969) characterizing first and second
degree stochastic maximality is restated below, with a simplified proof; see

also Hanoch and Levy (1969) and McFadden (1989).

Theorem 1. Consider a set of distinct prospects 4 = {XI.....XK}_ Assume
the mathematical regularity condition.

The prospects in & are first-degree stochastically maximal; i.e.,

(1) d = min max EFi(x) - Fj(x)l >0,
i} x

if and only if for each 1 and j, there exists a continuous increasing function

u such that £u(Xi) > Eu(XJ).

The prospects in 4 are second-degree stochastically maximal; i.e.,

{2) s = min max Ix {Fliy) - FJ(y}}dy > 0,
I#j] % “-w

if and only if for each 1 and J, there exists a continuous Increasing strictly

concave function u such that Eu(Xi} > Eu(XJ).
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Proof: The argument uses the following formula for integration by parts
{Dunford and Schwartz, 1966, 111.6.22): If v{x) and w(x) are functions of
bounded variation on (a,b), one is continuous, and the other 1is right-
continuous, then f:v(x)w(dx) = v(b~)w(b~)~v{a+)w(a+)-I:w(x)v(dx). Define w(x)

= fﬁ[?i(y)—F (y)ldy. Then w(x) is continuous and differentlable, and w’ (x) is

J

right-continuous. Since the support of Xi and X, is contained in (0,1), w'(x)

J
= 0 in neighborhoods of x = 0 and x = 1. Let u be a continuous VNM utility
function. Since monotone functions and differences of monotone functions are

of bounded variation, u, w, and w' have this property. Applying the integra-.

tion by parts formula, and using u(0) = 0 and w (1) = 0, we obtain

(3) Eu(X,) - Eu(X,)

1
3 Jbu(x){Fi(dx}—F

jlax)) = j;u(x)w'(dx)

- JéW’(x)u(dx).

Then, (3) is non-negative for all VNM functions u if and only if w'(x) =
Fi(x)—FJ{xJ is non-positive (since (3) holds for a sequence of VNM functions u
converging weakly to a step function at any specified xo}. This proves {1}.
Next, assume u 1s a strictly concave VNM utility function. Then the
right-side derivative u’(x) exists for all x e (0,1), and is decreasing and
right-continuous. Then jéw’(x)u(dx) - I;w’(x)u'(x}dx = I;u’(x)w(dx). by
Dunford and Schwartz, (1966, I11.10.2 and II1.12.8). Again apply the integra-
tion by parts formula, and combine this with (3) and the condition w(Q+) = O

to obtaln

L

Eu(Xi} - Eu{¥))

§) = - S Gouldx) = - fluf (x)wldx)

-uf (1w(1) + Sow(x)u’ (dx).

Since u’ is decreasing, this expression is non-negative if and only if wix) is
non-positive for all x. (Again, a sequence of u’ converging weakly to a step
function yields the result.) This proves (2). D

We establish that second-degree stochastic maximality is an implication
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of classical maximization of atemporal expected utility.

Theorem 2. Sﬁppose each Xk in the set of distinct prospects o4 =
{Xi....,XK} is the strategy of an economic agent that maximizes an increasing,
strictly concave von Neumann-Morgenstern utility function. Suppose that it is
feasible for each agent to mix available strategies; i.e., to hold a prospect
that is a lottery In the prospects in d. Assume the mathematical regularity

conditions. Then, each prospect in &4 is second-degree stochastically maximal.

Proof: Suppose X, is not second-~degree stochastically maximal. Then

1
there is a second prospect, say X2' such that Eu(Xz) z Eu(XI) for all increas-
ing, strictly concave u. Let u be the utility function of a manager that
chooses Xl‘ Since X1 and X2 are distinct, strict concavity impliles
Eu((X1+X2)/2} > Eu(Xl)/Z + Eu(XZ)/Z = Eu(Xll, yielding the contradiction that

X1 is not optimal for this manager. o

Using the characterization of first-degree stochastic dominance in

Theorem 1, one can establish a first-degree analog of Theorem 2.

Theorem 3. Suppose each Xk in the set of distinct prospects 4 =
{Xi""’XK} is the strategy of an economic agent that maximizes an Iincreasing
von Neumann-Morgenstern utility function. Suppose each prospect has a dis-

tinct distribution function. Assume the mathematical regularity conditions.

Then, each prospect in d is first-degree stochastically maximal.

Proof: Suppose X1 is not first-degree stochastically maximal. Then, by
(1), there is a second prospect, say XZ’ such that F1(x) = Fz(x) for all x.

Let u be the utility function of a consumer that chooses Xl. Then,

Eu(X,) - Eu(X,) = _rj) u(x) [F, (dx)-F, (dx)] = ff) [F, (x)-F, (x)]uldx) > 0,
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using the integration by parts argument from the proof of Theorem 1. The last
inequality is strict since u is increasing and F1 & Fz. This contradicts the

optimality of X =]

1

The assumptlons and conclusions of Theorems 1-3 are invariant under in-
creasing affine transformations of returns or of the VNM utility functions.
Therefore, in developing statistical tests, (1) and (2) can be used wlthout
requiring that returns be in the unit interval.®

A sufficient condition for the maintained hypothesis of distinct pros-
pects in Theorem 2 is that the NxK array of sample returns be of rank K: this
would normally be guaranteed {(with probabliity cne) from the historical record
as part of the process of defining &, prior to drawing the sample. However,
the maintained hypothesis of distinct distributions in Theorem 3 is not easily
verified, and would require a multivariate Kolmogoroff-Smirnov test or com-

parable test, with some of the same issues in caleulating significance levels

that we encounter in the tests for stochastic maximality described below.

3. THE TEST STATISTICS
Suppose realized returns are observed over N periods for each of the

prospects in 4 = {Xl""'XK}' Let Xen denote the realized return of prospect

k in period n, and FkN denote the empirical distribution of returns for pros-
pect k. Consider the null hypothesis that the prospects in 4 are not first-
degree stochastically maximal. An empirical analog of d' in (1} that is suit-

able for a test statistic is

L]

(4) d,,, = min max [F, {x)-F, (x)];
2N L) T AN N

this is simply a multivariate version of the Kelmogorov-Smirnoff statistic.

An empirical analog of s'in {2y,

(5) S,y = min max j; [FiN(y)—F

(y)idy,
i=j x JN



A Robust Test for Stochastic Dominance Page 9

is suitable for testing the hypothesis that the prospects in 4 are not second-
degree stochastically maximal. In both (4) and (5), the null hypothesis will
be rejected when the statistic is large. We next describe an effliclent compu-
tational algorithm for (4) and (5), and later a monte carlo procedure that
agsociates a "slignificance level” with each statistic. These algorithms are
well-defined no matter what the patterns of statistical dependence in the
data. However, for (1) and (2) to be defined, and the limits d;N £, 4" and
;N 25 5" to hold, we assume the time serles of observations are strictly

stationary and o-mixing. For the monte carlo calculation of "significance

5

levels" to approximate the true significance levels of the tesis, we assume

statistical dependence in an observation period must satisfy the following

generalized exchangeablllity property: The random variables Y1 = Fltxl},..”

YK = FK(XK} are exchangeable. Obviocusly, if the Xk are statistically indepen-

dent, then they satisfy generalized exchangeability. An example of general-

ized exchangeability with statistical dependence is Xk = ak+8k(VBZD+V1*p2k),

where 20,21,..,2K are independent random variables with mean zerc and variance

one; 21”"'2K are ldentically distributed; and ak. Bk, and p € [0,1) are
= = RS =

parameters. Then, EXk = o, Varka) = Bk' and Corr(Xk,XJ) = p. This exagple

is related to the Capital Asset Pricing Model encountered in finance, where 20

is a general market factor and the Zk are factors specific to the prospects:
see Sharpe (1963).
Computation of the statistics (4) and (5) can be carried out economically

using the following algorlthm: For each pair Xi and Xj with i < j, form a

vector z of length 2N containing the observations from X followed by the

1!
cbservations from XJ' Form a vector 1 of length 2N contalining the indices of

the elements of 2z in ascending order; i.e., z, 5 2 . When i and j are not

1 1

m m+l

clear from the context, z, ] are denoted 213, 1”. For each 1 < j, define
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(6) do = do = dO =8, = 5, =5, = o,
and recursively, form =1, 2N,
-1 if lm > N
(7) 8 =
+1 if Im =N
(8) 9y = 9peq * Oy
+* + - -
(9) dm = Max {dm_1 ,dm}. d = Max {dm-i"dm}
(10} Sp = Speq * dpe1 (2772 N
m m-1
* + - -
(11) s, = Max{s ..,s } s, =Mex s _,.-s },

Again, a superscript "ij" 1s added to the expressions in (6)-(11) when neces-
sary to ldentify the pair of prospects i,J being evaluated. Theorem 4 esta-

blishes that (4) and (5) satisfy

LS 1) -1}
(12} dZN = N "-Min Min {dZN ,dZN },
<]
* +131 _-1)
{13) Son = N "+Min Min {SZN »Son }.

1<}

One pass through the data is sufficient to calculate (6)-(13).

t 4

Theorem 4. d,_,. and s;N, defined in (4) and (S), are given by (6}-(13).

2N
) *1y oW, _ +1)
Proof: 1t is sufficlient to show that dZN N Mix [FiN(x) FJN(X)} and SoN
X
N-Max I [FiN(y)*FJN(y}}dy; the remaining expressions follow by reversing the
x Y-w

order of i and j. For an 1,J pair, define GZN(x} to be the empirical distri-
bution function formed from the pooled observations in z. Note that 6m ls an

indicator that is +1 if zl ls an observation from X1 and ~1 if it is an ob-

servation from XJ. Note that 2N-GZN(x) = m implies z, =x<z; . We es-

n m+}
tablish by induction that
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+
{13) N-Max [FiN(x)-FJN(x)} = dm
=z
1
n
and
+*
(15) N-Max Ix [FlN(y)-FJN(y)idy =8 .
wNEZ 1 ]
n

These equalities are obvlous for m = 1. Suppose they held for all m’ = n.

Then FiN(x}-F N(x} is constant for z, = x < 2 /N at x =

] » and Jjumps by 6m+

1

e+l

J 1

z, Hence, the left-hand-side of (14) for m+l is the larger of d; and

mel
&+

d ., and thus, using (8) and the left equation in (9), is dm+1'

m+1

(y)ldy is linear for 2z, =x= z, . with

The expression Ix {FIN{Y)“FJN
- [ m+l

slope dm/N, and 1s continuous. Therefore, its variation over the interval is

dm(z - zl J/N, and it achieves its maximum or minimum on this interval at

m+i m

1
an end point. The expression So in (10) has the same variation, except for
the scale factor N. Then, (15) holds at step m+l. This completes the induc~

tion argument. Finally, note that dZN = 0, implylng that the maximands in

{14} and (15} are constant for x > z, . Then, the maximum values of these
2N

equations for - < x < +w are achlieved in the interval z, = x = z, . ©
1 2N

We next conslder the statistical behavior of S;N and d;N' The first

result establishes that these statistics converge in probability to s. and d.,

respectively, under weak conditions.

Theorem 5. Assume that (X ""xﬁn)' viewed as a stochastic process

in’

indexed by n = 1,2,..., with values in {0,1}K. is strictly stationarys and

a-mixing with a{j) = O(J-a} for some & > 1.6 Then S;N 25 s and d;N B4,
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Proof: Conslider the random variables
= > - > .
(16) Zn g(x,x J Jxmil(y x } 1(y xjn)]dy

Since g is a continuous function, the Zn are again ae-mixing with «(j) = O(j_a)

for some & > 1. Since IZnI = 1, all its moments exist and are uniformly

bounded by one, Therefore, the strong law of large numbers for mixing pro-
N

cesses (White and Domowitz, 1984) implies szd(x] g ) z /N LN E = s;’(x} =
n=1

me{Fi(y) - Fj(y)}dy. The Lipschitz property EszN(x)*SZN(y)i = |x-y| for x,y

P x)- s’}(x}l 225 0. The con-

€ [0,1] implies a uniform strong law, sup |Is SoN

X

tinuous mapping theorem (Pollard, 1984, p. 70) implies max s;é{x) LN S;J'.
x

The Glivenko-Cantelll theorem (Loéve, 1960, p.20) implies sup :d”(x)-d"(xli

X
ag

~—3 0, where d J(x) and d j(x) are the first-degree analogs of s, J(x} and

s;j(x). Then, max d;é(xJ LN d;j' by application of the continuous mapping
X

theorem. The finite minimum of these statistics for 1 # J gives the conclu-

sion of the theorem. o

The following theorem implies that N“QS;N has an asymptotic distribution

*
when 5 = 0, and that this distribution is nondegenerate in the "least favor-
able” case of ldentical marginals. From the form of (2) and (4), if the sta-

tistical properties of s;;. are obtained in the limiting case F1 = Fz, then

the behavior of s;N follows immediately from the Jjoint distribution of a fi-

nite number of such pairs. An analogous result holds for N2

2N’
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Theorem 6. Assume that (X in) is a strictly stationary stochastic

in’

process, taking values in [0,11x[0,1], such that the process is a-mixing with
alj) = O(j-a) for some & > 1. Define wi(X) = f:Fiiy)dy. From (16},
g(w,xln,xzn) = max(w-xin,c} - max(w«xZn,O), s0 Eg(“'xzn'XZn) = wl(w) - wz(w).

Define g(w'xin'XZn} = g(w'xln'XZn) - Eg{w,xin,x2n),

N
-1/2
hN g(w,xln.xzn).

1wa[ W 172
(17) SZN(w) = N [IOEFIR(y)vFZN(y}]dy] = N SZN(H) =N R

N
{18) SZN(wJ = SZN(H} ESZN(H) N Eig(w’xln‘XZR}'

n=

HE

Then E§2N(w) =0, §2N(O) 0; there exists M > 0 such that

= = 2 2
(19) E(SZN(V) SZN{w)) = M{v-wl";
and there exists a covariance function p(w,v) that is uniformly Lipschitz on

[0,11x[0,1] such that E§2N(w)§2 (vl = plu,v) uniformly.7

N
N
- -} — -—-
Assume 0 < p(1,1) = 1lim N . Eﬂcov((x2n Xln).(xzm le)}. Then the

sequence of processes S..(.) for N » » is tight: i.e., it has the stochastic

2N
boundedness property that for each € > 0, there exists & > 0 such that
{(20) sup P{sup I§2N(x)! > 38) < &g,

N b3

and the stochastic equicontinuity property that for each positive m and ¢,

there exists & > 0 such that for all N,

(w)—SZN(v)I > 7)) < ¢,

{2;) P( sup iSZN

jw-v|<a
Also, the §2N converge In distributijon to a Gaussian process gw(.) that has

continuous sample paths with probability one, and the covariance function p.

If y,(x) = y,(x), with equality holding for x € A, then N'st;;f =
max SZN(X) converges in distribution to S. = max §Q(x). 1f ¢1(x) > wz(x) for

@0
X xeA

some ¥, then Plmax S
X

ZN(x) <g)] »0 for every € > 0.
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Proof: The results §2N(O) = 0 and £§2N{w) = 0 are immedlate from the
definition of the process. The function §(w,x1n.x2n) is continuous and plece-
wise linear in (w.xln.x2n). with ig(w,xl,xz)l s 2, and the wvalues of
g(w.xin,XZn} - g(v'xin'XZn} = min{v,max{xin,w}} - min{v,max{xzn,w}} are bound-
ed in magnitude by {v-w|. For any mean-zero process Zn that is strictly sta-

tionary, bounded by C, and a-mixing, Hall and Heyde {1980, Theorem A.5} estab-

2
lish IEZan - EZnEzml s 4C%«(n-m). But g(w,xln,XZn) g(v,xln,xzn) has this
' 0
property with € = |v-w| and «(}) = O[j—a). § > 1. Let M = 47 aln) < +o.
n=1
Then
(22)  EE, -8, (v)?
2N 2N
-t N ~ ~ ol ~
= N . §=1{g(w.x1n,x2n) - g(V.xln.xzn)]Ig(w.xim,XZm} - g(v.xim,me)}
N
= 4(v—w)2 ¥y aln) = H(v-w)z.
n=1

By the same argument,

(23} IE(SZN(WI)-SZN{vil}(SzN(WZ)-SzN{VZ))i

= Hivi—w1llv2*w2|.
The stationarity and mixing properties of §2N{.) imply that its secend

moments converge uniformly as N - =. Define

{24) plw,v) = lim E(SZN(w)Szﬂ(v?);
Now

from (23), p(w,v) is uniformly Lipschitz. Then, the hypotheses of the central
limit theorem of Hall and Heyde (1980) are satisfied, implying for any finite
vector (wi.;..,wk) that (§2N(w1),...,§2N(wk)) converges in distribution to a
multivariate normal with covariances p(wi,wjl. From (22}, a thecrem of Bil-
lingsley (1968, Thm. 12.3, with condition (12.51)) establishes that the se-
quence §2N(.) is tight. Then the stochastic boundedness and equicontinuity

conditions (20) and (21), and convergence in distribution to §m(.), are im-
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plied by Billingsley's Theorems 8.2 and 8.1, respectively.
Assume witx) s wa(x), with equality holding for x € A. From {21), given

A and ¥ > 0, there exlists 8 > 0 such that P( sup IS, (w)-§, (v)| > A) < 7.
ZN 2N
fw-vi]<3
veA

Note that S, (x) = §2N(x) for x € A. Define B = {xe[0,1]]xe¢A & |x-y|<5 for
some yeA} and D = {xe€[0,1]|x¢A & |x-ylz3 for all yeA}. Given € > 0, define
the events

B: max SZN(x) = ¢

X

g mix SzN(x) 5 g+A

D: sup 5,,(xX) > g+
xcAuUB 2N

F: max SZN(X) > E+A.
xe€D

¥: max SZN(x) =g
XeEA

Then, B € ¥, implying P{B) = P(§F). Also, ¥ & BUFUD, implying P(§) =
P(C)+P(F)+P(EnD). But
EnD = A < sup (s (w)-§2ﬂ(v)) = sup (s

iw-v|<8 ZN lw-v|<&
veA veA

2N(w)*SZN(v)).

implying by the stochastic equicontinuity condition that P{(¥nD) < 7. Next,

from {20), there exists & such that P(sup S, (x) z &) < 7. Noting that

xeD 2N
wi(x}-wz(x) is continuous and negative on D, there exists ND such that for N =z
1/2 )
NO' N (wl(x) - wz(x)) < -8'. Then, for N z NO'
P(¥) = P(max S, (x) = max {S, (x) + Nlla(w (x) - ¢, (x)}} > e+A)
xeD 2N xeD 2N 1 2
s P(max §2N(x) > g+A+3’) < 7.
xeD

Therefore, P(8) = P(¥) = P(6) + 2y. Taking 7y and A small, and using the

right-continuity of distribution functions, this establishes that max S..(x)

X

2N

converges in distribution to S; £ max §m(x).
X€EA
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Assume A = ¢ (x ) - wZ(x ) > 0 for some Xg- Note that max SZN(x) z
X

SZN(xo) + N*®A. Then, given ¥ > 0, (20) implies there exists &’ such that

P(max S, (x) = N/E-5') < 7. D
x

2 *12

The scale of the statistic N“szN is linear homogeneous 1in the scales

of X and X2. Then, trivially, for each € > 0, there are distrlibutions satis-

C *12
S2N

please. Thus, some scaling or conditioning that makes € a function of the

fying the null for which P{N > g) can be made as close to one as we

sample is needed to enable us to identify a least favorable case within the
null that determines the c¢ritical level for the test. Our approach is to
condition on the distribution of the pooled realizations from each pair of
prospects; e.g. Fiz(x) = (Fl(x)+F2[x))/2. When the assumption of generalized

exchangeability 1s satisfied, F is the distribution of. polnts obtalned by

12

drawing a realization from (Xi,le, and then drawing one of the two components
at random. The following theorem establishes an asymptotic least favorable

case under the null.

172120
2N

from Theorem 6. Suppose generalized exchangeability, and let H(Fl(xi),Fz(xz)}

Theorem 7. Suppose the assumptions and the definition S;;' = N

denote the Joint density of (xl,xz). If (Xln'XZn) are second~degree stochas-
tically maximal, then for N sufficiently large,

12+

(25) P(SZN

} ~ H(F

i2*
> | (X, X, ) ~ RIFLF,0) > P(S,0 > el (X, (Fi50Fy5)).

' 2

If, on the other hand, Xl second-degree weakly stochastically dominates Xz,

then for N sufficlently large,

12*

(26) P(SZN > el(X X ) ~ H{Fl,FZ)) = P(SZN > c[{X ) ~ H(F,,.F 2)).

2n 12'

Proof: If F, = F,, then the result is trivial. Suppose F, = F,. From

Theorem 6, the right-hand-side of (25) or (26) is strictly between zero and
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one fﬁr small positive e. Suppose (Xin’XZn} are second-degree stochastically
maximal. The last result in Theorem 6 implies that the left-hand-side of (25)
goes to one. Hence, {25) holds for N large. A corollary is that the
test is consistent. '

Alternately, suppose X1 second-degree weakly stochastically dominates Xz.
Then wi(x) = wzfx}. with equality for x € A. Then the penultimate result in

Theorem 6 implies

12% _ N
P(S,y = €| (X, ,X, ) ~ H(F ,F,))
-3 P(max §w(x} = cltxin,XZn) ~ H{FI'Fz))
XEA
= P(max §_(x) = e[ (X, %, ) ~ H(F ,.F )
xXeA
= Plmax §_(x) = e| (X, ,X, ) ~ H(F ,.F,)),
*
and
12% N
P(s,, = ¢e|(X X, ) ~ H(F,,.F,))
—3 P(max §m(x) = c!{Xln.XZn) ~ H{FIZ‘FZZ))' D

X

In general, the statistic S;N has neither a tractable finite-sample dis-

tribution, nor an asymptotic distribution for which there are convenient com-

putational approximations. Except for special cases, neither does d;N.a
However, we argue that empirical distributions of the statistics S;N and d;N.

calculated in a monte carlo simulation by randomly switching observations from
each period between each palr of distributions Fi and Fj’ yield approximations
to the significance levels of the test statistics under the null hypotheses of

not second-degree or not first-degree stochastically maximal. The steps in

- *
this simulation for SZN and dZN are as follows:
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The empirical distributions in Step 2 used to calculate d

Step 1. Calculate S;N for the observed data; denote this value E;N.

Similarly, let E;N denote the value of d;N for the observed data.

Step 2. Iterate in a series of monte carlc simulations. In each simula-
tion, for each i < j, form 8’ = (q,-q), where q is an N-vector of random
signs. (Interpreting & as indicators of membership, this construction

randomly permutes observations within each perlod between Fi and FZ’ S0

that they can be treated as draws from the pooled distribution F12') Use .

the resulting 8 to compute the expressions (8)-(11). Repeat this for all

1 < j. Then calculate simulated values of the statistics d;N and s;N in

{12) and (13), and count the fractions of these simulated statistics in

the monte carlo simulations that are smaller in magnitude than the cor-

—
oN and SZN. We claim that these fractions

approximate the significance levels of these statistics in tests of not

responding observed values d

first-degree and not second-degree stochastic maximality. Then, a cri-
terion that rejects the null hypothesis when the calculated significance
level is below a nominal level « will vyield a test with actual size near
«. Alternately, the simulated empirical distribution of these statistics
can be used to calculate approximate critical levels for a test of

specified slze.

- -
and s are

2N 2N
1} -1 N
(27) GZN(xi,xj) = (2N) ngl{i(xinsxi&xjnsxj) + i(xjnsxi&xmsxj)}:
the assoclated empirical marginal distributions are both F if one enume-

ij.N’

rated the possible permutations in Step 2, one would obtain the exact distri-

bution of d;N and S;N' conditioned on G'}, and from this the exact signifi~

2N’



" A Robust Test for Stochastic Dominance Page 19

cance levels of 3;& and E;N when the true distributions are given by (27).

The monte carlo procedure that rejects the null hypothesis when the simulated
significance level is below a specified level « such as a = 0.05 has an exact
rejection probability that can be bounded by the following argument:

Let ¢ denote the critlcal level for the test. The right panel in the

figure below shows schematically the cumulative distribution function of s;N

given (27). This distribution will usually have a positive probablility p that
-
2N°

necessary to break ties in case the distribution jJjumps over an assigned sig-

the statistic 1is zero, and be contlnuous for positive s Randomize if

nificance level a. Then, the distribution of significance levels 1-p for
L

random drawings from the distribution of Son

is uniform on [0,1].

The probability E that a value of the statistic with exact significance level
p will yleld a simulated significance level less than « is given by the proba-
bility that a binomially distributed frequency with parameters (p,M) will
exceed l1-a, where M is the number of monte carlo trials. The left panel in
this flgure depicts this probability. Area A for p < 1-a is the probability

of rejection by the monte carlc method when the exact significance level
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calculation would lead to acceptance. Area B is the probabllity of acceptance
by the monte carloc method when the exact calculation would lead to rejection:

Then,

Area A + Area B = Probabllity of Misclassification,

Area A - Area B = Actual significance level - Nominal significance level

Because the variance of the binomial is lower in Area B than in Area A in the
usual testing situation where a < 1/2, one will have Area A > Area B, so that
the actual rejection preobability exceeds the nominal one. One can choose M
sufficiently large to make Area A acceptébly small. To bound Area A, note
first that the frequency {f of acceptance using the simulation when the true
probability is p satisfies Ef = p, E(f—p)2 = p{i-p)/M, and |f-pl s 1. Then,

Bernstein's inequality (Pollard, 1984, Appendix B) implies

(28) P(f-p > 1-a-p) = exp{-H(1~a“p)2L
Then,

1-a
(29} Area A = I P{f-p > 1-a=-pldp

0

1-o

s I eXp(-M(Iwa-p}a}dp = (nM)%2.
0

Therefore, choosing M =z n/(26)° guarantees that Area A will be less than- e.
For example, @ = 0.01, so that the probability of misclassification is less
than 0.01 and the actual rejection probability is less than 0.06, is achieved
when M = 7854.

An alternative to using a fixed number of permutations to accept or
reject the null hypothesis would be to use a (truncated) sequential probabi-
lity ratio test: let 1 = 1,...,r index the trials. Let Wi denote the number

of permutations ylelding a statistic exceeding that observed in the data

through trial i, less l:-«. If on a trial, W _ exceeds a parameter B, terminate

i
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the trials and reject the null hypothesis. Otherwise, at the end of r trials,
accept the null hypothesis. Siegmund (1985} gives the distribution theory for
such methods.

The next theorem establishes that asymptotically as N and the number of
monte carlo iteratlons go to infinity, the actual sizes of the tests approach

their nominal sizes.

Theorem 8. Suppose the assumptions of Theorem 6 hold for each pair of
random varliables Xi and Xj' Suppose the joint distribution of these random
variables satisfies generalized exchangeability. Then, the significance level

for N1/2§;N calculated in monte carlo Steps 1 and 2 approaches the probability

_ 12¢ 1/2=" .
given by (26), P(S,, =N Sonl Ky ¥on) ~ HI )}, as N and the number

Fi2:F1p

of monte carlo iterations approach infinity.

Proof: From Theorem 7, a limiting least favorable case of distributions
satisfying the hypothesis of not second-degree stochastically maximal is that
each palr of prospects Xi and }(‘j have the identical marginal distribution

Fij{x) = {F1(X)+F2(x))/2. Under the assumption of  generalized

exchangeability, the bivariate marginal distribution for prospects 1 and j

satisfies H(Fi(x }.F . (x
n

i 3 jn})

,%. ) and its permutation (x, ,x

Jn Jn

values of the statistic S;N obtained by random permutations of all pairs are

= H(Fj(xjn).Fi(xin)). implying that the pair

(x in} are egually probable. Thus, all

in

equally likely. Thus, the empirical distribution of the realizations of_s2N

2N
in the population of observations generated by random permutations. But samp-

over a sample of independent iterations approximates the distribution of s

ling from this population is equlivalent for a pair of prospects 1,J to samp-
ling from the joint empirical distribution H(FN,ij(xi)’FN,ij(xj)}' Thus, let-
ting the number of monte carlo iterations approach infinity yilelds a probabi-

1ity given by the right-hand-side of (25) conditioning on this joint empirical
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distribution. Then, letting N approach infinity, the joint empirical distri-
bution converges to the population Jjoint distribution H(Fij‘Fﬁj)‘ and the
probability on the right-hand-side of {25) converges to the significance level

of the test., o

4. A MONTE CARLO STUDY
To assess the usefulness of the statistics discussed in this paper, we
start with an extremely simple case where the finite-sample distributions are
easily calculated. This will shed light on the finite-sample accuracy of the
limiting least favorable case construction, and on the power of the tests.
‘Consider 3-point distributions with probability mass p at x = 0, mass r

at x = 1, and mass 1-r-p at x = a ¢ (0,1}). Then,

(30) F{x) = p-1{0=x<a) + (1-r)-1(asx<1) + 1(x=1)
and
(31) Ithy)dy = p-max{x,0) + {1-r-p)-max(x-a,0) + r-max(x-1,0).

-0
The following flgure glves the cases of dominance and maximality, for X1 and

Xz with probabilities (pl,rl) and {pz,rz), and common support {0,a,1l}.
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Py"P;
Fz 1-dom F1 Fz 2-dom F1
FZ 2-dom F1 FI'FZ 1-maximal slope = (1-a)/a

@ @ Fl » Fz Z-maximal

Fl.Fz 2-maximal @ @ @

F1 2~dom FZ Fl 1-dom F2

FI’FZ 1-maximal F1 2-dom F2

Suppose X1 and X2 independent, with N independent draws from each den-

sity. Let (kl.li.mi} denote cell counts at (0,a,1) feor Xi, These counts are

multinomially distributed. For N > 40 and (p,r) € [.15,.4], the multinomial

is well approximated by

{ki~Npi)/¢ﬁ . p,(1-p,)  -p;r,
{32) ~ N(0,X) with
(mi-Nri}/fﬁ -PyTy r,(1-r,)

4
#

The figure above with ki/N in place of pi and mi/N in place of T defines

regions A-F corresponding to cases for calculation of the test statistics:

A. k. ~ k. z20andm, - n. =0 -~

1 2 1 2
*12 - _ 21 _ s
dZN = max(k1 kz.mz ml)/N dZN = 0 dZN = 0
*12 _ _ _ _ *12 _ *1z2 _
S, = {(k1 kz)a+(m2 mi){l a)l/N Son = 0 Son = 8]

B. kl - k2 z 0 and 0 = mg - m, = (kl - kz)a/(l-a) ——
a2 ook k)N A2l = (mo-m)/N do. = min(k,-k,,m -m )/N
2N 1 72 2N 1 72 2N 1 72771 72
*i2 _ *21 _ b
Son {kl kz)a/N Son = 0 Son T o
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C.k, ~k.z2z0andm, -m, (k1 - kzla/{l-a) -

1 2 1 2
*12 _ _ 21 _ _ . - _ _

dZN = (k1 kz}/N d2N = (m1 mz)/N dZN min(k1 k2.m1 mZJ/N
12 _ ka2 = ((ko-k. Jat(m,-m.)(1-a) /N

Son T YR 2N 2751 17 %2
[ ]

S,y = min{(ki-kz}a.(kzﬂkz)a+(m1~m2)(1—a))/N

Regions A, B, C, are mirrored by regions D, E, F, respectively, with the sub-

scripts reversed.

Define U = {{kl—kz)/Vﬁ - Vﬁ(pl—pz)lm1 and V = [(ml-m23/¢ﬁ -
_ _ _ 1/2 - _ _
Vﬁ{r1~r2} - poZU}/wa. where ¢, = Epl(l p1)+p2(1 pz)l . 0y Er1(1 r1)+r2(1 rZ)
2,172
p = -(p1r1+p2r2}/claz. and o, = wz[i-p | R Then U and V|U are

approximately standard normal. The distributions then satisfy

*i2 _ - < _ - e _
P(VﬁdZN >e)=1-PU = [e Vﬁ(pi pz}J/U1 & Vz [-¢ Vﬁ(rl rz)I/ca)

=1 - I

21 - - < . _ . -
P(VﬁdZN >g)=1~-PWU = [¢ Vﬁtpz pl)]/ol & V2 [-¢ V§(r2 rl)]/cs)

=1 - I

P(Vﬁdzn > g)

le-¥N(p,-p,)1/c
17271 $(u)(([e+VN(r, -1, )+po,ul /o, )du

-0

le-VN(p,~p., ) 1/¢
27170 (I (([e+VA(r,=r J+po,ul /o )du

-

P(U < i-c-fﬁ(pl—pz}]/ai & V < {*e*Vﬁ(rl—rz)]/GB}

+ PU > [smfﬁ(pl—pz)]/c &V > {c—Vﬁ(rl—rz)]/c3)

1

it o

[-e-\f'ﬁ{pl-pzll/cr1
J_ . ¢(u}®{([-c—Vﬁ(rl—rz)-pvzu]/as)du
+m
+ (WS (({-e+¥N(r -r,)+po.ul/c.)du.
f[e-%ﬁ(pl-pz)}/wl 1°2 2 3

Define random variables

W= {(ki-kz)a/Vﬁ - fﬁ(pi-pzli/rz
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and
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Y = [(kl-kz}a/fﬁ - (mlnmz)(l—a}/fﬁ - Vﬁ(p1~p2)a + Vﬁ(rl-rz)(l—a) - AT M/,

linear transformations of U and V with 11 = aal,

(a2 Y- _ 172
T, = [a oy * (1-a) o, 2a(1 a}civzp] R
_ 22 _ -
A= (a oy a(l a)polvzlftlrz.
2,172
and T, = tzil-h 1°7°°. Then, the distributions of the

no second-degree maximality satisfy

P(Vﬁsééz > g)

it
[
1

a le-¥N(p,-p,)1/T
=1 - I 172 1 ¢lu)-

-

statistics

P(W = [e-w/ﬁ(pl—pz}a}/‘r1 &Y = {e~¢§([pl-pz)a+¢ﬁ(r1-r2}(l-a)}/ta)

-@((IeﬁVﬁ(pl-pz)a + Vﬁ{rl—rz)(l—a) - Atzu]/rs)du

)
p—
e
wn
LS ]
Zw

-
v

£)

1§
(=)
1

{e-¥N{p,-p,) 1/t
=1 - I 21 1 ¢(u)-

-

P(W = [e—#ﬁ(pz—pl)a}/zl &Y = Ec—fﬁ((pz—pl)a+¢ﬁ(r2—r1}(1-a)}/t3J

for

-¢(([c-¢ﬁ(p2~p1)a + Vﬁ(r2~r1)(l—a) - Arzu]/ta)duP{Vﬁs;N< €)

P(Vﬁs;N > g)

= P(W < {—E—Vﬁ{pl-pz)a]/Tl &Y > Ic~¢ﬁ((pl—pz)a+¢ﬁ(r1-r2)(1-a)]/13)

+ P(W > [e-fﬁ(pl—pz)a}/r1 &Y < {—e-Vﬁ((pl-pz)a+fﬁ(r1*r2}(i-a)]/ta)

1l &

J [“&:ﬂ-\/ﬁ(pz-pl}]/r1 .

-0

O ([~ + Vﬁ(pz—pl)a - Vﬁ{rz-rl)(l-a) + ArzuI/tB)du



Page 26 Klecan, McFadden, and McFadden

[~-e-¥N(p,-p, }]1/T
+ 271 p-

R

&(([~e + Vﬁ(pz*pl)a - Vﬁ(rz-rl)(lﬂa) + AfzuI/ta)du.

Table 1 gives the results of calculating these expressions in varlous cases.
The first experiment considers a case where x2 strictly second-degree
dominates Xi. but the prospects are first-degree maximal. The table glves

the probabilities at various sample sizes that tests will reject the null

]
hypotheses that d‘la, d.21,d‘. 5-12, 5'21, or s are zero. The first four

null hypotheses are false in this case, and the last two are true. The sta-

E 3
tistics d. 12, a-2!

oN oN 2re the Smirnov statistics, and d' is the Kolmogorov-

2N
Smirnov statistic. Table 1 gives their power against this case. Note that

relatively large sample sizes are needed In this case to achieve Type I and

Type 11 error probabllitles of comparable magnitude, 1illustrating the rela-

2N

has an actual size that substantially exceeds its nominal slze for samples

tively poor power characteristics of these tests. The second-degree test s

below 800. Thus, the pooled distribution yielding the limiting least favor-
able case in Theorem 7 is a poor approximation for smaller samples, and use of
the procedure for such smaller samples is not recommended.

Experiment 2 considers a case where XZ first-degree dominates XI’ and
therefore also second-degree dominates X}' The first and second degree sta-
tistics are comparable in power characterlstics, and do not show any large
bias in nominal size for small samples.

Experiﬁent 3 considers a case where X1 and Xz are second-degree maximal,
and hence first-degree maximal. The power of the second-degree test against
this case is a little lower than the power of the first-degree test.

Taken together, the experiments suggest that when X1 and X2 are either

second-degree maximal, or one first-degree dominates the other, so that the
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first-degree and second-degree tests should either both accept or both re-
ject, the power characteristics of the tests are comparable. In the case
where one second-degree dominates the other, but they are first-degree max-
imal, large samples appear to be required to achieve actual sizes near the
nominal size.

Our final monte carlo experiments utilize normally dlstributed random

variables that are correlated across prospects and over time. Suppose Xl,x2
satisfy
(33) Xen = {1-7&)Iak+8k(\/520n+\/1-pzkn)] X g

where the an are standard normal random variables with mean zero and variance

one that are independent across k and n; and o Bk. p, A are parameters

- _ a2
satisfying p € [0,1) and A € (-1,1}. Then, Ean = o, Var{xkn) = Bk’ and

Corr(an,XJm) = phinmml, and the processes are o-mixing and generallzed
exchangeable.
Table 2 gives the results of the experiments. In each experiment, the

samples are of size 50, with 1000 permutations used to determine significance.
Each experiment is repeated 100 times. Experiment 1 considers a case in which
X second-degree dominates Y, but the two distributions are first-degree
maximal, so that we expect both the one-sided and two-sided first-degree tests
to reject, as well as the one-sided second-degree test for Y dominating X.
The remaining second-degree tests are expected to accept. The first panel in
the table gilves the averages over the 100 trials of the statistics observed in
the sample, the critical levels for 10, 5 and one percent tests, and the
significance levels of the sample statistics. The last entry gives the per-
centage of the trials that reject at the 10 percent significance level. Stan-
dard errors for the monte carlo experiment are given in parentheses. One
finds that for these contrasting densities, the test rejlects the false nulls

with reasonably high power, even for the small sample size. The second-degree
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tests reject the hypothesis that Y second-degree dominates X with high power;
and accept the remaining hypotheses with low type 1 errors.

Experiment 2 has Y first-degree dominating X, and hence also second-
degree dominating X. Here, the tests reject first or second degree dominance
of Y by X with reasonable power, and in the remalning tests accept the null
hypotheses as expected. Experiment 3 has X and Y second-degree maximal, so
that they are also first~degreg maximal. In thls case, all the tests are.
expected to reject. We find this to be the case, although the tests for Y
dominating X have only moderate power.

Figures 1 and 2 illustrate the cumulative distribution functions of the
first and second-degree two-sided test statistics for a sample of size N = 800
from each of the densities N(0,1}) and N(0.5,2). These statistics are not
normalized by ¥N. There is a substantial probability that the second-degree
statistic has value zero; this occurs because the slowly varying lntegrated
empirical process has a positive probability of univalence over its domain.

Further experiments, not reported, find that as in the case of the three-
point distribution, the actual sizes of the tests may exceed nominal sizes
when sample size is small and the distributions are close to the boundary of
the null., For example, the case X ~ N(0,1), Y ~ N{(-0.5,16}, and N = 50 has X
second-degree dominating Y, so that one expects acceptance of the null in the
two-sided test. However, the actual rejection rate in a 10 percent signifi-
cance level test is 13 percent, slightly larger than the nominal significance

level. This suggests caution in applying the tests to small sample sizes.

5. AN EMPIRICAL APPLICATION
We apply the tests for not first or second degree maximal to data on
daily returns of closed-end mutual funds. These funds hold relatively diver-

sified portfolios of stocks, and are often the sole stock market purchase of
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consumers. Unless these stocks are held to diversify risk in a broader port-
follo that includes non-stock assets, we would expect rational consumers to
avold dominated funds. Then, successfully marketed fpnds should be maximal.

We study five funds, observed over 4685 trading days from June 15, 1971
through December 29, 1989. Table 3 1lists the funds and their sallent
characteristics. Table 4 gives the means and variances of the daily returns
from these funds: ASA 1s a high-mean, high-variance fund, JHI is a low-mean,
low variance fund, and the remainder are in between. Table 5 gives the
within-period correlations of the funds; these are small, but there does
appear to be some contemporaneous correlation between TY and the remaining
funds. Tables 6 gives vector autoregressions of the returns on a trend and on
five lags of the returns on these five funds. There appears to be some serial
correlation at low lags, contradicting some versions of the efficient markets
hypothesis. Table 7 gives autoregressions for each return on 25 lags. There
is 1ittle evidence of correlations at long lags, although TY has some
correlation at lags 22 and 23, approximately one trading month. There is no
significant trend in elther Table 6 or Table 7. These results are at least
not obviocusly inconsistent with the maintained assumptions that the series are
stationary and a-mixing.

Table 8 gives the results of apélying the stochastic dominance tests to
each pair of funds. First degree maximality is supported in all the compar-
isons. Second degree dominance of GAM over NGS and of TY over NGS is accepted
at the 10 percent level, the significance level of the statistic is between 10
percent and 1 percent for GAM versus TY, JHI vs NGS, and JHI vs 1Y, and
second-degree dominance is rejected for the remaining pairs. Of course, these
pair-wise tests are not independent.

In summary, these results suggest that TY may dominate all the remaining

general funds, and that NGS may be dominated by all the general funds. ASA is
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maximal relative to all the general funds. This in turn suggests that
consumers who hold only NGS in their asset portfolios are elther not von
Neumann~Morgenstern utility maximizers, or are using NGS to provide diversifi-
cation against non-stock-market assets that is not attainable using the domi-
nating TY fund. Used as a prescriptive tool, the tests could be employed by
consumers to screen dominated funds such as NGS out of their portfollos unless
holding them can be justified on grounds of diversification, or by portfolio
managers to evaluate the relative attractiveness of alternative investment

strategles.
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FOOTNOTES

1. We are indebted to Robert Hall, Lars Hansen, Donald Katzner, Deborah Nolan;
Rulon Pope, Danny Quah, Paul Ruud, Ken Singleton, and Bob Young for useful

discusslions, but are solely responsible for errors.

2. Prospects Xl and XZ are distinct if Pr(xi = Xz} < 1. Note that X1 and X2
may be distinct, but have common marginal distributions Fl = Fz.

3. The distributions Fk will be conditioned on an information set ¥ in some

applications, and stochastic dominance will be defined conditional on ¥.

4. The boundedness of the domain of returns is not required for the definition
of test statistics, or computation of the statistics and their significance
levels in finite samples, but compactness 1s used In establishing asymptotic

properties of the tests.

3. A process Xn' n=1,2,..., 1s stationary if the joint distributlion of the
Xn for j = n = 1 equals the joint distribution of the Xn for j+k = n = i+k,

for any k > 0 and 0 = j = 1.

6. A process Xn, n=1,2,... is a-mixing if there exists a sequence «{j) such

that lim «(j) = O and a{j) = |P(BnA)-P(B)P(A)| for each event A regarding the
Joen

behavior of the process up to time n and each event B regarding the behavior

of the process after time n+j.

7. In the case of independent prospects, and independent realizations across

periods, the covarlance function for w = v is
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v 2
plv,w) =J' (w=y)2(F, (dy)+F, (dy))

- (v-w)ﬁwl{w)+w2(w)) - Wl(w)wl(v) - wz(w)wz(v).

8. In the special case K = 2, X1 and XZ statistically independent, and obser-
vations statistically independent across perlods, d;N is the classical two-
sample Kolmogorov-Smirnov statistic. If the two prospects have the same dis-
tribution, then this statistic has an analytic exact finlte sample distribu-
tion (Durbin, 1973, p. 43) and a large sample approximation (Durbin, 1973, p.

22,44):

. oy L VI R -(25-1)%n°/8d°
Prid,, = d|F,=F,) ~ == nge ,

As in the general case, we argue that this is the limiting least favorable
case of those satisfying the null hypothesis, and hence that the distribution
above can be used to approximate significance levels.

Since the process §2N(w) from Theorem 6 converges in distribution to a
Gaussian process, results on the tail behavior of Gaussian processes provide a
-
2N’
Samorodnitsky (1987) find that under general regularity conditions tail proba-

guide to approximations to the limiting distribution of s Adler and
bilities P(s;N > 5) for the suprema of standard Gaussian processes have bounds
for large s of the form Cs“exp(-sz/202}, where ¢- is the maximum variance of
the process. For the case of prospects that are independent of each other and
across perioés. McFadden (1989) established by a direct chaining argument the
asymptotic large-s bounds O.ZS'exp(-szfnoﬁ) < P(s;N > s) < 3-exp(~52/802).
These results suggest that a good empirical approximation to the tail probabi-

lity can be obtained using the functional form P(s;N > s) = Csaexp(vﬁszL
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APPENDIX A. A GAUSS PROGRAM TO CALCULATE THE STOCHASTIC DOMINANCE STATISTICS

SD2 is a GAUSS procedure that calculates the first and second degree
stochastic dominance statistics and thelr significance levels for two
prospects. It takes as inputs the vectors of returns x and y for the two
prospects, and the number of permutations r to be used to approximate the
distribution of the statistic. Its ocutput is a 5 by 6 array:

Column Description

1 First-degree statistic, one-sided for x 1-dom y

2 First-degree statistic, one-sided for y l-dom x

3 First-degree statistic, two-sided for not l-maximal

4 Second-degree statistic, one-slided for x 2-dom y

<1 Second-degree statistic, one-sided for y 2-dom x

6 Second-degree statistic, two-sided for not 2Z2-maximal
Row

1 Statistic calculated from observations

2 Approximate 10 percent critical level

3 Approximate 5 percent critical level

4 Approximate 1 percent critical level

S Approximate significance level of observed statistic

To use the comparative advantage of GAUSS in matrix over recursive operations,
this program calculates the first and second degree processes as vectors, and
then forms the statistics from these vectors, rather than using a recursive
loop. In a FORTRAN version of this procedure, it is computationally advan-
tageous to reverse this, and do all calculations in a single loop through the
data, as described in the text.

proc 1 = sd2(x,y.T);
local z,n,n2,1,rr,zz,f,d,s,ss,sss,rrr,ri,ff,i,p,r10,r05,r01;

@preliminaries@

z = XY, @stack data@

n = rowsi{x); @number of observations@

n2 = rows{z);

1 = sortind(z); @index of data in ascending order@
rr = round(20000/n}); @divide repetitions into chunks®

@that fit the computer®@
{{z[11:100000)~(~10000012[11)); @vector of increments in z@

zZ

@calculation of SD statistics for the observations@

f = ones{(n,1);

f=fi(~-f); @indicator for observed membership@

d = cumsumc(f{l,1]); @first-degree empirical process@

s = cumsumc({0:d).%*2zz); @second-degree empirical process@
@zeros take care of tails of zz@

d = maxc(d)~maxc(-d); @the statistics@
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d = d~minc(d’ };

s = maxc(s)~maxc(-s};

s = s~minc(s’};

s = d~s;

558 = S§;
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@calculation of SD statistics for random permutations@

rrr = r;
do while rrr > 0;

ri = minc(rrirrrl;
rrr = rrr-ri;
ff = 2*{rndul(n,ri) .> 0.5)-1;
ff = ffi(-ff);
d = cumsumc(ffll,.]1);
s = (zeros{1,ri)id}.*(zz%ones(1,ri));
s = cumsumc(s);
d = maxc(d)~maxc(-d);
d = d~minc(d');
s = maxc{s)~maxc{-5);
s = s~minc(s’');
ss = ssi(d~s);
endo;

@summary statistics@

ss = ssl2:r+1,.1;
i =0;
do while 1 < 6;
i = 1+1;
ss[.,1] = sortc(ss[.,i],1);
endo;

meanc(sss .< ss);

round{.90%r);

round(.95%r);

round(.99%r);

558 sssissri0,.)!ssir0s,.liss[r0l,.];
sss = sss5i{p’);

retp(sss);

endp;

p=
rlo
ros
rO1

it 1t B HH

@loop until all chunks are done@

@random permutation of membership@
@first-degree empirical process@
@second-degree empirical process@
@column vectors of statistics@

@statistics from permutations@

@sort each column of ss@

@significance level calculation@
@10 percent critical level@
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APPENDIX B. A FORTRAN PROGRAM TO CALCULATE THE STOCHASTIC DOMINANCE STATISTICS

The following program calculates the first and second degree statistics
for tests that a pair of prospects are not stochastically maximal, and using
random permutation of the ownership of reallzations within each period,

calculates the significance jevel of the statistics.

C li!tlt!!ll!lill.ll START OF SmM PROCEDURE l.ll!i.ﬂl.iﬁil.!'i!llll

c

c The FORTRAN subroutine given below considers the hypothesis that a

c distribution G (weakly) stochastically dominates a distribution F,

¢ calculates test statistics for first and second degree stochastic

¢ dominance, and calculates the significance levels of these values,

¢ The program uses the following variables and parameters:

c

c n The size of the sample from each of the distributions F and G,<4001.
¢ nZz = n*2

c z A vector containing the n observations from F, followed by the

c n observations from G, so that 2(1),z(1+n) are the pair of

o) observations from period i, for i=l,...n. The length of z is n2.
¢ sd1 The test statistic for first-degree stochastic dominance.

c pl The probability of a statistic larger than sdi if the null holds.
c gl The probabllity of a statistic smaller than sdl if the null holds.
c sd? The test statistic for second-degree stochastlic dominance.

c p2 The probability of a statistic larger than sd2 if the null holds.
c g2 The probabllity of a statistic smaller than sd2 if the null holds,
c

c randu A function that returns a uniform pseudo-random number.

c irbit2 A function that returns a pseudo-random .true. or .false.

c indexx A function that indexes the components of a vector in

c ascending order.

¢ nit A parameter controlling the number of random permutations

o] used to calculate the significance level,

c nit = multiple of 1000, 999< nit < 8001

c

subroutine sdom(n,n2,nit,z,sd1,pl,ql,sd2,p2,q2, iseed)
real z,sd1,sd2,pl,p2,t1,t2,q91,q2

integer n,n2,nit,it,1,5,1,m

logical d

dimension 1(8000),m(4000),d(8000),z(8000)
common/ldata/ d,/ndata/ l,m

the internal vectors dimensioned and defined: 1(n2) is the vector

of indices of the elements of z in ascending order; m(n) is the vector
of indices of the elements of 1 <= n; d{n2) is the vector of indicators
that are .true. for a point from G and .false. for a peint from F.

parameter nit is the number of iterations to approximate significance
level. A value of 5000 permits a test at the nominal 0.05 level with
a true size between .045 and .055, and at most prob. .01 of misclassif.
The precision of other nit values can be calculated from the normal

o000 00000
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approximation to the binomial distribution.

o]

n2=n+n
rnit=1./float(nit)
¢ index the data in ascending order, and define d and m
call indexx(n,n2,z)
J=1
do 10 i=1,n2
if{(1{(i).le.n} then
m(j)=1
3=j+1
endif
10 continue

¢ compute the test statistics
call sdf(n,n2,z,sdl,sd2)
c
c
¢ for nit iterations, randomly permute the data between F and G in each
¢ period, and count the number of ocutcomes exceeding the values of
¢ the statistics from the original data
c
pl=0.
p2=0.
gq1=0.
q2=0,
c
do 100 i=1,nit
call rperm(n,n2, iseed)
call sdf(n,n2,z,t1,t2)
c
¢ accumulate statistics
if(tl.gt.sdl) pi=pl+l.
if(t1.1t.sdl) gl=ql+l.
if{t2.gt.sd2) p2=p2+1.
if(t2.1t.sd2) g2=q2+1.
c
100 continue
c
¢ compute the final statistics and signiflcance levels
c
pi=pl*rnit
p2=p2*rnit
gl=ql*rnit
q2=gq2*rnit
sdl=sdi®*sqrt(rnit)
sd2=sd2*sqrt{rnit)
c
return
end

subroutine to calculate the test statistics sdl and sd2
note: the returned statistics are not normalized by
dividing by sqrt{(n)

HODOD000
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subroutine sdf(n,n2,z,sdl,sd2)
real z,sdl,sd2,dd,ss,dpos,dneg, spos, sheg
integer n,n2,i,1,m
logical d
dimension 1(8000),m{4000),d({(8000),z(8000)
common/ldata/ d,/ndata/ 1,m
¢ 1initlalizations
c
dpos=0.
dneg=0.
spos=0.
sneg=0. ‘
1£f(d(1)) then
dd=1,
else
dd=-1.
endif
ss=0.
¢ loop through data
do 10 1=2,n2
c
ss=ss+dd*(z(1(1))-z{1(i~1)})
if{d(i)) then
dd=dd+1.
else
dd=dd~-1,
endif
if (dd.gt.dpos) dpos=dd
1f{dd.lt.dneg) dneg=dd
if{ss.gt.spos) spos=ss
1f(ss.1t.sneg) sneg=ss

10 continue
sdl=-dneg
sd2=-sheg
if(sdl.gt.dpos} sdi=dpos
if (sd2.gt.spos) sd2=spos
return
end

Subroutine to randomly permute the values d for each pair of observations.

0000

subroutine rperm(n,nz, iseed)
integer n,n2,J.,k,1,m

logical irbit2,d

dimension 1(8000),m(4000]),d(8000)
common/ldata/ d,/ndata/ 1,m

do 10 j=1,n
$f(irbit2(iseed)) then
d(m(})) = .not.d(m(j))
do 15 k=1,n2
if (1(k).eq.1{m{(J))+n) d4{k) = .not.d{k)
15 continue
endif
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OO0 0000

OO0 0000

10 contlinue
return
end

function to return random .true. or .false., a modification of Press et.
al, Numerical Reclipes, p. 213. The C language bit-modifying functions
IAND (bitwise AND), IOR (bitwise OR), NOT (bitwise complement),
ISHFT(J,k) (leftshift § by k bits), IEOR (bitwise exclusive OR} are used.

logical function irbit2(iseed)

parameter (ib1=1,1b232,ib5=16.1b18=131072,mask=ib1+ib2+1b5)

tf(iand(iseed, ib18).ne.0) then
iseed=ior{ishft(ieor(iseed,mask),1),ibl)
irbit2=.true. '

else
iseed=1and(ishft{iseed,1),nor(ibl))
irbit2=.false.

endif

return

end

subroutine to sort in place, adapted from Numerical Recipes, p. 253
z contains the input vector of length n2, 1 contains the indices of
the elements of z, in ascending order. d contains .true. if the
corresponding element of 1 exceeds n, .false. otherwise.

subroutine indexx(n,n2,z)
real z,q
integer n,n2, j.k,ir, 1t,mm,i,1,m
logical d
dimension d(8000),1(8000),m (4000}, z(8000)
common /ldata/ d,/ndata/ l,m
do 11 jJ=1,n2
1(3)=]
11 continue
k=n+1
ir=n2
10 continue
if(k.gt.1) then
k=k-1
1t=1(k)
g=z{1t)
else
1t=1(ir)
q=z(1lt)
1(ir)=1(1)
ir=ir-1
if(ir.eq.1) then
1(1)=1t
de 5 mm=1,n2
if{i{mm).gt.n) then
d{mm) = .true.
else
d{mm) = .false.
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endif
5 continue
return
endif
endif
i=k
J=k+k
20  if(j.le.ir) then
1f(J.1t.ir) then
$F(z(1(3)). 1t 2(1(3+1))) J=J+1
endif
if{q.1t.z(1(J)}) then
1(1)=1())
i=]
J=3+J
else
J=ir+l
endif
go to 20
endif
1(i)=1t
go to 10
c return
end
c
¢ The following C-language functions perform elementary bit operations
c
int nor_(ia)
int *ia ;
{ return{~*ial;
}
c
int iand_(1ia,ib)
int *ia; Int *ib ;
{ return{*ia & *ib);
}
c
int ior_(ia,ib]
int *ia, *ib;
{ return (*iai¥ib);
}

c

int ieor_(ia,1ib)

int "ia, *ib ;

{ return(*ia~*ib);
}

c

int ishft_(ia,k)

int *ia, *k ;

{ return{®*ia<<*k) ;

}
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TABLE 1. POWER OF TESTS FOR STOCHASTIC DOMINANCE

Experiment 1: XZ 2-dom Xl and Xi.XZ 1-maximal

P = .3 r, = .3 P, = .2 r, .25

Probability of Rejecting the Null that the
Assoclated Population Quantity is Zero

Nominal Size 10%

*i2 *21 . *12 *21 .
Sample Size dZN dZN dZN SoN SoN Son
50 32.1% 15.5%  33.6%  22.1% 5.2% 18.1%
ioo 50.2% 21.6%4 50.2% 33.5% 3.9% 20.6%
200 75.3% 32.3% 69.5% 56.6% 2.5% 19.5%
400 95.2% 50.1% 85.5% 86.5% 1.3% 13.7%
800 100.0% T4.5% 93.5% 99, 5% 0.6% 6.6%
1600 100. 0% 94. 4% 99, 3% 100.0% 0.3% 1.8%
3200 100.0% 99.8% 99, 7% 100.0% 0.0% 0.2%
Nominal Size §5%
*12 *21 . *12 21 L]
Sample Size dZN d2N dZN SZN SZN s2N
50 34.5% 16.1% 23.9% 22.0% 5.04 12.6%
100 54.8% 22.8% 39.8% 34.6% 3.6% 15.9%
200 B1.7% 34.7% 60.9% 63.7% 2.3% 16.2%
400 99, 0% 54.5% 80.3% 100.0% 1.2% 13.7%
BQO 100.0% 80.6% 93.5% 100.0% 0.5% 5.5%
1600 100.0% 98, 2% 99. 0% 100.0% 0.3% 1.4%
3200 100. 0% 100.0% 99, 7% 100.0% 0.0% 0.2%
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Experiment 2: X2 2-dom and 1-dom Xl
Py = .3 r, = .25 Py = .2 r, = .3
Probability of Rejecting the Null that the
Assoclated Population Quantity is Zero

Nominal Size 104

*12 *21 d *12 .21 -
Sample Size dZN d2N dZN Son SoN SoN
s0 38.9% 2.0% 8.6% 40.6% 1.2% 5.6%
100 56.7% 1.2% 7.1% 58.14 0.5% 3.1%
200 79.5% 0.6% 4.5% 79.9% 0.3% 0.9%
400 S96.2% 0.4% 1.8% 96, 0% 0.0% 0.1%
800 100.0% 0.3% 0.3% 99.9% 0.0% 0.0%
1600 100.0% 0.0% D.0% 100.0% 0.0% 0.0%
3200 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%

Nominal Size 5%

*12 *21 . 12 .21 .

Sample Size dZN dZN dZN Son SoN Son
50 42.0% 1.7% 4.7% 44.3% 1.0% 2.8%

160 62.1% 1.1% 4.1% 64.3% 0.5% 1.6%

200 86.3% 0.6% 2. 7% 87.9% 0.3% 0.9%

400 100.0% 0.0% 1.0% 100.0% 0.0% C.1%

800 100. 0% 0.0% 0.0% 100.0% 0.0% 0.0%

1600 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%

3200 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%
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Experiment 3: XI,XZ 2-maximal and i-maximal
P, = .3 ry = .3 P, = .25 r, = .2
Probability of Rejecting the Null that the
Associated Population Quantity is Zero

Nominal Size 10%

*12 21 . *12 21 .
Sample Size dZN d2N d2N sZN 52N s2N
50 15.5% 32.1% 33.6% B.2% 17.1% 26.6%
100 21.5% 50.2% 50.1% 10.3% 20.9% 38.7T4
200 32.2% 75.3% 69.4Y% 16.3% 27.1%4 55.1%
400 50.1% 95.0% 85.4% 29.9% 37.3% 73.0%
800 T4.6% 99.9% 95.6% 55.1% 53.2% BB.0O%
1600 94.5% 100.0% 99. 4% 85.54% T4.3% 96. 6%

3200 100.0% 100.0% 99.7%4 100.0% 98.7T% 99. 4%

Nominal Size 5%

*12 *21 . *:12 21 .
Sample Size d2N dZN d2N Son SHN SoN
50 16.2% 34.5% 23.9% T.1% 17.9% 19.1%
100 22.8% 54.8% 39.7% 8.8% 22.2% 30.84
200 34.7% 81.6% 60.8% 14.8% 29.3% 48.0%
400 54.6% 98.9% 80.2% 30.3% 40.9% 68.0%
800 80.6%  100.0% 93.5% 62.3% 59. 1% 85.5%
1600 98.4%  100.0% 99.1%  100.0% 82.1% 95.8%

3200 100.0%  100.0% 99.74%  100.0% 98. 7% 99. 3%
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TABLE 2. MONTE CARLO SI1Z2E AND POWER CALCULATIONS, NORMAL PROSPECTS
Sample Size N = 50, Intra-period Correlation p = 0.1, Autocorrelation A = 0.1,

Monte Carleo permutations R = 1000, Experimental trials K = 100

Experiment 1: X second-degree dominates Y, but X,Y first-degree maximal

X ~ N(0,1) and ¥ ~ N(-1,16)

First-Degree X 1-Dom Y? Y 1-Dom X? X,Y not 1-Maximal?
Observation 11.580 ( 0.332 ) 22.020 ( 0.357 ) 11.500 ( 0.316 }
10% critical level 10.410 { 0.055 ) 10.420 ( 0.051 ) 5.980 ( 0.014 )
5% critical level 11.910 ( 0.060 ) 11.930 ( 0.062 ) 6.760 ( 0.043 )
1% critical level 14.640 ( 0.082 ) 14.740 { 0.088 ) 8.100 ( 0.044 )
Significance level 0.097 ( 0.013 ) 0.000 ( 0.000 ) 0.011 ( 0.005 )
Percent rejections 0.570 ( 0.050 ) 1.000 ( 0.000 ) 0.960 { 0.020 )
in 10% test
Second-Degree X 2-Dom Y7 Y 2-Dom X7 X.Y not 2-Maximal?
Observation 0.187 ( 0.136 ) 87.026 { 1.929 ) 0.187 ( 0.136 )
10% critical level 36.862 ( 0.400 ) 36.874 { 0.416 ) 5.638 { 0.0%4 )
5% critical level 45.812 ( 0.513 ) 45.681 ( 0.502 ) 7.633 ( 0.117 )
1% critical level 62.230 { 0.705 ) 62.221 ( 0.659 ) 11.423 ( 0.177 )
Significance level 0.744 ( 0.005 ) 0.002 { 0.001 ) 0.491 ( 0.008 )
Percent rejections 0.000 ( 0.000 } 1.000 ( 0.000 } 6.620 { 0.014 )

in 10% test

Experiment 2: Y first-degree dominates X ( = Y second-degree dominates X)

X ~ N{D,16) and Y ~ N{(1,16)

First-Degree X 1-Dom Y7 Y 1-Dom X7 X,Y not 1-Maximal?
Observation 9.960 { 0.383 ) 2.630 ( 0.232 ) 2.430 ( 0.204 )
10% critical level 9.970 { 0.043 } 10.000 ( 0.047 ) 5.650 {( 0.048 )
54 critical level 11.490 { 0.061 ) 11.470 ( 0.066 ) 6.210 ( 0.041 )
1% critical level 14.030 { 0.089 ) 14.070 ( 0.084 ) 7.540 ( 0.050 )
Significance level 0.169 ( 0.019 ) 0.746 ( 0.024 ) 0.588 ( 0.033 )
Percent rejections 0.430 ( 0.050 ) 0.000 ( 0.000 ) 0.060 ( 0.024 )
in 10%4 test
Second-Degree X 2-Dom Y7 Y 2-Dom X7 X,Y not 2-Maximal?
Observation 51.304 ( 3.389 ) 3.437 { 0.640 ) 1.718 ( 0.295 )
10% critical level 46.710 ( 0.402 ) 46.225 ( 0.424 ) 7.230 ( 0.110 )
5% critical level 58.498 ( 0.513 )} ©58.050 ( 0.511 ) 9.582 { 0.137 )
1% critical level 80.261 ( 0.783 ) 79.465 ( 0.800 ) 14.256 ( 0.195 }
Significance level 0.187 ( 0.022 ) 0.669 ( 0.014 ) 0.420 ( 0.017 )
Percent rejections 0.510 ( 0.050 ) 0.000 ( 0.000 ) 0.060 ( 0.024 )

in 10% test
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Experiment 3: X,Y second-degree maximal ( » first-degree maximal)

X ~ N(O,1) and ¥ ~ N{1,16)

First-Degree X 1-Dom Y? Y 1-Dom X? X,Y not 1-Maximal?
Observation 21.820 ( 0.386 ) 11.320 ( 0.310 ) 11.160 ( 0.286 )
10% critical level 10.470 ( 0.050 ) 10.420 ( 0.055 } 5.980 { 0.014 )
5% critical level 11.880 ( 0.057 ) 11.930 ( 0.055 } 6.780 ( 0.041 )
1% critical level 14,520 ( 0.076 )} 14.720 ( 0.085 ) 8.110 ( 0.046 )
Significance level 0.001 ( 0.003 )} 0.101 ( 0.012 ) 0.009 ( 0.004 )
Percent rejections 1.000 { 0.000 ) 0.550 ( 0.050 ) 0.950 ( 0.022 )
in 104 test
Second~-Degree X 2-Dom Y? Y 2-Dom X? X,Y not Z2-Maximal?
Observation 53.449 ( 2.702 ) 32.675 ( 1.174 ) 25.532 ( 1.048 )
10% critical level 35.666 ( 0.354 ) 35.595 ( 0.353 ) 7.456 ( 0.097 )
S% critical level 44.851 ( 0.452 ) 44.720 ( 0.457 ) 9.909 ( 0.123 )
1% critical level 61.129 ( 0.626 ) 61.371 ( 0.622 ) 14.633 ( 0.186 )}
Significance level 0.103 ( 0.019 ) 0.149 ( 0.010 ) 0.030 ( 0.012 )
Percent rejections 0.750 ( 0.043 ) 0.360 ( 0.048 ) 0.950 ( 0.022 )

in 104 test
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ASA

GAM

JHI

NGS

TY

Stock
ASA
GAM
JHI

NGS

GAM
JHI
NGS

TY

Klecan, McFadden, and McFadden
TABLE 3. CLOSED-END MUTUAL FUNDS

ASA Ltd. is a closed-end investment company with at least 50% of its
funds in South African gold stocks.

General American Investment is a closed-end regulated management
company Iinvesting primarily in medium and high-quality growth
stocks, with the aim of long-term capital appreciation.

John Hancock Investors Trust is a closed-end diversifled Investment
company whose main objective 1s income distribution to shareholders,
and main holdings are in debt securities, up to 50 percent of which
are direct placements. '

Niagara Share Corporation is a closed-end management company linvest-
ing primarily in common stocks, seeking high earnings and dividend
potential.

Tri-Continental Corp. is a closed-end diversified management company

investing in common stocks and equivalents with the aims of long-
term appreciation and growth in income.

TABLE 4. MEANS AND STANDARD DEVIATIONS OF DAILY RETURNS

Daily Mean Dally Std. Dev. Annualized Mean
0.00090465 0.0255878 0.26504
0.00063212 0.0174761 0.17857
0.00047009 0.0132406 | 0.12997
0.00058492 0.0183271 0.16420

0.00054928 0.0137133 0.15347

TABLE 5. INTRA-PERIOD CORRELATIONS

ASA GAM JHI NGS
-0.0042
0.0030 0.0655
0.0513 | 0.0500 0.0926

0.0602 0.1186 0.1346 0.1925
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TABLE 6. VECTOR AUTOREGRESSIONS ON TREND AND FIVE LAGS

INDEPENDENT
VARIABLES

§m——— ASA-==mm :

COEFF  T-STAT
CONSTANT C.001 1.634
TREND -0.000 -0.731
ASA LAG 1 -0.010 -0.669
GAM LAG 1 0.069 3.117
JHI LAG 1 0.088 2.988
NGS LAG 1 0.005 0.245
7Y LAG 1 -0.000 -0.004
ASA LAG 2 -0.031 -2.104
GAM LAG 2 0.003 0.119
JHI LAG 2 0.019 0.611
NGS LAG 2 0.090 3.973
TY LAG 2 0.021 0.687
ASA LAG 3 -0.004 -0.244
GAM LAG 3 -0.018 -0.754
JHI LAG 3 0.017 0.361
NGS LAG 3 0.017 0.725
TY LAG 3 0.022 0.730
ASA LAG 4 -0.013 -0.903
GAM LAG 4 0.012 0.496
JHI LAG 4 -0.046 =-1.511
NGS LAG 4 0.042 1.855
TY LAG 4 -~-0.082 -2.763
ASA LAG 5 -0.005 -0.313
GAM LAG 5 0.074 3.136
JHI LAG S 0.012 0.420
NGS LAG 5 -0.013 -0.593
Y LAG S 0.027 0.943
ROOT MEAN
SQUARE OF
LAGS > 2 0.03547

Po——— GAM==—=—- :
COEFF  T-STAT
0.000 0.817
0.000 0.634
0.023 2.297
-0.124 -8.322
-0.002 -0.100
0.022 1.483
0.061 3.030
-0.017 -1.712
-0.078 -4.838
0.015 0.722
0.018 1.196
-0.002 -0.076
-0.003 -D.342
-0.038 -2.322
0.010 0.477
0.021 1.349
0.039 1.903
0.005 0.475
-0.054 -3.297
0.016 0.782
0.011 0. 687
0.056 2.744
-0.011 -1.101
0.018 1.105
-0.003 -0.143
-0.007 ~0.476
-0.008 -0.402
0.02635

DEPENDENT VARIABLES

§ JHI~=—— :
COEFF  T-STAT
0.000 1,090
0.000 0.582
-0.015 -1.993
0.077 6.933
-0.224 -15.084
0.003 0.303
0.045 2.989
0.006 0.835
0.011 0.882
~0.129 -8.441
0.016 1.375
0.012 0.790
0.005 0.617
0.021 1.741
-0.070 -4.529
-0.003 -0.243
0.015 1.014
-0.008 -1.068
0.013 1.108
-0.047 -3.080
0.009 0.795
-0.001 -0.036
~D.003 -0.400
0.003 0.291
-0.020 -1.365
-0.001 -0.131
0.009 0.618
0.02399

e NGS~~--
COEFF
0.000 O
0.000 0O
0.021 2
0.251 16
0.008 0O
-0.257 -17
0.126 &
0.013 1
0.134 8
-0.049 -2
-0.140 -9
0.065 3
0.012 1
0.045 2
-0.036 -1
-0.085 -5
0.004 O
-0.002 -0
0.035 2
~-0.020 -0
-0.065 -4
0.028 1
0.032 3
0.050 3
0.010 ©
-0.056 -3
0.036 1
0.04121
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T-STAT COEFF

.831
.027

.118
.924
. 423
. 287
.273

. 287
. 357
. 387
.164
.203

. 168
.760
.754
.532
.202

.235
. 194
. 992
. 242
.401

. 278
.161
.484
.B50
.882

0.00Q0
0.000

0.003
0.238
0.078
0.017
0.119

-0.019
0.106
0.040

~0.002

~0.106

0.024
0.074
0.058
0.008
0.062

0.014
0.054
-0.019
-0.013
-0.053

0.011
0.053
~0.015
-0.0605
-0.025

0.03953

.176
766

.461
.328
.242
.527
907

.498
.B40
.568
.181
.959

282
.g22
L7114
.655
.061

. 888
427
L21T
.119
.498

.430
.442
.025
.449
.T06
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TABLE 7. AUTOREGRESSIONS ON TREND AND 25 LAGS

INDEPENDENT DEPENDENT VARIABLES

VARIABLES

COEFF  T-STAT COEFF T-STAT COEFF T-STAT COEFF  T-STAT

CONSTANT 0.001 1.565 0.000 0.929 0.000 1.172 0.001 1.375
TREND

LAG
LAG
LAG
LAG
LAG

LAG
LAG
LAG
LAG
LAG

LAG
LAG
LAG
LAG
LAG

LAG
LAG
LAG
LAG
LAG

LAG
LAG
LAG
LAG
LAG

T DN

G W,

ROOT MEAN
SQUARE OF

LAGS > 6

-0.000 ~0.556 0.000 ©0.874 0.000 0.910 0.000 0.427

~D.011 -0.738 -0.113 -7.729 -0.204 -13.901 -0.182 -12.438
-0.028 -1.884 -0.054 -3.660 ~0.113 -7.574 -0.093 -6.230
-0.004 -0.247 -0.018 =-1.245 -0.057 -3.7%6 -0.049 -3.276
-0.012 -0.849 -0.031 -2.106 -0.036 -2.372 =-0.030 -2.035
-0.002 -0.167 0.036 2.437 -0.014 -0.952 -0.040 -2.655

0.012 -0.800 -0.044 -2.999 =-0.000 -0.001 ~0.061 -4.084
0.021 1.413 -0.003 -0.228 -0.004 -0.247 -0.017 -1.121
0.020 1.347 0.003 0.184 0.019 1.247 -0.010 -0D.648%
0.015 1.018 -0.010 -0.691 0.008 0.504 0.023 1.527
0.008 0.556 -~0.023 -1.569 -0.004 -0.253 0.001 0.057

0.044 3.013 0.007 0.443 =-0.007 -0.493 -0.024 -1.570
0.027 1.874 -0.014 -0.979 -0.008 -0.527 -0.042 -2.829
0.003 0.200 -0.009 -0.623 =-0.034 -2.257 -0.017 -1.128
0.022 1.525 0.001 c.077 -0.024 -1.609 -0.021 ~-1.418
c.006 0.383 0.017 1.121 -~-0.013 -0.8%C -0.001 -0.088

0.023 1.554 -0.006 -0.401 -0.022 -1.457 -0.020 =-1.350
-0.025 -1.684 0.012 0.842 0.015 0.995 -0.015 -0.971
0.014 0.%42 -D.004 -0.261 -0.019 -1.285 -0.017 ~-1.116
-0.002 -0.106 -0.018 ~-1.199 -0.003 -0.206 -0.023 ~-1.518
-0.035 -2.409 -~0.004 -0.289 -0.003 -0.172 0.016 1.052

-0.001 -0.057 -0.018 -1.204 -0.024 -1.600 0.004 0.235
~-0.018 -1.237 -0.006 ~0.428 0.014 0.921 -0.019 -1.270
0.019 1.305 ~0.020 -1.369 -0.031 -2.036 -0.002 -0.108
0.006 0.432 -0.00% -0.592 0.004 0.281 0.011 0.767
0.007 0.491 -0.013 -0.8%2 0.013 0.888 0.024 1.616

0.02012 0.01218 0.01694 0.01881

-0.020
-0.039

~0.018 |

-0.021
0.000

0.006
0.018
-0.028
~-0.038
0.014

0.026
0.0z1
0.025
0.004
0.004

0.014
~0.0602
-0.022

0.010
-0.013

-0.02¢9
-0.033
~0.061

0.001
~-0.001

0.02418

-

T-STAT

0.
.027

808

. 366
675
.210
-413
.008

.412
.262
.888
2.629
.932

.784
. 467
. 687
.246
.283

.953
. 103
.481
.6T5
.B91

L9788
.233
.178
.042
.096
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TABLE 8.
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TESTS FOR STOCHASTIC DOMINANCE BETWEEN PAIRS OF FUNDS

(4685 Observations; the number of permutations to approximate significance is given
in parentheses for each pair of funds;

ASA vs GAM (1000 per)

Observation

10% Critical Level
5% Critical Level

1% Critical Level

Signiflicance Level

ASA vs JHI (1000 per)

Observatlion

10% Critical Level
5% Critical Level
1% Critical Level
Significance Level

ASA vs NGS (1000 per)

Observation

10% Critical Level
5% Critical Level
1% Critical Level
Significance Level

ASA vs TY (1000 per)

Observation

10% Critical Level
5% Critical Level

1% Critical Level

Significance Level

GAM vs JHI (1000 per)

Observation

10% Critical Level
5% Critical Level
1% Critical Level
Significance Level

First-Degree Dominance

127

541.
106.
121,
142.
0.00

1>27

627.
108.
118.
141.
0.00

1»27

484.
103.
117.
145.
0.060

1>»27

682.
102.
118.
140.
0.00

1»27

306.
104.
118.
153,
0.00

217

405.
105.
122.
149,
0.00

2»17

584.
103.
118.
139.
0.00

2»17?

384.
101.
117.
145.
0.00

2>17

637.
107.
120.
149,
0.00

2>17

312.
99.0
115.
145.
0.00

not max?

405.
57.0
€3.0
75.0
0.00

net max?

584.
59.0
66.0
77.0
0.00

not max?

384.
59.0
65.0
77.0
0.00

not max?

637.
59.0
67.0
79.0
0.00

not max?

306.
57.0
63.0
75.0
0.00

acceptances at 5 percent are boxed. )

Second-Degree Domlinance

1»27

14.3
2,91
3.56
4.98
0.00

127

19.8
2.83
3.37
4.52
0.00

1»27

12.3
2.85
3.69
4.99
0.C0

1>-27

20.3
2.63
3.27
4.33
0.00

1>27

6.10
2.03
2.52
3.44
0.00

2»17

1.28
2.88
3.83
5.55
G. 328

2»17

2.04
2.65
3.34
4.47
0.179

2»17

1.50
2.81
3.56
4.74
0, 306

2»17

1.66
2.73
3.42
4.54
0.252

2»17

0.759
1.93
2.39
3.17

0.370

not max?

1.28
0.532
0.687
0.927

0.00

not max?

2.04
0.499
0.671

1.06

0.00

not max?

1.50
0.528
0.702

1.03

0.00100

not max?

1.66
0.548
0.671

1.01

0.00

not max?

0.759
0.399
0.502
0.646
0.00500
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GAM vs NGS (1000 per)

Observatlion

10% Critical Level
5% Critical Level

1% Critical Level

Significance Level

GAM vs TY

Observation

10% Critical Level
5% Critical Level
1% Critical Level
Significance Level

JHI vs NGS (6000 per)

Observation

10% Critical Level
5% Critical Level
1% Critical Level
Significance Level

JHI vs TY

Observation

10% Critical Level
5% Critical Level
1% €ritical Level
Significance Level

NGS vs TY

Observation

10% Critical Level
5% Critical Level

1% Critical Level

Significance Level

(6000 per)

(1000 per)

(1000 per)

Klecan, McFadden, and McFadden

First-Degree Dominance

1>»27

181.
100.
118,
149,

0.00100

1»27

410.
101.
118,
140.
0.00

127

448.
101.
117.
143.
0.00

1>27

238.
100.
113,
136,
0.00

1»27

618.
98.0
1i4.
142,
0.00

2>17

218,
100.
112,
135,
0.00

2>17

389.
102.
116.
144.
0.00

2>17

464.
100.
114.
141.
0.00

2>17?

164.
102.
115.
146.
0.00400

2>17

533.
99.0
109.
128,
0.00

not max?

181.
58.0
65.0
81.0
0.00

not max?

389,

58.0
64.0
76.0
0.00

not max?

448.
60.0
66.0
78.0
0.C0

not max?

164.
58.0
63.0
74.0
0.00

not max?

533.
59.0
64.0
79.0
.00

Second-Degree Dominance

1»27 217 not max?
¢.00 2.01 0.00
2.22 2.27 0.426
2.85 2.80 0.580
3.67 3.83 0.801

0,851 0.129 0.701
1>27 2>17 not max?
6.58 0. 388 0. 388
1.97 2,00 0. 370
2.44 2.46 0.471
3.46 3.44 0.675
0.00 0.519 0.0893
1»27 2»17 not max?
0,538 7.78 0.538
1.98 1.97 0.404
2.50 2.46 0.516
3.41 3.35 0.764
0.470 0.00 0.0452
1>»27 217 not max?
0.848 0.661 0.661
1.5¢9 1.69 0.361
2.04 2.14 0.430
2.88 2.79 0.644
0. 288 0.373 0.0100
1>27 21?7 not max?
8.50 0.167 0.167
1.99 2.01 0.401
2.43 2.45 0.502
3.22 3,19 0,700
0.00 0.68%0 0.348




