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Abstract

Social and economic networks are ubiquitous, serving as contexts for
job search, technology diffusion, the accumulation of human capital,
and even the formulation of norms and values. The systematic empir-
ical study of network formation—the process by which agents form,
maintain, anddissolve links—within economics is recent, is associated
with extraordinarily challenging modeling and identification issues,
and is an area of exciting new developments, with many open ques-
tions. This article reviews prominent research on the empirical anal-
ysis of network formation, with an emphasis on contributions made
by economists.
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1. INTRODUCTION

Job seekers often receive help from family and acquaintances when conducting searches (e.g.,
Loury 2006). Likewise, individuals learn about new products and technologies from friends
and colleagues (e.g., Banerjee et al. 2013). The actions and attributes of an adolescent’s peer group
predict her initiation of sexual activity, drug use, and academic performance, among other
behaviors (Case & Katz 1991, Gaviria & Raphael 2001). Even the exchange of goods and
services may occur within a network. For example, electronic producers may utilize different, but
overlapping, sets of manufacturers to assemble finished products, sharing valuable technology
and know-how with each (e.g., Kranton & Minehart 2001).

The ubiquitousness of networks, along with their ability to predict many social and economic
behaviors, motivates their academic study. In particular, the correlation between the actions of
individuals (firms) and the attributes and actions of those with whom they are connected raises at
least twoquestions. First, howdonetworks form and evolve? Second, do the actions and attributes
of one’s peers—the set of agents to which one is connected—influence one’s own actions? This
review focuses on the first question, specifically on the empirical analysis of network formation.
Blume et al. (2011) review recent research organized around the second question (i.e., on peer
group effect analysis).

Jackson &Wolinsky (1996) introduced the notion of a strategic model of network formation,
in which pairs of agents form, maintain, or sever links in a decentralized way to maximize utility.
Choices are interdependent, as the utility an agent attaches to a particular link may vary with the
presence or absence of other links in the network. This approach to network formation, with
agents maximizing utility in a decentralized way, is a natural one for economists. Formulating an
empirical model with these features is difficult.

Since McFadden (1973) and Manski (1975), economists have modeled single-agent discrete
choice problems using random utility models. These models provide a principled way of inferring
the distribution of preferences from the observed distribution of choice. Unfortunately, as is
familiar from the literature on games (e.g., Bresnahan & Reiss 1991, Tamer 2003), when agents’
choices are interdependent, as may be the case in network formation, several econometric chal-
lenges arise. These challenges are compounded by the scale of the network formation problem.

In an undirected network with N agents, a total of 2

�
N
2

�
configurations of links are possible.

Section 2 describes methods for summarizing network data. Just as the analysis of the distri-
bution of a single random variable typically begins with the calculation of a sample mean, or one
on the association between two random variables with that of a correlation coefficient, the
analysis of network data generally begins with a summary of various features of a network’s
architecture. This material also serves as a vehicle to establish some basic notation and to review
some stylized facts on social networks.

Section 3 selectively reviews empirical models of network formation. Section 4 ends with some
thoughts about future directions for research.

2. DESCRIBING NETWORKS

Figure 1 provides a visual representation of a set of risk-sharing links, measured in the year 2000,
among 119 households residing in Nyakatoke, a small village in Tanzania. These data are de-
scribed and analyzed byDeWeerdt (2004) andDeWeerdt& Fafchamps (2011). Individuals were
asked for lists of people who they could “personally rely on for help.” A list of undirected links
between all households was constructed using responses to this question. Each point in the figure
represents a household, and the lines between points are links.
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Graphical representations of network data like Figure 1 have historically played an important
role in empirical analysis and continue to do so (Freeman 2000). Although certain features of
a network can often be intuited from a visual representation, it is also valuable to have a suite of
standard network summary statistics. This section describes methods for summarizing network
data. There are many basic references for the material surveyed here, including Wasserman &
Faust (1994), Newman (2003), Jackson (2008), and Kolaczyk (2009). A few minor results
presented below, mostly of pedagogical significance, are new.

Themathematical language of networks is that of discretemath and, specifically, graph theory.
An undirected graphGðN , EÞ consists of a set of nodes N ¼ f1, . . . ,Ng and a list of unordered
pairs of nodes called edges E ¼ ffi, jg, fk, lg, . . .g for i, j, k, l 2N . A graph is conveniently
represented by its adjacency matrix D ¼ ½Dij�, where

Dij ¼
�
1 iffi, jg2 E
0 otherwise

. ð1Þ

Anode, depending on the context, may be called a vertex, agent, or player. Likewise, edgesmay be
called links, friendships, connections, or ties. Because self-ties are ruled out, and the nodes in edges
are unordered, the adjacency matrix is a symmetric binary matrix with a diagonal of so-called
structural zeros (i.e., Dij ¼ Dji and Dii ¼ 0).

Figure 1

Nyakatoke risk-sharing network. Node size is proportional to household degree. Yellow nodes represent
households with land and livestock wealth below 150,000 Tanzanian shillings, orange those with
wealth between 150,000 and 300,000 shillings, green those with wealth between 300,000 and 600,000
shillings, and blue those with wealth of 600,000 shillings or more. Following Comola & Fafchamps (2014),
land was valued at 300,000 shillings per acre. The network was plotted using the igraph package in R
(see http://igraph.org/r/). Data taken from De Weerdt (2004) and author’s calculations.
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Networks may also be directed such that each link has an ego (sender) and alter (receiver)
ordering. The focus on undirected networks here is solely for pedagogical reasons.

A social network consists of a set of agents (nodes) and ties (edges) between them. A social
network can be conveniently represented by its node and edge list or by its adjacency matrix. I
utilize the adjacency matrix representation in most of what follows. Two examples of undirected
network adjacency matrices are

Dex1 ¼

0
BBBBB@

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

1
CCCCCA, Dex2 ¼

0
BBBBB@

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

1
CCCCCA.

These two networks are graphically depicted in Figure 2. The first network,Dex1, takes a so-called
star configuration, inwhich a central agent is linked to all other agents. The second network,Dex2,
consists of two triangles, which share a single agent in common.

In summarizing the structure of a social network, it is convenient to define network statistics at
the level of individual agents, at the level of pairs of agents or dyads, and at the level of triples of
agents or triads.

2.1. Network Statistics Involving Single Agents and Paths Through the Network

The total number of links belonging to agent i, or her degree, is Diþ ¼
X

j
Dij. The degree fre-

quency distribution of a network, simply known as the degree distribution, consists of the fre-
quency of each possible agent-level degree count f0, 1, . . . , Ng in the network. An important
component of the literature on networks takes the degree distribution as its primitive object of
interest (e.g., Barabási & Albert 1999, Albert & Barabási 2002). This focus is motivated by
the fact that many other topological features of a network are fundamentally constrained by its
degree distribution (see Faust 2007). I discuss the connection between a network’s degree sequence
and its other topological features further below.

The density of a network equals the frequency with which any randomly drawn dyad is linked:

PN ¼
�
N
2

��1 XN
i¼1

X
j<i

Dij. ð2Þ

Note that ðN � 1ÞPN coincides with the average degree. The density of the Nyakatoke network is
0.0698. The density of Dex1 is 0.4 and that of Dex2 is 0.6.

Consider the matrix product

D2 ¼

D1þ
X

i
D1iD2i . . .

X
i
D1iDNiX

i
D1iD2i D2þ . . .

X
i
D2iDNi

« « . .
. «X

i
D1iDNi

X
i
D2iDNi . . . DNþ

0
BBBBBB@

1
CCCCCCA
.

The i-th diagonal element of D2 equals the number of agent i’s links or her degree. The fi, jg-th
element of D2 gives the number of links agent i has in common with agent j (i.e., the number of
friends in common). In the language of graph theory, the fi, jg-th element ofD2 gives the number
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of paths of length two from agent i to agent j. For example, if i and j share the common friend k,
then a length-two path from i to j is given by i→k→ j. The diagonal elements ofD2 correspond to
the number of length-twopaths fromanagent back to him- or herself. For example, if i is connected
to k, then one such path is i→ k→ i. The number of such paths coincides with an agent’s degree.

CalculatingD3 yields amatrixwhose fi, jg-th element gives the number of paths of length three
from i to j. The diagonal elements of D3 are counts of the number of transitive triads or triangles
in the network. If both i and j are connected to k as well as to each other, then the fi, j, kg triad
is closed (i.e., the friend of my friend is also my friend). Note that if fi, j, kg is a closed triad, it is
counted twice each in the i-th, j-th, and k-th diagonal elements ofD3. Therefore, TrðD3Þ=6 equals
the number of unique triangles in the network. Proceeding inductively, it is easy to show that the
fi, jg-th element of DK gives the number of paths of length K from agent i to agent j.

2.2. Network Statistics Involving Pairs of Agents or Dyads

The distance between agents i and j corresponds to the minimum-length path connecting them. If
there is no path connecting i to j, then the distance between them is infinite. We can use powers
of the adjacency matrix to calculate these distances. Specifically,

Mij ¼ min
k2f1,2,3,...g

n
k :DðkÞ

ij > 0
o

equals the distance from i to j (if it is finite). Here DðkÞ
ij denotes the ij-th element of Dk.

If the network consists of a single, giant, connected component, such that the minimum-length
path between any two agents is finite, we can compute the average path length as

M ¼
�
N
2

��1 XN
i¼1

X
j<i

Mij. ð3Þ

If the network consists of multiple connected components, standard practice is to compute the
average path length within the largest one (see Newman 2003 for an alternative measure).

The diameter of a network is the largest distance between two agents in it. It will be finite if the
network consists of a single connected component (in which case all agents are reachable starting
from any given agent) and infinite in networks consisting of multiple components (in which case
there are no paths connecting some pairs of agents).

Table 1 gives the frequency of minimum-length paths in the Nyakatoke network. There are
490 direct ties in the network (paths of length one). Just under 7% of all pairs of households are

ba

Figure 2

Two simple networks.
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directly connected in Nyakatoke. Another 2,666 dyads are only two degrees apart. That is, al-
though they are not connected directly, they share a tie in common. About 80% of dyads are
separated by three or fewer degrees. The diameter of the Nyakatoke network is five. The jux-
taposition of low density (i.e., only a small fraction of all possible ties exists), with few degrees of
separation (i.e., small diameter), is a feature of many real-world social networks.

The analysis of distances and diameters has a long history in social network analysis and falls
under the rubric of the small-world problem.Milgram (1967) popularized this phrase and, through
a series of postal experiments in the 1960s, showed that two random individuals in theUnited States
could often be connected through a short chain of acquaintances (i.e., six degrees of separation).

2.3. Network Statistics Involving Triples of Agents or Triads

A triad, a set of three unique agents, can be one of four types: no connections, one connection, two
connections, or three connections between them. These triad types are called empties, one edges,

two stars, and triangles, respectively (see Figure 3). There are
�
N
3

�
¼ NðN � 1ÞðN � 2Þ

6
unique

triads in a network of size N. A complete enumeration of them into their four possible types
constitutes a triad census.

Eachagent canbelong to asmanyas ðN � 1ÞðN � 2Þ triangles. The counts of these triangles are
contained in theN diagonal elements ofD3. However, each such triangle appears six times in these
counts, as fi, j, kg, fi, k, jg, fj, i, kg, fj, k, ig, fk, i, jg, and fk, j, ig. Thus, the number of unique
triangles in the network (as asserted above) is

TT ¼ Tr
�
D3

�
6

. ð4Þ

With a little bit of work, it is possible to show that the number of two stars and one edges can be
calculated, respectively, using the following expressions:

TTS ¼ vech
�
D2

�0
i� Tr

�
D3

�
2

, ð5Þ

TOE ¼ ðN � 2ÞvechðDÞ0i� 2vech
�
D2

�0
iþ Tr

�
D3

�
2

. ð6Þ

The number of empty triads,TE, equals
�
N
3

�
minus the sum of Equations 4–6. We also have the

implication that

TOE þ 2TTS þ 3TT ¼ ðN � 2ÞvechðDÞ0i ¼ ,
1
4
NðN � 1ÞðN � 2ÞPN ,

suggesting that the network density can be computed from the triad census according to

Table 1 Frequency of degrees of separation in the Nyakatoke network

1 2 3 4 5

Count 490 2666 3298 557 10

Frequency 0.0698 0.3797 0.4697 0.0793 0.0014

Data taken from De Weerdt (2004) and author’s calculations.
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PN ¼
�
4TOE þ 8TTS þ 12TT

NðN � 1ÞðN � 2Þ
�
. ð7Þ

The triad census for the Nyakatoke network is given in Table 2. As a point of comparison, the
proportion of each type of triad that we would expect to see in a random graph, in which the
probability of a link between any two agents coincides with the observed density of theNyakatoke
network (0.0698), is provided in the last row of the table.

A measure of network transitivity is given by three times the number of transitive triads in the
network relative to three times the number of transitive triads plus those triads that could become
transitive with the addition of a single link (i.e., two stars). The transitivity index, sometimes called
the clustering coefficient, is

RN ¼ 3TT

TTS þ 3TT
.

In random graphs, RN should be close to the network density. For the Nyakatoke network, the
transitivity index is 0.1884, which substantially exceeds the density of the network (0.0698).

Transitivity has been hypothesized to facilitate risk sharing and other activities in which
monitoring may be helpful. If the ði, j, kÞ triad is transitive, then agent k may be able to monitor
actions involving i and j (see Jackson 2014 for additional discussion). Faust (2007) surveys the
extensive sociological literature on triad configurations.

2.4. Degree Distributions and Triad Counts

A reoccurring theme in social network analysis concernswhether observed network structures can
be explained through a series of dyadic decisions or whether interactions among larger groups of
agents, most often triads, need to be considered (see Faust 2007 for a recent statement and ref-
erences to earlier work).

Although network transitivity, and the triad census, has often been a focus of sociologists, other
network researchers have made a network’s degree distribution

FðdþÞ ¼ PrðDiþ � dþÞ

their primary object of study (e.g., Barabási & Albert 1999). Figure 4 plots the Nyakatoke net-
work’s degree distribution. A small number of households in the Nyakatoke network have many
links (over 20), whereas the vast majority have only a small number of links (fewer than 10).

Faust (2007) argues, via a collection of empirical examples, that the distribution of triad
configurations within networks is well predicted by network statistics defined on lower-order
subgraphs (i.e., dyads). Additional insight in this finding can be developed via some basic
algebra.

Empty One edge Two star Triangle

Figure 3

Types of triads in undirected networks.
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Tedious manipulation gives a variance of the degree distribution of

S2N ¼ 2
N

ðTTS þ 3TTÞ � ðN � 1ÞPN ½1� ðN � 1ÞPN �. ð8Þ

Consider the effect of inducing amean-preserving spread in a network’s degree distribution. That
is, we seekmanipulations that keep the network density fixed, while increasing the variance of the
degree distribution. In the context of a technology diffusion model, Jackson & Rogers (2007b)
provide an interesting motivation for considering this thought experiment.

Using Equations 7 and 8, we get

S2N ¼ 2
N

ðTTS þ 3TTÞ

�ðN � 1Þ
�
4TOE þ 8TTS þ 12TT

NðN � 1ÞðN � 2Þ
��

1� ðN � 1Þ
�
4TOE þ 8TTS þ 12TT

NðN � 1ÞðN � 2Þ
��

.

Inducing a mean-preserving spread requires triad manipulations that (a) increase the first term
in the expression above, while (b) leaving the second term unchanged. More generally, the
expressions in Equations 7 and 8 indicate strong algebraic dependencies between a network’s
degree distributions and the configuration of triads within it. These dependencies provide some
motivation for a focus on degree distribution modeling.

3. MODELING NETWORK FORMATION

To characterize some of the issues that arise when empirically modeling network formation, it is
helpful to initially consider a very simple model. Assume that directly linked agents may make
transfers tooneanother.Therefore, agents i and jwill form a link if the net surplus from doing so is
positive, conditional on the link behavior of all other agents in the network. This corresponds to
a variant of the direct-transfer network formation game, under pairwise equilibrium, studied by

Bloch& Jackson (2007). Let FijðDÞ ¼
	XN

k¼1
DikDjk



denote the number of friends agents i and j

share in common. Links form according to the rule

Dij ¼ 1
�
a0 þ g0FijðDÞ �Uij � 0

� ð9Þ

for i ¼ 1, . . . ,N and j < i.HereUij is an unobserved component of link surplus, independently and
identically distributed across dyads according to a known distribution:

Table 2 Nyakatoke risk-sharing network triad census

Empty One edge Two star Triangle

Count 221,189 48,245 4,070 315

Proportion 0.8078 0.1762 0.0149 0.0012

Random graph proportion 0.8049 0.1812 0.0136 0.0003

Data taken from De Weerdt (2004) and author’s calculations. The Nyakatoke network includes N ¼ 119 households,

corresponding to
�
N
2

�
¼ 7,021 unique dyads and

�
N
3

�
¼ 273,819 unique triads.
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Uij ∼
iid
FU, i ¼ 1, . . . ,N, j < i , Uij 2U. ð10Þ

The rule in Equation 9 implies that agents form links if (a) they share many friends in common
[FijðDÞ] or (b) the unobserved idiosyncratic utility from doing so is high ð�UijÞ. The magnitude
ofg0 > 0 captures the strength of agents’preferences for triadic closure in links. The dependence of
the surplus generated by an i-to-j link on the presence or absence of links across other pairs of
agents constitutes an externality. Externalities generate complex interdependencies across the
choices of different agents, a modeling challenge not present in textbook single-agent models.

As noted above, in real-world social networks, linked agents often share additional links in
common, generating a clustering of ties. The rule in Equation 9 generates such clustering by
positing a structural taste for link transitivity—the returns to a relationship are higher if two
individuals share a friend in common. A preference for transitive links may be microfounded in
a variety of ways. For example, actions between dyad partners can be monitored or refereed by
a shared friend; thismay be valuable in the context of a risk-sharing network. Alternatively, it may
be more enjoyable to socialize with two friends if they are also friends with each other.

An alternative explanation for clustering is that agents assortatively match on some unobserved
attribute. Assortative matching is typically referred to as homophily in the network literature.
Homophily on observed attributes is a feature of many real-world networks (McPherson et al.
2001). An econometrician might reasonably worry that observed patterns of link formation in
a network are in fact driven by sorting on an unobserved agent attribute. The rule in Equation 9
and assumption in Equation 10 rule out homophily a priori.

As an alternative to Equation 9, Handcock et al. (2007), Krivitsky et al. (2009), and Graham
(2014) consider link formation rules such as

Degree of household

P
r(

d
e

g
re

e
 o

f 
a

g
e

n
t 
i >

 d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Nyakatoke network degree distribution

0 105 15 20 25 30 35

Figure 4

Nyakatoke risk-sharing network degree distribution. Data taken from De Weerdt (2004) and author’s
calculations.
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Dij ¼ 1
	
Zij

0 h0 þ ni þ nj � g
�
ji, jj; d0

��Uij � 0


, ð11Þ

where Zij is an observed K3 1 vector of dyad attributes, ni and ji are unobserved agent-level het-
erogeneity, andUij is an idiosyncratic dyad-level surplus component; gðji, jj; d0Þ is a known family of
symmetric distance functions indexedby d0 that (a) takes a value of zero at ji ¼ jj and (b) is increasing in
jji � jjj. The goal is to learn abouth0, d0, and features of the conditional distributionof ðni, jiÞ givenZ.

Relative to the rule in Equation 9, the rule in Equation 11 introduces a much richer form of
unobserved agent-level heterogeneity. First, agents are heterogeneous in the amount of link surplus
they generate. Agents with high values of ni generically generate more surplus. Such agents will
have more links, giving rise to degree heterogeneity, an important feature of real work networks
(see Figure 4). Second, the model allows for assortative matching on ji. Agents who are similar in
terms of the unobserved characteristic ji generate more surplus from linking. This feature of the
model induces clustering in links. Unlike the rule in Equation 9, the rule in Equation 11 does not
include any externalities: The presence or absence of a link elsewhere in the network does not
change the returns to an i-to-j link.

In practice, link rules with externalities and those with rich forms of agent-level heterogeneity
can generate very similar networks. This makes it difficult to discriminate between, for example,
structural transitivity and homophily on unobservables. Nevertheless, distinguishing between
them is scientifically interesting and policy relevant. Transitivity is associated with an externality
in link formation. In the presence of externalities, a local manipulation of network structure can
influence link formation elsewhere in the network. If clustering results solely from homophily,
local manipulations do not have effects that cascade through the network.

Below I discuss how panel datamay be used tomodel both a structural taste for transitivity and
assortativematching on unobserved attributes simultaneously. Initially, however, I focus on cross-
sectional models that include either network externalities or heterogeneity, but not both.

3.1. A Simple Cross-Sectional Model with Structural Transitivity

Returning to the link rule given inEquation 9, assume that the econometrician bases her inferences
on a random sample of networks from some well-defined population (of networks), for example,
networks of food sharing among households across a population of indigenous communities (e.g.,
Koster & Leckie 2014). For each sampled network (community), the entire adjacency matrix is
observed. This sampling process asymptotically reveals FðDjN ¼ nÞ for network size n2N ¼
f2, 3, 4, . . . g. Implicit in Equation 5 is the assumption that the distribution ofUij is independent of
the network size. The notationDij corresponds to the link status of the generic, randomly drawn,
ði, jÞ dyad, itself sampled from a randomly drawn network. To economize on notation, there is no
explicit network subscript in what follows.

Equation 9 defines a system of
�
N
2

�
simultaneous discrete choices. Viewed in this way, two

questions naturally arise. First, for a given u0 ¼ ða0, g0Þ0, does Equation 9 have a solution for all
U2UN? This is a question of equilibrium existence or model coherence. Demonstrating existence
can be nontrivial for somemodels of network formation (see Jackson 2008, chapter 11; Hellmann
2013). Second, if an equilibrium does exist, is it unique (again for all U2UN)? This is a question
about model completeness: Given a particular draw of the model’s underlying latent variable U,
does it deliver a unique prediction for the observed network, D? Multiplicity of equilibrium
network configurations is a common feature of many models with network externalities.

The study of models with qualitative features similar to those of Equation 9 has a long history
in econometrics (e.g., Heckman 1978a). Important recent contributions include those of
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Bresnahan & Reiss (1991), Tamer (2003), and Ciliberto & Tamer (2009). Unfortunately, the

combinatoric complexity of networks, with 2

�
N
2

�
link configurations possible in a network

with N agents, makes the direct application of insights from prior work difficult.
To keep the discussion simple, assume that N ¼ 3. In this case, there are four possible non-

isomorphic network configurations corresponding to the four types of triads depicted in Figure 3.
The heterogeneity draw is given by the triple U ¼ ðU12, U13, U23Þ0 2U3. For any given draw of
U, one of these four configurations will be observed.

Denote drawsofUij below a, between a and aþ g, and above aþ g low (L), medium (M), and
high (H), respectively (see Figure 5). Let pLLLðu, FUÞ ¼ FUðaÞ3 denote the probability of three low
draws; pLMHðu, FUÞ ¼ FUðaÞFUðaþ gÞ½1� FUðaþ gÞ� the probability of one low, one medium,
and one high draw; and so on. Observe that low draws of Uij correspond to higher link surplus.

If U12 falls in the low region, then agents 1 and 2 will form a link regardless of whether they
share a friend in common (i.e., D13D23 may equal 0 or 1). In contrast, if U12 falls in the medium
region, then agents 1 and 2 will form a link only if they share a friend in common (i.e., if
D13D23 ¼ 1). If U12 falls in the high region, then they never form a link.

The contingent behavior associated with a medium idiosyncratic surplus component is what
generates the possibility of multiple equilibria. Consider the case in which all three elements of U
fall into the medium range. In that case, two network configurations are consistent with Equation
9: (a) the empty triad and (b) a triangle. The model, as specified, is silent on which of these two
networks is chosen.

Let pTðu, FUÞ denote the minimum probability the model defined by Equations 9 and 10
logically attaches to observing a triangle for a particular u and FU. This probability coincides with
the probability mass attached to the region of U3 where the model uniquely predicts a triangle
network. Let pTðu, FUÞ denote the maximal probability the model logically attaches to observing
a triangle. This probability coincides with the probability mass attached to the region ofU3 where
a triangle network is either the unique network configuration or among the set of multiple
configurations, consistent with Equation 9.

Recalling the notation of triangle (T), two star (TS), one edge (OE), and empty (E), the above
logic yields the following probability bounds on the four nonisomorphic network configurations:

pTðu, FUÞ ¼ pLLLðu, FUÞ þ pLLMðu, FUÞ,
pTðu, FUÞ ¼ pLLLðu, FUÞ þ pLLMðu, FUÞ þ pLMMðu, FUÞ þ pMMMðu, FUÞ,
pTSðu, FUÞ ¼ pLLHðu, FUÞ,
pOEðu, FUÞ ¼ pLMHðu, FUÞ þ pLHHðu, FUÞ,
pOEðu, FUÞ ¼ pLMMðu, FUÞ þ pLMHðu, FUÞ þ pLHHðu, FUÞ,
pEðu, FUÞ ¼ pMMHðu, FUÞ þ pMHHðu, FUÞ þ pHHHðu, FUÞ,
pEðu, FUÞ ¼ pMMMðu, FUÞ þ pMMHðu, FUÞ þ pMHHðu, FUÞ þ pHHHðu, FUÞ.

LetpT denote the population frequency of triangle networks, etc. The rule in Equation 9 therefore
delivers the following restrictions:

pTðu, FUÞ�pT �pTðu, FUÞ,
pTS ¼ pTSðu, FUÞ,

pOEðu, FUÞ�pOE �pOEðu, FUÞ,
pEðu, FUÞ�pE �pEðu, FUÞ.

ð12Þ

The model also generates the equalities

475www.annualreviews.org � Methods of Identification in Social Networks

A
nn

u.
 R

ev
. E

co
n.

 2
01

5.
7:

46
5-

48
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
B

er
ke

le
y 

on
 0

8/
04

/1
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



pT þ pOE þ pE ¼ pTðu, FUÞ þ pOEðu, FUÞ þ pEðu, FUÞ ¼ pTðu, FUÞ þ pOEðu, FUÞ þ pEðu, FUÞ.
ð13Þ

The identified set,QI, is the set of all u2Q such that Equations 12 and 13 are satisfied. Ciliberto&
Tamer (2009), among others, discuss methods of estimatingQI and conducting inference on it or
on u0.

The observation that the link formation rule in Equation 9 is a system of simultaneous discrete
choices and, furthermore, that this system generates a set of moment inequalities that may be used
as a basis for inference on u0 appears promising. Unfortunately, it may be of limited practical
importance (at least without invoking additional assumptions). In a network withN agents, there

are 2

�
N
2

�
possible configurations of links. For each U in UN and u2Q, the consistency of a given

networkwithEquation9must be checked. In practice, this is not feasible in real time for all but very
small networks. Even showing that two networks are isomorphic is a nontrivial problem (e.g.,
Read & Corneil 1977).

Although fully exploiting the identifying power of Equations 9 and 10 may be difficult in even
modest-sized networks, exploiting some of its identifying content is straightforward. Assume that
networks vary in sizewithN 2N ¼ f2, 3, 4, . . .g and recall that the distribution ofUij is constant in
N. Under Equations 9 and 10, the probability that a randomly drawn dyad from a network of size
N is linked (i.e., density in networks of size N) satisfies the inequalities

FUða0Þ� Pr
�
Dij ¼ 1jN�� FU

�
a0 þ g0ðN � 2Þ�

for all N 2N. The lower bound occurs when the randomly drawn dyad shares no friends in
common, and the upper bound occurs when the dyad is linked to all othermembers of the network
(except possibly each other).

These upper and lower bounds coincide atN ¼ 2 so that a0 is point identified by the density of
links across networks consisting of a single dyad:

a0 ¼ F�1
U

�
Pr
�
Dij ¼ 1jN ¼ 2

��
.

A lower bound on g0 is then given by

g ¼ sup

(
F�1
U

�
Pr
�
Dij ¼ 1jN��� a0

N � 2

����N 2N

)
.

Here an informative lower bound on g0 is generated by observing a higher density of link for-
mation in networks with N > 2 than across networks consisting of single dyads. This is not an
especially attractive approach to inferring the presence of a taste for transitivity, but it is illustrative
of how some identifying implications of a network formationmodel can be easy to exploit (even if
utilizing all implications is impractical).

Another, and more interesting, example of this type of approach is provided by Sheng (2012),
who explores the identifying content of (nontrivial) subnetwork configurations. Assume networks
consist of N agents and consider the probability that, for a randomly drawn triad, itself drawn
froma randomly sampled network, we observe a particular triad configuration (see Figure 3). This
probability will depend on the degree to which members of the sampled triad are connected to the
rest of the network. Maximal connection occurs when all members of the sampled triad are
connected to all other agents in the network. Isolation occurswhennomember of the triad is linked
to other agents in the network.
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Now imagine repeating the thought experiment used to derive Equation 12 above, but doing so
conditional on different assumptions about the triad’s connectivity to the rest of the network. For
example, conditional on the three dyads forming the triad having, for example, no, one, and two
friends (outside the triad) in common, the model provides upper and lower bounds on the
probability of observing, say, a triangle configuration. An identification region for u0 can be
computed using the union of these conditional bounds on each triad configuration (computed for
all possible degrees of triad connectivity). In a very recent working paper, de Paula et al. (2014)
develop methods for computing an identification region for u0 based on the frequency of various
local network configurations.

Christakis et al. (2010) suggest an alternative approach to dealing with the inferential chal-
lenges posed by multiplicity. They posit that the network forms sequentially. Agents form,
maintain, or dissolve links in a specific order and do so myopically. Specifically, they do not
anticipate how the links they choose to form today change the incentives for link formation faced
by subsequent agents.

Returning to theN ¼ 3 case, assume thatU12,U13, andU23 are low, low, and medium draws,
respectively (see Figure 5). Assume that agent 1 forms links first, followed by agents 2 and 3. Under
this ordering, agent 1will immediately form links with both agents 2 and 3. Agent 2will then form
a linkwith agent 3. Although the idiosyncratic utility from this link is only medium, the link forms
to reap the benefits of triadic closure, as both agents 2 and 3 already share agent 1 as a friend.
Finally, agent 3 maintains all links formed earlier. The triangle configuration emerges from this
ordering (and draw of U).

Now consider the alternative ordering in which agent 3 forms links first, followed by agents 2
and 1. In this case, agent 3 will form a link with agent 1, but not with agent 2. The absence of the
utility gain associated with triadic closure means the link between agents 2 and 3 does not form.
Agent 2 then forms a linkwith agent 1. Finally, agent 1maintains linkswith agents 2 and 3. A two-
star configuration emerges from this ordering.

As the above examples indicate, if the ordering of link formation opportunities were observed,
likelihood-based inference would be straightforward. Christakis et al. (2010) address the unob-
servability of the posited sequential network formation process by assigning a probability dis-
tribution to agents’ ordering and then working with the resulting integrated likelihood. In the
simple example discussed here, there areN! ¼ 3! ¼ 6possible orderings. If each ordering is a priori
assumed equally likely, the likelihood is easilywritten down. Christakis et al.’s (2010) approach to
inference is Bayesian (and based on the observation of a single network). An important contri-
bution of their paper is to make the simple idea sketched above computationally operational for
realistically sized networks. Specifically, they use Markov chain Monte Carlo (MCMC) methods
to take draws from a posterior distribution for the model parameters.

A potentially unattractive feature of assuming the network is formed sequentially is that the
resulting likelihood will, for certain values of U, place positive probability on network config-
urations that do not correspond to an equilibrium of the simultaneous-move static game. This is
again illustrated by the example above. In the static game a low, low, medium draw ofU uniquely

α α + γ

Link always forms Link forms if agents share a 
friend in common

Link never forms

Figure 5

Realized values of Uij.
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predicts a triangle network. For the same draw of U, the sequential game places a probability of
two-thirds on the triangle network and a probability of one-third on the two-star network. If, in
reality, agents have the opportunity to continually revise their links, a two-star configuration
would not emerge conditional on a low, low, andmedium draw of idiosyncratic link surpluses. Of
course, in some settings, it might be very reasonable to assume that links form sequentially and
irreversibly. Similar considerations arise when deciding whether to model firm interactions with
a Stackelberg leadership model or a simultaneous-move game.

Mele (2013) develops a related approach to empirically modeling network formation. He
posits a process where in each period a randomly drawn dyad is given the opportunity to form,
maintain, or dissolve a link. For a specific specification of link surplus andmeeting probabilities, he
shows that the sequence of networks generated by the model is a stationary ergodic process. The
long-run probabilities attached to specific network configurations are used to formulate a likeli-
hood. Like Christakis et al. (2010), Mele’s (2013) approach to inference is Bayesian. He develops
anMCMCalgorithm for generating draws fromaposterior distribution for themodel parameters.
His approachalsoplaces positivity probability onnetwork configurations that are not equilibria of
the corresponding simultaneous-move static game.

Sheng (2012), Christakis et al. (2010), and Mele (2013) all provide operational methods for
inferring the distribution of link surplus from observed network structure. Sheng’s (2012) ap-
proach provides a computationally feasible (albeit difficult) way to harness the identifying content
of pairwise stability (see also de Paula et al. 2014). Her approach to inference requires the ob-
servation of many independent networks (see also Miyauchi 2013). Christakis et al. (2010) and
Mele (2013) show the identifying power of moving from a simultaneous to sequential network
formation process. All three methods are computationally intensive.

3.2. A Simple Cross-Sectional Model with Heterogeneity

Wenowreturn to the link formation rule given inEquation 11. This model has a rich heterogeneity
structure, complicating its analysis relative to the rule in Equation 9.However, the rule in Equation
11 also excludes externalities in link formation a priori, sidestepping the coherence and com-
pleteness issues associated with the rule in Equation 9.

Graham (2014) studies Equation 11 with gðji, jj; d0Þ empty, that is, a model with unobserved
degree heterogeneity, but no homophily on unobservables. He derives the joint maximum likeli-
hood estimator inwhich both the common parameter h0 and the incidental parameters fnig1i¼1 are
estimated simultaneously.He further assumes thatUi is a logistic randomvariable.Graham (2014)
derives the limiting distribution of the common parameter as the network grows large. This limit
distribution is normal but includes a bias term.

Graham (2014) also proposes an estimator that conditions on a sufficient statistic for the degree
heterogeneity parameters. In independent work, Charbonneau (2014) develops a related pro-
cedure in the context of gravity trademodels. Random-effects estimation of Equation11 is pursued
by Krivitsky et al. (2009) using MCMC methods.

One advantage of a fixed-effects treatment of degree heterogeneity is that the resultingmodel of
tie formation will be able to perfectly match any observed degree sequence (see Chatterjee et al.
2011). As argued above algebraically, and shown by Faust (2007) empirically, a network’s degree
distribution often does a reasonably good job of explaining (i.e., predicting) other higher-order
aspects of network architecture (e.g., the frequency of different triad configurations). For this
reason, analyses basedonEquation11are likely to provide good fits, even if the true link formation
process includes interdependent preferences.
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3.3. Dynamic Models of Network Formation

If the econometrician observes the structure of links within a network evolving over time, several
new modeling opportunities arise. In particular, it becomes possible to meaningfully incorporate
both interdependent preferences and rich forms of agent-level heterogeneity into a single model of
link formation. Let t ¼ 0, 1, 2, 3 index the periods in which each network is observed and assume
that links form in period t according to the rule

Dijt ¼ 1
�
b0Dijt�1 þ g0Fijt�tðDt�1Þ þ Aij �Uij � 0

�
, ð14Þ

with, for example,

Aij ¼ ni þ nj � g
�
ji, jj

�
, ð15Þ

where all notation is as defined above. The model in Equation 14 combines features of the two
static models discussed above (the rules given in Equations 9 and 11). It incorporates key network
dependencies emphasized in prior work (see Snijders 2011). First, links are persistent. If agents i
and j are linked in period t, they are more likely to be linked in subsequent periods ðb0 > 0Þ.
Second, as in the first static model discussed above, there are returns to triadic closure ðg0 > 0Þ.
The net surplus associated with an i-to-j link is increasing in the number of friends i and j shared in
common during the prior period. Third, as in the second staticmodel discussed above, both degree
heterogeneity and assortative matching on unobservables are incorporated.

As in Christakis et al. (2010) and Mele (2013), the model in Equation 14 implies that agents
form linksmyopically.At the beginningof eachperiod, agents form,maintain, anddissolve links as
if all other features of the network will remain fixed. This is analogous to a best-reply dynamic.
Assuming a best-reply type of dynamic eliminates the contemporaneous feedback that generated
multiple equilibria, and its associated inferential challenges, in the staticmodel discussed above. At
the same time, because the link surplus is allowed to vary with the structure of the network in the
prior period, network dependencies, such as a taste for triadic closure, are incorporated into
Equation 14.

Most theoretical models of network formation assume that agents form links according to
some variant of naive best-reply dynamics (e.g., Jackson & Wolinsky 1996, Jackson & Watts
2002, Bala & Goyal 2000, Watts 2001, Jackson & Rogers 2007a), although some scholars have
studied models with forward-looking agents (e.g., Dutta et al. 2005). The dynamics of link
formation implied by Equation 14 are closely aligned with the types of dynamics assumed by
theorists. Although the myopic nature of link formation may not be of particular concern, a more
mundane, but nevertheless important, concern may arise in empirical work. It may be that the
frequency at which the network is sampled, and the structure of links recorded, does not cor-
respond naturally with the timing at which agents actually make link decisions. Similar concerns
arise in single-agent discrete choice analyses (see Chamberlain 1985). When formulating a social
network data collection protocol, the timing of link decisions and the timing of data collection
should be aligned.

In the first static model discussed above, the clustering of ties was explained solely by a taste for
triadic closure. In practice, tie clustering might also arise because agents assortatively match on
attributes unobserved by the econometrician (homophily), as assumed in the second model. The
dynamic model introduced here allows for both sources of clustering.

Goldsmith-Pinkham & Imbens (2013) take a random-effects approach to the model in
Equation 14. If the density of Uij is known (e.g., standard normal or logistic), and the joint
distribution of ðD0,AÞ belongs to a parametric family, then inferences on u0 ¼ ðb0, g0Þ0 may be
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based on an integrated or random-effects likelihood. In principle, this is very much analogous to
random-effects approaches to single-agent dynamic panel data models (Heckman 1981a,b,c;
Chamberlain 1985). In reality, both the specification andmaximization of an integrated likelihood
in this setting are nontrivial.

Ideally, the specified joint distribution for ðD0, AÞ should allow for dependence between D0

andA. Because themodel implies thatD1 varieswithA, it seemsnatural to allow the initial network
configuration, D0, to also vary with A. This is a complicated version of the initial conditions
problem that arises in single-agent dynamic panel data models (Wooldridge 2005).

To get a sense of themodeling issues involved, assume thatAij takes the form given in Equation
15 with ðni, jiÞ bivariate normal with an unknown location vector and scale matrix. Assume
that gð×,×Þ is a known function, that Uijt is a standard normal random variable, and that
Dij0 ¼ 1ðAij �Uij0 � 0Þ. These assumptions are sufficient to write down the integrated likelihood.
Evaluating that likelihood, however, would be very challenging. Doing so would involve cal-
culating a 2N-dimensional integral. This integral does not obviously factor into a set of lower-
dimensional integrals (as Aij and Akl will share components in common whenever i ¼ k or j ¼ l).

Motivated by these computational challenges, Goldsmith-Pinkham & Imbens (2013) instead
workwith a highly stylizedmodel. They rule out degree heterogeneity, set gðji, jjÞ ¼ jji � jjj, and
assume that ji is binary valued with Prðji ¼ ajjD0Þ ¼ Prðji ¼ 0jD0Þ ¼ 1=2. Note that this last
condition implies, unattractively, independence between D0 and A. Under these assumptions,
Goldsmith-Pinkham & Imbens (2013) develop an algorithm for taking draws from the posterior
distribution for the model’s parameters.

Graham (2013) approaches themodel in Equation 14 from a fixed-effects perspective, asking if
it contains implications that are invariant to A but useful for identifying u0. This approach leaves
the distribution of ðD0, AÞ unspecified and unrestricted. Perhaps surprisingly, fixed-effects
identification results can be derived.

Consider a dyad that is embedded in a stable neighborhood. A stable neighborhood has two
features. First, with the exception of possible link formation and dissolution between themselves,
the setof linksmaintainedbyagents i and j is the same across periods 1, 2, and 3. Agents i and jmay
add, maintain, or delete links between periods 0 and 1. Second, the links maintained by friends of
players i and j do not change between periods 1 and 2. Dyads in stable neighborhoods are
embedded in local networks with link structures that are largely fixed up to two degrees away
across periods 1, 2, and 3.

Figure 6a visually depicts two sequences in a network consisting of three agents. Agents 1, 2,
and 3 are numbered counterclockwise from the top in each network. Observe that agents 1 and 3
are embedded in a stable neighborhood. Agent 1 is linked to agent 2, and agent 3 to agent 2, in
periods 1, 2, and 3 in both sequences depicted in Figure 6a.

The only difference between the two network sequences is that in the upper one, agents 1 and 3
are linked in period 2 but not in period 1, whereas in the lower sequence they are linked in period 1
but not in period 2. In the presence of a taste for triadic closure, the net surplus associated with a
link between agents 1 and 3 will be, in expectation, higher in period 2 than it is in period 1.
Because agents 1 and 3 share a common friend in period 1, a link between them in the next period
will generate additional utility from ensuring triadic closure. Agents 1 and 3 do not share
a common friend in period 0. Therefore, forming a link in period 1 generates no extra utility from
ensuring triadic closure. In the presence of a genuine taste for transitivity in links, as embodied in
the link rule given inEquation 14, the upper sequence should be observedmore frequently than the
lower sequence.Figure 6bpresents an example of how the relative frequency of different sequences
of dyad links, when embedded in a different stable neighborhood from the one depicted in Figure
6a, provides information about b0 or state dependence in links.
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In single-agent models, fixed-effects identification of true state dependence in the presence of
unobserved heterogeneity is based on the frequency of observing certain sequences of choices
relative to other sequences (e.g., Cox 1958, Heckman 1978b, Chamberlain 1985, Honoré &
Kyriazidou 2000). For example, in the absence of state dependence, the binary sequences 0101 and
0011 are equally likely. In the presence of state dependence, the relative frequency of the latter
sequence will be greater.

The identification of transitivity versus homophily involves a similar intuition. Conditional on
a dyad being embedded in a certain type of local network architecture, certain orderings of link
histories should be more frequent than others. This approach involves making comparisons,
holding other features of the network fixed. This is not straightforward to do.

The likelihood associated with a single network sequence includes 33
1
2
NðN � 1Þ distinct

components plus the initial condition (itself being high dimensional). The challenge is that the
likelihood functions associated with the two network histories may be very different, even though
they are identical in all respects except that the ði, jÞ friendship history in one is a permutation of
that in the other. This is because the presence or absence of a link in a given period can affect the

t = 0a t = 1 t = 2 t = 3

t = 0b t = 1 t = 2 t = 3

Figure 6

Fixed-effects identification of (a) transitivity versus homophily and (b) state dependence versus heterogeneity.
Agents 1, 2, and 3 are numbered counterclockwise from the top in each network. In panel a, d120d230 ¼ 0
but d121d231 ¼ 1 so that ð1, 3Þ forming a link has a higher return in period 2 than in period 1. In period 2, the
link generates utility from ensuring triadic closure; no such utility gain is generated by a period 1 link.
Consequently, the first network sequence in panel a arises more frequently than the second in the presence
of a structural taste for transitivity in links. Observe that ð1, 3Þ are embedded in a stable neighborhood
because d121¼ d122¼ d123¼1 and d231 ¼ d232¼ d233¼1. Although the two sequences in panel a are
uninformative about the presence of true state dependence in ties, this is not the case for the two sequences
in panel b. In panel b, the first sequence arises more frequently relative to the second in the presence of
true state dependence. Here the intuition is very much analogous to that in Cox (1958).
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likelihood contribution of many other pairs in subsequent periods. For example, if ði, kÞ are linked
in period t, then the addition of an ði, jÞ link increases the probability of a ðj, kÞ link in period
t þ 1. Local changes in the network can have widespread effects on the structure of the network
likelihood in subsequent periods.

If ði, jÞ are embedded in a stable neighborhood, the two likelihoods will be nominally quite
different; however,many contributions in the first likelihoodwill be permutations of contributions
that also appear in the second. As a result, the number of distinct terms in the two likelihoods is
small. Exploiting this simplification then allows for the application of identification ideas used in
prior work on binary choice (e.g., Manski 1987, Honoré & Kyriazidou 2000). Graham (2012),
extending earlier work published in Graham (2013), shows that this type of intuition can be made
rigorous.

The relative strengths andweaknesses of fixed- versus correlated random-effects approaches to
dynamic network analysis closely mirror those in single-agent dynamic discrete choice analysis
(seeChamberlain 1984).When applied to networkmodels, the computational complexity of these
approaches substantially exceeds their single-agent counterparts. Goldsmith-Pinkham & Imbens
(2013) provide a valuable template for undertaking a correlated random-effects analysis. Al-
though some of their modeling assumptions are unattractive, it is one of the few coherent
likelihood-based empirical models of dynamic network formation and will no doubt be the
building block for future research. The fixed-effects results in Graham (2012, 2013) indicate that
some features of the distribution of link surplus may be identified without making assumptions
about the initial network condition or the distribution of unobserved dyad-level heterogeneity. A
fixed-effects analysis can provide evidence of a structural taste for transitivity under weak
assumptions or be used to validate specific correlated random-effects specifications.

4. FUTURE RESEARCH DIRECTIONS

The analysis of networks has always been a multidisciplinary endeavor. Economists are relative
latecomers to this project. This article has been deliberately eclectic and biased toward recentwork
done by economists. This work has not been undertaken in a vacuum. Economists interested in
studying networks would be well advised to read widely. Goldenberg et al. (2009) provide
a monograph-length review of the literature from the perspective of statistics and machine
learning. Snijders (2011) surveys the quantitative sociology literature.

At the same time, there is tremendous latitude to approach network data from first principles.
In my view, there is not one obvious correct way to formulate a network formation model (al-
though I do privilege approaches with clear random utility foundations). At this stage, it seems
apparent that a sizable component of empirical research on networks will be computationally
complex. Ideas from discrete math, computer science, and Bayesian MCMC estimation have all
proved to be very useful in work done thus far (e.g., Blitzstein & Diaconis 2011). Although
economists’ contributions to network science will be necessarily shaped by our discipline’s unique
approaches tomodeling and analyzing data, it is also the case that there are tremendous gains from
trade to sharing knowledge and know-how across fields.

In thinking about identification, ideas from the recent literature on games, as well as the more
established literature on dynamic panel data, have led to valuable insights. In both cases, the
combinatoric complexity of networks precludes a direct application of methods from these lit-
eratures in all but the very simplest of cases. At the same time, clever exploitation of various pe-
culiarities and symmetries in the network formation problem can lead to tractable procedures.

This article has not emphasized special purpose models (e.g., Currarini et al. 2010). In some
settings, for example, those often encountered in industrial organization, substantial additional
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informationmaybe available about the formof agents’objective functions, the timing of decisions,
and so on. Building empirical models that fully exploit all this extra information can be fruitful,
both for expanding subject area knowledge and for advancingmethodology. Indeed, an important
component of research by economists should involve modeling real-world data sets coherently,
even if realistic models are only aspirational at the present time.
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