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__________________________________________________________________________________

OLSQ (HCTYPE=robust SE type, HI, ROBUSTSE, SILENT, TERSE,
UNNORM, WEIGHT=name of weighting variable, WTYPE=weight type)

dependent variable    list of independent variables ;

__________________________________________________________________________________

Function:

OLSQ is the basic regression procedure in TSP.  It obtains ordinary least squares estimates of the coefficients of a
regression of the dependent variable on a set of independent variables.  Options allow you to obtain weighted least
squares estimates to correct for heteroskedasticity, or to obtain standard errors which are robust in the presence of
heteroskedasticity of the disturbances (see the GMM command for SEs robust to autocorrelation). 

Usage:

In the basic OLSQ statement, you list the dependent variable and then the independent variables in the equation. To have
an intercept term in the regression, include the special variable C or CONSTANT in the list of independent variables.
The number of independent variables is limited by the overall limits on the number of arguments per statement and the
amount of working space; obviously, it is also limited by the number of data observations available.

The observations over which the regression is computed are determined by the current sample.  If any observations have
missing values within the current sample, they are dropped from the sample, and a warning message is printed for each
series with missing values.  The number of observations remaining is printed with the regression output.  @RES and
@FIT will have missing values in this case, and the Durbin-Watson will be adjusted for the sample gaps.

The list of independent variables on the OLSQ command may include variables with explicit lags and leads as well as
PDL (Polynomial Distributed Lag) variables.  These PDL variables are a way to reduce the number of free coefficients
when you are entering a large number of lagged variables in a regression by imposing smoothness on the coefficients.
See the PDL section for a description of how to specify a PDL variable.

Options:

HCTYPE= the type of Heteroskedastic-Consistent standard errors to compute (an option between 0 and 3, with a default
of 2. This option implies ROBUSTSE. In general, the robust estimate of the variance-covariance matrix has the form:

V = (X’X) -1 (G ei
2  xi xi’/ di ) (X’X) -1

The option HCTYPE specifies the formula used for di:

HCTYPE di

      0 1             (the usual Eicker-White asymptotic formula)
      1 (T-k)/T   (use finite sample degrees of freedom)
      2 1-hi         (unbiased if e is truly homoskedastic)
      3 (1-hi)

2     (jacknife approximation)

where hi is the diagonal of the "hat" matrix (defined below). If 1-hi is zero for some i, (T-k)/T is substituted. Both
HCTYPE=2 and HCTYPE=3 have good finite sample properties. See Davidson and MacKinnon, pp. 552-556 for details.

HI/NOHI specifies whether the diagonal of the "hat matrix", X(X'X)-1X' is stored in the series @HI.  This is useful for
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detecting "influential" observations (data errors, outliers, etc.), awkward to calculate with standard matrix procedures.

SELECT @HI > 2*@NCOEF/@NOB;  

 identifies the influential observations. (See the Belsley, Kuh, and Welsch or Krasker, Kuh, and Welsch references.)

NORM/UNNORM tells whether the weights are to be normalized so that they sum to the number of observations.  This
has no effect on the coefficient estimates and most of the statistics, but it makes the magnitude of the unweighted and
weighted data the same, on average, which may help in interpreting the results.  The coefficient standard errors and t-
statistics are affected.  NORM has no effect if the WEIGHT option has not been specified.

ROBUSTSE/NOROBUST causes the variance of the coefficient estimates, the standard errors, and associated t-statistics
to be computed using the formulas suggested by White, among others.  These estimates of the variance are consistent
even when the disturbances are not homoskedastic, and when their variances are correlated with the independent variables
in the model.   They are not consistent when the disturbances are not independent, however.  See the Davidson and
MacKinnon reference.  See the HCTYPE= option for the exact formulas.

SILENT/NOSILENT suppresses all regression output.  This is useful for running many regressions for which you only
wish selected output (which can be obtained from the @ variables, which will be stored).  See also TERSE.

TERSE/NOTERSE yields minimal output - the number of observations, log of likelihood function, and table of
coefficients, standard errors and t-statistics.  See also SILENT.

WEIGHT= the name of a series used to weight the observations.  The data are multiplied by the square roots of the
normalized weighting series before the regression is computed (see NORM above). The series will be proportional to
the inverses of the variances of the residuals.  If the weight is zero for a particular observation, that observation is not
included in the computations nor is it counted in determining degrees of freedom. 

WTYPE= HET or REPEAT, the weight type.  The default is REPEAT, where the weight is a repeat count (it multiplies
the likelihood function directly). This is used for grouped data and is consistent with the UNNORM option.
WTYPE=HET means the weight is for heteroskedasticity only (it enters the likelihood function only through F t

2).  The
only difference between these two options in the regression output is the value of the log likelihood function (all the
coefficients, standard errors, etc. are identical).  With WTYPE=HET, the log likelihood includes the sum of the log
weights; the default WTYPE=REPEAT does not include this.

Examples:

 OLSQ CONS,C,GNP ;    ? This example estimates the consumption function for the illustrative model 

Using population as weights, the next example regresses the fraction of young people living alone on other demographic
characteristics across states. Since the regression is in terms of per capita figures, the variance of the disturbances is
proportional to the inverse of population.

OLSQ (WEIGHT=POP) YOUNG,C,RSALE,URBAN,CATHOLIC ;

Other examples of the OLSQ command:

OLSQ (ROBUSTSE) LOGP C LOGP(-1) LOGR ;
OLSQ TBILL C RATE(4,12,FAR) ;

Output:

The output of OLSQ begins with an equation title and the name of the dependent variable.  This is followed by statistics
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on goodness-of-fit:  the sum of squared residuals, the standard error of the regression, the R-squared, the Durbin-Watson
statistic for auto correlation of the residuals, a LM test for heteroskedasticity, the Jarque-Bera test for normality, and an
F-statistic for the hypothesis that all coefficients in the regression except the constant are zero.  If there is no constant
in the regression and the mean was not removed from the dependent variable prior to the regression, the F-statistic may
be meaningless.  See the REGOPT command for a large variety of additional regression diagnostics.

A table of right hand side variable names, estimated coefficients, standard errors and associated t-statistics follows.  Use
REGOPT(PVPRINT) T; before the regression to print P-values and stars for significance of the t-statistics.  The
variance-covariance and correlation matrices are printed next if they have been selected with the REGOPT command.

If there are lagged dependent variables on the right hand side, the regular Durbin-Watson statistic is biased, so an
alternative test for serial correlation is computed.  The statistic is computed by including the lagged residual with the right
hand side variables in an auxillary regression (with the residual as the dependent variable), and testing the lagged
residual’s coefficient for significance.  See the Durbin reference for details; this method is very similar to the method used
for correcting the standard errors for AR1 regression coefficients in the same lagged dependent variables case.  This
statistic is more general than "Durbin’s h" statistic since it applies in cases of several lagged dependent variables.  It is
not computed if there is a WEIGHT or SMPL gaps, and the presence of lagged dependent variables is not detected if they
are computed with GENR (instead of being specified with an explicit lag like OLSQ Y C X Y(-1); or in a PDL). 

If the PLOTS option is on, TSP prints and plots the actual and fitted values of the dependent variable and the residuals.

OLSQ also stores most of these results in data storage for your later use.  The table below lists the results available:

Name Type Length Variable Description

@LHV list 1 Name of the dependent variable.

@SSR scalar 1 Sum of squared residuals.

@S2 scalar 1 Variance of residuals.

@S scalar 1 Standard error of the regression.

@YMEAN scalar 1 Mean of the dependent variable.

@SDEV scalar 1 Standard deviation of the dependent variable.

@NOB scalar 1 Number of observations.

@DW scalar 1 Durbin-Watson statistic (no lagged dep. variables).

@DH scalar 1 Durbin’s h  (lagged dep. variable).

@DHALT scalar 1 Durbin’s h alternative (lagged dep. variables).

@LMHET scalar 1 LM heteroskedasticity test.

@JB scalar 1 Jarque-Bera (LM) test for normality of residuals.

@RESET2 scalar 1 Ramsey’s RESET test of order 2 for missing quadratic Xs.

@RSQ scalar 1 R-squared.

@ARSQ scalar 1 Adjusted R-squared.

@FST scalar 1 F-statistic (test for zero slopes).

@NCOEF scalar 1 Number of coefficients.

@NCID scalar 1 Number of identified coefs (with non-zero SEs).

@SSRO scalar 1 SSR for Original data, in weighted regression.

@...O scalars 1 @S2O, @SO, ... @ARSQO -- all for Original data.

@RNMS list #vars Names of right hand side variables.

@COEF vector #vars Coefficient estimates.

@SES vector #vars Standard Errors.

@T vector #vars T-statistics

%T vector #vars p-values for T-statistics

@VCOV matrix #vars*#vars Variance-covariance of estimated coefficients.

@RES series #obs Residuals=actual - fitted values of the dependent variable.

@FIT series #obs Fitted values of the dependent variable.

@LOGL scalar 1 Log of likelihood function.

@HI series #obs Diagonal of "hat matrix" if the HI option is on.
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   If the regression includes a PDL or SDL variable, the following will also be stored:

@SLAG scalar 1 Sum of the lag coefficients.

@MLAG scalar 1 Mean lag coefficient.

@LAGF vector #lags Estimated lag coefficients, after "unscrambling".

 Note:  REGOPT(NOPRINT) LAGF;  will turn off the lag plot for PDL variables.

Method:

OLSQ computes the matrix equation

b = (X’X)-1X’y

where X is the matrix of independent variables and y is the vector of independent variables.  The method used to
compute this regression (and all the other regression-type estimates in TSP) is a very accurate one, which involves
applying an orthonormalizing transformation to the X matrix before computation of the inner products and inverse, and
then untransforming the result (see ORTHON in this manual).  See OPTIONS FAST; to compute faster and  slightly
less accurate regressions (without orthonormalization).

OLSQ has been tested using the data of Longley on everything from an IBM 370 to a modern Pentium computer; it gives
accurate results to six digits when the data is single precision.  For the artificial problem suggested by Lauchli (see the
Wampler article), OLSQ gives correct results for the coefficients to about five places, until epsilon becomes so small
that the regression is uncomputable.  Before this happens, OLSQ detects the fact that it cannot compute the regression
accurately and drops one of the variables by setting its coefficient to zero and printing a warning.  The results for these
special regressions become more accurate when OPTIONS DOUBLE ; is in effect, because these data have an unusually
high number of significant digits.  See the Benchmarks section of  the TSP web page www.tspintl.com for more
information  on regression accuracy with Longley and other standard regression datasets.
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