Exercise 1

Consider \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that \(f \in C^3(\mathbb{R}^2) \). Now let \(F(x, y, w, z) = f(x, y) - (w, z) \) and suppose that \(F(x, y, w, z) = 0 \) has solutions in \(\mathbb{R}^4 \). Let \(S \subset \mathbb{R}^4 \) be the set of solutions to this system. Show that there exists a set \(B \) such that \(B^c \) has measure zero and for \((x, y, w, z) \in S \) where \((w, z) \in B \), there is a local implicit function \(h : W \subset \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) (W open) such that \(F(h(w, z), w, z) = 0 \) for all \((w, z) \in W \) and \(h \in C^3(\mathbb{R}^2) \).

Exercise 2

Let \(f : [0, 1] \rightarrow [0, 1] \) be a correspondence defined as \(f(x) = \begin{cases} 0, & x = 0 \\ \frac{1}{x+1}, & x \neq 0 \end{cases} \) for \(x \neq 0 \) and \(f(0) = \{1/2\} \). Does \(f \) have a fixed point? If yes, find the point(s). Does any of the fixed point theorems you have learned apply here? Explain. Answer the same questions for \(f(x) = \begin{cases} [\epsilon, 1/(x+1)], & x \in [0, 1] \end{cases} \) where \(0 < \epsilon < 1/2 \).

Exercise 3

We say that a relation \(R \) on \(X \) is convex if whenever \(xRy \) and \(zRy \) then \((\alpha x + (1 - \alpha)z) R y \) for all \(\alpha \in (0, 1) \). (if \(x \) and \(y \) are in \(\mathbb{R} \), \(\geq \) is an example of such relation). Let \(R_i \) be a convex relation on \(\mathbb{R}^n \) for \(i = 1, 2, ... m \), fix \(x \in \mathbb{R}^n \) and let \(B_i = \{ y - x : y R_i x, y \in \mathbb{R}^n \} \). Show that \(B_i \) is convex.

Let \(B = \bigcap_{i=1}^m B_i := \{ z_1 + z_2 + ... + z_m ; \text{such that } z_i \in B_i \text{ for all } i \} \). Show that \(B \) is convex. In the case where \(R \) is a "preference" relation (you will learn this later in Econ201B), \(0 \notin B \) is equivalent to \(x \) being a Pareto optimal allocation. Show that in the case where \(0 \notin B \), there exists \(p \neq 0 \) such that \(\inf(p \cdot B) \geq 0 \). This is how we construct prices in Econ201B.

Exercise 4

Show that if \(B \subset \mathbb{R}^n \) is open and convex, then \(B = \cap_{i \in I} S_i \), where \(\{S_i, i \in I\} \) is the set of all open half-spaces containing \(B \) (an open half-space in \(\mathbb{R}^n \) is a set \(S = \{ y \in \mathbb{R}^n : p \cdot y < c \} \) for some \(p \in \mathbb{R}^n, c \in \mathbb{R} \).
State whether the following functions are Lipschitz and prove your claim:

a) \(f(x) = \ln(x) \) for \(x > 0 \);

b) \(f(x) = \cos(x) \) for \(x \in \mathbb{R} \);

c) \(f : \mathbb{R} \rightarrow \mathbb{R}, f \) differentiable, such that \(\left| \frac{df}{dx} \right| \leq M \) for some \(M \in \mathbb{R} \);

If any of the functions above is not Lipschitz, what can you change to make them Lipschitz?

Consider the differential equation \(\frac{dy}{dt} = y(t) - \frac{1}{3} = 3 \) defined for all \(t \geq 0 \) and \(y(t_0) = 0 \). Does this differential equation have a solution? Is that solution unique? If yes, prove it. If not, explain why not and then modify the problem to make the solution unique.

Try to find a solution if it exists.

Exercise 6

Consider the following system of first order differential equations:

\[
\begin{align*}
x'(t) &= x^2 - y \\
y'(t) &= y(y - 1)
\end{align*}
\]

a) Plot the \(x'(t) = 0 \) and \(y'(t) = 0 \) curves on the \(x-y \) coordinate axes. Find the stationary point corresponding to \(x, y > 0 \).

b) Linearize the system using Taylor-series expansion around the \(x, y > 0 \) steady state. Write down the linearized equations.

c) Describe the behavior of the system and write down the general solution.