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CHAPTER 2   

MODELS WITHOUT IIA:  

SEQUENTIAL LOGIT, GENERALIZED LOGIT, AND PROBIT MODELS

Introduction

The empirical work in this volume employs the multinomial logit model
and, occasionally, variants of this model--the maximum model and the sequential
logit model.  The preceding chapter has established empirically that the
multinomial logit model can provide an adequate fit to observed data, and that the
IIA property of the multinomial logit model cannot be rejected.  Nevertheless,
there is considerable interest in alternatives to or extensions of this model for
situations where the IIA property is unpalatable, or where the MNL model itself is
cumbersome to estimate or manipulate.



1McFadden (1974) also suggested the cascade model, in which the desirability of a "branch" of alternatives is
given by a probability-weighted sum of mean utilities of the alternatives.  However, this model violates a
basic axiom of choice theory, implied by utility maximization, that adding an alternative to a branch cannot
lower the desirability of that branch�because the new alternative need be chosen only if it is better than the
alternatives previously available.  Hence, use of this model is not recommended.
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Ad Hoc Choice Models

Several ad hoc alternatives to the MNL model have been suggested in
transportation literature.  McFadden (1974) introduced the maximum model,
which, for joint choice of, say, mode  m  and destination  d , would take the form

(1) Pd � e maxmvmd / �
c

e maxmvmc ;

(2) Pm|d � e vmd / �
n

e vnd ,

where  vmd   is the "mean" utility of the alternative  (m,d) ,  Pm|d  is the conditional
probability of choosing mode  m  given destination  d , and  Pd  is the marginal
probability of destination  d .

This model can be interpreted as corresponding to a tree decision structure
of the form depicted in Figure 10, with mode choice, conditioned on destination,
obeying a conventional MNL model, and with destination choice of the MNL
form with the utility--or "inclusive value"--of each branch given by the maximum
of the mean utilities of the alternatives in the branch.

McFadden (1975) has shown that the maximum model is not derivable, in
general, from a population of utility-maximizing consumers.1



1McFadden (1975) discusses the property of order-independence and its consequences for choice models.
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A model that is useful for testing particular variable specifications,
including the IIA property, is the universal, or "mother," logit form suggested by
McFadden (1975).  Consider an arbitrary choice model   P(i | C,z) , where  i 
indexes an alternative,  C  is the set of available alternatives, and  z  is a vector of
variables describing the environment of the choice.  Defining  vi (z) = log P(i |
C,z) we have, trivially, the apparent MNL form:

(3) P(i | C,z) � e vi(z) / �
j�C

e vj(z) ,

which differs from the MNL model considered in the introductory chapters only in
that the "mean utility"  vi(z) is a function of the attributes of all alternatives.  The
universal logit model is defined by taking  vi(z)  to be a linear-in-parameters
expansion in known functions of  z .  This model is again generally inconsistent
with utility maximization when the utility of an alternative is required to depend
solely on the observed and unobserved attributes of the alternative.

McLynn (1973) has suggested a third ad hoc form, the fully competitive
model, in which choice probabilities are given by a mapping of a vector of MNL
probabilities into the unit simplex.  This model is again inconsistent with utility
maximization, and has the further drawback of retaining the essential structural
restriction--called order-independence1--that makes the IIA property unpalatable.

In terms of using behavioral axioms to restrict the structure of choice
models in reasonable ways, it is desirable to derive choice models directly from
utility maximization rather than use ad hoc models.  This route in the past has
been encumbered by problems of computational and analytic intractability. 
However, recent developments have made several relatively general
utility-maximization models practical for empirical application.  We outline the
structure of these models.  However, we have not applied these models
empirically in the current demand study.
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The Multinomial Logit Model for Joint Choice

We begin a discussion of alternatives to the MNL model with a
reformulation of this model in a way that suggests generalizations.  Joint choice of
mode, destination, and auto can be interpreted (without loss of generality) as
occurring in a tree decision structure of the form depicted in Figure l1.  An MNL
choice model for this joint choice will typically have the form

(4) Pmda � e vmda / �
n,c,b

e vncb ,

where   m = mode;  d = destination;  a = auto availability, and  vmda = αxmda + βyda
+ γza = utility .   Letting  Pm|da  denote a conditional choice probability and  Pm 
denote a marginal choice probability, one derives from (1) the formulae:

(5) Pm | da � e vmda / �
n

e vnda
� e αx mda / �

n
e αx nda ;

(6) Pd | a � �
n

e vnda / �
n,c

e vnca
� �

n
e αxnda�βyda / �

n,c
e αxnca�βyca ;
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(7) Pa � �
n,c

e vnca / �
n,c,b

e vncb
� �

n,c
e αxnca�βyca�γza / �

n,c,b
e αxncb�βycb�γzb ;

(8) Ida � log �
n

e αxnda ;

(9) Ja � log �
n,c

e αxnca�βyca
� log �

c
e Ica�βyca .

Then the choice probabilities can be written

(10) Pmda  = Pm|da Pd|a Pa     ;

(11) Pm|da � e αxmda / e Ida ;

(12) Pd|a � e Ida�βyda / �
c

e Ica�βyca
� e Ida�βyda / e Ja ;

(l3) Pa � e Ja�γza / �
b

e Jb�γzb .

Discussion of the historical development of the MNL model can be found
in McFadden (1976b); the properties of the model, including its derivation from
the theory of individual utility maximization, are given in McFadden (1973).
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The Sequential MNL Model

We next define the sequential, or nested, MNL model.  A typical
sequential model differs from the joint MNL model solely in that the coefficients
of inclusive values are not constrained to equal one.  Hence, the joint MNL model
is a linear restriction on any of the sequential models.  Specifically, a sequential
model is defined by

(14) Pmda = Pm|da Pd|a Pa     ;

(15) Pm|da � e αxmda / �
n

e αxnda ;

(16) Ida � log �
n

e αxnda ;

(17) Pd|a � e θIda�βyda / �
c

e θIca�βyca ;

(18) Ja � log �
c

e θIca�βyca ;

(19) Pa � e λJa�γza / �
b

e λJb�γzb .

When  θ = λ = 1, this model is identical to the joint MNL model.  More generally,
when  θ � 1, equations (17) and (18) differ in the two models, and when   λ � 1,
equation (19) differs in the two models.

The sequential model was introduced by Domencich and McFadden
(1975), and studied by Ben-Akiva (1973).  We shall demonstrate that, under
specified restrictions on the coefficients of inclusive values, the sequential model
is consistent with utility maximization.  To do this we introduce a family of
choice models derived from utility maximization that are of interest in their own
right and that contain the sequential models as a special case.
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The Generalized Extreme Value Model

McFadden (1977b) has recently proposed a family of generalized extreme
value (GEV) choice models that allow a general pattern of dependence among
alternatives and yield a closed form for the choice probabilities.  The following
result characterizes the family:

Theorem:  Suppose  G(y1,...,yJ)  is a non-negative, homogeneous-of degree-one
function of  (y1,...,yJ) � 0 .  Suppose   for  i = l,...,J . lim

yi � ��

G(y1,...,yJ) � ��

Suppose for any distinct  (i1,...,ik)  from  {l,...,J},   is nonnegative �
kG / �yi1

,...,�yik

if  k  is even and non-positive if  k  is odd.  Then,

(20) Pi � e viGi e v1,...,e vJ / G e v1,...,e vJ

defines a choice model that is consistent with utility maximization.

Proof:  Consider the function

(21) F(�1,...,�J) � exp �G e ��1,...,e �J .

If  �i � -� , then  G � +� , implying  F � 0 .  If  (�1,...,�J) � +� , then  G � 0 ,
implying  F � 1 .  Define, recursively,  Q1 = G1  and  Qk = Qk-1 Gk - �Qk-1 / �yk . 
Then  Qk  is a sum of signed terms, with each term a product of cross derivatives
of  G  of various orders.  Suppose each signed term in  Qk-1  is nonnegative.  Then
Qk-1 Gk   is nonnegative.  Further, each term in  �Qk-1 / �yk  is non-positive,
because one of the derivatives within each term has increased in order, changing
from even to odd or vice versa, with a hypothesized change in sign.  Hence, each
term in  Qk  is nonnegative.  By induction,  Qk  is nonnegative for  k = l,...,J .
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Differentiating  F ,   .  Suppose�F/��1 � e ��1Q1F

�
k�1F/��1,...,��k�1 � e ��1 ... e ��k�1Qk�1F .

Then,

�
kF/��1,...,��k � e ��1 ... e ��k Qk�1GkF � F�Qk�1 / �yk

� e ��1 ... e ��kQkF .

By induction,

�
JF/��1,...,��J � e ��1 ... e ��JQJF � 0 .

Hence,   F  is a cumulative distribution function.  When  �j =   for  j i ,  F =�� �

exp  , where  ai = G(0,...,0,l,0,...,0) .  [ ith place ]   This is the extreme{�aie
��i}

value (Weibull, Gumbel) distribution.  Hence,  F  is a multivariate extreme value
distribution.

Suppose a population has utilities  ui = Vi + �i , where  (�1,...,�J)  is
distributed  F . Then, the probability that the first alternative is selected satisfies

(22) P1 � �
��

����

F1(�,V1 � V2 � �,...,V1 � VJ � �)d�

� �
�

����

e ��G1 e ��,e ���V1�V2,...,e ���V1�VJ exp �G e ��,e ���V1�V2,...,e ���V1�VJ d�

� �

��

����

e ��G1 e V1,e V2,...,e VJ exp �e ��e �V1 G e V1,e V2,...,e VJ d�

�e V1 G1 e V1,e V2,...,e VJ / G e V1,...,e VJ ,
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where the third equality uses the homogeneity-of-degree-one of  G , and
consequent homogeneity-of-degree-zero of  G1 .  Because this argument can be
applied to any alternative, the theorem is proved.  Q.E.D.

The special case    yields the MNL model.  AnG(y1,...,yJ) � �
J

j�1
yj

example of a more general  G  function satisfying the hypotheses of the theorem is

(23) G(y) � �
M

m�1
am �

i�Bm

y
1

1�σm
i

1�σm

where  Bm �{1,...,J} ,  Bm = {l,...,J} ,   am > 0 , and  0 � σm < 1 .  The parameter �
M

m�1

σm  is an index of the similarity of the unobserved attributes of alternatives in  Bm . 
The choice probabilities for this function satisfy

(24) Pi � �
m�i�Bm

e
Vi

1�σm am �
j�Bm

e
Vj

1�σm

�σm

�
M

n�1
an �

k�Bn

e
Vk

1�σn

1�σn

.

Functions of the form in (23) can also be nested to yield a wider class satistfying
the theorem hypotheses.  For example, the function

(25) G � �
Q

q�1
aq �

m�Dq

�
j�Bm

y
1

1�σm
j

1�σm

1�δq

1�δq

where  Bm  is defined as in (20) and  Dq � {l,...,M} , satisfies the hypotheses
provided  1 > σm � δq � 0 .

The reader's understanding of (24) may be aided by a simple example.
Suppose an individual must choose among three modes, auto (m = 1) , bus (m =
2), and rail (m = 3), and suppose that the unobserved attributes of bus and rail are
correlated.  Then,  G  may have the form
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(26) G(y) � a1y1 � a2 y
1

1�σ
2 � y

1
1�σ

3

1�σ

,

where,  from the proof of the theorem, one can see that the size of  σ  is related to
the correlation of the unobserved attributes of alternatives 2 and 3.  From (24), the
choice probabilities from  C = {1,2,3}  are

(27) P(1 | C) � a1e
V1 a1e

V1
� a2 e

V2

1�σ
� e

V3

1�σ

1�σ

and

(28)           P(2 | C) � a2e
V2

1�σ e
V2

1�σ
� e

V3

1�σ

�σ

a1e
V1

� a2 e
V2

1�σ
� e

V3

1�σ

1�σ

.

When alternative  1  is unavailable and the choice set is  D = {2,3} , the choice
probability is

(29) P(2 | D) � e
V2

1�σ e
V2

1�σ
� e

V3

1�σ .

As the correlation between the unobserved components of modes 2 and 3 becomes
large, and  σ  approaches one,

(30) lim
σ�1

e
V2

1�σ
� e

V3

1�σ

1�σ

� e max(V2,V3) .

Then, the choice probabilities have the following limits:

(31) P(1 | C) � a1e
V1 / a1e

V1
� a2e

max(V2,V3) ;
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(32) P(2 | C) �

1�P(1|C) if V2 > V3
1/2 (1�P(1|C)) if V2 � V3 ;
0 if V2 < V3

(33) P(2 | D) �

1 if V2 > V3
1/2 if V2 � V3 .
0 if V2 < V3

The limiting probability (31) has the form associated with the ad hoc maximum
model marginal decision among branches.  However, the conditional choice
probability for alternatives within a branch does not match the form for this choice
postulated in the maximum model.
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Relation of Sequential MNL and GEV Model

The choice probabilities corresponding to (25) can be specialized to the
sequential MNL model described in (14) - (19), as we shall now show.  This result
establishes that sequential MNL models are consistent with individual utility
maximization for appropriate parameter values, and that the coefficients of
inclusive prices can be used to obtain estimates of the similarity parameters  σ 
and  δ .  It is hence possible to estimate some GEV choice models using sequential
MNL models and inclusive prices.  Further, the GEV class provides a
generalization containing alternative sequential MNL models, and could be
estimated directly to test the presence of a sequential or tree structure.

To obtain the sequential model (14) - (19) from (25), index alternatives by 
mda  for mode  m , destination d , and auto availability  a , and specialize (25) to
the form

(34) G � �
a

�
d

�
m

y
1
θλ

mda

θ λ

, (0 < θ � λ � 1) .

Assume    .  Then (25) yieldsVmda � θλα�xmda � λβ�yda � γ�za

(35)

Pmda �
e Vmda/θλ

�
n

e Vnda/θλ

�
n

e Vnda/θλ
θ

�
c

�
n

e Vnca/θλ
θ

�
c

�
n

e Vnca/θλ
θ λ

�
b

�
c

�
n

e Vncb/θλ
θ λ

�
e α

�xmda

�
n

e α
�xnda

e β
�yda�θIda

�
c

e β
�yca�θIca

e γ
�za�λJa

�
b

e γ
�zz�λJa

,



1The preceding demnstration for three-level trees is readily generalized to trees of any depth.  The simplest
proof is by induction.
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where

  Ida � log �
n

e α
�xnda ;

Ja � log �
c

e β
�yca�θIca .

This is precisely the sequential model (14) - (19) .  Hence, we have
established that a sufficient condition for a sequential model to be consistent with
individual utility maximization is that the coefficient of each inclusive price not
exceed one, and that the coefficients of inclusive prices not decline as one moves
up the tree to more inclusive nodes; i.e.,  0 < θ � λ � 1 .1   McFadden (1976e) has
shown that when the inclusive price coefficient in the sequential model exceeds
two, the model is inconsistent with individual utility maximization.  Hence, some
limits on  θ  and  λ  are also necessary.  When the sufficient condition  0 < θ � λ �
1  is satisfied,  σ = 1 - θ  is an index of the similarity of alternative modes, while  δ
= 1 - λ   is an index of the similarity of alternative destinations.
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The Multinomial Probit Model

The multinomial probit model (MNP) is an alternative to the logit model,
which has the advantage of considerable flexibility in the description of the error
structure, permitting deviations from the IIA or order-independence restrictions
when they are unwarranted.  Descriptions of the model formulation from utility
maximization theory are given in McFadden (1974) and Domencich and
McFadden (1975) .  The primary drawback of this model has been computational
intractability when the number of alternatives exceeds three or four.  Recent
developments in the approximation of MNP probabilities have reduced these
computational barriers, making the model potentially practical.

Consider again the joint choice of auto availability  a , destination  d , and
mode  m .  A choice model can be obtained by assuming that each alternative has
a utility function  umda = vmda + λmda + ηda + νa  , where  λmda , ηda , and  νa  are
unobserved effects summarizing the influence of unobserved attributes and taste
variations.  Assume  λmda , ηda ,  νa  to be jointly distributed normally across
alternatives.  If each individual maximizes utility, the proportion of the population
choosing  mda  is

(36) Pmda � �
��

�mda���

� �

Vmda�Vncb��mda

�ncb���

� �

Vmda�VMDA��mda

�MDA���

n(�;0,Ω)dε ,

where the number of integrals equals the number of alternatives,  n(�;0,Ω)  is the
multivariate normal density with mean vector  0  and covariance matrix  Ω , and 
�mda = λmda + ηda + νa  , with the joint normal distribution of  λ ,  η , and  ν 
determining  Ω .

The MNP model generalizes a classic model of Thurstone (1927) for
binary choice.  Bock and Jones (1969) applied the model to the three-alternative
case.  The model was suggested for transportation analysis by Domencich and
McFadden (1975), and first applied to transportation data by Hausman and Wise
(1976).  The MNP model is conceptually appealing because it allows
consideration of stochastic components for tastes and unobserved attributes within
an alternative, and provides a way of specifying the structure of dependence
between alternatives. However, MNP choice probabilities can be expressed
exactly only as a multivariate or iterated integral of dimension  J - 1 , where  J  is
the number of alternatives. Exact calculation by numerical integration is very fast
for  J = 2 or 3 , moderately costly for  J = 4 , and impractical on a large scale for  J
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� 5 .  One of the more effective direct numerical integration methods, adapted for
transportation applications is due to Hausman and Wise (1976).

Two recent contributions have provided techniques for approximating
MNP choice probabilities at moderate cost.  This has made MNP a practical
alternative for many transportation applications.  The first method, due to Manski
(1976), applies a Monte Carlo procedure directly to the utilities of alternatives.
Suppose  J + l  alternatives, with utilities  Ui = Vi + �i  ,  where  (�1,...,�J+1)  is
multivariate normal with zero means and covariance matrix  � = (σij) .  For given
values of  Vi  , vectors  (�1,...,�J+1)  from the multivariate distribution can be
drawn, and the frequency with which utility is maximized at alternative  i 
recorded.  These frequencies approximate the exact MNP probabilities when the
number of Monte Carlo repetitions is large.  Because this method involves
repetitive simple calculations, it can be programmed in computer assembly
language to operate quite efficiently.  The approach is appealing in its
generality--any joint distribution of the unobserved effects can be assumed.  In
practice, the method is most effective when a relatively good initial approximation
to the frequencies is available.

The second approximation method, due to Daganzo, Bouthelier, and
Sheffi (1976), uses a procedure suggested by Clark (1961) to approximate the
maximum of bivariate normal variables by a normal variable.  When the
correlation of the variables is nonnegative, this approximation is accurate within a
few percent. Suppose  J + 1  alternatives, with utilities  Ui = Vi + �i  and 
(�1,...,�J+1)  distributed multivariate normal, zero means and covariance matrix  Σ . 
The probability that the first alternative is chosen is then

(37) P1 = Prob [V1 + �1 > Vj + �j  for  j = 2,...,J + l]

    = Prob [V1 - VJ+1 + �1 - �J+1 > Vj - VJ+1 + �j - �J+1

for  j = 2,...,J  and  V1 - VJ+1 + �1 - �J+1 > 0 ]   .

Define  vj = VJ - VJ+1  and  yi = �i - �J+1  .  Then,  (y1,...,yJ)  is multivariate normal
with mean zero and covariance matrix  Ω = (ωij)  , where  ωij = σij + σJ+1, J+1 - σi, J+1
- σj, J+1  .  Hence,



1As a shorthand, the set of all indices, or the set of all indices excluding those on which a distribution is
conditioned, are omitted.  Thus  N(1)  means  N2,...,J(1) .
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(38)
P1 � Prob [v1 � y1 > 0 and v1 � y1 > vj � yj from j � 2,...,J]

� �
�

y1��v1

n1(y1)N(1)((v1 � vj � y1) | y1)dy1 ,

where  nY(X)(y | x)  denotes the normal density for the vector of variables indexed
by  Y , conditioned on the vector of variables indexed by  X ;  NY(X)(y | x)  denotes
the corresponding cumulative distribution function,

 ; and  nY(y)  is the marginal density of theNY(X)(y | x) � �
y

��

nY(X)(y
� | x)dy �

variables indexed by  Y  .1   The form (26), involving  J  integrals, is the basis for
exact calculations of  P1 .   Alternately, write

(39) P1 � Prob [v1 � y1 > 0 and v1 � y1 > max
j�2,...,J

(vj � yj)] .

The Clark method considers trivariate normal random variables  (X1,X2,X3)  , and
approximates the bivariate distribution of  (X1,max (X2,X3))  by a bivariate normal
distribution with the same first and second moments.  The approximation rests on
the fact that these moments for  (X1,max (X2,X3))  can be calculated exactly in a
straightforward manner.  Applied recursively to the expression

(40) y0  = max (v2 + y2,max (v3 + y3,...,max (vJ-1 + yJ-1,vJ + yJ,...)  ,

the method allows the distribution of  (y1,y0)  to be approximated by a bivariate
normal distribution  n1(y)n0(1)(y0 | y1) , so that (38) is approximated by the
univariate integral
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(41) P1 � �
�

y1��v1

n1(y1)N0(1)(v1 � y1 | y1)dy ,

where

N0(1)(y0 | y1) � �

y0

��

n0(1)(y0
� | y1)dy0

� .

Thus, an MNP choice probability for  J + 1  alternatives is approximated by a
univariate integral involving a univariate normal density and univariate normal
cumulative distribution function (which can be accurately approximated
computationally by a series expansion).  The approximation requires  J - 2 
applications of the Clark formula.

Manski (1976) has reported good results in maximum likelihood search
methods using the approximation above, with search directions determined by
numerical evaluation of derivatives.  This suggests that the bias caused by the
approximation is relatively stationary for evaluation of probabilities at
neighboring points.  This fortuitous conclusion suggests that it is probably
unnecessary to obtain analytic derivatives of  P1  with respect to parameters in
statistical routines. On the other hand, it is possible that the use of analytic
derivatives could decrease computation time.  An argument given in McFadden
(1977) shows that the Clark procedure can be applied to yield quick
approximations to analytic derivatives.

The key to the accuracy of the Daganzo-Bouthelier-Sheffi approximation
is the accuracy of the Clark procedure.  Because the true distribution of the
maximum of two normal variates is skewed to the right, one would expect the
procedure to tend to underestimate small probabilities.  The approximation will be
best when the variates are positively correlated, with widely differing means, and
worse when they are negatively correlated, with similar means.  It may be possible
to adjust the Clark formulae empirically to improve their accuracy for
computation of small probabilities.  Alternately, it would be interesting to explore
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the possibility of adapting the Clark methodology to other trivariate distributions. 
In particular, if the generalized extreme value distribution introduced in the
section on MNL and GEV models were used, then the only point of
approximation would be the initial fit to the multivariate normal density, because
maxima of GEV-distributed variates are again GEV-distributed.  This would limit
approximation error as  J  increases, in contrast to the Clark procedure, which
becomes less accurate with large numbers of alternatives.


