Economics 204
Lecture 3—Wednesday, July 29, 2009
Revised 7/29/09, Revisions Indicated by ** and
Sticky Notes
Section 2.1, Metric Spaces and Normed Spaces
Generalization of distance notion in R"

Definition 1 A metric space is a pair (X, d), where X is a set
and d : X x X — R, satistying

L. vx,yEX d<$7y) Z 07 d<$7y> =0 x = Y

2. vx,yEX d([lf, y) — d<y7 ;Ij)
3. (triangle inequality)
vx,y,zEX d<$7 y) + d<y7 Z) > d<$7 Z)

Y
SN

x — 2z

Definition 2 Let V' be a vector space over R. A normon V is
a function || - || : V' — R satisfying

1. Voev ||z|| >0

2. Veev ||z|| =0 2 =0

3. (triangle inequality)

Vegev |z +yl < llzfl + |y
x

x/NY
0 — Tty

Y\ /X
Y
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4 Vaerzev |az| = laf|z|

A normed vector space is a vector space over R equipped with a
NOrm.

Theorem 3 Let (V.|| - ||) be a normed vector space. Let d
V xV = R, be defined by

d(v, w) = [lv —wl|
Then (V,d) is a metric space.

Proof: We must verify that d satisfies all the properties of a
metric.

L.

d(v,w) = [[v—w| =0
dlv,w)=0 < |[v—wl| =0
S v—w=0
& v+ (—w)+w=w
S v+ ((—w) +w) =w
S v+0=w
& v=w

2. First, note that foranyz € V,0-2 = (04+0)-2 =0-2+0-,
s00-2=0. Then0=0-2=(1-1)-z=1-2+(-1) -z =
r+ (—1)-x,s0 we have (—1) - x = (—x).

d(v,w) = |lv —wl|
= | =1fllv = wl
= (=1 + (=w))]|
= (=10 + (1) ()]
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= || — v+ w|
= [lw + (=v)|
= Jw o

= d(w,v)

d(u, w)

u — wl|
U+ (—v+v) —wl
U—v+v—uw

w— vl + [l —w]

d(u,v) + d(v,w)

VARSI

« Examples of Normed Vector Spaces

e " n-dimensional Euclidean space.

V=R |zl = |z| = X ()’

' V=R" zfi= 3 |ai

' V=R" [|z]loc = max{|a1],. .. |z.]}
' C(0,1), [1flloe = sup{| £ : £ € [0,1]}
' C([0, 1), 11l =y (F())2 dt

C(0,1)), Il = fH1f(t)] dt
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Theorem 4 (Cauchy-Schwarz Inequality)
If v,w € R", then

n 2
1=1

v - w|’

IA

£ 0] (£ uf]
1=1 1=1
v[*wl?

VANRVA

[v-w] < of|w]

Read the proof in De La Fuente. The Cauchy-Schwarz In-
equality is essential in proving the triangle inequality in E™.
Note that v - w = |v||w| cos @ where 0 is the angle between v and
w:

v w
N0
0
Definition 5 Two norms ||-|| and || - || on the same vector space

V are said to be Lipschitz-equivalent it
Imar > 0 Voey ml|zf| < 2| < M|z|

Equivalently,

/
E|m,]\4 > () vxe‘/,x#() m < || || <M

Theorem 6 (*"%&)8 on page 107 of de la Fuente) All norm.
on R" are Lipschitz-equivalent.

“*The Theorem is correct, but the proof in de la Fuente has a
problem.

However, infinite-dimensional spaces support norms which are
not Lipschitz-equivalent. For example, on C([0, 1]), let f,, be the


Anderson
Sticky Note
This corrects the statement that Theorem 6 is not in de la Fuente; it appears later, and the theorem is correct, but there is a problem with de la Fuente's proof.


function f [ 1]
falt) =1 if ¢ e (4,1
Then )
a1
[fallo 1 2n

Definition 7 In a metric space (X, d), define

B.(x) = open ball with center x and radius €
= {ye X :d(y,z) <e}
B.|x] = closed ball with center x and radius ¢

= ye X dlyz) <e}
SCX is bounded if
Jrex geRVses d(s,r) < 3
diam (S) = sup{d(s,s’) : s,s" € S}
d(A,x) = gggd(a,z)
d(A, B) = 521121 d(B,a)
= inf{d(a,b) :a € A, b € B}

Note that d(A, z) cannot be a metric (since a metric is a function
on X X X, the first and second arguments must be objects of
the same type); in addition, d(A, B) does not define a metric on
the space of subsets of X. Another, more useful notion of the

distance between sets is the Hausdorff distance, will probably
see 1t in 2018

Section 2.2: Convergence of sequences in metric spaces

Definition 8 Let (X, d) be a metric space. A sequence {z,}



converges to x (written x,, — x or lim,, .z, = x) if
\V/€>OE|N(5)EN n > N(E) = d([l?n, ZE) <€

This 1s exactly the same as the definition of convergence of a
sequence of real numbers, except we replace | - | in R by the
metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d),
if x, — v and x, — x’, then x = x'.

Proof:
T
l €
:Cn :L/ o d<$’$l)
2

]
L1 e

.x/

Suppose {x,} is a sequence in X, x, — x, v, — 2’ x # 2.
Since x # 2/, d(x,x') > 0. Let
d(x,x")
2
Then there exist N(e) and N'(e) such that
n> N(e) = dx,,x) <e
n> N'(e) = dx,,2') <e

E =

Choose
n > max{N(e), N'(e)}

Then
d(z,2) < d(x,z,)+d(z,, )
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d(z,2") < d(z,x")

a contradiction.s
c is a cluster point of a sequence {x,} in a metric space (X, d) if

Vowo {n : x, € B(c)} is an infinite set.

Equivalently,
Veso,NeNTnsn T, € B.(c)
Example:
o 1—% if n even
" % if n odd

For n large and odd, x,, is close to zero; for n large and even, x,,
is close to one. The sequence does not converge; the set of cluster
points is {0, 1}.

If {z,} is a sequence and n; < ny < mg < ---, then {z,, } is
called a subsequence.

Note that we take some of the elements of the parent sequence, in
the same order.

Example: x, = %, so {x,} = (1,%,%,...). If n, = 2k, then
(et = (01

Theorem 10 (2.4 in De La Fuente, plus ...) Let (X, d) be
a metric space, ¢ € X, and {x,} a sequence in X. Then c is
a cluster point of {x,} if and only if there is a subsequence
{xn, } such that limy_. x,, = c.

Proof: Suppose ¢ is a cluster point of {x,}. We inductively
construct a subsequence that converges to c¢. For k=1, {n : z, €
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Bi(c)} is infinite, so nonempty; let
ny = min{n : x, € Bi(c)}

Now, suppose we have chosen n; < ny < --- < nyg such that
Ty, € B%(c) forj=1,...,k

{n:z,€eB L (¢)} is infinite, so it contains at least one element
+
bigger than nyg, so let

nk+1:min{n:n>nk, anBﬁ(c)}
+

Thus, we have chosen n; < no < --- < nj < ngyq such that
Tn; € Bi(c) for j=1,... k k+1
J
Thus, by induction, we obtain a subsequence {z,, } such that
Ty, € B 1 (c)

Given any € > 0, by the Archimedean property, there exists
N(e) > 1/e.

k> N() = x,, € B%(c)

= x,, € B.(c)

SO

Ty, — Ccas k — oo

Conversely, suppose that there is a subsequence {z,, } converg-
ing to c. Given any € > 0, there exists K € N such that

k>K = d(z,,c) <e=x, € B.Ac)
Therefore,

{n S B€<C)} 2 {nK+17nK+27nK+37 - - }
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Since g1 < Niio < Ny < ---, this set is infinite, so ¢ is a
cluster point of {x,,}. =

Section 2.3: Sequences in R and R"™

Definition 11 A sequence of real number {x,} is increasing
(decreasing) if x, 1 > x, (Tp1 < ) for all n.

Definition 12 If {x,} is a sequence of real numbers, {x,} tends
to infinity (written x,, — oo or lim x,, = 0o) if

VKERHN(K) n > N(K) =, > K
Similarly define lim x,, = —o0.

We don’t say the sequence converges to infinity; the term “con-
verge’ is limited to the case of finite limts.

Theorem 13 (Theorem 3.1°) Let{x,} be an increasing (de-
creasing) sequence of real numbers. Then lim,, . x, = sup{x, :
n € N} (lim, oz, = inf{x, : n € N}). In particular, the
limait exists.

Proof: Read the proof in the book, and figure out how to handle
the unbounded case. =

Lim Sups and Lim Infs Handout:

Consider a sequence {x,} of real numbers. Let

a, = sup{z,: k> n}

— SU.p{ZCn, Ln+1s Tn+2, - - }

B, = inf{xy : k> n}

Either oy, = +oo for all n, or a,, € R and ay > a9 > g > - - -.
Either 6, = —oo for alln, or 8, € Rand 81 < Gy < B3 < -+ -,
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Definition 14
lim sup 2, — +oo if o, = +o0 for all n
n—00 lim «,, otherwise.
—oo it (3, = —oo for all n
lim (3, otherwise.

liminf x,, =
n—aoo

Theorem 15 Let {z,} be a sequence of real numbers. Then
lim, oo zp =7 € RU{—00, 0}
& limsup,, ., x, = limint, o x, =7
Return to Section 2.3:

Theorem 16 (Theorem 3.2, Rising Sun Lemma) Fvery se-
quence of real numbers contains an increasing subsequence or
a decreasing subsequence or both.

O ¢— — ¢ ¢ ¢ —  — — « «— «— S

° ° ° @ O — ¢ — ¢ «— — «— «— U
° ° ° ® ¢ 0 «— «— «— N
° ° °
°
Proof: Let

S={seN: V.5 xs>x,}
Either S is infinite, or .S is finite.
If S is infinite, let

ny = min S
ny = min (S'\ {n1})
ng = min (S \ {n1,n2})

NEr1 = min (S\{nlﬂh,---;nk})
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Then ny < n9 < ng < ---.

T, > Tp, sincen; € S and ny > ny
Ty, > Tp, since ng € S and n3 > ny

Tp, > Ty, sSinceng € 5 and ngyq > ny

so {xy, } is a strictly decreasing subsequence of {z,}.
If S is finite and nonempty, let ny = (max .S) + 1; if S = 0, let
ny = 1. Then

ni g S S0 Eln2>n1 Ly > Lnq
Uy g S S0 E|7’L3>TL2 Lnsg Z Ly

N1 > Tngy > Ly,

ng & S so 3

so {xy, } is a (weakly) increasing subsequence of {z,}. s

Theorem 17 (Thm. 3.3, Bolzano-Weierstrass) Fvery
bounded sequence of real numbers contains a convergent sub-
sequence.

Proof: Let {x,} be a bounded sequence of real numbers. By the
Rising Sun Lemma, find an increasing or decreasing subsequence
{zn, }. If {x,, } is increasing, then by Theorem 3.1, limz,, =
sup{x,, : k € N} <sup{z, : n € N} < oo, since the sequence
is bounded; since the limit is finite, the subsequence converges.
Similarly, if the subsequence is decreasing, it converges. =
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