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__________________________________________________________________________________

ML (nonlinear options) log likelihood equation name ;
or

ML (nonlinear options) procedurename list of parameters ;

__________________________________________________________________________________

Function:

ML is a general purpose maximum likelihood estimation procedure.  It can be used to estimate the parameters of any
(identified) model for which you can write down the logarithm of the likelihood in a TSP equation (FRML), or evaluate
the log likelihood in a procedure (PROC).

Usage:

FRML method.  Usually the simplest approach is to write the log likelihood equation in a FRML with LOGL as the
dependent variable.  Note that this equation is for each observation in the current SMPL vector.  If there are different
equations, depending on different cases, write the equation as the sum of the individual ones, with dummy variables
multiplying each equation to select the appropriate one for any given observation.  Often the "case" will be determined
by a dependent discrete choice variable, and observations are usually i.i.d., but the likelihood function could be made
different for different parts of the SMPL by using more general time-dependent dummy variables. Of course, the log
likelihood must be additively separable over the SMPL for this method to work. 

Then use a PARAM statement to specify which of the variables in the LOGL equation are to be estimated and supply
their starting values if desired.  Follow this by an ML command with any of the standard NONLINEAR options and the
name of the equation which specifies the likelihood function.  ML will maximize this function with respect to the
parameters using a standard gradient method; the exact form of the Hessian approximation used as a weighting matrix
depends on the HITER option.  The default is to use the BHHH method, a method of scoring, but with the sample
covariance of the gradient of the likelihood used in place of its expectation.

Good Applications for the FRML method:

     1. Truncation models involving CNORM(), such as two-limit Tobit.

     2. Nonlinear equations for PROBIT, TOBIT, LOGIT, etc. This includes parameter restrictions and holding
parameters fixed.

     3. Checking your own second derivatives when you are writing a FORTRAN routine for user maximization.

     4. Robust models like LOGL = ABS(Y-XB).

     5. Minimization problems (just negate the equation).

     6. General maximum likelihood problems, using any functions recognized by TSP (including new ones like
SQRT, POS, Factorial, and Gamma function, which can be used for the gamma, chi-squared, beta, t, and
F densities). Even complicated likelihood functions on large datasets which have been traditionally
estimated with a FORTRAN routine may be estimable with less overall cost by using ML.  Even though
more computer time may be required, programming time is considerably reduced (and the relative price of
CPU time is usually small and shrinking). Maximization with analytic derivatives is usually much faster than
with numeric derivatives (the method which used to be lowest in programming cost).  See Timing example
below.
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PROC method.  Sometimes it is extremely difficult, or impossible to write down the log likelihood in a single FRML
(even with use of EQSUB).  See the list below  for some examples.  For this form of the ML command, write a PROC
which evaluates the log likelihood and stores it in @LOGL.  Give the name of this PROC as the first argument (after any
options) of the ML command, and follow  it with a list of PARAMs which are to be estimated.  Write the PROC so that
it starts by checking any constraints on the PARAMs.  If any constraint is violated, set @LOGL to @MISS before exiting
from the PROC.  OPTIONS DOUBLE; is advised if you want to use double precision to form intermediate results such
as residuals.

The main disadvantage of using the PROC instead of the FRML method is that analytic derivatives are not available.
However, numeric derivatives (default HITER=F and GRAD=C2) will often be quite adequate.  A slight disadvantage
is that you have to explicitly list the PARAMs to be estimated in the command line.

Good Applications for the PROC method:

1. Time series models like ARMA and GARCH, where the equations are recursive (depend on residuals or
variance from the previous time period(s).  Models which can be evaluated by the KALMAN command also
fit into this category (ML thus allows estimation of the hyperparameters).

2. Multi-equation models like FIML.  These involve Jacobians, matrix inverses, and determinants, which
would have to be written into the log likelihood equation by hand (very difficult for more than about 4
equations unless the Jacobian is sparse).

3. Models which require several diverse commands to evaluate, such as multivariate normal integrals via
simulation, or other functions that are not built in to TSP.  Another example in this class is a concentrated
log likelihood function (the FRML method can only handle the unconcentrated log likelihood, which is
usually more nonlinear and often harder to write).

4. Models with complicated constraints.  A good example would be ARCH models, where the conditional
variance must be positive for every observation.

Bad Applications for either method:

1. Existing linear models in TSP (PROBIT, TOBIT, LOGIT, SAMPSEL). The regular TSP commands are
more efficient, more resistant to numerical problems, often have better starting values, and provide
model-specific statistics.  See Timing example below.

To give an idea of how much this convenience costs in terms of CPU time, here is a timing example run on the VAX
11/780 of a Probit on 385 observations, 8 variables.

Time in Procedure
CPU seconds  

     05.24                PROBIT command.
     65.65                ML(HITER=B,HCOV=N)
     75.97                ML(HITER=N,HCOV=N)

The moral is that ML should not be used when you have a Fortran-coded alternative estimation program, but could be
useful if you don't want to spend your time developing such a program.  Also, in this case, the method of scoring was
somewhat faster than Newton's method, although the latter is more powerful (it takes fewer iterations).

Tips:

1. Write the equation carefully to avoid things like Log(x<=0) or Exp(x>88).  These are fatal errors if they
happen in the first function evaluation (using the starting values).  They are not fatal during iterations (the
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program automatically uses a smaller stepsize), but they can be inefficient.  Often these problems can be
avoided by reparametrizing the likelihood function.  The standard example of this is estimating SIGMA (or
SIGMA- inverse) instead of SIGMA-squared.

If you are getting numerical errors and you can't rewrite the likelihood function, try using SELECT to
remove the problem observations.  After you get convergence, use the converged values as starting values
and reestimate using the full sample.

2. Choose starting values carefully (see previous).

3. Use EQSUB for less work rewriting equations and more efficient code.

4. The "Working space=" message is an indication of the length of the derivative code.

5. If the second derivative matrix is singular, you may have sign errors in the log likelihood function (the
inversion routine assumes the second derivative matrix is negative definite).

6. If you are using derivatives, make sure the functions you are using are differentiable. Logical operations are
not differentiable everywhere, although they are diffferentiable at all but a finite number of points.  TSP will
do the best it can with them, but if you end up on a kink (corner), it may stall.

Examples:

FRML method.  For example, in the Probit model, the likelihood is CNORM(-XB) for Y<=0, and (1-CNORM(-XB))
for Y>0.  This could be written as (see the User's Guide Section 9.5 for alternate coding and many more examples): 

GENR Y0 = Y<=0;  
GENR Y1 = Y>0; 
FRML EQ1 LOGL = LOG (Y0*CNORM(-XB) + Y1*(1-CNORM(-XB)));  

The XB expressions can be filled in later with the EQSUB command (see the examples in that section).  Note that this
allows for nonlinear equations, as in this example:  

FRML NLXB XB = B0 + B1*X1 + (B2/B1)*X2; 
EQSUB EQ1 NLXB;
ML EQ1;

PROC method. Here is a simple concentrated log likelihood function, where we estimate the mean of a time trend, and
concentrate out the variance parameter to reduce the nonlinearity of the function.

OPTIONS DOUBLE;   ? make sure that residuals are stored in double precision
SMPL 1,9;
TREND T;     ? yields same results as MSD T;  or  OLSQ T C;
PARAM MT,2;
ML  NRMLC  MT;  ? PROC form of the ML command
PROC NRMLC;
   E = T - MT;                        ? residual
   MAT SIG2 = (E'E)/@NOB;   ? sigma-squared  (variance)
   SET PI = 4*ATAN(1);          ? tan(pi/4) = 1
   SET @LOGL = -(@NOB/2)*( LOG(SIG2) + 1 + LOG(2*PI) );
ENDPROC;

Options:

Standard nonlinear options (see NONLINEAR section).  HITER=B,HCOV=B  is the default for the FRML method;
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HITER=F,HCOV=F,GRAD=C2 is the default for the PROC method.

Starting values are from the PARAM and SET statements.  Note that the CONST command allows fixing parameters
during an estimation (for the FRML method).

Output:

Name Type Length Variable Description

@RNMS list #params Names of right hand side variables.

@LOGL scalar 1 Log of likelihood function.

@IFCONV scalar 1 1 if convergence acheived, 0 otherwise.

@NCOEF scalar 1 Number of parameters to be estimated.

@NCID scalar 1 Number of identified parameters.

@COEF vector #params Coefficient estimates.

@GRAD vector #params Gradient of log L at convergence.

@SES vector #params Standard errors.

@T vector #params T-statistics.

@VCOV matrix #params* #params Variance-covariance of estimated coefficients.

See the NONLINEAR section for the alternative names for when the HCOV option is used.

Method: 

The method used is a standard gradient method, explained in somewhat more detail in Chapter 9 of the User's Manual.
Briefly, at each iteration, a new parameter vector is computed by moving in the direction specified by the gradient of the
likelihood (uphill), weighting this gradient by an approximation to the matrix of second derivatives at that point (in order
to adjust for the curvature).  Convergence is declared when the changes in the parameters are all "small", where small
is defined by the TOL= option.

The ML procedure normally uses analytic first (and second) derivatives (for the FRML method).  The function can also
be maximized numerically (HITER=F or HITER=D).  See NONLINEAR for more information on the options (HCOV=N
gives standard errors based on analytic second derivatives).
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