Diagonalization of Symmetric Real Matrices (from Handout):

Definition 1

Let \(\delta_{ij} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases} \)

A basis \(V = \{v_1, \ldots, v_n\} \) of \(\mathbb{R}^n \) is **orthonormal** if \(v_i \cdot v_j = \delta_{ij} \). In other words, each basis element has unit length, and distinct basis elements are perpendicular.

Observation: Suppose that \(x = \sum_{j=1}^{n} \alpha_j v_j \) where \(\{v_1, \ldots, v_n\} \) is an orthonormal basis of \(V \). Then for any \(x \in V \),

\[
x \cdot v_k = \left(\sum_{j=1}^{n} \alpha_j v_j \right) \cdot v_k \\
= \sum_{j=1}^{n} \alpha_j (v_j \cdot v_k) \\
= \sum_{j=1}^{n} \alpha_j \delta_{jk} \\
= \alpha_k
\]

so

\[
x = \sum_{j=1}^{n} (x \cdot v_j) v_j
\]

Example: The standard basis of \(\mathbb{R}^n \) is orthonormal.

Definition 2 A real \(n \times n \) matrix \(A \) is **unitary** if \(A^\top = A^{-1} \), where \(A^\top \) denotes the transpose of \(A \): the \((i, j)^{th}\) entry of \(A^\top \) is the \((j, i)^{th}\) entry of \(A \).
Theorem 3 A real $n \times n$ matrix A is unitary if and only if the columns of A are orthonormal.

Proof: Let v_j denote the j^{th} column of A.

\[A^\top = A^{-1} \iff A^\top A = I \]
\[\iff v_i \cdot v_j = \delta_{ij} \]
\[\iff \{v_1, \ldots, v_n\} \text{ is orthonormal} \]

If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbb{R}^n.

Since A is unitary, it is invertible, so V is a basis of \mathbb{R}^n.

\[A^\top = A^{-1} = \text{Mtx}_{V,W}(\text{id}) \]

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.

Theorem 4 Let $T \in \text{L}(\mathbb{R}^n, \mathbb{R}^n)$, W the standard basis of \mathbb{R}^n. Suppose that $\text{Mtx}_W(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consisting of eigenvectors of T, so that $\text{Mtx}_W(T)$ is diagonalizable:

\[\text{Mtx}_W(T) = \text{Mtx}_{W,V}(\text{id}) \cdot \text{Mtx}_V(T) \cdot \text{Mtx}_{V,W}(\text{id}) \]

where $\text{Mtx}_V(T)$ is diagonal and the change of basis matrices $\text{Mtx}_{V,W}(\text{id})$ and $\text{Mtx}_{W,V}(\text{id})$ are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. Here is a very brief outline.
1. Let $M = Mtx_W(T)$.

2. The inner product in \mathbb{C}^n is defined as follows:

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \cdot \overline{y}_j$$

where \overline{c} denotes the complex conjugate of any $c \in \mathbb{C}$; note that this implies that $\langle x, y \rangle = \overline{\langle y, x \rangle}$. The usual inner product in \mathbb{R}^n is the restriction of this inner product on \mathbb{C}^n to \mathbb{R}^n.

3. Given any complex matrix A, define A^* to be the matrix whose $(i, j)^{th}$ entry is $\overline{a_{ji}}$; in other words, A^* is formed by taking the complex conjugate of each element of the transpose of A. It is easy to verify that given $x, y \in \mathbb{C}^n$ and a complex $n \times n$ matrix A, $Ax \cdot y = x \cdot A^*y$. Since M is real and symmetric, $M^* = M$.

4. If M is real and symmetric, and $\lambda \in \mathbb{C}$ is an eigenvalue of M, with eigenvector $x \in \mathbb{C}^n$, then

$$\lambda |x|^2 = \lambda (x \cdot x)$$

$$= (\lambda x) \cdot x$$

$$= (Mx) \cdot x$$

$$= x \cdot (M^*x)$$

$$= x \cdot (Mx)$$

$$= x \cdot (\lambda x)$$

$$= (\lambda x) \cdot x$$

$$= \lambda (x \cdot x)$$

$$= \lambda |x|^2$$

$$= \overline{\lambda} |x|^2$$

which proves that $\lambda = \overline{\lambda}$, hence $\lambda \in \mathbb{R}$.

3
5. If M is real (not necessarily symmetric) and $\lambda \in \mathbf{R}$ is an eigenvalue, then $\det(M - \lambda I) = 0 \Rightarrow \exists v \in \mathbf{R}^n (M - \lambda I)v = 0$, so there is at least one real eigenvector. Symmetry implies that, if λ has multiplicity m, there are m independent real eigenvectors corresponding to λ, but unfortunately we don’t have time to show why. Thus, there is a basis of eigenvectors, hence M is diagonalizable over \mathbf{R}.

6. If M is real and symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal: Suppose that $Mx = \lambda x$ and $My = \rho y$ with $\rho \neq \lambda$. Then

$$
\lambda(x \cdot y) = (\lambda x) \cdot y \\
= (Mx) \cdot y \\
= (Mx)^\top y \\
= (x^\top M^\top) y \\
= (x^\top M) y \\
= x^\top(My) \\
= x^\top(\rho y) \\
= x \cdot (\rho y) \\
= \rho(x \cdot y)
$$

so $(\lambda - \rho)(x \cdot y) = 0$; since $\lambda - \rho \neq 0$, we must have $x \cdot y = 0$.

7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

**Let $X_\lambda = \{x \in \mathbf{R}^n : Mx = \lambda x\}$, the set of all eigenvectors corresponding to λ. Notice that if $Mx = \lambda x$ and $My = \lambda y$, then

$$M(\alpha x + \beta y) = \alpha Mx + \beta My = \alpha \lambda x + \beta \lambda y = \lambda(\alpha x + \beta y)$$
so X_λ is a vector subspace. Thus, given any basis of X_λ, we wish to find an orthonormal basis of X_λ; all elements of this orthonormal basis will be eigenvectors corresponding to λ.

Suppose X_λ is m-dimensional and we are given independent vectors $x_1, \ldots, x_m \in X_\lambda$. The Gram-Schmidt method finds an orthonormal basis $\{v_1, \ldots, v_m\}$ for X_λ.

- Let $v_1 = \frac{x_1}{|x_1|}$. Note that $|v_1| = 1$.
- Suppose we have found an orthonormal set $\{v_1, \ldots, v_k\}$ such that $\text{span} \{v_1, \ldots, v_k\} = \text{span} \{x_1, \ldots, x_k\}$, with $k < m$. Let

 $y_{k+1} = x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j) v_j$, \quad v_{k+1} = \frac{y_{k+1}}{|y_{k+1}|}$

- For $i = 1, \ldots, k$,

 $y_{k+1} \cdot v_i = \left(x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j) v_j \right) \cdot v_i$

 $= x_{k+1} \cdot v_i - \sum_{j=1}^{K} (x_{k+1} \cdot v_j) (v_j \cdot v_i)$

 $= x_{k+1} \cdot v_i - \sum_{j=1}^{K} (x_{k+1} \cdot v_j) \delta_{ij}$

 $= x_{k+1} \cdot v_i - x_{k+1} \cdot v_i$

 $= 0$

 $v_{k+1} \cdot v_i = \frac{y_{k+1} \cdot v_i}{|y_{k+1}|}$
Application to Quadratic Forms

Consider a quadratic form

$$f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \alpha_{ii} x_i^2 + \sum_{i<j} \beta_{ij} x_i x_j$$ \hspace{1em} (1)

Let

$$\alpha_{ij} = \begin{cases}
\frac{\beta_{ij}}{2} & \text{if } i < j \\
\frac{\beta_{ji}}{2} & \text{if } i > j
\end{cases}$$

Let

$$A = (\alpha_{ij}) \text{ so } f(x) = x^\top Ax$$

Example: Let

$$f(x) = \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2$$

Let

$$A = \begin{pmatrix} \alpha & \beta/2 \\
\beta/2 & \gamma \end{pmatrix}$$

so A is symmetric and

$$(x_1, x_2) \begin{pmatrix} \alpha & \beta/2 \\
\beta/2 & \gamma \end{pmatrix} \begin{pmatrix} x_1 \\
x_2 \end{pmatrix}$$

$$= (x_1, x_2) \begin{pmatrix} \alpha x_1 + (\beta/2)x_2 \\
(\beta/2)x_1 + \gamma x_2 \end{pmatrix}$$

$$= \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2$$

$$= f(x)$$
Return to general quadratic form in Equation (1)

A is symmetric, so let $V = \{v_1, \ldots, v_n\}$ be an orthonormal basis of eigenvectors of A with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A = U^T DU$$

$$D = \begin{pmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & \lambda_n
\end{pmatrix}$$

$$U = Mtx_{V,W}(id) \text { is unitary}$$

The columns of U^T (the rows of U) are the coordinates of v_1, \ldots, v_n, expressed in terms of the standard basis W. Given $x \in \mathbb{R}^n$, recall

$$x = \sum_{i=1}^{n} \gamma_i v_i \text{ where } \gamma_i = x \cdot v_i$$

$$f(x) = f \left(\sum \gamma_i v_i \right)$$

$$= (\sum \gamma_i v_i)^T A (\sum \gamma_i v_i)$$

$$= (\sum \gamma_i v_i)^T U^T DU (\sum \gamma_i v_i)$$

$$= (U \sum \gamma_i v_i)^T D (U \sum \gamma_i v_i)$$

$$= (\sum \gamma_i U v_i)^T D (\sum \gamma_i U v_i)$$

$$= (\gamma_1, \ldots, \gamma_n) D \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix}$$

$$= \sum \lambda_i \gamma_i^2$$

The equation for the level sets of f is

$$\sum_{i=1}^{n} \lambda_i \gamma_i^2 = C$$

- If $\lambda_i \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal
axis along \(v_i \) is \(\sqrt{C/\lambda_i} \) if \(C \geq 0 \) (if \(\lambda_i = 0 \), the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if \(C < 0 \).

- If \(\lambda_i \leq 0 \) for all \(i \), the level is an ellipsoid, with principal axes in the directions \(v_1, \ldots, v_n \). The length of the principal axis along \(v_i \) is \(\sqrt{C/\lambda_i} \) if \(C \leq 0 \) (if \(\lambda_i = 0 \), the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if \(C > 0 \).

- If \(\lambda_i > 0 \) for some \(i \) and \(\lambda_j < 0 \) for some \(j \), the level set is a hyperboloid. For example, suppose \(n = 2 \), \(\lambda_1 > 0 \), \(\lambda_2 < 0 \). The equation is

\[
C = \lambda_1 \gamma_1^2 + \lambda_2 \gamma_2^2 = \left(\sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2 \right) \left(\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2 \right)
\]

This is a hyperbola with asymptotes

\[
0 = \sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2 \\
\Rightarrow \gamma_1 = -\frac{|\lambda_2|}{\lambda_1} \gamma_2 \\
\]

\[
0 = \left(\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2 \right) \\
\Rightarrow \gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2
\]

This proves the following corollary of Theorem 4.

Corollary 5 Consider the quadratic form (1).

1. \(f \) has a global minimum at 0 if and only if \(\lambda_i \geq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).
2. \(f \) has a global maximum at 0 if and only if \(\lambda_i \leq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

3. If \(\lambda_i < 0 \) for some \(i \) and \(\lambda_j > 0 \) for some \(j \), then \(f \) has a saddle point at 0; the level sets of \(f \) are hyperboloids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

Section 3.4: Linear Maps between Normed Spaces

Definition 6 Suppose \(X, Y \) are normed spaces, \(T \in L(X,Y) \). We say \(T \) is bounded if

\[
\exists \beta \in \mathbb{R} \forall x \in X \|T(x)\|_Y \leq \beta \|x\|_X
\]

Note this implies that \(T \) is Lipschitz with constant \(\beta \).

Theorem 7 (4.1, 4.3) Let \(X, Y \) be normed vector spaces, \(T \in L(X,Y) \). Then

- \(T \) is continuous at some point \(x_0 \in X \)
- \(\Leftrightarrow \) \(T \) is continuous at every \(x \in X \)
- \(\Leftrightarrow \) \(T \) is uniformly continuous on \(X \)
- \(\Leftrightarrow \) \(T \) is Lipschitz
- \(\Leftrightarrow \) \(T \) is bounded

Proof: Suppose \(T \) is continuous at \(x_0 \). Fix \(\varepsilon > 0 \). Then there exists \(\delta > 0 \) such that

\[
\|z - x_0\| < \delta \Rightarrow \|T(z) - T(x_0)\| < \varepsilon
\]

Now suppose \(x \) is any element of \(X \). If \(\|y - x\| < \delta \), let \(z = y - x + x_0 \), so \(\|z - x_0\| = \|y - x\| < \delta \).

\[
\|T(y) - T(x)\|
\]
\[
\begin{align*}
&= \|T(y - x)\| \\
&= \|T(y - x + x_0 - x_0)\| \\
&= \|T(z) - T(x_0)\| \\
&< \varepsilon
\end{align*}
\]
which proves that \(T\) is continuous at every \(x\), and uniformly continuous.

We claim that \(T\) is bounded if and only if \(T\) is continuous at 0. Suppose \(T\) is not bounded. Then

\[
\exists \{x_n\} \quad \|T(x_n)\| > n\|x_n\|
\]

Note that \(x_n \neq 0\). Let \(\varepsilon = 1\). Fix \(\delta > 0\) and choose \(n\) such that \(\frac{1}{n} < \delta\). Let

\[
x_n' = \frac{x_n}{n\|x_n\|} \\
\|x_n'\| = \frac{\|x_n\|}{n\|x_n\|} = \frac{1}{n} < \delta
\]

\[
\|T(x_n') - T(0)\| = \|T(x_n')\| = \frac{1}{n\|x_n\|}\|T(x_n)\| > \frac{n\|x_n\|}{n\|x_n\|} = 1 = \varepsilon
\]

Since this is true for every \(\delta\), \(T\) is not continuous at 0. Therefore, \(T\) is continuous at 0 implies \(T\) is bounded. Now, suppose \(T\) is bounded,
so find M such that $\|T(x)\| \leq M\|x\|$ for every $x \in X$. Given $\varepsilon > 0$, let $\delta = \varepsilon/M$. Then

$$
\|x - 0\| < \delta \implies \|x\| < \delta
\implies \|T(x) - T(0)\| = \|T(x)\| < M\delta
\implies \|T(x) - T(0)\| < \varepsilon
$$

so T is continuous at 0.

Thus, we have shown that continuity at some point x_0 implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0, which implies that T is bounded, which implies that T is continuous at 0, which implies that T is continuous at some x_0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$
\|T(x) - T(y)\| = \|T(x - y)\|
\leq M\|x - y\|
$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent.

Theorem 8 (4.5) *Let X, Y be normed vector spaces, $T \in L(X, Y)$, dim $X < \infty$. Then T is bounded.*

Proof: See de la Fuente.

Given normed vector spaces X, Y, a *topological isomorphism* between X and Y is a linear transformation $T \in L(X, Y)$ which is invertible (one-to-one, onto), continuous, and has a continuous inverse. Two normed vector spaces X and Y are *topologically isomorphic* if there is a topological isomorphism $T : X \rightarrow Y$.

Suppose X, Y are normed vector spaces. We define

$$B(X, Y) = \{ T \in L(X, Y) : T \text{ is bounded} \}$$

$$\|T\|_{B(X,Y)} = \sup \left\{ \frac{\|T(x)\|_Y}{\|x\|_X}, x \in X, x \neq 0 \right\} = \sup \left\{ \|T(x)\|_Y : \|x\|_X = 1 \right\}$$

Theorem 9 (4.8) Let X, Y be normed vector spaces. Then

$$(B(X, Y), \| \cdot \|_{B(X,Y)})$$

is a normed vector space.

Proof: See de la Fuente.

Theorem 10 (4.9) Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ ($= B(\mathbb{R}^n, \mathbb{R}^m)$) with matrix $A = (a_{ij})$ with respect to the standard bases. Let

$$M = \max \{ |a_{ij}| : 1 \leq i \leq m, 1 \leq j \leq n \}$$

Then

$$M \leq \|T\| \leq M \sqrt{mn}$$

Proof: See de la Fuente.

Theorem 11 (4.10) Let $R \in L(\mathbb{R}^m, \mathbb{R}^n)$ and $S \in L(\mathbb{R}^n, \mathbb{R}^p)$. Then

$$\|S \circ R\| \leq \|S\| \|R\|$$

Proof: See de la Fuente.

Define

$$\Omega(\mathbb{R}^n) = \{ T \in L(\mathbb{R}^n, \mathbb{R}^n) : T \text{ is invertible} \}$$
Theorem 12 (4.11') Suppose \(T \in L(\mathbb{R}^n, \mathbb{R}^n) \), \(E \) the standard basis of \(\mathbb{R}^n \). Then

\[
T \text{ is invertible} \iff \ker T = \{0\} \iff \det (Mtx_E(T)) \neq 0 \iff \det (Mtx_{V,V}(T)) \neq 0 \text{ for every basis } V \iff \det (Mtx_{V,W}(T)) \neq 0 \text{ for every pair of bases } V, W
\]

Theorem 13 (4.12) If \(S, T \in \Omega(\mathbb{R}^n) \), then \(S \circ T \in \Omega(\mathbb{R}^n) \) and

\[
(S \circ T)^{-1} = T^{-1} \circ S^{-1}
\]

Theorem 14 (4.14) Let \(S, T \in L(\mathbb{R}^n, \mathbb{R}^n) \). If \(T \) is invertible and

\[
\|T - S\| < \frac{1}{\|T^{-1}\|}
\]

then \(S \) is invertible. In particular, \(\Omega(\mathbb{R}^n) \) is open in \(L(\mathbb{R}^n, \mathbb{R}^n) = B(\mathbb{R}^n, \mathbb{R}^n) \).

Proof: See de la Fuente.

Theorem 15 (4.15) The function \((\cdot)^{-1} : \Omega(\mathbb{R}^n) \to \Omega(\mathbb{R}^n)\) that assigns \(T^{-1} \) to each \(T \in \Omega(\mathbb{R}^n) \) is continuous.

Proof: See de la Fuente.