Advanced Methods

Chapter 14
FORECASTING AND MODEL SIMULATION

Often the primary goal of an econometric study is to produce a model for forecasting an economy's future behavior, a
sector in an economy, or even the behavior of an individual firm. Two common approaches to this problem are the
structural model method and the time series (ARIMA or VAR) methods. Both approaches can be used in TSP. A
discussion of the pros and cons of these two methods is beyond the scope of this manual; an excellent reference that
describes both methods, emphasizing their forecasting aspects is the Pindyck and Rubinfeld text.

Chapter 11 introduced the time series methods of forecasting variables using ARIMA or VAR models. In this chapter,
we discuss how to use the structural model forecasting methods in TSP. First we give an overview of the steps in
constructing a forecasting model of any type, then we describe methods for forecasting a single variable, and finally we
describe the model solution procedures used for multi-equation models.

There are usually three major steps in producing a forecast:

1. Define a model with one or more equations giving a reasonably good description of the variables of interest over
a recent time period. The model can come from any source, although multi-equation models must be expressible
in TSP equations (FRMLs). In particular, it may arise from a series of estimations within TSP, both nonlinear and
linear. The dimensions and quality of the model are your choice. If you want to use ARIMA models, use BJIDENT
to help you choose the model.

2. Choose a forecast period and make some assumptions about the behavior of the exogenous variables in the model
over this period. In an ARIMA forecast, there are no exogenous variables in the model, so you can skip this step.

3. Using projected values of the exogenous variables and the model you have chosen, choose one of TSP's forecasting
or simulation procedures to compute the endogenous variables of the model one period at a time. Lagged endogenous
variables may be determined from either the previous forecasts (dynamic simulation -- this method will always be
used for ARIMA or VAR forecasts), or may be actual realizations of the variable (static or historical simulation).

TSP provides several procedures and techniques to compute the forecast and display the results. These techniques can
be divided into two major groups, single equation (single variable) forecasts, and the solution of simultaneous equations
models. We describe the former first, and then describe the model solution procedures, SIML and SOLVE.

14.1. Creating equations: FRML, FORM

Chapter 7 described how FRML can be used to make TSP equations. Any equation thus created can be used in
forecasting with the proviso that equations for SOLVE must be normalized (have a left-hand side variable). Unlike
earlier versions of TSP, logical expressions may be included in the equations of a simulation model.

It is also important to remember that equations used in simulation must have unknown parameter values defined in some
way beforehand. This can be done by using a SET or PARAM statement to supply a value, for example,

FRML GNPGROW GNP = (1+ALPHA)*GNP(-1) ;
SET ALPHA = .15 ;

You can also estimate the equation earlier in your TSP program; in this case, the parameter will retain its estimated value
when the simulation is performed. For example, using the same equation for GNP growth as above,

PARAM ALPHA ;
LSQ GNPGROW ;

Databanks are also useful for saving parameter values after an estimation. If the estimated value of ALPHA were 0.123,
the equation GNPGROW would now be interpreted by GENR, SIML, or SOLVE as

118

14. Forecasting and Model Simulation

FRML GNP = 1.123*GNP(-1) ;

FRML works well when estimating nonlinear models, but many equations will be estimated by linear methods, so it may
be convenient to construct linear equations automatically. FORM does this easily:

OLSQ CXC WP P(-1);
FORM CONS ;

This example estimates a consumption equation by ordinary least squares and forms an equation named CONS as though
you had entered the following FRML statement:

FRML CONS CX=16.6+.81*W+.017*P+.216*P(-1);
[assuming that the coefficient vector estimated in the OLSQ procedure was (16.6, .81, .017, .216)].

FORM may be used after any linear estimation procedure: OLSQ, 2SLS, LIML, LAD, or AR1. Ifit is used following
an AR1 estimation, the term involving ptimes the lagged residual is automatically added (see Section 14.3). FORM can
also be used to create unnormalized equations and to create equations with parameter names rather than values. See
the Reference Manual for details.

14.2. Forecasting with an explicit equation: GENR

The simplest way to forecast a single variable is with GENR, if an explicit equation has already been defined. For
example, the following two sets of statements are equivalent in their result:

SMPL 83 90 ;
GENR GNPFIT = A0 + A1*POP + A2*IMPT ;

SMPL 83 90 ;
FRML GNPEQ GNP = A0 + A1*POP + A2*IMPT ;
GENR GNPEQ GNPFIT;

This method even works when the variable to be forecast depends on its own lagged values (which is described below),
because GENR will operate dynamically. The alternate method for computing single equation forecasts, FORCST, can
be used for either static or dynamic simulation. In addition, FORCST does not require that you specify the equation
beforehand; it can be computed directly from a previous linear estimation.

14.3. Forecasting linear models: FORCST

FORCST will do a forecast immediately following any single equation linear estimation command in TSP (OLSQ,
2SLS, LIML, LAD, or AR1) without requiring FORM or a FRML. This also works on PROBIT and TOBIT models,
although you may wish to transform the predicted latent variable.

Here are some examples:
FREQ A ; SMPL 48 56 ;
OLSQ IMPT C GNP RELP ;
FORCST(PRINT) IMPFIT ;
In this example, the forecast is computed over the estimation sample and therefore IMPFIT is simply the fitted values

of IMPT (equal to the automatically stored @FIT series). It is generally true that if you compute a static forecast over
the same sample as the regression, the output of FORCST will be the fitted values from the regression.

119

Advanced Methods

FREQ A ; SMPL 48 82 ;
AR1 (METHOD=CORC,PRINT) IMPT C GNP RELP ;
SMPL 83 90 ;
FORCST(PRINT) IMPFOR ;

This example illustrates the computation of a dynamic forecast when the errors are serially correlated. Projections of
GNP and RELP must exist for the period 1983 to 1990; the simulation uses the last historical period (1982) to calculate
a presample residual. For this kind of model, the forecasting equation is

yt :Xt b + ﬁet—l
where e_, = pe,,; the initial condition for e is the presample residual.

FREQ A ; SMPL 48 82 ;

OLSQ IMPT C IMPT(-1) GNP ;
SMPL 83 90 ;

FORCST IMPDYN ;

This example shows forecasting when there is a lagged dependent variable in the model. Since IMPT has been referred
to explicitly with a lag on the right-hand side of the original equation, the dynamic forecast will automatically use the
predicted values of IMPT in the next period's forecast. To use this feature, you must refer to the lagged endogenous
variables as IMPT(-1); use of a computed variable, such as IMPTL1 = IMPT(-1), will not have the same effect.

It is also possible to use FORCST independently of any estimation command; in this case you must explicitly supply
the procedure with all the information it needs to compute the forecast:

FORCST(DYNAM,COEF=BETA,RHO=R,DEPVAR=IMPT)
IMPFIT C GNP RELP ;

In this example, BETA is the vector of estimated coefficients of the independent variables, R the estimated value of the
serial correlation coefficient, IMPT the name of the original dependent variable (needed for dynamic forecasts), IMPFIT
the name to be given to the forecasted variable, and C, GNP, and RELP are the independent variables in the forecasting
equation. The coefficients BETA must be supplied in the same order as the list of independent variables.

14.4. Solving simultaneous equation models

TSP provides two quite different procedures for the solution of simultaneous equation models. The methods differ in
their speed of convergence, use of computer storage and time, and ability to handle highly nonlinear or very
simultaneous models.

The most general and powerful procedure is SIML, which uses Newton's method applied to nonlinear equation solution.
The model is specified just like FIML. SIML does not require normalized equations nor that the model be ordered in
a particular way, and uses analytic derivatives of the model in the solution process. For linear models, SIML converges
in one iteration, and is very fast for multiperiod models. For highly nonlinear models, Newton's method
(Gauss-Newton) may be the only method in TSP that can provide a solution. The cost of this power is considerable use
of computer storage compared with other model solution techniques. Consequently, SIML may not be the method of
choice for more than 50 equations. TSP does not explicitly limit the number of equations, but you may not have enough
memory available. You may also be limited by TSP’s (relatively large) limits on the number of unique variable
names/arguments in the collected model and on the number of variables in a TSP session. Use the SHOW command
to see what these limits are in your copy of TSP.

For large economic models, particularly those with some sort of block structure, SOLVE will be more suitable. To use
this procedure, first collect the equations of the model using MODEL to determine the best order for solution. The
equations must be "normalized", i.e., each endogenous variable must appear once and only once on the left-hand side
of an equation. MODEL determines how the equations are to be arranged into recursive and simultaneous blocks for
solution. SOLVE will evaluate the recursive blocks (blocks in which every equation uses only previously computed

120

14. Forecasting and Model Simulation

endogenous variables as input) and will solve the simultaneous blocks either by the Gauss-Seidel method or by the more
powerful Fletcher-Powell method. This method of model solution is suitable for most large economic models, which
tend to be sparse, fairly linear, and separable into blocks. (It has been used on models with more than 400 equations.)
However, convergence of the simultaneous blocks is not guaranteed, since it does not compute any analytic derivatives.

These two procedures are described in greater detail below.

14.4.1. Small nonlinear models: SIML

SIML invokes Newton's method; it has the same form as FIML described in Chapter 7: SIML, followed by options
including ENDOG=(list of endogenous variables), followed by a list of equations, including identities. Unlike FIML,
SIML treats IDENTs the same as FRMLs (see Section 7.1). For example, the solution of the illustrative model is
specified by

SIML(ENDOG=(GNP,CONS,I,R,LP)) CONSEQ,INVEQ,INTRSTEQ,GNPID,PRICEQ;

The default values of the options are Newton's method, no storage of the results, and a dynamic simulation. A static
simulation is often used when simulating over a historical period: it uses actual realized values of the lagged
endogenous variables rather than obtaining them from the simulation of the previous period. The default for printing
is to print a one line summary of each iteration and a table of the solved variables at the end.

An example of SIML that stores the results and prints the input data is
SIML(PRNDAT,TAG=S,ENDOG=(GNP,CONS,L,R,LP)) CONSEQ,INVEQ,INTRSTEQ,GNPID,PRICEQ;

After this model has been solved, the solved series are stored under the names GNPS, CONSS, IS, etc. Further details
on the options available with SIML are given in the Reference Manual.

14.4.1.1. Newton's Method

The method used by SIML for solution of nonlinear simultaneous equation models is a variant of Newton's method.
Obviously, if a simultaneous model is linear, it can be solved directly by matrix inversion. That is, the solution to the
matrix equation

Ax=b
is
x=A"b.

Newton's method applies this idea to the iterative solution of nonlinear models. At each iteration, the model is linearized
in its variables around the values from the previous iteration. The linearized model is solved by matrix inversion. In
terms of the equation above, A is the Jacobian of the model with respect to the variables, b the vector of model values
at the previous iteration and x the direction vector of changes in the variables to be computed.

The resulting vector of changes is used as a direction vector in a linear search for better values of the variables, as in
the other iterative procedures such as LSQ. A deviation is computed for each equation by substituting the current values
of the variables; at the solution, all the deviations will be zero. The criterion for the search is the sum of squared
deviations of the equations; it is printed as F = and FNEW = in SIML's output. Unless a solution has been achieved,
there will be a better set of values somewhere along the direction vector. The actual choice of the new set of variable
values is made by the same methods used in nonlinear estimation and is described in Chapter 10. For a further
description of Newton's method, see Saaty and Bram (1964) or Ortega and Rheinboldt (1970).

The POS function can be used to constrain the solved values to be non-negative.

121

Advanced Methods

14.4.2. Large models

Large models require two steps (procedures) for solution -- MODEL and SOLVE. MODEL is used to group the
equations into smaller blocks, and SOLVE seeks the solution using this structural information. Several SOLVE
commands can use the same MODEL (using different scenarios of exogenous variables or parameter values, for
example). SOLVE uses the same iteration and TAG options as SIML.

14.4.2.1. Ordering equations: MODEL

MODEL groups the equations of a model into blocks and saves this structure under a model name. We use the
well-known Klein Model I as a simple example. This model consists of three behavioral equations and four identities.
There are seven endogenous variables (CX, I, W1, P, K, W and E), three lagged endogenous variables (P(-1), K(-1),
and E(-1)), and four exogenous variables (G, TIME, TX, and W2). The equations may be estimated by a single equation
method, using FORM to construct a TSP equation, or they may be specified with FRMLs and estimated with
multi-equation methods. We assume that we will use two-stage least squares, and specify the model as follows:

LIST IVK C P(-1) E(-1) K(-1) G TIME TX W2;
2SLS(INST=IVK) CX C,W,P,P(-1);

FORM CONS ;

2SLS(INST=IVK) I C,P,P(-1).K(-1);

FORM INV ;

2SLS(INST=IVK) W1 C,E,E(-1), TIME;
FORM WAGES ;

IDENT WAGE W=W1+W2;

IDENT BALANCE P = CX+1+G - (TX+W) ;
IDENT PROFIT E = P+TX+WT1 ;

IDENT CAPSTCK K=K(-1)+1 ;

LIST KLEIN CONS INV WAGES WAGE BALANCE PROFIT CAPSTCK ;
LIST KENDOG CX I W1 WEPK ;
MODEL KLEIN,KENDOG,KLEINC ;

MODEL takes the model specified in the list of equations KLEIN and the list of endogenous variables KENDOG, and
orders the equations into a recursive block structure. An ordering of this kind provides increased understanding of the
model structure and provides efficient solution. The recursive block ordering for the system is formed by operations
on the "adjacency" matrix of the system, a matrix of ones and zeroes relating the dependent variables in the system to
the equations in which they appear.

See Steward (1962) for further explanation of this procedure and for details of the specific algorithm employed in
obtaining the ordering. The method involves viewing the adjacency matrix as a network and systematically seeking

closed loops that define systems of simultaneous equations.

The output for the MODEL example above would be the following:

Block structure of KLEINC

Blk Eg# Equation Dep-.Var- L2345k7

1S 1 INV I X X

1S 2 WAGE W X X
1S 3 PROFIT E XX X
1S 4 BALANCE P XX XX
1S 5 CONS X X XX
1S b WAGES Wl X X
2R 7 CAPSTCK K X X

The column labeled Blk shows the number of each block of equations and the type (S for simultaneous and R for
recursive). The X's mark the equations in which each dependent variable appears.

122

14. Forecasting and Model Simulation

Because this model is completely simultaneous except for the capital stock equation, there is one block with six
equations, followed by the equation that determines the new level of capital stock from investment. This last equation
could be left out of the model without affecting the results in any way, since the level of the capital stock has no impact
on output in this version of the model.

Having ordered this model, the procedure then puts the ordered list of equations and variables under the name KLEINC.

14.4.2.2. Solution: SOLVE

SOLVE causes the model saved by a MODEL statement to be solved. The only required argument is the name of the
ordered model. For each time period in the sample, each block is solved separately in the order determined by MODEL.
The recursive blocks are always solved in one iteration via the equivalent of GENR. Three methods are provided for
solving the simultaneous blocks: the Gauss-Seidel, Jacobi, and Fletcher-Powell algorithms.

14.4.2.3. Gauss-Seidel and Jacobi methods

Solution by the Gauss-Seidel method is the default, and it could be invoked for the Klein model in the following way
(TAG is optional):

SOLVE(TAG=S) KLEINC;

The option METHOD=JACOBI specifies that a variant of the Gauss-Seidel method called the Jacobi method (see pp.
217-220 of Ortega and Rheinboldt) is to be used. This method does not update the endogenous variables immediately
while the simultaneous block is being computed, but waits until the beginning of the next iteration and updates them
all at once.

14.4.2.4. Fletcher-Powell method

To use the Fletcher-Powell method to solve the simultaneous blocks of a model, include the METHOD=FLPOW option
in SOLVE:

SOLVE(METHOD=FLPOW) KLEINC ;

The Fletcher-Powell method is described in Fletcher and Powell (1963); it is useful when the Gauss-Seidel method does
not converge. It uses numeric derivatives with respect to the endogenous variables (as opposed to SIML, which uses
analytic derivatives).

14.4.2.5. Example: a 33-equation model

Example 4.1 shows a sample TSP job for the solution of a rather complex 33-equation model with 6 structural equations
and 27 identities. The first three pages show the TSP input for the model:

The data (10 observations in the example) are read from an external file, 6 variables per record, 14 records per
observation. Some normalizing constants are defined.

The identities are specified; note that the equations are normalized, i.e., there is only one endogenous variable on the
left-hand side of each equation, and each endogenous variable appears only once on the left-hand side. The six
behavioral equations are defined, together with parameter values previously estimated by FIML over the whole sample.
The endogenous variables and equation names are put into LISTs.

MODEL is executed to produce a collected model, TRADEC, to be input to SOLVE. We show the output of MODEL

on the following page. This output shows the best order of solution of the model: the procedure has determined that
the first 9 equations are recursive, the next 15 are a simultaneous block, and the last 9 are recursive once the previous

123

Advanced Methods

24 have been solved.

An inspection of the model confirms this: the first 7 equations involve only exogenous and lagged endogenous
variables, equation IDFIO involves V and N, already determined by IDV and IDF9, equation IDRK involves RP, already
determined by IDRP. Then we start the simultaneous block. Following this block is a series of equations that are
essentially superfluous to the model: the whole thing could be solved without the last recursive section and then these
equations could be computed using simple GENRs (in the order listed).

The following page shows the start of the solution procedure. Recursive blocks always take only one iteration, so no
message is printed; the convergence messages shown correspond to the simultaneous blocks for the two periods. If we
had used the PRINT option, there would also be a printout of SSR (sum of squared residuals) showing the golden
section stepsize search method searching for the optional stepsize for each Fletcher-Powell iteration on the simultaneous
block. Unlike the quasi-Newton minimization methods used elsewhere in TSP, the Fletcher-Powell algorithm does not
have a natural stepsize of approximately unity.

14.5. Displaying and evaluating a forecast: ACTFIT

The first step in evaluating a forecast is probably to print or plot it. If you are using the single equation FORCST, this
is easily accomplished by including the PRINT option on the statement:

FORCST(PRINT) SALESF ;

This option prints information about the equation it is using for the forecast and a time series plot of the forecasted
variable over the time period in question. The plot also shows the values of the variable on the right-hand side. On a
PC, to see a high-resolution graphics plot use the command :

PLOT SALES SALESF ;

If you use SOLVE or SIML to obtain the forecast, plotting will not be automatically available, although you can obtain
a table of the solved values by use of the PRNSIM option. To get plots, save the simulated values with a TAG= option
(for example, CXS, IS, etc.) and use the PLOT procedure described in Chapter 6:

PLOTCXACXSS; ? hardcopy
PLOT CX CXS; ? high-resolution graphics

This example assumes that the simulation has been done over a historical period, so that both actual (CX) and solved
(CXS) values of consumption are available and may be plotted on the same scale for comparison. Of course, if you did
not know CX for the forecasting period, you could simply plot CXS.

Standard references for the evaluation of forecasts are: Theil (1961 and 1966) and Pindyck and Rubinfeld (1976).
Some of the measures discussed by Theil in Chapter 2 of his 1966 book have been incorporated into TSP in the ACTFIT
procedure. You can use this procedure to compute a set of statistics such as the root mean square error, the inequality
coefficient (U), and a decomposition of the sources of forecast error. The command is

ACTFIT CX CXS ;

Once again, the historical values of the variable are required to make this comparison. If the option PLOTS has been
turned on, ACTFIT also plots the two variables and their difference.

Note: The 1961 and 1966 definitions of U differ; Pindyck and Rubinfeld use the 1961 definition. TSP prints both
versions of U.

124

14. Forecasting and Model Simulation

PROGRAM

LINE 3K 3K 3K 3k 3K K 3K 3K 3k 3k K K K K 3K 3K 3K 3K ok 5k 3K K 3K 3K 3k 3K 3K K 3K 3K 3k 5K 5K K 3K 3K 3k 3K K 3K 5k 3k 3K X X 3K 3k 3K 3K X K 3K 3K K XK XK K K K XK Kk kK kX

(RN T T T O - T T T T T

OPTIONS CRT NODATEs
NAME TRADESOL '33 EQ TRADE MODEL - SOLVE WITH FLETCHER-POWELL METHOD' 3
?
? READ IN THE DATA FOR THE TRADE MODEL FROM THE FILE TRADSOL.DAT
?
FREQ A 5 SMPL kB4 73 3
READ (FILE='TRADESOL.DAT' .FORMAT='(kGL2-5)")
ACDP AK AKD AKL C€C CE
C6 DG DLDT DP DR E
EI EJ EL ER ET EX
G HLT HR I IG IM
K KD L LD LE LG
LH LJ LR LU M N
NRE NW P PC PCE PCG
PDP PEX PF PG PI PIG
PIM PKD PL PLD PLE PLG
PLR PR R RDP RE RIM RK
RL RP RT RV RW SHRC
SHRDP SHREX SHRFC SHRIM SHRKD T
TDP TIM TK TL TP TV
TWw V VCR VIR W &
? SET THE CONSTANTS AND PARAMETERS FOR THE RUN-
?
SET NKD=1lbkk-A92k5k 3
SET NLD=252-81388 3
SET NIM= 20-331 &
SET NDP=41.9-5k4b4Y 3
SET NEX= 20-507 3
SET NT= 0.0 &
SET NL= DO-84k4 &
?
? EQUATIONS OF THE 33 EQUATION MODEL-
?
IDENT IDSDP DP=SHRDP*PLDXLD/PDP 3
IDENT IDSIM PL=PL+SHRIM+PIMXIM/(PLDXLD) 3
IDENT IDSKD L=L+SHRKD+PKD*KD/ (PLD*LD) 3
IDENT IDSC PC=(PL*LJxSHRC)/ (CC*x(L-SHRC)) &
IDENT IDSFC CC=(SHRFCx(L+NW)*W(-1)-PL*LJ)/PC 3
IDENT IDF? PDP=PC/ACDP 1
IDENT IDF& Ld=LH-L &
IDENT IDFH N=(M*xPIxAKL+PI(-1)*AK(-1)-PIXAKL
= ((L-TK)* ((PKDXxAKD)-TP*PI(-1)
*¥AK(-1))))/ (-PI(-1)xAK(-1)) 3
IDENT IDFLO NW=(-V-N*PI(-1)*AK(-1)*%K(-1) + (PI*AKL-PI(-1)%AK(-1))*K(-1)
- (L-TV)*X(EI+VCR+VIR+NRE)-EJ+RV+TWXW(-1))/(-W(-1)) 3
IDENT IDFLL PEX=-(PDP*DP-PLDXLD-PKDXKD-PIM*IM)/EX 1
IDENT IDFL2 IM = ((1+TDP)*PDP*DP-PCxCC+PCEXCE-PCG*C6G-PIGXIG-PIXI)/
(-TIMxPIM) &
IDENT IDF13 PLD=(PL%L/(L-TL)-PLEXLE-PLGXLG-PLR*LR)/LD &
IDENT IDFLY4 LD=L-(LE+LG+LR+LU) 1
IDENT IDF1k R=(PEXXEX-PIM*IM+VCR+VIR+PLR*LR-ER-HR+NRE-ET)/PR+R(-1) 3
IDENT IDDG DG=E+EL+ER+EI+EJ-(RDP+RIM+RP+RK+RL+RW+RT+RE+RV) 4
IDENT IDDR DR=PEXXEX-PIM*IM+VCR+VIR-ER-HR+PLR*LR+NRE 3
IDENT IDE E=PCGXxCG+PIGX*IG+PLGXLG 3
IDENT IDG G=(DG+ET)/PG+G(-1) 3
IDENT IDKD KD=AKD*K(-1)3
IDENT IDPF PF=PF(-1L)*EXP(DO.5x(
((PCXCC)/ (PCXCCHPL¥LJ)+(PC(-1)*xCC(-1))/
(PC(-1)*CC(-1)+PL(-1)xLJ(-1)))
¥LOG(PC/PC(-1))
+((PL*LJ)/ (PCXxCC+PL¥LJ)+(PL(-1)*LJ(=1))/
(PC(-1)*CC(-1)+PL(-1)%xLJ(-1)))
¥LOG(PL/PL(-1)))) &
IDENT IDRDP RDP=TDP*PDPXDP 4
IDENT IDRE RE=PCExCE-PLEXLE 3
IDENT IDRIM RIM=TIM*PIMXIM 1
IDENT IDRK RK=TK*(PKD*KD-RP)+TVXx(EI+VCR+VIR+NRE) 3

Example 14.L: Simulation of a Medium-sized Trade Model

125

Advanced Methods

36 IDENT IDRL RL=TL*(PLDXLD+PLEXLE+PLG*LG+PLR*LR)%

37 TIDENT IDRP RP=TP*PI(-1)xAK(-1)%K(-1)3

36 IDENT IDRUW RW=TW*W(-1)3

39 TIDENT IDV V=(PIX%AKL-PI(-1)x%AK(-1))*xK(-1)+(PG-PG(-1))*G(-1)

39 +(PR-PR(-1))%R(-1) 3

4o 2

4o 2 BEHAVIORAL EQUATIONS FOR THE CONSUMPTION SIDE OF THE MODEL AND THEIR
PARAMETER ESTIMATES.

4o 2 SPECIFICATION: SYMMETRIC- CONVEXITY IMPOSED
4o 2

40 FRML INTERL SHRFC

4o =((AXO+BONXLOG ((PFxP)/

40 ((L+NW) *W(-1)+LDAX (EL-HR-RT)+DELXPL*LH))
4o +BOTx(T-NT))/

40 (-L+BNN*LOGC((PF*P)/

4o ((L+NW) *W(-1)+LDAX (EL-HR-RT)+DELXPL*LH))
40 +BNT*(T-NT))) %

4o (L+(LDAX(EL-HR-RT)+DELXPL*LH)/ ((L+NW)*xW(-1)))%

41 FRML INTRAL SHRC=AC+BCCXLOG(PC/(PL/NL)) 4
42 PARAM AX0O --122007 BON --024270k LDA ?7.85130 DEL 7-85130

4e BNN --19799L BNT .00143592 BOT -0001493k1 &

43 PARAM AC .148803 BCC -0L5544E 5

4y 2

4y 2 BEHAVIORAL EQUATIONS FOR THE PRODUCTION SIDE OF THE MODEL AND
4y 2 THEIR PARAMETERS.

by 2

44 FRML CODP SHRDP=ADP+(LDPKD*DKD-AKS*ADP)*LOG((KD*NEX)/ (NKD*EX))

4y +(LDPKDXLDPKD*DKD+LDPIMXLDPIM*DIM+DDP

4y -ADPX(ADP-1))%LOG((DPXNEX)/ (NDPXEX))

4y +BDPTX(T-NT) 5

45 FRML COKD SHRKD=AKS+(DKD-AKS*(AKS-1))*LOG((KD*NEX)/ (NKD*EX))

45 +(LIMKDXDKD-AKS*AIM) XLOG (CIMXNEX)/ (NIMXEX))

45 +(LDPKD*DKD-AKS*ADP)*LOG ((DPXNEX) /(NDP*EX))+BKDT*(T-NT)?3
4k FRML COIM SHRIM=AIM+(LIMKD*DKD-AKS*AIM)x*LOG((KD*NEX)/ (NKD*EX))

4b +(LIMKDXLIMKD*DKD+DIM-AIMX (AIM-1))*LOG((IM*NEX)/ (NIM*EX))
4k +(LDPKDXLIMKD*DKD+LDPIM*DIM-AIM*ADP) *LOG ((DP*NEX) /

4b (NDPXEX))+BIMTX(T-NT) 3

4?7 FRML COT DLDT=AT+BKDT*LOG((KDXNEX)/ (NKD*EX))+

47 BIMT*LOGC((IMXNEX)/ (NIMXEX))

4 +BDPTXLOG ((DPXNEX)/ (NDPXEX))+BTTx(T-NT) 3

44 PARAM AT -.02217 BTT -00019E3 &
49 PARAM AKS --kE373 DKD L.2k0 LIMKD -0&881 AIM --0794

49 LDPKD -1.020 ADP 1-k38 3

50 PARAM BKDT -.004k DIM -.02k2 LDPIM -.4053 BIMT -000k

50 DDP .0320 BDPT .004B 3

5l ¢

51 2 THIS IS THE LIST OF ENDOGENOUS VARIABLES IN THE MODEL-
5l ¢

51 LIST ENDOGL E KD RE RP RW V N NW RK

5l LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM

5l L PL DP SHRFC PC

5l PEX R DLDT DR RDP RIM RL DG G &

e ¢

fe ¢ THIS IS THE LIST OF EQUATIONS IN THE MODEL3> THE ORDER CORRESPONDS

e 72 TO THE ORDER OF SOLUTION DESIRED-
52 LIST TRADEM IDE IDKD IDRE IDRP IDRW IDV IDFH IDFLO IDRK

52 IDF& IDFLY4 IDF? INTRAL IDSFC IDPF IDF13

1= CODP COKD COIM

52 IDSKD IDSIM IDSDP INTERL IDSC

1= IDF1Y IDFLL COT IDDR IDRDP IDRIM IDRL IDDG IDG &

53 ~»

53 ¢ THIS COLLECTION OF THE MODEL IS SUPERFLUOUS SINCE WE HAVE ALREADY
53 2 ACHIEVED THE DESIRED ORDERING-

53 ¢

53 COLECT TRADEM ENDOGL TRADEC &
54 SMPL k5 bk &
55 SOLVE(STATIC-METHOD=FLPOW-TAG=F-MAXIT=50) TRADEC 1
Bk STOP 3 END ;&
EXECUTION

A A A A N A OO OO IO OISO OISO IOISIOIEOIOIOEE

Example 14.1: (continued. page 2).

126

14. Forecasting and Model Simulation

Current

Block structure of TRADEC

Blk Eq#
IR 1
IR 2
IR 3
IR 4
IR 5
IR &
IR 7
IR &
IR 19
as 10
2s 1l
s 12
s 13
s 1y
as 15
2s 1k
as 17
2s 18
2s 19
2s a0
s 21
as 22
as 23
as 2y
3R 25
3R 2k
3R 27
3R 28
3R 29
3R 30
3R 31
3R 32
3R 33

sample:

19k4 to 1973

11111111Ll22222222223333
12345k7849012345k78901234567890123

Equation Dep.Var-

IDE
IDKD
IDRE
IDRP
IDRW
IDV
IDFA9
IDF1LO
IDRK
IDFA
IDFLY
IDF?
INTRAL
IDSFC
IDPF
IDF13
CODP
COKD
CoIM
IDSKD
IDSIM
IDSDP
INTERL
IDSC
IDFLL
IDF1k
coT
IDDR
IDRDP
IDRIM
IDRL
IDDG
IDG

Current sample:

CONVL
DYNAM

MAXIT
PRINT
PRNSIM
STATIC

0.0L
FALS

50

FALS
TRUE
TRUE

E

N
RK

LJ

LD
PDP
SHRC
cc

PF
PLD
SHRDP
SHRKD
SHRIN
L

PL

DP
SHRFC
PC
PEX

R
DLDT
DR
RDP
RIM
RL

DG

G

195 to 1lAkhk

poooo
E

E

X
X
X
X
X
X
X
XXX
XX X
X X
X X
X X
X X X
X X X X XX
X XX X X
X X XX
X X X
X X X
X X X
X X X XX
X X XX
XX XX X
X X X X
X XX X X
X XX X X
XX
X X X
X
X X X
X
X X X
X XXX X XXXX
XX
SIMULATION OF THE MODEL TRADEC
OPTIONS FOR THIS ROUTINE
CONV2 = 0.00100000 DEBUG
ITERMX = 50 KILL
MAXPRT = & METHOD
PRNDAT = FALSE PRNRES
RESIDU = FALSE SOLNAM
TAG =F ToL
33

NUMBER OF EQUATIONS IN THE MODEL =
NUMBER OF BLOCKS IN THE MODEL = 3

FALSE
FALSE

FLPOW
FALSE

F
0.0100000

BLOCK # NUMBER OF EQUATIONS
L 9
2 15
3 9
Example lL4.L: (continued. page 3).

127

Advanced Methods

F= 0-35338E-01 FNEW= 0.35975E-02 ISQZ= 5 STEP= 0-93253E-04 CRIT= bkhkl.22
F= 0-35975E-02 FNEW= O0.3205kE-02 ISQZ= 1 STEP= 0O-4kk27E-04 CRIT= 14.170
F 0.3205kE-02 FNEW= 0.31.77?9E-02 ISQZ= 1 STEP= 0.23313E-04 CRIT= L.9218
F= 0-317?79E-02 FNEW= O0.3L748E-02 ISQZ= 1 STEP= 0-23313E-04 CRIT= 0-3k20k
F= 0-31748E-02 FNEW= 0.3L735E-02 ISQZ= 1 STEP= 0-58283E-05 CRIT= 0.53940
F= 0-317?35E-02 FNEW= 0.3L731E-02 ISQAZ= 1 STEP= 0O-58283E-05 CRIT= 0-1241L4
F= 0-3173LE-02 FNEW= 0.3L723E-02 ISQZ= 1 STEP= 0-.23313E-04 CRIT= 0.10275
F= 0-31723E-02 FNEW= O0.3L7L4E-02 ISQZ= 1 STEP= 0-58283E-05 CRIT= 0.28931
F 0.327L4E-02 FNEW= 0.31.7L1E-02 ISAZ= 1 STEP= 0.1LkL57E-04 CRIT= O0.52775E-01
F= 0-3171LE-02 FNEW= 0.3Lk83E-02 ISQAZ= 1 STEP= 0-93253E-04 CRIT= 0-849781E-01
= 0.31k83E-02 FNEW= O0.3Lb40E-02 ISQZ= 1 STEP= 0.23313E-04 CRIT= 0-33477
= 0.31k40E-02 FNEW= 0-3Lk25E-02 ISAZ= 1 STEP= O.4kk2?E-04 CRIT= 0-kO929E-01
= 0.31k25E-02 FNEW= 0.307L7E-02 ISAZ= &k STEP= 0.32532E-02 CRIT= O0.574&2E-01
= 0.307L7E-02 FNEW= 0-.208L8E-02 ISdAZ= 10 STEP= 0.28k&8LE-01 CRIT= O-kkATFLE-01
F 0.20818E-02 FNEW= O0-14LLY4E-02 ISAZ= 10 STEP= 0.18745E-01 CRIT= O.70349E-01
F= 0-1L4Lk4E-02 FNEW= 0.10492E-02 ISQZ= 10 STEP= O0-1&8745E-01 CRIT= 0-39951E-01
F= 0-10492E-02 FNEW= 0.99427E-03 ISQZ= 7 STEP= 0-45593E-02 CRIT= O0-24L38E-01
CONVERGENCE ACHIEVED AFTER 17 ITERATIONS-
F= 329-30 FNEW= 0-2453kE-02 ISAZ= 15 STEP= 0.932k9E-02 CRIT= 7?0L35.
F= 0-2453kE-02 FNEW= 0.23947E-02 ISQZ= 1 STEP= 0-23313E-04 CRIT= 7-bLb4u
= 0.23947E-02 FNEW= 0.23872E-02 ISQZ= 1 STEP= 0.23313E-04 CRIT= L.1213
= 0.23872E-02 FNEW= 0.23841E-02 ISAZ= 1 STEP= 0-11L57E-04 CRIT= O-k4235
= 0.2384LE-02 FNEW= 0.23820E-02 ISQZ= 1 STEP= 0.23313E-04 CRIT= 0-1910L
= 0.23820E-02 FNEW= 0.23525E-02 ISAZ= 1 STEP= 0-37301E-03 CRIT= 0-13249:2
F 0.23525E-02 FNEW= 0.23253E-02 ISAZ= 3 STEP= 0.74k03E-03 CRIT= O0-79214E-01
F= 0-23253E-02 FNEW= 0.23142E-02 ISQZ= 1 STEP= 0-37301E-03 CRIT= 0-10094
= 0.23142E-02 FNEW= 0.2305kE-02 ISQZ= 1 STEP= 0.93253E-04 CRIT= 0-1889k
= 0.2305LE-02 FNEW= 0-.22k94E-02 ISAZ= 4 STEP= 0.18443E-02 CRIT= 0-41723E-01
= 0.22k94E-02 FNEW= 0.21749E-02 ISAZ= &k STEP= 0.3k88LE-02 CRIT= 0.53054E-01
= 0.21749E-02 FNEW= 0.207k1E-02 ISdZ= 7 STEP= O.5k35kE-02 CRIT= 0O-3454LE-01
F 0.207kLE-02 FNEW= 0.17L?5E-02 ISAZ= 10 STEP= 0.1k907E-01 CRIT= 0.39828E-01
F= 0-17L75E-02 FNEW= 0.1Lkk3E-02 ISAZ= 10 STEP= 0-23k79E-01 CRIT= O-4bB44LE-OL
= 0.11bL3E-02 FNEW= O0.8441.9E-03 ISAZ= 9 STEP= 0.14754E-01 CRIT= O0.-4kL00LE-01
F= 0-84419E-03 FNEW= 0.82742E-03 ISQAZ= &k STEP= 0-3957kE-02 CRIT= 0-429L2E-02
CONVERGENCE ACHIEVED AFTER 1k ITERATIONS-
THE SOLVED VARIABLES ARE STORED WITH A TAG: F
SIMULATION RESULTS

E KD RE RP RW
19k5 137-00119 207-994859 L-4470%7 30-97k27 3.L3048k
19kk 15k6-8101k 219-274492 L.2212k 32.749372 3.90878

v N NW RK LJ
19k5 10-00131 0.054k72 0.050904 4y .48508 23kL.87817
19kk 7b-73501 0.0951k7 0D.084888 49.-95992 2415.59923

LD PDP SHRC cc PF
19k5 29k -87295 L.-09249 0-14k70 34k -97003 L.25840
19kk 30&-72938 L-12410 0.-14E43 407.14032 L.31754

PLD SHRDP SHRKD SHRIM L

19k5 1.25097 L-k921k -0-L9388 -0.08k272 372-734k5
19kk 1.3L518 L.-k995k -0-69774 -0.094543 388 -01917

PL DP SHRFC PC PEX
19k5 L.084487 583-LA8A77 1.33431 1-11L572 1-15193
19kk 1.13741 b24-94808 1.337k19 1.-1532¢ 1.23089

R DLDT DR RDP RIM
19k5 33-4833k -0-02034k 8.3577k £9-0958k L-k4702
19kk 36.2277k -0-020047 4.97031 £9-4951k 1.-93012

RL D6 G
19k5 L 3.40792 31.7-38777

-1 RL Ry == T ST T

128

Example 1Y4.L:

(continued. page 4)-

14. Forecasting and Model Simulation

14.6. Monte Carlo Simulation: RANDOM

Random variables are useful in a variety of situations, from checking the statistical properties of an econometric or
simulation model to computing bootstrap standard errors when analytic formulas are not available. This type of
procedure is often referred to as Monte Carlo analysis, and is easily programmed in TSP. For example, to draw a series
E of independent standard normal variates, use the following command:

RANDOME ;

To draw 3 series X1, X2, X3 that have a multivariate normal distribution with mean XMEAN (a length 3 vector) and
variance matrix XVAR (a symmetric matrix of order 3), use this command:

RANDOM (VMEAN=XMEAN,VCOV=XVAR) X1-X3 ;

Random can also be used to generate series from uniform, Poisson, Cauchy, exponentail, Laplace, student's t, gamma,
negative binomial, and arbitrary empirical distributions. See the Reference Manual for details on the options necessary.

Two useful examples appear in Chapter 9: in section 9.6.3, we simulate an ARCH model using the standard normal
distribution and a dynamic GENR. In section 9.6.7, we show how to use uniform random variables and the inverse
distribution function to generate random variates from an arbitrary distribution function, in this case, the Type I Extreme
Value Distribution [exp(-exp(-u))].

The example below uses the random number generator to make a chi-squared(3) random variable and then plots the
"empirical" distribution of this random variable on the same scale as the theoretical distribution (computed by CDF).
The plot is shown in Example 14.2.

SMPL 1 100 ;

RANDOM E1-E3 ; ? Make 3 indep. normal Rvs.

CHI3 = E1*E1+E2*E2+E3*E3 ; ? Chi-squared variable=sum of squares of normal random vars.
SORT CHI3 ; ? These statements make the empirical distribution function of chi3
TRENDT;

P=T/@NOB ; ? p = 1/n,2/n,etc. is the height at the corresponding value chi3.
SET MAXC = I+INT(1.1*CHI3(@NOB)); ? maxc is the upper limit of the graph.

0

? Now make the theoretical chi-squared(3) distribution function using CDF.
CHIVAL = MAXC*(T-1)/(@NOB-1) ;

CDF(CHISQ,DF=3,LOWTAIL) CHIVAL CHIDF3 ;

0

GRAPH(PAIR,LINE, TITLE="Reference vs Actual Distribution") CHIVAL,CHIDF3 CHI3,P ;
Most Monte Carlo analysis involves making a large loop and accumulating statistics on functions of random variables.
As an illustration of how to do this in TSP, the distribution of the OLS regression coefficients can be checked under

the standard assumptions of fixed Xs and normal residuals.

SET NTRIAL=100; SET NOB=50; SET NX=2;

SMPL 1,NOB;
RANDOM(MEAN=5,SEEDIN=49824) X; ? generate X series; use SEED to reproduce results.
YHAT =3 + 4*X; ? generate true values of Y series.

MFORM(NROW=NX,NCOL=1) BMEAN=0;
MFORM(NROW=NX,TYPE=SYM) BPROD=0;

REGOPT(NOPRINT) @LOGL,@COEF,@SES; ? suppress all OLS output.
DO TRIAL = 1, NTRIAL;
RANDOM(STDEV=2) E; ? generate disturbances E
Y = YHAT+E;
OLSQ(SILENT) Y C X;
MAT BMEAN = @COEF + BMEAN ; ? sum coeff. estimates.

129

Advanced Methods

o Actual vs Theoretical Distribution

0.8 A

0.6

0.4+

0.2 1

0.0 £ T \ T T T]
0. 2. 4. 6. 8. 10. 12.

CHIVAL

— CHIDF3 - CHI3

Example 1lu.2: Cumulative Probability Plot
for the Chi-squared
Distribution.

MAT BPROD = BPROD + @COEF*@COEF'; ? sum cross products.
ENDDO;
MAT BMEAN = BMEAN/NTRIAL ;
MAT BVAR = BPROD/NTRIAL - BMEAN*BMEAN';
REGOPT; ? reset output suppression.
TSTATS(NAMES=@RNMS) BMEAN BVAR;

For lengthy Monte Carlo studies, it may be useful to write intermediate results occasionally to a file, so that if the
program fails for some reason partial results can be obtained. This would also yield more accurate estimates of the
variance (the updating formula used above is not very accurate). That is, revise the example above as follows:

DO TRIAL = I,NTRIAL;
RANDOM(STDEV=2) E;
Y = YHAT+E;
OLSQ(SILENT) Y C X;
WRITE(FILE="monte] .dat") @COEF;
ENDDO;
?
? the second part of the program (below) could be put in a separate file if necessary
SMPL 1,NTRIAL;
READ(FILE='montel.dat") BO B1;
MSD(COVA) B0 B1;

130

14. Forecasting and Model Simulation

REGOPT; ? reset output suppression.
TSTATS(NAMES=(C,X)) @MEAN @COVA; ? display mean and variance of estimated coefficients

131

