CHAPTER 4

FORECASTING THE VALUES OF EXOGENOUS VARIABLES:
TRANSPORTATION SYSTEM ATTRIBUTES

Introduction

The development and use of disaggregate travel demand models for
transportation policy analyses requires auxiliary forecasts of the variables
exogenous to the model system. The previous chapter described a method of
developing the exogenous socioeconomic attributes for a homogenous market
segment or for a representative sample of households. In this chapter a method is
described that provides estimates for the various components of travel time on the
various modes of travel as a function of the transportation system serving a
door-to-door trip from a given origin zone to a known destination zone. The same
method can be used to forecast those items of trip user costs that are defined
functions of trip distance.

The two measures, travel time and travel costs and their components, are
often used to completely characterize the performance of the transportation system
in travel demand models. This is not to say that such measures as on-time
performance, security, safety, and other system attributes are not important, but
that current knowledge of them is limited. It is acknowledged, then, that more
research is needed to quantify those variables but the matter is not pursued here.
Another point to note is that headways of buses are taken to be exogenous
variables; the feedback of demand through management is assumed not to exist.
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The use of networks to compute the travel times and costs is so ingrained
among transport planners that the use of anything else to represent transport
system performance is considered to be a questionable shortcut or viewed as a
"back-of-the-envelope" computation. Nonetheless, the use of networks has
several disadvantages and shortcomings (Talvitie and Dehghani, 1976; see also
Part IV, Chapter 8) that encourage the development of alternative methods to
computing network independent "supply" models. These are the accuracy of
network calculations in computing trip times and the aggregation of individual
demands to obtain total demand. As noted by Talvitie (1973), McFadden and
Reid (1975), and Westin (1975), unbiased aggregation of individual travel
demands requires that the within-group variances are accounted for. However, the
networks provide only one estimate of level-of-service per mode for an O-D pair;
that is, the within-zone variance of level-of-service attributes is assumed to be
zero. Is this a reasonable assumption, or more generally do the minimum path
algorithms operating within coded networks provide accurate values for
level-of-service to be used either in developing the travel demand models or in
forecasting with them? An examination of this issue is undertaken in the next two
sections of this chapter.

In the third and fourth sections a method and models are developed and
described which permit network-independent description of travel time on various
modes for access and linehaul. These models are used in a transport corridor
policy study (FRX).
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A Comparison of Experienced and Network Based Travel Time Measurements

To start, we need to define the way in which the two types of values were
obtained. The experienced transit travel times were obtained by asking the transit
agencies’ information service to route travelers as if an inquiry call for a transit
route were made by the traveler.! The experienced auto travel times were based
on travel time runs (moving vehicle method) made at various times of day and by
routing travelers at the minimum time path at their time of travel.

The network values were obtained through standard network models and
associate either peak or off-peak values with the traveler depending on when the
trip took place. These data were prepared independently of the present research
and are reported in McFadden (1973b). (For a detailed account of the data
preparation see articles by M. Johnson and F. Reid in that publication.) Round
trip travel time and cost values are used in both sets of data. The comparison of
the types of measurements will be done in two different ways by comparing the
measurements directly using various indices and by comparing the models
estimated with the two types of measurements.

Means, standard deviations, and correlation coefficients

The comparison of the experienced (E) and network (N) travel times may
be started by listing the means and variances of the travel time components of
interest. These appear in Table 49. Examination of the values in Table 49 reveals
no spectacular differences; the variances in the "experienced" data cells appear to
be consistently higher and the means differ somewhat. The greatest concern, on
the basis of the values in Table 49 appears to be with the headway of the first bus
and with the transfer times, either to work or to home. This difference can, at
least in part, be attributed to headways that can vary substantially within peak
hours.

"This does not guarantee that the chosen or “would be chosen” path was actually measured. A check was
possible with those who reported which path they took (occasional and regular transit users) against what was
measured. These paths agreed in seventy-six of the eighty-six cases where the information was available. Of
the ten misses, five persons took a different bus route altogether, in the other five misses one part of the bus
route was different. Thus, there is some justification to take issue with the use of the word “experienced” in
this paper. Those of the readers who prefer to do so should regard this paper as a comparison of two
different algorithms to choose a transit path and hence the travel time components of a door-to-door trip.
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TABLE 49

Means and Variances of Travel Time Components by Mode and Type of Measurement

Auto Bus/Walk Bus/Car Access
Type | Time Component Access
Mean SD Mean SD Mean SD
Net On-Vehicle Time 45.2 24.6 68.5 34.7 70.5 34.9
Exp On-Vehicle Time 50.5 28.7 77.3 35.8 80.0 36.5
Net Walk Time NA NA 23.8 11.5 9.9 3.6
Exp Walk Time NA NA 21.8 17.3 6.6 5.4
Net First Headway to Work NA NA 12.2 10.9 | As with Bus/Walk Access
Exp First Headway to Work NA NA 18.1 13.6 | As with Bus/Walk Access
Net First Headway to Home NA NA 8.1 7.0 | As with Bus/Walk Access
Exp First Headway to Home NA NA 14.9 12.5 | As with Bus/Walk Access
Net Transfer Time to Work NA NA 2.8 3.3 | As with Bus/Walk Access
Exp Transfer Time to Work NA NA 53 7.9 | As with Bus/Walk Access
Net Transfer Time to Home NA NA 6.1 8.5 | As with Bus/Walk Access
Exp Transfer Time to Home NA NA 8.0 10.5 | As with Bus/Walk Access
Net Total Wait Time to Work NA NA 8.9 6.9 | As with Bus/Walk Access
(equaling Xfer time and 1/2
headway
Exp Total Wait Time to Work NA NA 14.4 12.5 | As with Bus/Walk Access
(equaling Xfer time and 1/2
headway
Net Total Wait Time to Home NA NA 10.1 8.9 | As with Bus/Walk Access
Exp Total Wait Time to Home NA NA 15.4 13.8 | As with Bus/Walk Access
Net Number of Transfers NA NA 1.9 1.5 | As with Bus/Walk Access
Exp Number of Transfers NA NA 1.8 1.4 | As with Bus/Walk Access
Net Cost 190.3 | 134.6 | 103.2 [ 53.8 137.5 46.1
Exp Cost 188.0 [ 138.3 | 109.9 | 64.0 145.0 56.7
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"Total wait time," which is the sum of cumulative transfer times and one-half of
first headway, confirms that differences exist in the two types of measurement: the
experienced values being higher than the network values. In summary, excepting
the walk time whose mean is just two minutes higher by the network algorithm,
all the mean values from the network are somewhat lower than the corresponding
values experienced by the travelers. The standard deviations of the experienced
travel times are substantially larger than those of the network times. It may be
computed from Table 49 that between zone variance (network data) accounts for
thirty to sixty percent of the total variance (experienced data) for the excess time
components and about seventy to ninety percent of the on-vehicle time variances.
This must have a bearing on aggregation as will be discussed later.

The values of the correlation coefficients, regression intercepts, and
"slopes" in Table 50 indicate that other than the on-vehicle times, the desired
values of unity and zero for correlation intercept and slope are not achieved; even
for the on-vehicle times the hypothesis that the slope b equals unity must be
rejected.

Root mean square errors and Theil-U coefficients

The information produced so far about the similarities and dissimilarities
of objective and network measurements of travel times can be conveniently
summarized using two measures: the root mean square error and Theil's
U-coefficient.! The former is often used as an "all around" measure of
"goodness-of-fit;" the latter measure is zero for perfect measurements (or
forecasts) and has an upper bound of one. Theil's U-coefficient can furthermore
be decomposed to three components, denoted UM, U®, U, which indicate the
proportional loss in accuracy that is due to differences in means, in standard
deviations, and in covariances, respectively. These useful summary measures are
given in Table 51.

"This coefficient is computed as

2 2\\1/
O, - EPIC N + ED)?
1 1
The numerator can be decomposed into three components and normalized to unity.

321



TABLE 50  Correlation Coefficients, Intercepts, and Slopes for Regressions
Between Some of the Experienced and Network Times

Travel Time Correlation Intercept a Slope b

Component Coefficient
(std error) (std error)

Auto Round-Trip On- 91 6.52 (1.73) | .766 (.030)
vehicle Time
Bus Round-Trip On- .89 1.83  (3.18) | .862 (.037)
vehicle Time
Walk Time Bus/Walk 45 17.28 (1.40) | .297 (.050)
Access
Walk Time Bus/Auto 32 845 (.45 213 (.050)
Access
Headway on Bus to 52 4.64 (1.32) | .416 (.058)
Work
Transfer-Time on Bus 35 2.07  (.32) 144 (.033)
to Work
Headway on Bus to .50 391 (.79 279  (.041)
Home
Transfer-Time on Bus 38 3.68 (.83) 303 (.063)
to Home

322



TABLE 51 Root Mean Square Errors and Theil U-coefficients of Travel Time

Components by Network Measurements as Compared to the

Experienced Travel Times
Variable Means RMSE Theil U
(experienced)

u uMm Ut u‘
On-vehicle time - auto 50.5 13.1 17 16 .10 .74
On-vehicle time -bus(w)* 77.3 18.8 d6 22 .00 .78
On-vehicle time - bus(a) 80.0 19.3 d6 24 .01 .75
Walk time - bus(w) 21.8 16.0 42 .02 .13 .85
Walk time - bus(a) 6.6 6.4 47 27 .08 .65
Headway to work 18.1 13.6 49 19 .04 .77
Headway to home 14.9 12.8 S8 28 18 54
Transfer-time to work 5.3 7.8 5 .10 .35 .55
Transfer-time to home 8.0 10.9 65 .04 .03 .93

¥, a denote access mode - a = auto, w = walk
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The results in Table 51 are revealing. Excepting the linehaul travel times,
the root mean square errors are roughly equal in magnitude to the means of the
experienced travel times indicating rather large errors in measurement. The same
result is conveyed by the Theil U- coefficient. Again, the U-coefficient obtains
very large values for out-of-vehicle time components, even for on-vehicle time
components the U-coefficient, (and the RMSE) is quite high. One wonders if
travel forecasts would be as highly regarded as network travel time data if they
were subject to errors of these magnitudes. Finally, the components of the
U-coefficient indicate that the largest share of the error comes from the
covariances between the network and objective measurements; in some cases a
substantial part is also due either to differences in means or standard deviations.

Frequency plots of model variables

As a final item before actually estimating choice models using the two
types of measurement, it is instructive to examine the frequency plots of some of
the travel time variables. The analysis performed by McFadden and Reid (1975)
tells that zonal averages will yield consistent estimates for coefficients given that
the distributions of variables within a zone are not skewed. Thus, the distribution
of the variables for the entire sample (envisioned as one large zone) ought not to
be skewed either if good coefficients are to result from using zonal averages. The
comparison of frequency distributions will also help state a priori expectations for
the model coefficients; however, for two reasons caution must be exercised in
doing so. First, because the logic model operates on differences, the distributions
ought to be plotted separately by choice and the difference examined; due to the
small sample size this was not possible.! Second, the components of the Theil
U-coefficient indicated that most of the difference between the two types of
measurements is due to covariances. This means that the frequency plots for the
two measurements can look similar without the measurements being similar
because measurements in any given interval may not pertain to the same
individuals.

"The sample size was 142; there were 103 auto users, twenty-eight bus riders with walk access and eleven
bus riders with car access.
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It is natural to start with the plots of auto and transit (with walk access)
on-vehicle times; these are shown in Figure 13 (auto), (bus), and (bus minus auto).
A visual examination of the plots in Figure 13 suggests that there is a great deal of
similarity between the two types of measurements; the only noticeable difference
is the "fat tail" of the experienced auto on-vehicle times distribution. One might
suspect that the lack of "fat tail" in the network times distribution is due to
improper accounting of congestion effects. A y* test against the null hypothesis
that the distribution of network times is identical to the distribution of the
experienced travel times had to be rejected, however, at the .95 level of
confidence.

The walk time (bus-with-walk-access) frequency distribution in Figure 13
indicates that the network-coded walk time has a highly peaked distribution while
the distribution of the experienced walk times both peaks earlier and is much
"fatter." The appearance of the two distributions is as expected. Traffic zones are
connected to the network with relatively few common values, and the experienced
values show a scatter that relates to the location of individuals with respect to the
bus line configuration.

The frequency plot for bus headways (round trip; directional headways
summed) appears also in Figure 14. It may be noted that the network headways
are shorter in duration; their distribution also has a noticeably thinner tail than that
of the experienced headways. The apparent reason is that zones have been
connected to trunk-line streets on which many bus lines operate and have low
headway for consecutive buses, when actually the travelers’ origins and
destinations are dispersed within the zones, and by taking note of schedules, the
travelers can gain the advantage of nearer buslines in spite of their lower service
frequency.

Finally, a look at the frequency plot for transfer time indicates that the
distributions for transfer time resemble each other; they are also the only
distributions where the null hypotheses that network travel time distribution is the
same as the distribution of experienced travel times cannot be rejected at the .99
level of confidence. It is surprising that transfer time distributions are so similar,
because at least fifty-six percent of the travelers are known to take different paths;
the Theil U-coefficient was also very high for the transfer times: however, most of
the error was due to covariances that may explain the outcome.
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FIGURE 13
Frequency Plots of On-vehicle Time
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FIGURE 14

Frequency Plots of Walk Time (a), First Headway (b),
and Transfer Time (c) All Round Trip
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In order to capture the non-linearity of travelers’ response to transit
headways in modeling choice, to be reported in the next section, the headways are
segmented into two components (see also Chapters 1 and 2, Part IT). The first
component of the headway is up to a maximum of eight minutes, and the second
component is the remaining headway time. In order to do justice to both legs of a
round-trip, these two components have been computed separately for both
directions and then summed. The plots of the two headway segments appear in
Figure 15. It may be noted that the distributions for the truncated portion of the
headway are quite similar (note, however, the scale on the vertical axis) while the
tail sections of the headway have quite different distributions; the latter is already
evident from Figure 15.

Discussion

This section may be concluded by noting that the two types of
measurements--experienced and network--of travel time variables are certainly
different. On the basis of the frequency plots one would expect that similar
coefficients can, nevertheless, be estimated for on-vehicle time, transfer time, and
first component of the headway regardless which type of measurement is used.
However, one must keep in mind that for these variables most of the error was due
to covariances and cannot be seen in the plots; thus, if the experienced travel
times are strongly correlated with socioeconomic variables or with each other,
then the anticipation of similar coefficients will fail. This latter is most certainly
true with the headway variable; the first component must correlate highly with the
second component because well over one-half of the travelers had round-trip
headways greater than sixteen minutes. Correlations between socioeconomic and
travel time variables will also exist: transportation folklore suggests that bus walk
times and socioeconomic variables are highly correlated. Finally, it may be noted
that the experienced travel times have distinctly skewed distributions; this, it may
be recalled, violates one of the conditions for obtaining consistent coefficient
estimates using zonal averages measured by the network models. The comparison
of mode choice models using the two types of supply variable measurements
follows next.
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FIGURE 15

Frequency Plots of Headway Components O - 8 Minutes (a)
and Headway Minus 8 Minutes (b)
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A Comparison of Mode Choice Models Developed with Two Types of Supply
Measurements

The "basic model" specifications used as a benchmark here is the one
reported by McFadden and Train (1975).! Table 52 shows the coefficients for that
model (labeled Model Ax; x =N for network or x = E for experienced) and
another model, labeled B, whose specification includes the second, untruncated
portion of the headway and no transfer time, which was deleted from the B
model due to the coefficient instability and closeness to zero. The two models are
estimated using both experienced and network travel time measurements.

The discussion of these models will be focused on the transportation
system performance variables: travel times and travel costs. The socioeconomic
variables, which are common to both (N and E) type models and pertain to
individuals rather than zones, are discussed only insofar as their deletion or
inclusion affects the coefficients for the travel time or cost components.

A number of points are worth noting in comparing the xN and xE type
models. First, the coefficient for travel cost is stable across the models, regardless
of the type of measurement. Second, the on-vehicle travel time coefficient is
twice as high in the models estimated with experienced travel times as compared
to the model estimated with network travel time measurements. On the other
hand, the coefficient for walk time behaves exactly in the opposite way. It is as if
these two variables have exchanged coefficients in the two types of models; and
there is no reporting error here. The values of time computed from these models
are, naturally, similarly reversed. In the E series models the value of the
on-vehicle time is around seventy percent of the wage rate and the value of walk
time nearly forty percent of the wage rate. In the N series models these two
figures are around forty and eighty-five percent, respectively. The behavior of the
traveling time coefficients, especially that of walk time, is such that one is led to
suspect the underlying correlations to be secretly at work. For example, from the
distribution of the walk times in Figure 14 one is willing to surmise that the
coefficient of experienced walk times will be higher than the one estimated for
network measured walk time. This is because the distribution of experienced
walk times is located to the left of the distribution of network walk times. More
will be said about walk times later.

1For specification of the variables and the coefficients of the McFadden, Train model, see Table 2, Part II,
Chapter 1.
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TABLE 52

Coefficients (t-values) of Work Trip Mode Choice Models Estimated Using Both Experienced and

Network Travel Times

Model AE
Experienced Travel
Times

Model AN Network
Travel Times

Model BE
Experienced Travel
Times

Model BN Network
Travel Times

INC 1 .000413 (1.4) .000239 (.80) .000339 (L.1) .000279 (.90)
INC 2 .000955 (1.8) .000684 (1.4) .0001075 (1.9) .000592 (1.2)
INC3 -.000743 (2.6) -.000643 (2.5) -.000748 (2.6) -.000624 (2.4)
Residence 178 . (3.0 .193 (2.9 176 (3.0) .195 (3.0)
Population Density -.643 2.1 -.449 (1.5) -713 2.1 -.480 (1.6)
Parking -433 (1.2) -.308 (.92) -384 (1.0) -316 (.90)
Age -.759 (1.1) =711 (1.02) -.720 (1.0) -735 (1.1)
Child -1.575 (2.3) -.969 (1.50) -1.676 (2.4) -1.049 (1.6)
Drivers 1.321 (2.8) 1.182 2.7 1.248 (2.6) 1.186 2.7
Cost/Wage -.0427 3.1 -.0468 (3.1 -.0448 3.1 -.0473 3.1
On Time -.0293 (1.8) -.0132 (.60) -.0304 (1.9 -.0175 (.90)
Walk Time -.0157 (.74) -.0418 (1.3) -.0185 (.90) -.0379 (1.1)
Transfer-Time -.0395 (1.0) -.0346 (.80) - -
Number of Transfers -.165 (.50) -.0387 (.20) =321 (1.3) -.134 (.6)
Headway 1 (< 8 min) -242 (2.1) -.246 (2.3) -.137 (1.1) -216 (2.4)
Headway 2 (> 8 min) - - -.0647 (1.9) -.0427 (1.8)
D, -6.399 (2.3) -4.806 (1.9) -5.159 (1.9 -4.640 (1.8)
D, -2.806 (3.2) -2.989 (3.4 -2.724 3.1 -2.932 (3.3)
Likelihood ratio index .601 575 613 578

% Right 81.7 83.1 82.4 84.5

Value of On-Time 69% of wage 28% of wage 68% of wage 37% of wage

Value of Walk Time 37% of wage 89% of wage 41% of wage 80% of wage

Ratio of Walk/On-Time 54 3.17 .61 2.17
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The third outstanding item in Table 52 has to do with the coefficients for
the number of transfers, headways, and transfer time. The number of transfers has
about a three times higher coefficient in the models using experienced route
information; the two headway components also have different weights in the two
types of models. If only the truncated portion of the headway is included in the
model--as was done in Models AE and AN--then this headway coefficient in the
two types of models has just about the same value. This is an interesting outcome
(it can be surmised by looking at the frequency distributions of these variables in
Figure 15) and will be discussed later. Model estimations also showed that the
coefficient for transfer time became very unstable and close to zero when the tail
section of the first headway was added to the set of independent variables. This
outcome may be partially due to the fact that when transfers are involved, the
transfer headway is often equal to the first headway in the return trip. Thus, with
truncation of the first headway, something is the matter with transfer time;
however, when the first headway is not truncated the effect of the transfer time
seems to fall off. (See also discussion in Part II, Chapter 2.)

The fourth and final item evident from Table 52 is the low statistical
significance of most of the coefficients and the equal forecasting accuracy of the
models, as judged from the likelihood ratio and percent right indices. Given the
low statistical significance of the system variables, one can rightly ask are the
models developed using the two different supply measurements statistically
different? The answer appears to be no. This result was arrived at by performing
a sort of Chow-test on the two models (McFadden, 1973). The coefficients were
first estimated using the combined sample (284 observations) and restricting the
coefficients of two types of measurements to be equal and then relaxing this
restriction and performing the likelihood test on the results.

The y* distributed test-statistic with six degrees of freedom had a value of 6.8,
which is well below the .95 level critical value of 12.5. Note however that
observations in the two subsamples are not independent, putting in question the
statistical validity of the test.

Further discussion of results

In evaluating the outcome of the statistical test conducted above it is good
to keep in mind that the sample size used here was quite small and that most of
the system variables did not obtain statistical significance in the original models
of Table 52 at the level used in the Chow-test test. In fact, the results of that table
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give grounds for pursuing the matter of network measured attributes and
experienced attributes a little further. A convenient starting point for doing this is
provided by estimating a simpler model than that in Table 52; the discussion
promised earlier regarding the walk times and headways is appropriately
conducted here also.'

It is seldom the case that all the socioeconomic variables used in the
models applied here are available for the model development of travel forecasting
in particular. A question then arises about the effect of dropping some of them
from the models; that is, what is the effect of model misspecification on the
results. Specifically, let us assume that variables "length of residence,"
"population density" (as defined here), "parking index," "age," "child-dummy,"
and "the number of drivers" are unavailable for model estimation; and let us also
eliminate the number of transfers from the model and truncate the headway (to
form a wait time); these are all quite reasonable assumptions and customarily
made. The models estimated with the remaining variables using the two types of
supply measurements appear in Table 53. The results show that, excepting the
transfer time, all the coefficients bear statistical significance at reasonable levels
of confidence (one-tailed tests) in the model estimated using experienced travel
time information. In the network-based model, on-vehicle time and the one-
income component in addition to transfer time have low statistical significance.
Particular attention should generally be paid to values of time that have climbed
up substantially due to a nearly fifty percent decrease in the cost coefficient and a
100 percent increase in the walk time coefficient. Also of interest is the low
coefficient (and statistical significance) of the on-vehicle time in the network
based model; this dilemma is almost daily experienced by travel demand modelers
working with network-based LOS information. On the other hand, the
experienced on-vehicle time coefficient has not substantially changed from the
results obtained earlier.

These changes, especially in the walk time coefficient, must be attributed
to their correlation with the socioeconomic variables which were eliminated from
the model. These correlations between the socioeconomic and transportation
system variables are related to the locational and transportation choices that

tis pertinent to remind the reader that the walk and headway times (and transfer times) were previously the
variables that "caused trouble" in validation, see Part II.
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people make under their own circumstances.! The "experienced" LOS values
preserve these correlations and are likely to yield unbiased coefficients and
demand elasticities (given a good model specification) while the network
calculations do not appear to preserve these correlations, and, by simple logic,
must yield biased coefficients.

The effect of the variable specification also deserves examination. In
particular, attention is drawn to the coefficients of the headway variables. It may
be noted from Tables 52 and 53 that if only the truncated part of the headway (in
this case up to eight minutes, one way) is included in the model its coefficient
remains very nearly the same, regardless of the type of measurement. It may be
recalled that the frequency plots of this variable were also very similar for both
types of measurement. The implication is that the construction of the variable has
procreated the nearly identical coefficients.

'Past data indicate that people adjust to changes in their circum stances (and vice versa)--for whatever
reason--reasonably quickly. Of about 100 working travelers in 1972 only about twenty percent had the same
origin and destination in 1975 (UTDFP panel travel survey).
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TABLE 53  Coefficients (t-values) of Purposefully Underspecified Mode
Choice Models Estimated Using Both Experienced and Network

Supply Data
Experienced Network
Variable Supply Supply
Data Data
INC1 000207  (1.5)  .000154 (.8)
INC2 000961  (2.1)  .000693 (1.7)
INC 3 -.000046  (1.9) -.000364 (1.7)
Cost/Wage -.0237 (2.2) -.0259 (2.6)
On-vehicle Time -.0239 (1.8)  -.00394 (.2)
Walk Time -.0377 (2.0) -.0724 (2.3)
Transfer Time -.0228 (1.0) -.0408 (1.1)
Headway 1 -.257 (2.7) =277 (4.1)
D, -5.42 (2.8) -4.84 (3.0)
D, -1.29 (2.6) -1.82 (3.1)
Likelihood
ratio index 484 482
% Right 76.8 76.8
Value of On-time 101 15
Value of Walk Time 159 280
Value of Xfertime
(as % of wage) 96 158
Ratio Walk/On-time 1.58 18.4
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There is good reason to take this implication a few steps further. It may be
observed from Table 52 that the relative magnitudes of on-vehicle and walk time
coefficients are between two to three for the network-based models. This is very
close to the relative weight (two; plus penalties for waiting and a limit on
transfers) of walk time used in building the transit paths. The obvious hypothesis
then is that the conventions used in building the paths and coding the networks
procreate the choice models based on these types of supply data.! Thus, if
networks in two or more cities are coded using similar conventions and without
regard to correlations with socioeconomic variables, and if paths are built using
similar weights, and variables created using the same type of rules (e.g., wait time
is one half of the head way up to ten minutes of headway and one-fourth
thereafter; this is quite akin to the eight minute maximum used here), then with a
normally low percentage of transit users the resulting choice models for those
cities should indeed be nearly identical. The models so obtained are not really
behavioral nor transferable--in a true sense--travel demand models. They are not
likely to predict correctly travelers’ behavior when service changes occur.

If the hypothesis that network-based supply measures procreate the choice
model coefficients is true, then it logically leads to the unfortunate conclusion that
the accumulated evidence from numerous studies on travel demand elasticities
with respect to travel time components cannot be taken as mutually supporting
statements of truth.

Is the hypothesis made true? The statistical test performed earlier tells that
the null hypothesis of the network-based model of not being "cooked" could not
be rejected. However, two other pieces of information are relevant here. First,
logic suggests that unless there is only one path or many paths with similar
attributes the hypothesis must necessarily hold. Because, at least in some cases,
there are many paths--this has already been shown to be true--the network-based
model must be "cooked" at least to some extent. Second, a statistical question can
be asked: is it possible that the coefficients obtained from one set of data, say
from the manually coded supply data, can with equal likelihood be obtained from
the network-based supply data (or vice versa)? If we constrain the six system

"The perceptive reader may ask, then why does the on-vehicle time have such a low coefficient in the
network-based model in Table 53? A hypothesis can again be made that if we omit most of the
socioeconomic variables, then the choice will be attributed to the system variables; however, in building the
paths using the network models such a low weight is given to the linehaul time that linehaul time really does
not matter in choosing a path; and a result which is a statistical artifact will follow. The hypothesis in the
main text is preferred, however, because it is more general and can encompass both types of situations
encountered.
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variables to obtain the coefficients estimated with the "experienced" supply data
(Model BE, Table 52) and use the network data to re-estimate the same model, the
x2 distributed test-statistic is equal to 5.58 and the critical value at .05 level with
six degrees of freedom is 12.59. By taking the network-based model coefficients
(Model BN, Table 52) as the base, the test-statistic is equal to 48.06 with the
critical value remaining unchanged. These results tell us that, with the data used
here, it is possible that the coefficients obtained using the "experienced" supply
data can also be obtained from the network data with no loss in statistical
significance of the model. The reverse is not true, the coefficients obtained using
the network data cannot be obtained from the "experienced" supply data. A
possible interpretation here is that when using the network data the likelihood
function is quite flat and practically any set of coefficients is possible.'

Implication of results to aggregation

It certainly has not escaped the reader’s attention that the forecasting
accuracy of the models is nearly identical regardless of the type of data used.
Furthermore, the network-based models seem to have simple aggregation
properties. Koppelman’s carefully done in-depth study on aggregation (1976)
shows that predictions with zonal averages seem to perform remarkably well. The
same type of results can be read from Atherton and Ben-Akiva (1976), and
Talvitie (1975). There are two reasons that cause this to be the case. First,
networks ignore the within-zone variances, the source of aggregation bias. Thus,
using the networks, there is not much left to aggregate as far as the non-linehaul
LOS variables are concerned. Second, assume that the network travel times and
costs are "errors-in-variables" or

(1) X=Z+v |,

"The problem with this test is that the samples are not independent because of the common socioeconomic
attributes. If the socioeconomic attributes are deleted and the models run without time, then the
independence problem should disappear (but misspecification will appear); the respective y* statistics are
16.8 and 1164.6, with eight degrees of freedom (alternative-specific dummies are included); the critical value
is 15.5. Thus, the hypothesis that the coefficients obtained from one data set could also be obtained from the

other must be rejected.
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where Z = network values;
X = true values;
v = a random error.

Let us then assume that X and v are independently and normally distributed
with means m, and zero, and variances of ci and 03 . These are reasonable

assumptions; any time when a trip is taken and the trip time is not known exactly,
it is a random variable; and this random variable is independent of the traveler's
location within the traffic zone. The hypothesis in disaggregate travel demand
models is that the choices of travelers depend on the true values X or, in the
sense of regression,

V=a+pBX+e ,

where V is the demand or choice. In predicting, we do not know the true value
X, but we know the network value Z , and thus we need to obtain E(X|Z),
where E is the expected value operator, equal to (Benjamin and Cornell, 1970)

0\2, : 1’1’1X <
@) E(X|2) = —— ,
c, +©

and the estimated expected demand is

A A oi-mx+0)2(-Z
€) E(V|Z) =d + PEX|Z) =d + B| —F——| >
G, + O

where & and [ are consistent errors-in-variables estimators for o and . On

the other hand, the least squares predictor is

4) V=v+bZ-2
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where b is just an OLS estimator of V on network values Z . It has been shown
(Johnston 1972) that

b =B/ +c /o) , or

©) \
\Y

V+bZ-2) |,
a+ pm, + BZ -Z)/(1 + c-/c)

Because E(v) =0, Z is an unbiased estimate for m,_, and

X

2 2
o,m  + 6,2

(6) V=o+p

2 + 2
Oy Ox

But this is exactly what was obtained using the consistent errors-in-variables
coefficients o and [, equation (3).

This discussion can also be interpreted in another way. The network
coding conventions and practices can be viewed as a process where the true values
X and the coded values Z have a joint normal distribution. By working out
E(X | Z) that way the same result reached above is obtained.

Thus, even though the coefficient b in Equation (4), obtained using the
network values directly, are not unbiased, they yield unbiased forecasts.
Therefore, for prediction purposes, the network-based models, whether aggregate
or disaggregate, can be used with success, provided that conventions for network
coding and path building are not changed and normal caution is exercised in
out-of-range predictions. Note that incremental forecasts cannot be made because
the coefficients are not unbiased. Clearly, the usefulness of such a model is
limited, particularly in policy analyses.
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Summary and conclusions

In the two previous sections, experienced and network-based travel times
were compared and mode-choice models were estimated using both types of data.
The implications of the results of this work are obvious. On the demand side,
incremental forecasts should be avoided unless the demand elasticities implied by
individual model coefficients can be supported by real-world experience. This is
because the coefficients estimated with the two types of data were not numerically
similar even though the statistical inference regarding the two sets of coefficients
was inconclusive. This outcome of the statistical test was felt to be due partially
to the small sample size and partially to the transportation system components
having low or no statistical significance in the models.

On the supply side the burden is clear: data errors in model estimation can
be costly. On the basis of the comparisons made one must express the concern as
to whether the models based on contemporary network models are nothing but
procreated constructs of the adopted network-coding and path-building
conventions aided by suitable variable definitions.

In sum, the results of the comparison and the discussion on aggregation
provide strong motivation for developing alternatives to the network system for
obtaining and forecasting the values of the exogenous system attributes. One such
method is described in the next two sections.
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Development of Parametric Models to Forecast Level-of-Service Variables for
Access

The results of the previous two sections suggest that it is desirable to
replace the networks by statistically estimated parametric equations. How such a
model might look, and how it could be developed and used, are best demonstrated
by an example. Note that the example below does not incorporate all the
variables we might desire in a more general specification.

The example of parametric supply models is a model for the zonal "drive
time to a station."' The explanatory variables (options) are: area of the zone (A),
arterial spacing (S), number of lanes on arterials (L), trip-end density (DE),
distance to the station from the zone centroid (DI), and signal synchronization (SD
=0 if yes; = 1 if no). The model was created in the following way: a set of fifty
random drawings was made for each of the over 150 different settings of the
options, the mean and the variance of travel time was computed for each of the
150 settings of the options. The means and standard deviations were then
regressed against the values of the options. The models had the following
coefficients and other relevant statistics.

Model form: y = ae™

(7)  Mean (Time) =1.08 + .04A + .76S - 35L + .06DE + .28DI + .04SD
t-values 69) (33) (63) (13.0) (184) (4.1)
R2=.90 Coefficient of Variation = .10 F=193.5

(8) Std Dev =.27 + .05A + 1.045 - .51L + .08DE + .27DI + .10SD
(8.8) (17.4) (8.8) (7.7) (17.8) (11.2)
R = .88 Coefficient of Variation = .31 F=1854

"This model is from A. Talvitie and T. Leung, "A Parametric Access Network Model" (to appear in the TRB
Record). A simplified version of the model was developed by Talvitie and Dehghani (presented in OSRA/
TIMS meeting in Las Vegas, 1975) and applied to Chicago data by Talvitie and Templeton (paper to appear
in TRF Proceedings, 1976).
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The null hypothesis that "drive time to a rail station" is lognormally distributed
with mean given by equation (7) and standard deviation by equation (8) could not
be rejected at the .95 level-of-confidence.

When models such as in equation (7) are used for computing travel times
no networks need to be coded. Travel time is derived directly from the definition
of the transportation system and its operation--from the options. Because these
equations can be developed for every component of a door-to-door trip, access
modes can be explicitly considered. Travel times obtained from the equations
also cover entire trips or independent components of a multimode trip. Thus, if
the models are developed using observed data on trips, the data incorporates the
interactions between consecutive links. Such an assumption, made by network
models, is untenable in congested conditions.

Transportation policy analyses, including transportation system
management policies, can be performed in a natural and reasonably rapid manner
using supply models based on equations.' This is because the coefficients of the
supply models indicate how much travel times would be improved in response to
certain measures: €.g., signal synchronization; the demand effects of travel time
improvements can then be traced using travel demand models.

The supply model in the example is also sensitive to the size of traffic
zones. This facilitates the use of large traffic zones in planning and policy
analysis. The effect that zoning practices (i.e., intensity and type of land use) may
have on travel time, and hence to travel demand, can also be analyzed through the
trip-end density variable. The supply model in the example also is the result of
the statistical estimation allowing an explicit assessment of its accuracy.

Finally, it may be noted that a distribution of driving time is attached to the
model; this permits the use of the model not only in making a traditional
aggregate travel forecast but also in making a "disaggregate forecast" (Domencich
and McFadden, 1976). Because the distribution and its parameters are defined,
disaggregate values of driving time to station can be associated with each
individual by drawing their values randomly from the distribution.

It is appropriate to conclude this section by noting that the method used to
create models in equations (7) - (8) may be deceptively simple. The model

"The word "supply" will be used from now on to characterize the technological relationship between travel
time (or cost) and the system definition. It is not the industrial supply curve of economists, but its use in
transportation literature is a convention.
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certainly needs improvement, if not in accuracy, then at least in complexity.

Some of these complications will be discussed and introduced in the sections that
follow. There is one important problem--perhaps a whole area of problems—that
hinders the development of aggregate supply models such as the one described
above. This is the lack of statistical analysis of how much individual trip travel
times are improved as a result of various transportation improvements. Too much
of the traffic engineering measurement and analysis is based on spot speed, spot
volume, and single intersectlon studies. There exists a real need for traffic
engineering studies where travel times over reasonably long distances are
examined in various road, volume, and traffic control conditions. The models, not
only for access but in particular for linehaul, suffer from the lack of such studies.
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Method and Assumptions in Detail

Line choice model needed first

An essential prerequisite for the development of supply models is a
line/path choice model. Such a model might look as follows:

(a) Prob (line) = g, (Headway, Walk time, On-vehicle time, Price, No. of
Xfers, S) + Unobserved Reliability, Seat Availability,
Security, Safety, etc.

where S denotes socioeconomic attributes.

This model can be estimated using logit/probit techniques. Other than
data problems, the main difficulties with the model are associated with the
definition of choice set and with the assumption of independence from irrelevant
alternatives. For example, does the choice set for line choice include transit lines
from both rail and bus modes, or can the choice between lines be cast in a
recursive relation to the mode choice? Is "express bus" a "mode" in its own right
or is it just a "line" within a mode? If "express bus" is a line, is it a line within
"bus" or "rail" modes? That is, is express bus more similar to conventional bus
than rail or vice versa? For the purposes of supply model development, a position
is taken here that bus and rail modes exist and are commonly understood to
preserve the traditional mode choice problem. If it turns out that scheduled transit
is a collection of competing lines, this will not cause any great harm to the supply
models. The important thing is the concept of line choice from among competing
lines.

Within a bus mode, the alternative lines are likely to be quite similar.
Thus, the observed attributes should contain the main causes underlying the
choice and the unobserved attributes should be restricted to a few randomly
occurring causes which to a great extent are specific to lines and thus independent
between alternatives. Equation (9) is believed to be such a model. Armed with
such a model, the development of the models for the distributions of the access
attributes may be done in the following way.'

'Even if the line-choice model does not exist, a model developed in the context of traditional auto-bus mode
choice problem has most of the coefficients needed for the line choice model; such a model is used here.
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Method in detail

Consider a traveler who has an origin (residence) at 0 and destination
(work, shopping) at D . The traveler at 0 goingto D is served with four bus
lines HI, H2, H3, and H4 that are identical, with the exception of their headways
Hi (see Figure 16). There are four feasible paths from 0 to D : 0-1-4-5-D;
0-2-6-D; and 0-2-6-5-D (path 0-6-etc. is dominated by other paths). The choice
among these paths depends on the headways H1, the walk distances to and from
bus lines, riding times on bus on the various lines, fare, the number of transfers
and socioeconomic attributes of the traveler. A model embodying a decision rule
for this type of choice was shown in equation (9).
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FIGURE 16 Hypothetical Example of Bus Line Choice
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Once we know the path the individual traveler will take, we can observe his travel
time components, headways, and so forth. By repeating this experiment for
several randomly drawn individuals from the population distribution f(x,y) to
employment distribution g(x,y) and given an identical transport system between
them, we can construct the distributions of the travel time components for travel
(by bus) between these two zones. By changing the transportation system or its
operation between these zones and repeating the experiment for another random
set of individuals (in effect, this is integration using the Monte Carlo technique),
these distributions can be related to the underlying transportation system and the
development densities within the origin and destination zones. These
distributions may then be used in forecasting travel because they are functions of
the underlying transportation system; by changing the transportation system the
descriptors of these distributions (e.g., mean variance) will change, and so will
travel demand.! There are many difficulties in implementing the above approach;
simplifications and assumptions made in this work are described next.

Simplifications and assumptions

The first simplification is implied by the title of this section, and it is the
separation of access and linehaul components. For the purpose of access supply
model development an abstract "basic traffic zone" is used. The assumptions
regarding the basic zone are the following. The "basic zone" is one to sixteen
square miles in size and within it (or in its immediate vicinity) there exists at least
one major street. There can be one major street in both x and y directions but
this is not necessary. The coordinate distances from the zone centroid to these
major streets are m, and m, . If there is a guideway (BART) station within or
near this zone, it is located in the intersection of these major streets. The spacing
(s,,s, ) of bus routes within the "basic zone" is uniform; it can be different to x
and y directions. The spacing of bus stops must be equal for a given direction.
The frequency of buses can be different in x and y directions, but the headways
on all minor street bus lines must be equal in a given direction; for the model all
headways are expressed as a difference to bus headways on the major street in the

"The technique described here has enormous potential. Consider that the random points of origin (residence)
and destination (jobs) for work trips were given by a land use model (S), and the destination points for
non-work trips by the travel demand models, one could then develop parametric supply models for entire
cities. These models would facilitate a rough comparison of different city forms in a model environment
where all the submodels are interdependent. The technique can also be used to create supply models for such
technologies as taxi and dial-a-ride, and many other purposes.

346



y direction. The population/employment is distributed about the intersection of
the major streets. This distribution is assumed to be independent normal in both
x and y directions; a uniform distribution can also be used, as will be explained
later. There also can be a "hole" in the population/employment distribution of
radii r, , r, about the center of the distribution ( m, , m, ). Finally, all the traffic
originating from the zone is assumed to go into a point, such as the (BART)
station. This means that the choice of transit line at one end of a trip is
independent of what happens at the other end. Figure 17 describes the situation.
Before discussing these assumptions, initial model specifications of the transit
access models will be presented.
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FIGURE 17 Schematic Diagram of Basic Traffic Zone
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Variable Definitions and Initial Model Specifications

The following variables will be used to define the "basic zone" and its
transportation system; some combinations of them will be used as independent
variables in the access supply model. The range of the variables in the simulation
is also given below.

TABLE 54 Definitions of Policy Variables and Their Ranges

0 - side length of the square zone; range 1-4 miles

m,, m, - distances from the zone centroid to the major streets x

and y directions respectively; range 0.0 - (¢/2+1) miles

V,, V, - standard deviations of population/employment distributions
within the zone, with mean m,, m, ; range 0.5 - 6.0 miles

r,, r,- radii of a possible empty “cylinder” about the center of
the distribution; range 0.0 - 0.6 miles

S,» 8, -  spacing of bus routes in x and y directions; if no
buses to either direction use min(2(,3) as the spacing in
that direction, do not use zero; range 0.5 - 3.0 miles

H, - headway differences on bus lines operating on major street to x

direction (minutes; H, assumed to equal zero);
range 0 - 15 minutes

h,, h, - headway differences in minor street bus lines with respect
to H, ; range 0 -30 minutes

b,, b, - distance between bus stops in bus routes; range 0.125 -

0.5 miles

dummy - 1 if station outside of zone
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Four models will be developed for transit access using the method and
assumptions described earlier. They are: Walk Time to Bus Line; Walk Time to
Guideway (BART) Station; Drive Time to Guideway Station; and Ride Time in
Bus to Guideway Station. (In general, "guideway station" can be regarded as the
center of the population/employment distribution, not necessarily as a station.)
The models can be applied at several different levels of complexity, depending
upon the completeness of available information, by using "default" values or
averages for the missing information. Three different levels of complexity can be
envisioned:

- LEVEL 1 (complex) Information exists regarding:

e location of guideway stations, bus route spacings, and bus stop
intervals

e bus headways

e population/employment density distributions within zones

- LEVEL 2 (intermediate) Information exists regarding:

e location of guideway stations, bus route spacings, and bus stop
intervals
e bus headways

- LEVEL 3 (simple) Information exists regarding:

e location of guideway stations, bus route spacings, and bus stop
intervals

The following general mathematical form will be used for estimating the
coefficients of the access supply models.

DV = a, + alCO + aZST + a3SP+ +a4L + aSHD + a6HX

(10) + a7BMI + a3SD + a9HO + alOCE + aHLHT alzDU

The variables of equation (10) are defined in Table 55.
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TABLE 55 Definitions of Explanatory Variables
Variable = Mnemonic Definition
CO coordinates m,+m,: sum of the stations or major bus line coordinates
(measured from the center of the zone), miles
ST stops b, +b,: sum of bus stop intervals in each direction, miles
SP spacing s,+s,: sum of bus route spacings in each direction, miles
L ride 0: side length of zone miles
HD headways h,+h,:  sum of minor bus line headways , minutes
HX headway H,: major bus line headway to x-direction (H, = 0),
minutes
BMI bus miles 60 * 122(L . ) :  bus miles of service within zone (over and above
she o syhy offered by major line H,)
SD standard deviations v, +v,: sum of the development density standard
(of development deviations
density)
r r
HO hole X + X: note, if station outside the zone
v v
X Y m_ - (/2 m_ - 02
ro=———andr, = ————
\A vy
) Q/Z—mx (/2 - m . . . . .
CE centrality + Y this variable is zero if the station is right on zone
Vx Vy boundary; it is positive inside the zone and
negative outside of the zone
LHT linehaul time difference in on-vehicle time between the (best) major bus line and (best)
minor bus line'
DU dummy 0 if station inside the zone; 1 if station outside the zone

'The linehaul times were computed using the methods of linehaul time computation to be explained in the next
section. Briefly, it was assumed that 5 passengers boarded at every stop and that the average loading time was 3
seconds; a bus speed of 10 mph was assumed.
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Note that the summation of the variables simply means that the
coefficients of the summed variables are constrained to be equal. In order to
approximate a uniform population/employment distribution, set the standard
deviation equal to v=0(+1 where v is the standard deviation of the
population/employment distribution (v =10+ 2m/{ + .5, where m is the station
coordinate, is an even better formula but is a little more complicated). Either one
of these ad hoc formulae ensures a nearly uniform distribution, as the reader may
verify by plotting the distributions.' Thus, in general, the standard deviation of
population/ employment distribution should take the value of v=min(v; (+ 1) or
v =min(v; (+ 2m/{ +.5); do notuse v greater than six.

An explanation may be in order for some of the independent variables in
equation (10). Basically equation (10) remains simply a linear combination of the
"planning options." There are, however, three variables that are constructions.
They are: bus miles of service (BMI), "hole" or undeveloped area around the
BART stations (HO), and centrality of the population/employment distribution
(CE). Of'these, bus miles of service is intuitively clear and requires no
explanation; "hole" (HO) and centrality (CE) can be justified and understood
when it is recalled that the individuals are drawn randomly from the normal
distributions for employment/population and that nobody could be drawn either
out of the traffic zone or from the empty area--if one was specified--about the
BART station. The effect of those excluded can be accounted for by entering the
normalized excluded (or included) area of the density function into the model.

'There is a good reason for adopting an ad hoc formula for standard deviation instead of blindly assigning a
large value of, say, six for standard deviation to simulate uniform distribution in any size zone. The reason is
that for one square mile zone v=3 or v =6 are practically equally uniform; thus zone size-independent
choice would have meant loss in accuracy and sensitivity with respect to population/employment distribution.
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Discussion of the Model Assumptions

Two types of assumptions were made in developing the transit access
supply models: those relating to the "basic traffic zone" and those to the
specification and mathematical form of the model.

The major assumptions regarding the "basic traffic zone" were the
following: assumed grid system of bus routes and uniform spacing within the
zone; equal headways on "minor bus routes"; omission of transfers, fare, and
egress system from bus line choice considerations, and the shape and center of
population/employment distributions.

The grid system is assumed not only because it simplifies analysis but also
because it appears to correspond to the "on the ground" conditions more than
other types of abstractions (e.g., radial). A visual review of the Bay Area bus
routes, where unusual topographic conditions should encourage "funny" routing,
reveals that, despite some diagonal routes and loops at the end of the line, the grid
pattern is surprisingly realistic. The same holds for the uniformity of spacing
when traffic zone sizes are of reasonable size, e.g., four to sixteen square miles.

The assumption of equal headways on "minor" street bus lines creates
somewhat of a problem. But, given that zones are not unreasonably large, the
assumption seems realistic. Transfers and fare and egress were omitted from the
line-choice model in the interest of reducing model complexity. Fares on
competing bus lines are often equal and cancel out. Mode-choice models
developed so far have been unable to generate a plausible coefficient for the
number of transfers by increasing the values for appropriate headway; however, it
is possible to account for transfers, if they are known to exist. Finally egress was
omitted not only in the interest of keeping the model reasonably simple but also
because destination within zones was assumed to be independent of origins in any
case.

The (normal) population/employment distributions are centered on the
intersection of the major arterial streets (or guideway station) serving the zone.
This is somewhat unrealistic, especially in the suburban areas. These distributions
can, however, have a "hole" in the middle (through r, , r, ) , which alleviates the
problem. The reason for installing such variables as (r, , r,) is that in a typical
BART station there seems to be "an empty hole" (due to parking or commercial
activity around the station); thus access travel times computed with the "hole" left
in would be less than actual travel times. The assumptions also imply that there

may be a bus line running parallel and next to the guideway. It may sound odd,
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but this appears to be true very often, even though the bus line may be a block or
two removed from the guideway. This bus line may be eliminated by assigning it
a large headway, such as sixty minutes.

The most important contribution of the inclusion of
population/employment densities into the model is that it enables the examination
of transportation consequences of zoning practices. Such capabilities are wholly
lacking currently. It should be noted that UMTA’s proposed decision criteria with
regard to financing major mass transportation projects' mentions "densifying
selected corridors" and other land use development actions as important
considerations. The problem with the inclusion of development densities into the
model has, therefore, little to do with whether they ought to be in the model;
rather it is that data do not exist to suggest distributions for within-zone
population/employment densities or to test the accuracy of the results obtained.
The Normal distribution was adopted here because it is well known and
understood, and because it is easy to manipulate.

The assumptions regarding the access models’ specification concern
mainly the linear-in-parameter mathematical form and the exclusion of certain
simultaneous relationships from the equation.

The linear-in-parameters mathematical form of the supply equations falls
short of producing elegant approximations of the exact travel times which could
be obtained by integrating over the zone. As a simple example, consider the walk
time to station:

(11) WT, =

ff\/xz + y? f(x,y)dxdy

Xy

v

kC

k. = circuitry of sidewalk network

C

The strength of the linear equations lies in the ease with which they can be
estimated and in their simplicity--(much simpler than what equation (11) would
yield for the average travel time (Kocur and Ruiter, 1975).

1Proposed Decision Criteria Governing UMTA Commitments to Construction Financing of Major Mass
Transportation Projects, DOT/UMTA, March 1976.
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Correlations that may (and probably do) exist between the location of
individuals with respect to transit services and their socioeconomic attributes and
tastes are not incorporated in the models. In addition, there probably are
simultaneous relationships also between development densities and the transit
level of service. While these elements are present in the models, and as such
represent an advance in the state of the art, they are independent of each other. It
is believed that this independence is the most serious drawback of the described
models.

In conclusion, we venture to suggest that the proposed access supply
models do capture the salient features involved in determining the distribution of
access times within traffic zones. These models accomplish that in a manner that
is sensitive both to the transportation system serving the zone and to the
distribution of activities within the zone. The shortcomings of the models can be
eliminated to a large extent when the various simultaneous relationships are better
understood; for now, they can be alleviated by a careful use of the models.

The results of the access supply model estimations follow.
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The Estimated Models

Walk and drive time to guideway station

Zonal walk and drive travel times to a given station are similar in the sense
that the distance to be covered is, by and large, the same. For this reason distance,
rather than travel time, is regressed against the planning options. To convert
distance to travel time, an appropriate traveling speed must be used. For walking,
three mph is a good default value; car values may be chosen from the CUTS
manual (1975), if local studies have not been conducted.

The following model specification was first tried for walk or drive time to
guideway station.

Walk/Drive Time - Speed = a, + a,CO + a,L + a,DU
(12) + a,SD + a,CE + a HO

where the variables are as explained earlier.

In estimating model (12) it was quickly realized that centrality of the
station (CE) and the dummy variable (whether station is inside or outside of the
zone boundaries) are, to a great extent, measuring the same effect. For this
reason, if one is entered, the other is not; also, and for the same reason, two
different models are developed. The centrality variable (CE) is theoretically more
pleasing, but the dummy variable (DU) is easier to use and appears to be more
powerful.

The estimated models for the mean and standard deviation of walk/drive
distance are given in Table 56 at each level of complexity. It may be observed
that both models have statistically highly significant coefficients and possess
about equal forecasting ability (R* > .85 and coefficient of variation <.20). It
does appear interesting that the development density variables (SD, HO) have a
strong bearing on walk/drive access times in addition to the contribution made by
such traditional variables as location of the station and size of the zone. For
example, in a four square mile zone with station in the center, the average zonal
walk time to the station is eighteen minutes given uniform density of
origins/destinations in the zone. In this case twenty-five percent of the origins and
destinations are within a one mile zone centered about the station. If we increase
the development densities in such a way that, say, fifty percent of the
origins/destinations are within such a one square mile zone (standard deviation of
the density is dropped to 1.0) then the average walk time drops to approximately
seven minutes. Thus the density of development can have a dramatic effect on the
access walk (or drive or bike) travel times to a station.
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TABLE 56

Walk/Drive Time to StationeSpeed = f(variables)

BASIC MODIFIED
Variables MEAN STDEV MEAN STDEV
coeff t-value | coeff t-value | coeff t-value | coeff t-value
CONST =241 (3.3) -.0470 (1.7) =271 (4.6) | -.0271 (1.1)
CO 381 (34.6) .166 (48.6) 272 (32.1) 175 (48.4)
coordinates
SD 126 (8.6) .0211 (3.9 .138 (11.2) | .0159 (3.0)
std dev
HO 488 (7.1) -.198 (7.8) 298 4.7) -.176 (6.6)
hole
CE -.154 (6.5) .0369 4.2)
centrality
DU .563 (12.6) | -.0949 (5.0)
dummy
L 318 (34.6) .166 (48.6) 272 (32.1) 175 (48.4)
side
F-value 426.5 703.4 593.8 720.3
R? .85 .90 .89 91
Ccv .19 .16 .16 .15
n 300 200 300 300
Std error of 28 11 .24 .10
estimate
Mean of the 1.53 .67 1.53 .67
dep var
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Finally, it may be noted that the model can also be used to obtain biking
times to a station by using an appropriate biking speed and, in some situations, it
can be usefully applied to calculate "walk to bus stop" travel times; a discussion
on this last application is deferred the section dealing with such a model.

Walk time to bus stop

In developing the walk to bus stop model it was assumed that the travelers
walk at a constant speed of three mph and choose their bus line according to the
mode choice model developed in Part II, Chapter 2 (the maximum utility line
being chosen by the traveler).

Experimentation with the general specification equation (1) showed that
standard deviation of the development density did not materially affect the walk
times to bus stop. It was also found that both the dummy variable (DU) whether
the ultimate trip destination, such as a BART station, is in or out of the zone, and
the on-vehicle time difference between competing bus lines tend to measure the
same effect. This finding makes (limited) intuitive sense; its consequence is that
the development density distributions do not affect Walk Time to Bus Stop
models. The following specification was finally adopted for the model:

Walk Time to Bus Stop = a, + a,{LHT or DU} + a,BMI

(13) + a,HD + aHX + a,ST + aSP ,

where the variables are defined in Table 55.

The results in Table 57 indicate that the three estimated models are
statistically highly significant. The R*’s are approximately .45 and the
coefficient of variation about .25 . In general, the models for the mean of the
walk time are better than for the standard deviation of the walk time. Although
the R? ’s are lower for these models than for the walk/drive time to station models
in Table 52, the predictive accuracy of the models is not worse in terms of
root-mean-square error; the models can therefore be used with reasonable
confidence.
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Finally, two reasons for caution. First, while the dependency of bus walk
time and bus headways is an important link to establish, the modeler needs to be
careful with applications because bus headways are affected by bus volumes
(Morlok, 1974) and because traditional forecasting models operate on a single
zonal headway figure. Another reason for careful use of the models has to do with
the previously noted, and somewhat troublesome result that development density
distributions do not affect bus walk times. According to the models in Table 57, a
zone in which all activity is located along a single street where a bus line also
operates should have walk time equal to that within a zone, served by a single bus
line, where activities are evenly dispersed. This type of counter-intuitive result
points to the need to apply the models carefully; for example, in the extreme case
of one bus line along a densely developed street, one might consider using the
equations in Table 56 instead.

Bus ride time to guideway station

The choice of bus line(s) along which the distance to the guideway station
1s measured was based on the same mode choice model as in the walk time to bus
stop model.

The following model specification was found appropriate in this model.

CE
(14) Ride time = a,+a,SD+a, § or { +a,HD +a,HX +a,L +a,CO
DU

The estimated coefficients and the goodness-of-fit statistics for the ride
time model appear in Table 58. All the models are statistically highly significant;
the same applies to most of the independent variables. For example, the larger the
standard deviation of development density, the longer the bus ride distance; and,
the larger the headways on the minor bus lines with respect to the major (base)
bus line in the zone, the shorter the bus ride distance. These both are plausible
results. Large standard deviations mean more dispersed activities and longer rides.
Negative coefficients on headways indicate that bus travelers are willing to walk a
longer distance to gain shorter headways--and probably gain in the linehaul
distance at the same time.
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TABLE 58  Bus Ride Time to Station*Speed = f(variables)

VARIABLE BASIC MODIFIED

MEAN STDEV MEAN STDEV
SD 117 (5.9) | .0335 4.0) |.150 8.9) | .0401 (5.2)
CE 0985 (4.1) |-0211 @y | o |
HX ~00198 (71) |.00172 .5 |[-00217 (84) |.00164 (1.4
HD ~00691 (4.8) |-000581 (1.0) |-00620 (4.7) |-000554 (.91)
pu | e - .942 (8.2) unstable
L 252 (72) | .209 (142) | 281 (10.0) |.188 (17.6)
Co 471 (182) |.132 a2.1) | 275 (7.4) | .147 (17.6)
CONST 0578 (54) |-0820 (1.8 |-282 2.9) |-0991 (2.2
F-value 241.3 218.0 293.0 257.4
R? .85 .83 .87 .83
Ccv 25 .20 23 .20
n 267 267 267 267
Std error 37 15 34 15
Mean of dep 1.49 79 1.49 79
variable
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The statistical indicators give equally high R*’s (about .80) and equally
low standard errors of estimate (coefficient variation about .25) to all the models.
In the statistical sense, the models are equivalent. In applications, however,
caution should be exercised when using the models with the in/out zone dummy
variable (DU); the dummy indicates that, no matter how far out of the zone the
station is, bus ride distance immediately increases by one mile when the station
moves out of the zone. It is the authors’ feeling that this discontinuous jump is
too sharp. That, however, is the result that was obtained.
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Development of Models to Forecast the Travel Times as Linehaul

Models for auto travel times

In principle, the auto travel time models could be estimated statistically in
the same manner as the access travel time models. However, time constraints did
not permit such an undertaking. Instead, the driving time models are based on
existing sources of information.

For a given capacity, speed-volume relationship is one of the basic
concepts in traffic engineering; an example of such a curve is shown in Figure 18.

The speed-volume curve in the figure, developed before the fifty-five mph
speed limit law, implies that travel times in non-congested conditions vary only
marginally. More important, the traffic engineer’s speed-volume curve is valid
only for a uniform stretch of highway and for conditions when the volume is
below the capacity of the road.! Given that below capacity the speed of travel
does not differ substantially from the current fifty-five mph speed limit, and that
the speed-volume relationship is invalid for situations where the volume exceeds
capacity and where large delays can occur because of queueing, it is appropriate to
seek other means of representing driving time. This is particularly true when
policies for priority treatment of high occupancy vehicles are being considered,
which in many cases impose considerable congestion delays upon the non-priority
vehicles.

'A good discussion of the shortcomings of the speed-volume curve is given by Small (1976). He also
presents results of an attempt to estimate speed-volume curve for a non-uniform stretch of road. Even though
the obtained showed somewhat greater sensitivity of travel time to volume/capacity ratio, it still showed
considerable scatter near the capacity point and, of course, did not apply to situations when v|C > 1.
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Point bottleneck model

The point bottleneck model, formulated by May and Keller (1967), takes
the approach that the effects represented by the upper part of the speed-volume
curve can be ignored altogether and concentrates on the queueing delays that
occur when capacity is exceeded. They assume also, quite appropriately, that the
"arrivals" to the queue are non-random, as is the rate of service (or capacity). This
type of model can be characterized as a deterministic queueing behind a
bottleneck; it is graphically illustrated in Figure 19 for the case of no priority
operations. This example is borrowed from Small (1976); another version
appears in May and Keller (1967)."

FIGURE 19 Point Bottleneck Model
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! For detailed assumptions included in this model see Small (1976) and May (1968).
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The road section is assumed to consist of a small number of sections, each
having a uniform speed v, and infinite capacity with each section ending at a
bottleneck of capacity C.

B, =net demand inflow between sections i - 1 and 1 (auto-equiv./hour);
V., = actual vehicle flows, as shown (auto equiv./hour);

A, = queue length (auto-equiv.);

T, = queueing delay (minutes);

T  =total travel time (minutes);

Dist = length of section (miles);
v, = free speed (miles/hour);

t  =time of day (minutes past midnight).

out

Then, with the convention V,* = 0, the equations describing the system are:

Vi'®) = VM + B

0, A -0 ;
A./dt = .
WA Wiy —cys0 , A®© >0
out vt , A®M) =0 ;
. t) = 1
VO amso

T () = 60 A(M/C, ;

T@) = ZTi(t) + 60L/v,
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For the case of only one bottleneck or independent bottlenecks, these
equations become easy to handle. May and Keller (1967) solve them for the case
of trapezoidal-shaped peak-hour demand pattern. In this study a rectangular shape
with zero off peak demand is assumed. Queueing delay x is shown to be, at any
time t,

0 t <t
(D/C - 1)t - t) to<tst,

XO =1 pic - e -t - ) to<t<t
0 t,<t

W

where t, and t, are times at the beginning of the peak period, P =t,-t, is the
length of the peak period, and t, is the time at which the queue is dissipated. The
average travel time during the peak is then

. t2
T=%+l[x(t)dt
N P
(15) 0 4
Dist D P
= —_— + _— = 1 R
N, \C 2

Both Small (1976) and May and Keller (1967) have used the model with apparent
success despite its simplicity.

The power of this simple model is that it can be used easily in analyzing
priority treatment policies for high occupancy vehicles by dividing the available
capacity into two "roads" (Small 1976). The model can also be made to represent
a collection of parallel and sequential roads and is thus adaptable for service in an
equilibration framework which is cast as a simultaneous equation problem. These
extensions of the model are discussed in Chapter 8 of this part.
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Models for transit on-vehicle time

The models for transit on-vehicle time will now be described. All are
based on a very simple relation: travel time on a transit vehicle is equal to the
distance divided by the speed of travel, plus the time incurred in picking up or
discharging passengers. The difficulty in implementing this equation in a sensible
manner arises from the fact that the speed of a transit vehicle, especially that of
buses, is dependent upon many factors ranging from drivers’ skills to maneuver
the bus under varying volume conditions to the number of cars parked on the
street sections constituting the bus line.

The equations developed below are not to be used without careful
transportation engineering judgment; in this they are not unlike any other model
employed to abstract a complicated reality. Specifically, it is assumed that the
transportation engineer specifies the type of system and the operating rules
between the two points (or zones) between which the travel time is desired. If this
is done well the equations should yield travel times which are comparable or even
better than the times obtained from a coded network. Furthermore, the equation
for bus travel time is such that it can be used for obtaining an equilibrium (volume
dependent) travel time.

The travel time equations for BART are developed first, followed by travel
time equations for bus.

BART travel time. Travel time over a distance is, of course, equal to the
distance divided by the average speed of the vehicle. It is assumed here that the

average speed on BART, Qr , 1s a function of the following variables: maximum

speed, stop frequency, and acceleration/deceleration rates. There are two cases,
each obtaining a different mathematical expression for the aversge speed V .

The first is the case where the station spacing (distance between stations) is
sufficient for the vehicle (train) to reach its maximum speed; in the second case
the station spacing is not large enough for the train to reach its maximum speed.

Denote the average speeds In these two cases ?r and §2r . The expressions for

the speeds are as follows.

y i 36008
(162) C Ve Vo 36008
2a 24’ \Y



and

2 3600
700 + a2
(16b) Saa’
2 2
Vm Vm
S < +

72002’ 7200a’

where
?R , §2r = average speeds as defined earlier (mph);
a = acceleration rate (constant mphps);
a’ = deceleration rate (constant mphps);
N, = maximum cruising speed (mph);
S = station spacing (miles) .

Note that the above formulae are for average moving speeds. It would have been
possible to obtain an expression for the average overall speed by adding dwell
time to the denominator. However, it appears to be more convenient to simply

add the dwell time to the running time later.

Total travel time between any pair (AB) of stations can then be computed

from the following equation:

-1 Si/ 1+1

N
(17) Ty = _

N
60 + Yt /60
=1 v, i+1 i=1

I=1= A station;
t,; = dwell time at station i;

1= N = B station.
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Applying equation (17) to the Concord-Daly City line, for example, between
Concord and Daly City stations the following results are obtained:

for v, =70 mph, T, =37.7+9.0=46.7 min ;
for v,, =55 mph, T, =44.9+9.0=53.9 min.

The tabulated travel time between Concord and Daly City is fifty-six minutes.

It is attractive to simplify the equation (17) in two ways. First, assume that
the average speed between stations A and B is a function of the average station
spacing between A and B. Second, assume a flat dwell time of, say, thirty
seconds (a figure often observed casually) and add sixty seconds for a transfer.
With these assumptions in mind, equation (17) has been applied to various trips
on BART and the results are shown in Table 59. Examination of the values in
Table 59 indicates that the tabulated travel times and the travel times derived
using equation (17) differ by less than two minutes, the average deviation being
around one minute. This certainly is less than any BART rider is able to detect.
Equation (17) is thus accepted as dependable in yielding BART travel times.
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Bus travel times. In this section equations are developed for bus
on-vehicle time in mixed traffic: that is, the highway or street capacity is shared
by autos and buses, which in heavy traffic tend to get in each other's way and slow
travel speeds. Besides these volume/ capacity conditions en route, bus travel
speeds are dependent on traffic signalization practices, on-street parking policies,
one-waying, and other factors such as the presence of pedestrians and other
distractions that tend to vary with the location (e.g., residential, downtown) of the
route or link within the metropolitan area.

The on-vehicle time on bus may be expressed as

N
(18) T, = 60 - Dist/v(s,V/C,F) + t, I;Vk/60 ,

where
Ty = bus on-vehicle time (minutes);
Dist = linehaul distance (miles);

v(s, V/IC, F) = average speed evaluated at bus stop spacing s, volume
capacity ratio V/C, and in location F with given parking
policy, signalization, one-way conditions (mph);

t, = boarding/alighting time of one passenger at a bus stop (seconds);

V, = volume of passengers alighting and/or boarding at stop k
(passengers).

The parameters or functions to be determined for applying equation (18)
are v(*),and t,. Examining the boarding/alighting time first, for simplicity, it
appears that, on the average, passenger service times range from two seconds
(single-coin) to more than eight seconds (multiple zone fares collected by the
driver) per passenger (12).

The boarding times also appear to be somewhat greater than alighting
times, although at least some of the total dwell time must reflect total passenger
exchange and "clearance" to get the bus back to the traffic stream. For current
conditions it is assumed that regardless of the type of payment the
boarding/alighting time is 3.0 seconds; this appears to be in agreement with
observations made in the Bay Area and also with values in Table 60.
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TABLE 60 Approximate Passenger Service Time On and Off Buses

?Add 1 second where fare receipts are involved.

Operation Conditions Time (sec)

Unloading Very little hand baggage and parcels; few transfers 1.5-25
Moderate amount of hand baggage or many transfers 25-4
Considerable baggage from racks (intercity runs) 4-6

Loading® Single coin or token fare box 2-3
Odd-penny cash fares; multiple-zone fares 3-4
Pre-purchased tickets and registration on bus 4-6
Multiple-zone fares; cash; including registration on bus 6-8
Prepayment before entering bus or pay when leaving bus 1.5-2.5

Source: "Bus Use of Highway--Planning and Design Guidelines," NCHRP Report

155, Washington, DC (1975)

The main factor affecting bus on-vehicle time over a given distance is, of
course, the average bus speed in the traffic stream. As indicated earlier, bus speed
is a function of several variables--volume/ capacity, bus stop frequency,
signalization, parking policies, number of lanes, etc. A search of the literature on
the topic turned up one big surprise: there appears to be a total lack of statistical
analysis of bus speeds under varying operating policies and volume/capacity
circumstances. For this reason somewhat ad hoc methods are employed here to

compute the average bus speed and, hence, the bus on-vehicle time.

The average bus speed is obtained from the average car speed (v.) using
equation (15), by assuming that the average car speed is the maximum speed a bus
can attain in any given conditions, and that the bus stop spacing is large enough
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for buses to obtain this maximum speed. Both of these assumptions are
reasonable. Average car speed in turn can be obtained from the Highway Capacity
Manual using standard assumptions about traffic conditions (e.g., percent trucks,
percent right and left turns, etc.) or from the car travel time equations developed
earlier for the single "bottleneck" situation. Using the notation defined earlier,
and v, is the car speed in prevailing conditions, the bus travel time can then be
expressed as

v N
(19) T, - ¥ 60-[% R J L 05V,

seDist

where the first summation is over all intervals between bus stops covering the trip
distance. This equation can be modified to express the approximate bus travel
time over a distance,

ist)? 05V -Dist
. (Disty” K18

(200 T, =T

— b

B —
2~s~TA S

A

where the new notation is

T, 1isthe auto travel time over the distance (Dist) under prevailing
conditions (e.g., equation (15) or Table 13);

s average spacing of bus stops over the distance;

V. average number of passengers boarding/alighting at stops.

In equation (20) the second term expresses delay due to
acceleration/deceleration and the third term is the delay due to boarding/alighting
passengers.

The use of equation (20) was demonstrated by a test application. Equation
(20) was applied to fifteen hypothetical trips between randomly selected origins
and destinations. Comparisons were made between tabulated travel times (from
timetables) network coded travel times, and the calculated travel times from the
supply model. The results are reported in Talvitie and Dehghani (1976).
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