KALMAN

KALMAN (BPRIOR=prior vector,
BTRANS=matrix of coefficientsin transition equation,

EMEAS, ETRANS, PRINT, SILENT, SMOOTH, TERSE,
VBPRIOR=variance of prior, VMEAS=variance factor in measurement equation,
VTRANS=variance factor in transition equation,

XFIXED=X matrix for measurement equation)
list of dependent variables [| list of independent variableq;

Function:

KALMAN estimateslinear models using the Kalman filter method. 1t can handlefairly general State Space models, but
itistypicaly used to estimate regression-type models where the coefficients follow a random process over time.

Usage:

The Kalman filter model consists of two parts (the state space form):

y, =X, B,+€,  €~N(0,0°H) (measur ement equation)

(nx1) (nxm)(mx1) ()

B, =T*By + Mo n,~N(0,6°Q)  (transition equation)
(mxm) (mxm)

Bo~ N (B 0°Py) ("initial conditions")

Thematrices T, H, and Q are assumed to be known, and they each default to theidentity matrix if they are not supplied
by the user in the KALMAN optionslist. Note that they are not allowed to vary over time, but this constraint can be
easily relaxed by running KALMAN within aloop over the sample. The NOEMEAS and NOETRANS optionsare used
to zero the variances of the measurement and transition equations respectively.

They, and X, variables are the dependent and independent variables, just asin ordinary least squares. If you want to use
more than one dependent variable, list al they variablesfirst, then a|, and then list the X variablesfor each y (duplicate
the X list if they are the same for every y). You may want to insert zeros along with the X variablesto prevent cross-
equation restrictions (see the Examples). If X, isfixed over the sample, use the XFIXED option.

To get atime-varying parameter model, specify V TRANS=Q (the noise-to-signal ratio) and BTRANS=T (if it isnot the
identity matrix).

To evaluate the likelihood function for general ARMA(p,g) models, fill the BTRANS and VTRANS matrices with the
estimated coefficients for the model; see Harvey, p.103 for the general form.

Options:

BPRIOR= vector of prior coefficients 3, for measurement equation. Required if XFXED isused; otherwiseit will be

calculated by default from aregression in the initial observations of the sample. If the first M observations are not
sufficient to identify the prior, one observation is added and BPRIOR is estimated again.
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BTRANS=T = matrix of coefficientsin transition equation (default identity matrix).

EMEAS/NOEMEASindicatesthe presence of an error term in the measurement equation (NOEMEAS or NOEM isthe
same as VMEAS = zero).

ETRANS/NOETRANS indicates the presence of an error term in the transition equation.
PRINT/NOPRINT printsthe prior, @STATE, @RES1, @RECRES, @SMOOTH, @RESD.
SILENT/NOSILENT turnsall of the printed output. See also TERSE.

SMOOTH/NOSM OOTH computesfixed-interval smoothed estimates of the state vector B, (storedin @SMOOTH) and
the direct residuals @RESD.

TERSE/NOTERSE turns off most of the output. Seealso SILENT.

VBPRIOR= P, = variance of prior (symmetric matrix). Required if BPRIOR is specified. Note: o?isfactored out of
this matrix.

VMEAS= H = variance factor in measurement eguation (symmetric matrix). Default: identity matrix. In Harvey’s
notation, thisis SHS'.

VTRANS= Q = variance factor in transition equation (symmetric matrix). Default: identity matrix. Specifies the
"noise-to-signal ratio" if H = identity matrix. In Harvey’s notation, thisis RQR'.

XFIXED= X matrix for measurement equation, when it is fixed over time.

Examples:

One of the simplest Kalman filter models is equivalent to OL SQ (using atransition equation of 3, = ., = ). Thiscan
be estimated with the command:

KALMAN(NOETRANS) Y C X;

which produces the same coefficient estimates as OLSQ Y C X ;, but calculates them recursively, along with the
recursive residuals.

To estimate a Cool ey-Prescott "adaptive regression” model where 3, follows random walk with anondiagonal variance
matrix:

KALMAN(VTRANS=NSRMAT) Y C X1 X2;

A "stochastically convergent parameter” model (convergent towardszerointhiscase, sincethetransition matrix hasroots
less than one):

MFORM(TY PE=DIAG,NROW=3) TMAT=.9;
KALMAN(BTRANS=TMAT,VTRANS=NSRMAT) Y C X1 X2;

Two dependent variables; note the two lists of exogenous variables, which must be of the same length. In this case, both
equations are forced to have the same two coefficients.

KALMAN(NOET) Y1Y2|C1X1,C2X2;

Two dependent variables; in this case, the equations have separate coefficients by building zero variablesinto the system.
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The specification is still somewhat unrealistic because H is identity (same variance and no correlation between errors
in the equations):

ZERO =0;
KALMAN(NOET) Y1Y2|C1 X1 ZERO ZERO, ZERO ZERO C2 X2,

Harvey's Example 2 (p.116-117) ("signal plus noise" or Cooley-Prescott):

READ Y; 444.0354.6;
SET Q=4; SET A0O=4; SET P0=12;
KALMAN(VT=Q,BPRIOR=A0,VBPRIOR=P0) Y C;

Harvey's Exercise 1 (p.119) (stochastically convergent):

READ Y; 444.0354.6;

Y4=Y-4

SET RHO=.5; SET Q=4; SET A0=.2; SET PO=3;
KALMAN(BT=RHO,VT=Q,BP=A0,VBP=PF0) Y4 C;

Bootstrapping a variance for the transition equation:

SMPL 1,100;

KALMAN(NOETRANS) Y C X1 X2;

UNMAKE @STATE B1-B3;

SMPL 4,100; DOT 1-3; D.=B.-B.(-1); ENDDOT;
COVA D1-D3; MAT VTOS=@COVA/@S2;
KALMAN (VTRANS=VTOS) Y C X1 X2,

Hyperparameter estimation with ML PROC. This example estimates the variances of the transition matrix Q, using the
ML PROC.

MFORM(NROW=2TYPE=SYM) Q;
PARAM Q11,1 Q22,2;
ML KFQ Q11,022
? Evaluate log likelihood for ML PROC
PROC KFQ;
IF (Q11<=0 .0OR. Q22<=0); THEN; ? Check constraints
SET @LOGL=@MISS; ? Are variances >0?
ELSE; DO;
SET Q(1,1) = Q11; SET Q(2,2) = Q22;
SUPRES @COEF;
KALMAN(SILENT,VTRANS=Q) Y C X;
NOSUPRES @COEF;
ENDDO;
ENDPROC,

Output:

A standard table of coefficients and standard errorsis printed for the final state vector, along with the log likelihood.
The following items are stored (and may be printed):
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Name Length Description

@COEF m Final state vector

@SES m Standard errors

@T m T-statistics

@VvCcov m*m Variance-covariance matrix
@LOGL 1 Log of likelihood function

@SSR 1 Sum of sgquared recursive residuals
@S2 1 Variance of recursive residuals
@RESL1 #obs* n Prediction errors (one step ahead)
@RECRES #obs* n Recursive residuals (i.i.d.)
@STATE #obs* m Evolving state vectors

@RESD #obs* n Direct residuals (if SMOOTH is on)
@SMOOTH #obs* m Smoothed state vectors

Note that the first few rows in the residuals or state vectors may be zero if those observations were used to calculate
priors. Also, recursive residuals for OLS regressions can be obtained with REGOPT(CALC) RECRES; and OLSQ.

M ethod:

The Kaman filter recursively updatesthe estimate of 3, (and itsvariance), using the new informationiny, and X, for each
observation, so it can be viewed as a Bayesian method. However, the user does not have to supply priors; they can be
calculated automatically for regression-typemodel sfrom theinitial observationsof thesample. SeetheHarvey reference
for the actual updating formulas. If the default prior issingular, KALMAN adds one more observation to the cal cul ation,
unlessNOETRAN isbeing used (it can handle asingular prior). The smoothed state vectors (if requested) are estimates
based on the full sample; again, see Harvey for the details.

The method of estimation for each time period is maximum likelihood conditional on the data observed to that point.
An orthonormalizing transformation of X is used to improve accuracy.

The o? factor and the log likelihood are computed from the recursive residuals. The recursive residuas are g =
CHOL(F)™v, in Harvey’s notation, so that E[g’g] = I. If you do not factor o® out of H, Q, and P,, the estimated @S2
should becloseto 1. If m>1 and the prediction errorsare collinear, there may be problemswith the resulting o2, standard
errors, recursive residuals, and log likelihood.
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