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This document provides some supplementary empirical and theoretical results for
the paper titled “Identifying Social Interactions Through Conditional Variance Restric-
tions.” All notation, unless explicitly stated otherwise, is as defined in the paper, and
numbering of text elements continues in sequence with the paper.

A. SPECIFICATION TESTING

SINCE THE ESTIMATOR PROPOSED in the paper is based on a simple conditional
moment restriction, standard approaches to specification testing are available
(e.g., the Sargan–Hansen test of overidentifying restrictions). However, as in
any application, it is helpful to think about specific directions of misspecifica-
tion and to construct tests accordingly.

As an example, note that an implication of Assumption 1.2 (as stated in the
paper) is that class size/type and teacher characteristics are ‘stochastically sep-
arable’ in the production of academic achievement. This appendix outlines a
test for this assumption.

Assume that teachers have L latent attributes ac = (ac1� � � � � acL)
′� Condi-

tional random assignment ensures that

V(ac|W1c�W2c)= V(ac|W1c)�

The relative importance of each attribute for realized teaching effectiveness,
however, may vary with class type, for example,

αc = (κ0 + a′
cλ1) ·W2c + a′

cλ0 · (1 −W2c)� λ0 �= λ1�(15)

In the notation of the main paper Ac(1) = κ0 + a′
cλ1 and Ac(0) = a′

cλ0� In
this particular model of teacher effectiveness, Assumption 1.2 requires that
λ1 = λ0. More generally we could allow the factor loadings, λ1 and λ0, to be
teacher-specific; however, this would complicate the analysis which follows (in
that case, Assumption 1.2 would follow if λ1c ∼ λ0c).

An implication of (15) is that even under random assignment of teachers
to class type, the conditional variance of teacher effectiveness will differ across
small and regular classrooms (even though the distribution of underlying latent
teacher attributes will not). Formally,

V(αc|W1c�W2c = 1)− V(αc|W1c�W2c = 0)

= λ′
1V(ac|W1c)λ1 − λ′

0V(ac|W1c)λ0 �= 0 (for λ1 �= λ0),

1
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which violates Assumption 1.2 of the paper. Assessing the plausibility of As-
sumption 1.2 therefore requires both consideration of the assignment process
as well as the nature of the educational production function.30

Relatively little is known about the educational production process. One
view suggests that class size and some underlying notion of teacher ability are
complementary. This would imply that

σ2
A(1)

σ2
A(0)

= λ′
1V(ac|W1c)λ1

λ′
0V(ac|W1c)λ0

> 1

or that holding the distribution of teacher characteristics fixed, teacher effec-
tiveness is more variable in large relative to small classrooms. With comple-
mentarity we would expect that moving a fixed population of teachers to larger
classrooms would, in addition to reducing average teacher effectiveness, in-
crease its variance. In this case all teachers would perform relatively similarly
in small classrooms with differences in teacher effectiveness only emerging in
larger classrooms. Alternatively, teacher ability and class size could be sub-
stitutable, with individual teacher characteristics being unimportant in large
classrooms, because, for example, anyone can effectively execute “chalk and
talk.”

A simple and direct test for substitutability/complementarity bias its to com-
pare an estimate of γ2 based on a random sample from a subpopulation of
groups with large amounts of heterogeneity in an observed teacher attribute
with an estimate based on a random sample from a subpopulation of groups
with little heterogeneity. If size and the teacher attribute are complementary,
then the estimate based on the first subpopulation should be smaller than that
based on the second. If the teacher attribute and class size are substitutes, the
opposite pattern will occur.

In the Project STAR data set the only observed teacher covariate that is sig-
nificantly related to test scores is years of teaching experience. I divide Project
STAR schools (and hence classrooms) into two sets: in the first set, the stan-
dard deviation of years teaching experience is greater than or equal to 5; in the
second set, it is less than 5. This partition is used to form subsamples with high
and low degrees of heterogeneity in teacher quality.

Table II reports separate estimates of γ2 using these two subsamples. The
discussion emphasizes the math achievement results since those for reading
achievement are not well identified, with first stage F -statistics all below 10.
Column 1 reports the GMM estimate of γ2 based on a comparison across small
and large classrooms in schools with “lots” of heterogeneity in years of teaching
experience. Column 2 reports the estimate based on classrooms in schools with
little experience heterogeneity. The two estimates are precisely estimated and
similar in magnitude, consistent with the null of separability.

30This is, of course, no different than in other areas of applied economics where assumptions
on technology are often crucial for achieving identification.
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TABLE II

GMM ESTIMATES OF γ2 BASED ON EXCESS VARIANCE CONTRASTS ACROSS HIGH AND LOW
EXPERIENCE HETEROGENEITY SUBSAMPLESa

(1) (2) (3)
High Low Combined

Heterogeneity (HH) Heterogeneity (LH)
Std(Expc)≥ 5 Std(Expc) < 5 Sample

Panel A: Math Achievement
γ2 3�5631 3�3478 3�4457

(1�6247) (1�2637) (1�0136)
Regular-with-aide −0�0176 0�0173 0�0186

(0�0361) (0�0238) (0�0233)
High heterogeneity × −0�0372

regular-with-aide — — (0�0444)
F(df1�df2) 1st Stage 2�94(1�104) 49�42(1�130) 31�27(2�234)

p-value H0 :γ2
HH = γ2

LH — — p= 0�9037

Panel B: Reading Achievement
γ2 9�5279 2�1262 5�1881

(5�7685) (1�6931) (2�4785)
Regular-with-aide 0�0428 0�0076 0�0562

(0�0633) (0�0329) (0�0461)
High heterogeneity × −0�0528

regular-with-aide — — (0�0776)
F(df1�df2) 1st Stage 5�08(1�104) 6�14(1�130) 5�61(2�234)

p-value H0 :γ2
HH = γ2

LH — — p= 0�1214

Number of classrooms 140 177 317
School fixed effects? Yes Yes Yes

aColumns 1 and 2 report GMM estimates of γ2 based on (14) and subsamples exhibiting high and low degrees
of heterogeneity in years of teaching experience, respectively. The null that γ2

LH = γ2
HH is tested using the Sargan–

Hansen test of overidentifying restrictions associated with the column 3 estimates, where a binary variable for whether
a classroom is of the small type and its interaction with a binary variable for being in a high heterogeneity school serve
as excluded instruments.

Column 3 reports two-step GMM estimates of γ2 using the entire sample
with the small class type dummy and its interaction with a dummy for belonging
to the high heterogeneity subsample (Std(Expc)≥ 5 years) serving as excluded
instruments. Row 3 reports the p-value for a Sargan–Hansen test of the null
that the high heterogeneity and low heterogeneity estimates of γ2 are equal.
There is little evidence of quantitatively important bias due to nonseparability
of teacher characteristics and class size in the educational production function.

This conclusion is consistent with the finding that teacher instructional prac-
tices are not sensitive to modest variations in class size (Betts and Shkolnik
(1999), Rice (1999)). Evidence from direct observation of STAR classrooms
also found “that teacher practices did not change substantially regardless of
class type assignment” (Evertson and Randolph (1989, p. 102); cf. Word et al.
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(1990)). The combination of quantitative and qualitative evidence suggest that
the separability null is a reasonable.

An important dividend associated with the method-of-moments representa-
tion of the estimation procedure is that specification testing is standard and
can be guided by the economics of the application under consideration.

B. SENSITIVITY ANALYSIS

Let E[Gw
c |W1c�W2c] = W ′

1cϑ1 + W ′
2cϑ2 denote the first stage population re-

gression of Gw
c onto W1c and W2c� Using Equation (14) in the paper we can

show that the probability limit of γ̂2 is given by

γ2
∗ = γ2

0 + σ2
A(0)(σ

2
A(1)/σ

2
A(0) − 1)

ϑ2
�(16)

Assume that there are no social interactions (γ2
0 = 1). Then (16) can be com-

bined with assumptions on σ2
A(0) to back out the degree of nonseparability

between teacher attributes and class type that would be required to produce
(large sample) estimates of γ2

∗ of the size reported in Table I.
Table III reports the results of exercises of this type. To calibrate the ex-

periments, note that σA(0) equals the change in test scores associated with a 1
standard deviation change in teacher effectiveness in regular and regular-with-
aide classrooms. The relevant distribution is the within-school distribution of
teacher effectiveness, since the between-school variation in test scores has al-
ready been purged from the data. Rockoff (2004), using panel data methods,
simple deconvolution procedures to deal with measurement error, and a sam-
ple of normal sized classrooms from New Jersey, estimated σA(0) to be about
0�1. The lower bound estimates of Rivkin, Hanusheck, and Kain (2005, Ta-
ble III, column 3, p. 434) are similar to those of Rockoff (2004). Aaronson,
Barrow, and Sander’s (2003) research, using Chicago Public Schools data, sug-

TABLE III

ROBUSTNESS TO VIOLATIONS OF STOCHASTIC SEPARABILITY

σA(0)
σA(1)
σA(0)

=
√

1 + ϑ2
σ2
A(0)

(γ2∗ − γ2
0)

Panel A: 0.10 2.59
0.20 1.56
0.30 1.28
0.40 1.16

Panel B:
ϑ2 0.0231
γ2

∗ 3.4691
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gests a somewhat higher value for σA(0)� A conservative upper bound for σA(0)
based on existing evidence is about 0�3.

For σA(0) = 0�1, the typical difference in effectiveness across a pair of teach-
ers would have to be roughly 2.5 times larger in small versus large classrooms
to produce γ2

∗ estimates of the size reported in Table I, if in fact there were
no peer effects. This is an implausibly large number. For σA(0) = 0�3, the dif-
ference would have to be 1.3 times larger, still quite a large effect. Overall
identification appears to be strong enough to ensure a reasonable amount of
robustness to violations of Assumption 1.2.

C. COMPARISON OF THE EXCESS VARIANCE TEST WITH CONVENTIONAL
REGRESSION-BASED TESTS

The most common and arguably current best practice test for social inter-
actions is a reduced form test for excess sensitivity (e.g., Sacerdote (2001),
Angrist and Lang (2004)). This method exploits random assignment, or con-
ditional random assignment, of individuals to groups to motivate simple least
squares-based tests for social interactions. These tests are attractive since their
plausibility is straightforward to evaluate and they are easy to implement. Gra-
ham and Hahn (2005) provided a formal overview of this approach. This ap-
pendix outlines the intuition behind such tests, applies them to the Project
STAR data set, and compares them with the excess variance test developed in
the main paper.

Implementing these tests requires that in addition to outcomes, we observe
a K × 1 vector of individual-level characteristics, Rci. This allows the individ-
ual heterogeneity term to be decomposed into observable and unobservable
components, εci =R′

ciη+ εci with E
∗[εci|Rci] = 0.31

Substituting εci = R′
ciη + εci into (1) and rearranging to partition achieve-

ment into its within- and between-group components yields the reduced form

Yci = R
′
cη0γ0 + (Rci −Rc)′η0 +Uci(17)

= R
′
cπb0 + R̃′

ciπw0 +Uci�

where Uci = αc + γ0εc + (εci − εc)� Rc is the group mean of Rci� and R̃ci =
Rci −Rc�

Under random assignment of students to classrooms E[αc|Rc] = E[αc] and
a least squares regression of Yci on a constant, Rc and R̃ci identifies π0 =
(π ′

b0�π
′
w0)

′ = ((γ0�1)⊗ η′
0)

′� The null hypothesis of no social interactions can
be assessed by testing the restriction πb0 = πw0� Positive social interactions im-
ply that πb0 > πw0 or that there is excess between-group sensitivity in outcomes

31For simplicity, I assume that Rci is mean zero.
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to between-group variation in characteristics. Note that πb0 and πw0 are identi-
cal to the coefficients in the within- and between-group regressions of Y on R,
and hence, formally, the excess sensitivity test is a Hausman and Taylor (1981)
test, although its motivation and interpretation are quite different (Graham
and Hahn (2005)).

Table IV implements the excess sensitivity test for social interactions using
Project STAR math and reading test score data. The table reports least squares
estimates of πb0, πw0, and their difference� Included in Rci are dummies for
gender, race, and eligibility for free/reduced price school lunch. Also included
in the regression are class type and school dummies (coefficients not reported).

To facilitate comparisons, the between- and within-group coefficients are re-
ported side-by-side in columns 1 and 2, with column 3 giving the difference.

TABLE IV

VARIABLE-BY-VARIABLE TESTS FOR EXCESS SENSITIVITY IN NORMALIZED KINDERGARTEN
SAT MATH AND READING SCORESa

(1) (2) (3)
Excess Sensitivity Tests πb πw πb −πw
Panel A: Math
πBLACK −0�2106 −0�3752 0�1646

(0�4882) (0�0531) (0�4980)
πGIRL 0�5274 0�1187 0�4087

(0�1861) (0�0231) (0�1859)∗

πFREELUNCH −0�5620 −0�4109 −0�1511
(0�2026) (0�0280) (0�2044)

Omnibus Test Results F Statistic p Value
F(df1�df2) (H0 :πb = πw) 1�89(3�316) 0�1304
F(df1�df2) (H0 :πb = 2 ·πw) 1�55(3�316) 0�2027

Panel B: Reading
πBLACK −0�7425 −0�2499 −0�426

(0�4112) (0�0540) (0�4219)
πGIRL 0�4955 0�1520 0�3435

(0�1726) (0�0250) (0�1744)∗

πFREELUNCH −0�5000 −0�4534 −0�0466
(0�1821) (0�0283) (0�1819)

Omnibus Test Results F Statistic p Value
F(df1�df2) (H0 :πb = πw) 2�17(3�316) 0�0918
F(df1�df2) (H0 :πb = 2 ·πw) 1�97(3�316) 0�1183

aColumns 1 and 2 report coefficients associated with the least squares regression fit of test scores on the between-
and within-classroom transforms of race (BLACK), gender (GIRL), and eligibility for free/reduced price school lunch
(FREELUNCH); also included in the regression are school dummies and class type indicators (coefficients not re-
ported). Column 1 reports estimated coefficients on the between-group transforms, column 2 reports coefficients on
the within-group transforms, and column 3 reports the difference in these two sets of coefficients variable-by-variable.
The ∗ denotes the significance of these differences at the 5 percent level. Reported standard errors are heteroscedastic
robust with clustering at the classroom level. The Omnibus Test Results panel reports F tests for the stated multicoef-
ficient restriction along with degrees of freedom and asymptotic p-values.
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Under positive social interactions the magnitude of the between-group coef-
ficients (in absolute value) should be greater than the corresponding within-
group coefficients. The omnibus test for no excess sensitivity is marginally ac-
cepted with p-values of 0�1304 and 0�0918 for math and reading test scores,
respectively. The only individual-level covariate displaying significant excess
sensitivity is gender (cf. Hoxby (2002)).

Overall, the excess sensitivity tests do not provide strong evidence of peer
group effects. However, they also provide little evidence against the existence
of even quite large effects. Table IV also reports tests for the restriction πb0 =
2 · πw0, which would hold if the true social multiplier were 2—a value similar
to that implied by the estimates of γ2 reported in Table I of the main paper.
The test accepts with a p-value of 0�2027 for math achievement and marginally
accepts with a p-value of 0.1183 for reading achievement. The excess sensitivity
regressions are consistent with both very small and very large levels of peer
group effects. The excess sensitivity test is uninformative.

C.1. Power Comparisons

To compare the relative merits of the excess sensitivity and variance ap-
proaches to testing for social interactions, it is useful to explicitly contrast their
large sample power to reject the no social interactions null across repeated
samples. In particular I consider samples drawn from a population calibrated
to the Project STAR data set. While the comparison is necessarily design-
specific, it is relevant to the application at hand. The chosen calibration both
mimics the Project STAR data set and ensures that the excess sensitivity and
excess variance tests are valid tests of social interactions.

Let Rci be the vector of individual-level covariates used by the excess sensi-
tivity estimator/test and letWc be the binary instrument used by the excess vari-
ance estimator/test. I assume that repeated random samples of social groups
of size N are drawn from

Yc =Rcη+R′
c(γ− 1)η+Uc(18)

with Rc = (Rc1� � � � �RcMc)′� Rc =R′
cιMc/Mc , and

Uc|Rc�Mc�Wc ∼N (0�Ω(Mc))�

Ω(Mc)= σ2
{
IMc + [ρα + (γ2 − 1)M−1

c ]ιMcι′Mc
}
�

where ρα = σ2
α/σ

2 and σ2 = σ2
ε = V(εci)�

The marginal distribution of the individual-level covariates is also assumed
to be normal with

Rci|Mc�Wc ∼N (0�ΣRR)�
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where the mean-zeroness assumption is without loss of generality. Integrating
out the observed covariates, we get

Yc|Mc�Wc ∼N (0�Ω∗(Mc))(19)

with

Ω∗(Mc)= σ2
∗
{
IMc + [ρ∗

α + (γ2 − 1)M−1
c ]ιMcι′Mc

}
�

where σ2
∗ = σ2 +η′ΣRRη and ρ∗

α = σ2
α/σ

2
∗ �

This DGP is consistent with a linear-in-means model for outcomes with ran-
dom assignment of individuals to groups. The auxiliary normality assumption
is convenient, as some assumption on the fourth moments of α, R, and ε is
required in order to calculate the asymptotic power function of the excess vari-
ance test. Normality is not exploited by either test. The presumption is that
normality happens to be a feature of the population being sampled from, but
that its does not inform estimation and testing procedures.

The derivation of the asymptotic power functions of the excess variance and
sensitivity tests for the above DGP is straightforward (full details are provided
below). Andrews’ (1989) article is a standard reference for this type of analysis.
Panel A of Table V gives the parameters used in the calibration. The sample
size and distribution of group size are exactly as in the extract of the Project
STAR data used in Section 3 of the main paper. The variance of unobserved in-
dividual heterogeneity parameter, σ2, is the rounded sample mean ofMc ·GW

c �
The variance of observed heterogeneity is based on the estimates of η reported

TABLE V

APPROXIMATE POWER OF EXCESS SENSITIVITY AND VARIANCE TESTSa

Panel A Panel B

Calibration Excess Excess
Parameters Sensitivity Variance

σ2 0�75 Power 0.8960 0.9994
σ2
α 0�035 Inner inverse 1.5587 1.3922
η′ΣRRη 0�05 Outer inverse 1.9645 1.6509
γ

√
3�5 ≈ 1�87

K = dim(Rci) 3
F(Mc) As in STAR data
N 317

aPanel A reports the parameters that describe the calibrated population used for the power comparison. Panel B
gives the large sample power of the two tests to reject the null of no social interactions across repeated samples drawn
from the calibrated population. Panel B also reports the inner and outer inverse power functions for the two tests
using the methods of Andrews (1989). The inner inverse equals the value of the social multiplier for which the given
test fails to reject at least 50 percent of the time. In populations where γ < γII, the given test will be worse than one
based on a coin flip. The outer inverse equals the value of γ for which the test rejects at least 95 percent of the time.
In populations for which γ > γOI, the given test will be highly reliable.
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FIGURE 1.—Figure plots approximate (large sample) power functions for the excess variance
and excess sensitivity tests of the no social interactions null. Vertical lines plot inner and outer
inverse power envelopes as described by Andrews (1989). Auxiliary parameters are σ2 = 0�75�
σ2
α = 0�0035� η′ΣRRη = 0�05� and K = dim(Rci) = 3. The class size distribution and class type

designations are as given by the Project STAR data.

in Table IV and the sample covariance matrix of Rci (deviated from school
means). The variance of group-level heterogeneity, σ2

α, is somewhat specula-
tively set equal to 0.0035.32 This implies a standard deviation in teaching quality
of about 0.2 (i.e., that teachers are an important source of achievement varia-
tion).

The results suggest that the excess variance test is substantially more pow-
erful than the excess sensitivity test across repeated samples drawn from the
calibrated population. This power advantage is depicted visually in Figure 1.
Panel B of Table V also reports the inner and outer inverse power envelopes
for the two tests using the methods of Andrews (1989).

32In an earlier version of this paper (Graham (2005, Chapter 1, Table 17)), I applied a max-
imum likelihood estimator to a model equivalent to (19) using the Project STAR data. For the
math data the (implied) point estimate of σ2

α was 0.0036. This value is somewhat higher than the
(lower bound) estimates of the variance of teacher quality given by Rivkin, Hanushek, and Kain
(2005, p. 434) based on middle school data from Texas.
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These power comparisons are design-specific. It is, of course, possible to
construct examples for which the excess sensitivity test is superior. A full char-
acterization of the two power functions would raise a variety of issues that are
beyond the scope of this appendix. The value of the calibration is that it helps
to explain the strong evidence of social interactions provided by the excess vari-
ance estimator and the lack of evidence for such interactions provided by the
excess sensitivity estimator. The contradictory test results appear to be simply
an artifact of substantial differences in the design-specific power of the two
tests.

C.2. Details of Power Calculations

This appendix provides details on the excess sensitivity and variance power
calculations reported in Table V. The numerical calculations were completed
using a short MATLAB program.

C.2.1. Excess Sensitivity Test

Rewriting (18) we have

Yc =Xcπ +Uc�

where Xc = (R̃c� ιMcR
′
c) and π = (η′�ηγ′)′ with R̃c = Rc − ιMcR

′
c� The large

sample variance–covariance matrix associated with the least squares estimate
of π is given by

AVar(π̂)= σ2
E[X ′

cXc]−1
E[X ′

cΩ(Mc)Xc]E[X ′
cXc]−1�

The E[X ′
cXc] term evaluates to

E[X ′
cXc] = E

[∑Mc
i=1 R̃ciR̃

′
ci 0

0 McRcR
′
c

]
=

(
μM − 1 0

0 1

)
⊗ΣRR�

where μM = E[Mc]�
The E[X ′

cΩ(Mc)Xc] term simplifies as

E[X ′
cΩ(Mc)Xc]

= E

[
Mc∑
i=1

XciX
′
ci + (ρα + (γ2 − 1)M−1

c )

Mc∑
i=1

Mc∑
j=1

XciX
′
cj

]

=
(
μM − 1 0

0 γ2 +μMρα
)

⊗ΣRR�
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The large sample variance–covariance matrix for π̂ thus simplifies to

AVar(π̂)= σ2

[( 1
μM−1 0

0 γ2 +μMρα

)
⊗Σ−1

RR

]
�

while the asymptotic variance–covariance matrix of the difference π̂b − π̂w is
given by

AVar(π̂b − π̂w)= σ2

(
γ2 +μMρα + 1

μM − 1

)
·Σ−1

RR�(20)

To evaluate the power of the excess sensitivity test I use the standard Pitman
drift approach. In particular I consider a sequence of alternative DGPs, where
the social multiplier evolves with N such that

γN = 1 + δ0/
√
N�

Observe that πb − πw = δ0η/
√
N� which approaches zero as the sample size

grows. The alternative DGP thus remains within a 1/
√
N neighborhood of the

fixed no social interactions null. This prevents the asymptotic power function
from taking a degenerate ᵀ-shape since the scaled difference

√
N(γN − 1) re-

mains constant at δ0.
Under this setup the scaled difference

√
N(π̂b�N −π̂w�N) converges in distrib-

ution to a normal random variable with mean δ0η and a variance given by (20)
evaluated at the null of γ = 1. The excess sensitivity Wald statistic for the no
social interactions null therefore converges in distribution to a noncentral χ2

K�λ

random variable with dim(Rci) = K degrees of freedom and a noncentrality
parameter of

λ= η′δ0 AVar(π̂b − π̂w)−1δ0η�

This implies that we can approximate the distribution of the Wald statistic for
a given DGP (in the sequence) by a χ2

K�λ random variable with a noncentrality
parameter of

λ=N(γ− 1)2 1
σ2

(
1 +μMρα + 1

μM − 1

)−1

·η′ΣRRη�

This approximation is used for the power calculations reported in Table V and
Figure 1.

C.2.2. Excess Variance Test

From (19) it is straightforward to show, using the normality assumption, that

Gw
c |Mc�Wc ∼ σ2

∗
Mc

1
Mc − 1

χ2
Mc−1�
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Gb
c |Mc�Wc ∼

(
σ2
α + γ2σ2

∗
Mc

)
χ2

1�

Rewriting ρ(Zc�θ)=Gb
c − τ2 − γ2Gw

c as

ρ(Zc�θ)= (Gb
c − E[Gb

c |Mc])− γ2(Gw
c − E[Gw

c |Mc])�
using independence of Gb

c , and Gw
c and the properties of the χ2 distribution,

we then get

E[Gw
c |Mc] = σ2

∗
Mc

� E[Gb
c |Mc] = σ2

α + γ2σ2
∗

Mc

�

and

E[ρ(Zc�θ)2|Wc](21)

= 2σ4
∗
{
(ρ∗

α + γ2
E[M−1

c |Wc])2 + γ4
E[M−2

c (Mc − 1)−1|Wc]
}
�

The unconditional moment function associated with the excess variance es-
timator for the binary instrument case is given by

E[ψ(Zc�θ)] = E

[(
Wc

1 −Wc

)
ρ(Zc�θ)

]
= 0�

The expected Jacobian matrix equals

Γ0 = −E

[(
Wc

1 −Wc

)
(1 Gw

c )

]
(22)

= −
(

p pσ2
∗E[M−1

c |Wc = 1]
1 −p (1 −p)σ2

∗E[M−1
c |Wc = 0]

)
�

where E[Wc] = p�
The variance of the moment vector, using iterated expectations, equals

Λ0 = E

[(
pE[ρ(Zc�θ)2|Wc = 1] 0

0 (1 −p)E[ρ(Zc�θ)2|Wc = 0]
)]
�(23)

Standard GMM results yield a large sample variance–covariance matrix of
AVar(θ̂)= (Γ ′

0Λ
−1
0 Γ0)

−1; the lower right-hand element of this matrix gives the
large sample approximation to the sampling distribution of γ̂2. Multiplying
out, using (21), (22), and (23), and applying standard results on partitioned
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inverses, we get

AVar(γ̂2)

N

= 1
N

2
p
(ρ∗

α + γ2
E[M−1

c |Wc = 1])2 + 2
1−p(ρ

∗
α + γ2

E[M−1
c |Wc = 0])2

(E[M−1
c |Wc = 1] − E[M−1

c |Wc = 0])2

+ γ4

κ0
�

where

κ0 = N

2
(E[M−1

c |Wc = 1] − E[M−1
c |Wc = 0])2

1
p
E[M−2

c (Mc − 1)−1|Wc = 1] + 1
1−pE[M−2

c (Mc − 1)−1|Wc = 0]

is the concentration parameter associated with the first stage regression of Gw
c

on a constant and Wc (cf. Staiger and Stock (1997)).
To evaluate the power properties of the excess variance test, I consider the

sequence of alternative DGPs with γ2
N = 1 + δ0/

√
N . Using an argument en-

tirely analogous to the excess variance case, we can then approximate the sam-
pling distribution of the excess variance Wald statistic for a specific DGP in the
sequence with that of a χ2

1�λ random variable with 1 degree of freedom and a
noncentrality parameter of

λ= (γ2 − 1)2

×
(

1
N

2
p
(ρ∗

α + E[M−1
c |Wc = 1])2 + 2

1−p(ρ
∗
α + E[M−1

c |Wc = 0])2

(E[M−1
c |Wc = 1] − E[M−1

c |Wc = 0])2

+ 1
κ0

)−1

�

D. DATA APPENDIX

The core data used for this paper are from the Project STAR K-3 Public
Access Dataset available online in a variety of machine readable formats at
http://www.heros-inc.org/data.htm. A STATA formatted version of these data
as well as STATA Do files replicating the extraction used in the paper as well
the reported estimation results is available online at http://www.econ.berkeley.
edu/~bgraham/ as well as in the Supplemental Materials section of the Econo-
metric Society website. The articles by Krueger (1999) and Finn, Gerber,
Achilles, and Boyd-Zaharias (2001) provide a nice overview of the public re-
lease data.

http://www.heros-inc.org/data.htm
http://www.econ.berkeley.edu/~bgraham/
http://www.econ.berkeley.edu/~bgraham/
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The public release Project STAR data set do not include a classroom identi-
fier. However, using a simple algorithm based on grouping students with com-
mon values for school, class type (small, regular, or regular-with-aide), and
teacher characteristics, I was able to uniquely assign 6,172 students to 317
classrooms; this is the sample used in the paper. Boozer and Cacciola (2004)
used a similar algorithm. Of the eight kindergarten classrooms excluded from
the analysis, two are regular classrooms and four are small classrooms which
could not be individually separated; a further two classrooms were missing
some teacher data and were also dropped. Twenty-three kindergarten student
records were missing information on free and reduced price school lunch el-
igibility; in these cases the missing values were replaced with either eligibility
status for the same student in the closest of first, second, or third grade (17
cases) or the median value among kindergarten students in their school (6
cases). In three cases, missing student race values were replaced with school
median values.

Valid test scores are not available for all kindergarten students. For the math
test, 5,724 students have valid scores and for the reading test, 5,646 scores are
valid (out of the 6,172 students in the core sample described above). Omis-
sions of test scores appear to be idiosyncratic, in the sense that they are not
predictable by any observable student, teacher, or peer covariates. The analy-
sis below assumes the pattern of missing test score data is indeed completely
random (see the log files associated with the Do files referenced above). The
definitions of Gw

c and Gb
c are modified as described in Appendix F.

E. DETAILED DERIVATIONS OF EQUATIONS (6) AND (8) IN THE MAIN PAPER

This appendix details the calculations used to derive equations (6) and (8)
in the main paper. Recall the notation

V(αc|m�w)= σ2
α(m�w)� V(εci|m�w)= σ2(m�w)�

C(αc� εci|m�w)= σαε(m�w)� C(εci� εcj|m�w)= σεε(m�w)�
λ2(m�w)= σ2(m�w)− σεε(m�w)�
τ2

0(m�w)= σ2
α(m�w)+ 2γ0σαε(m�w)+ γ2

0σεε(m�w)�

Since the Mc × Mc conditional covariance matrix of outcomes Ω(m�w)
has an equicorrelated structure, we need only evaluate V(Yci|m�w) and
C(Yci�Ycj|m�w) to derive equation (6).

We have

V(Yci|m�w)= V(αc|m�w)+ (γ0 − 1)2
V(εc|m�w)+ V(εci|m�w)

+ 2(γ0 − 1)C(αc� εc|m�w)+ 2C(αc� εci|m�w)
+ 2(γ0 − 1)C(εc� εci|m�w)�
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Now observe that

V(εc|m�w)= V

(
1
Mc

Mc∑
i=1

εci

∣∣∣m�w)

= 1
m2

[
m∑
i=1

V(εci|m�w)+
m∑
i=1

∑
j �=i

C(εci� εcj|m�w)
]

= 1
m2

[
m∑
i=1

σ2(m�w)+
m∑
i=1

∑
j �=i
σεε(m�w)

]

= σ2(m�w)

m
+ m− 1

m
σεε(m�w)

= σεε(m�w)+ λ2(m�w)

m
�

By linearity of the expectations operator, we have

C(αc� εc|m�w)= 1
m

m∑
i=1

C(αc� εci|m�w)= σαε(m�w)

and also that

C(εc� εci|m�w)= 1
m

m∑
j=1

C(εci� εcj|m�w)

= 1
m

[σ2(m�w)+ (m− 1)σεε(m�w)]

= σεε(m�w)+ λ2(m�w)

m
�

Using these expressions we therefore have

V(Yci|m�w)

= σ2
α(m�w)+ (γ0 − 1)2

[
σεε(m�w)+ λ2(m�w)

m

]
+ σ2(m�w)+ 2(γ0 − 1)σαε(m�w)+ 2σαε(m�w)

+ 2(γ0 − 1)
[
σεε(m�w)+ λ2(m�w)

m

]
�
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Adding and subtracting σεε(m�w)+(λ2(m�w))/m� factoring, and rearranging
then give

V(Yci|m�w)

= σ2
α(m�w)+ 2γ0σαε(m�w)+ γ2

0

[
σεε(m�w)+ λ2(m�w)

m

]
+ σ2(m�w)−

[
σεε(m�w)+ λ2(m�w)

m

]
= σ2

α(m�w)+ 2γ0σαε(m�w)

+ (γ2
0 − 1)

[
σεε(m�w)+ λ2(m�w)

m

]
+ σ2(m�w)

= σ2
α(m�w)+ 2γ0σαε(m�w)+ γ2

0σεε(m�w)

+ (γ2
0 − 1)

λ2(m�w)

m
+ σ2(m�w)− σεε(m�w)

= λ2(m�w)+ τ2
0(m�w)+ (γ2

0 − 1)
λ2(m�w)

m
�

as given in equation (6) of the main text.
We can evaluate the covariance terms analogously. We have

C(Yci�Ycj|m�w)
= V(αc|m�w)+ (γ0 − 1)2

V(εc|m�w)+ C(εci� εcj|m�w)
+ 2(γ0 − 1)C(αc� εc|m�w)+ C(αc� εci|m�w)+ C(αc� εcj|m�w)
+ (γ0 − 1)C(εc� εci|m�w)+ (γ0 − 1)C(εc� εcj|m�w)

= σ2
α(m�w)+ (γ0 − 1)2

[
σεε(m�w)+ λ2(m�w)

m

]
+ σεε(m�w)

+ 2(γ0 − 1)σαε(m�w)+ 2σαε(m�w)

+ 2(γ0 − 1)
[
σεε(m�w)+ λ2(m�w)

m

]
= σ2

α(m�w)+ 2γ0σαε(m�w)+ σεε(m�w)

+ (γ2
0 − 1)

[
σεε(m�w)+ λ2(m�w)

m

]
= τ2

0(m�w)+ (γ2
0 − 1)

λ2(m�w)

m
�
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as given in equation (6) of the main text.
Now consider the expectations of the within- and between-group transforms

Gw
c = 1

Mc

1
Mc − 1

Mc∑
i=1

(Yci −Yc)
2� Gb

c = (Y c −μ0(Wc))
2�

The expectations given in equation (8) of the main text follow directly from
the derivation ofΩ(m�w) given above. For completeness, the details are given
here.

Observe that

E[Gw
c |Wc] = E

[
E[Gw

c |Mc�Wc]|Wc

]
�

Evaluating E[Gw
c |m�w] gives

E[Gw
c |m�w] = 1

m

1
m− 1

m∑
i=1

E[(εc − εci)2|m�w]

= 1
m

1
m− 1

m∑
i=1

E[ε2
c − 2εcεci + ε2

ci|m�w]

= 1
m

1
m− 1

m∑
i=1

E[ε2
c − 2εcεci + ε2

ci|m�w]

= 1
m

m

m− 1

[
σ2(m�w)

m
+ m−1

m
σεε(m�w)

− 2σ2(m�w)+(m−1)σεε(m�w)
m

+ σ2(m�w)

]

= 1
m− 1

[
σ2(m�w)− σ2(m�w)

m
− m− 1

m
σεε(m�w)

]
= 1
m− 1

[
m− 1
m

σ2(m�w)− m− 1
m

σεε(m�w)

]
= 1
m− 1

[
m− 1
m

σ2(m�w)− m− 1
m

σεε(m�w)

]
= λ2(m�w)

m
�

where we use conditional mean-zeroness of εci and the expression for V(εc|m�
w) derived above. Taking expectations then gives the first part of equation (8)
in the main text.

Evaluating the between-group square we have

E[Gb
c |w] = E

[
(Y c −μ0(Wc))

2|w]
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= V(Y c|w)
= V(αc|w)+ γ2

0V(ε|w)+ 2γ0V(αc� ε|w)
= σ2

α(w)+ γ2
0V(ε|w)+ 2γ0C(αcε|w)�

Now use the analysis of variance formula to decompose V(ε|w)� C(εci� εcj|w),
and C(αc� ε|w) as

V(ε|w)= E[V(ε|Mc�Wc)|w] + V(E[ε|Mc�Wc]|w)

= E

[
σεε(Mc�Wc)+ λ2(Mc�Wc)

Mc

∣∣∣w]
+ 0�

where conditional mean-zeroness of εci is used. We also have

C(εci� εcj|w)= E[C(εci� εcj|Mc�Wc)|w] + 0 = σεε(w)�
C(αc� ε|w)= E[C(αc� ε|Mc�Wc)|w] + 0 = σαε(w)�

Collecting terms then gives the desired result:

E[Gb
c |w] = σ2

α(w)+ 2γ0σ
2
αε(w)+ γ2

0σεε(w)+ γ2
0E

[
λ2(Mc�Wc)

Mc

∣∣∣w]
= τ2

0(w)+ γ2
0E

[
λ2(Mc�Wc)

Mc

∣∣∣w]
�

F. FORMS OF Gw
c AND Gb

c WHEN ONLY A RANDOM SUBSAMPLE OF INDIVIDUALS
IN EACH GROUP IS OBSERVED

With minor modification the identification results of Section 1 remain valid if
the econometrician only observes outcomes for a random subsample of group
members. Let MS

c ≤Mc denote the number of sampled individuals in the cth
group. Assume that the MS

c sampled individuals are a random subsample of
all Mc group members and let Y

S

c = ∑MS
c

i=1Yci/M
S
c equal their mean outcome.

Redefine Gw
c and Gb

c to equal

Gb
c = (Y S

c −μY(Wc))
2 −

(
1
MS

c

− 1
Mc

)
1

MS
c − 1

MS
c∑

i=1

(Yci −YS

c )
2�

Gw
c = 1

Mc

1
MS

c − 1

MS
c∑

i=1

(Yci −YS

c )
2�

Subject to the above redefinition ofGw
c andGb

c , the estimators discussed in the
main text remain appropriate when outcomes for only a random subsample of
all group members are observed.
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To verify this claim observe that Y
S

c = αc + (γ0 − 1)εc + εSc � This implies that
the between-group variance in observed outcomes is given by

V(Y
S

c |m�mS�w)

= V(αc|m�mS�w)+ (γ0 − 1)2
V(εc|m�mS�w)+ V(εSc |m�mS�w)

+ 2(γ0 − 1)C(αc� εc|m�mS�w)+ 2C(αc� ε
S
c |m�mS�w)

+ 2(γ0 − 1)C(εc� εSc |m�mS�w)�

To simplify this expression observe that since sampled group members are a
random subsample of all group members, we have the restrictions

V(εci|m�mS�w)= V(εci|m�w)�
C(εci� εcj|m�mS�w)= C(εci� εcj|m�w)�
C(αc� εci|m�mS�w)= C(αc� εci|m�w)�

Now verify the equality

C(εc� ε
S
c |m�mS�w)

= E

[(
1
MS

c

MS
c∑

i=1

εci

)(
1
Mc

Mc∑
i=1

εci

)∣∣∣m�mS�w

]

= 1
mS

1
m

mS∑
i=1

E[ε2
ci|m�w] + 1

mS

1
m

MS
c∑

i=1

Mc∑
j �=i�j=1

E[εciεcj|m�w]

= σ2(m�w)

m
+ m− 1

m
σεε(m�w)

= V(εc|m�w)
and also observe that

E

[
1

MS
c − 1

MS
c∑

i=1

(εci − εSc )2
∣∣∣m�mS�w

]
= σ2(m�w)− σεε(m�w)�

Using these results and those given in Appendix E above implies that

V(Y
S

c |m�mS�w)

= σ2
α(m�m

S�w)+ (γ0 − 1)2

[
σ2(m�w)

m
+ m− 1

m
σεε(m�w)

]
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+
[
σ2(m�w)

mS
+ mS − 1

mS
σεε(m�w)

]
+ 2(γ0 − 1)σαε(m�w)

+ 2σαε(m�w)+ 2(γ0 − 1)
[
σ2(m�w)

m
+ m− 1

m
σεε(m�w)

]
= σ2

α(m�m
S�w)+ 2γ0σαε(m�w)

+ [(γ0 − 1)2 + 2(γ0 − 1)+ 1]σεε(m�w)

+ (γ0 − 1)2

[
σ2(m�w)− σεε(m�w)

m

]
+ 2(γ0 − 1)

×
[
σ2(m�w)− σεε(m�w)

m

]
+

[
σ2(m�w)− σεε(m�w)

mS

]
= σ2

α(m�m
S�w)+ 2γ0σαε(m�w)+ γ2

0σεε(m�w)

+ γ2
0

[
σ2(m�w)− σεε(m�w)

m

]
+

(
1
mS

− 1
m

)
[σ2(m�w)− σεε(m�w)]�

Observing that

V(Y
S

c |w)= E
[
Var(Y

S

c |m�mS�w)|w] + Var
(
E[YS

c |m�mS�w]|w)
and using the conditional mean-zeroness of εci implies that

E[Gb
c |w] = τ2

0(w)+ γ2
0E

[
λ2(Mc�Wc)

Mc

∣∣∣w]
and also that

E[Gw
c |w] = E

[
λ2(Mc�Wc)

Mc

∣∣∣w]
�

Using these expression is straightforward to verify that Proposition 1.1 remains
valid.

G. ESTIMATION OF γ̂2

Given a random sample, it is straightforward to estimate γ2
0 using restric-

tion (11). Feasible estimation requires replacing Gb
c in ρ(Zc�θ) with the esti-

mate Ĝb
c = (Y c − μ̂Y (Wc))

2, where μ̂Y (Wc) is a consistent estimate of μY(Wc)�
This feasible estimator has the same asymptotic variance as the infeasible esti-
mator which uses Gb

c ; standard errors do not need to be adjusted for sampling
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error in μ̂Y (Wc)� When (12) holds with τ2
0(W1c) an unknown smooth function,

the sieve minimum distance estimator of Ai and Chen (2003) would be appro-
priate.

The argument for the claim that sampling error in μ̂Y (Wc) need not be ac-
counted for follows from the results of Newey (1994). To make the dependence
of ρ(Z�θ) on the nuisance parameter μY(Wc) explicit, we write

ρ(Z�θ�μY(W ))= (Y −μY(W ))2 − τ2 − γ2Gw
c �

For estimation we use the unconditional moment

ψ(Z�θ�μY(W ))=A(W )ρ(Z�θ�μY(W ))�

Note that this moment only depends on the function μY through its value
μY(W )� where W is a subvector of Z. Differentiating with respect to μY and
evaluating at μY = μY(W ), we have

D(Z)= ∂ψ(Z�θ�μY)

∂μY

∣∣∣∣
μY=μY (W )

= −A(W )2(Y −μY(W ))�

and hence that E[D(Z)|W ] = 0, which, as shown by Newey (1994, Propo-
sition 3, pp. 1359–1360), is a sufficient condition for the asymptotic sam-
pling behavior of ψ(Z�θ� μ̂Y (W )) to be the same as that of ψ(Z�θ�μY(W ))�
Therefore sampling error in μ̂Y (W ) does not affect the asymptotic variance
of θ̂�

Assumptions 1.1–1.3, combined with additional auxiliary assumptions, can
also be used to form consistent estimators for the parameters characterizing
specific members of the family given by (13). Unfortunately, but not surpris-
ingly, identification arguments are model-specific. To illustrate some of the
issues involved, assume we are interested in estimating γ0 when h(εci� εc) =
min{εc}. We begin by augmenting Assumptions 1.1–1.3 with the parametric as-
sumption that(

αc
εc

)∣∣∣Wc(24)

∼ N
((

μα(Wc)
0

)
�

(
exp(W ′

1cπα) 0
0 exp(W ′

1cπ1ε +W ′
2cπ2ε)IMc

))
with π2ε �= 0� Note that (24) is sufficient to satisfy Assumptions 1.1–1.3. In this
case, μa(Wc) and πε = (π ′

1ε�π
′
2ε)

′ are identified by

E[Yci|Wc] = μα(Wc) and E[Mc ·Gw
c |Wc] = exp(W ′

1cπ1ε +W ′
2cπ2ε)�
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Using the normality assumption, the conditional distribution of εc given Wc is
therefore identified. We also have

E[Gb
c −Gw

c |Wc;πα�πε�γ0]
= exp(W ′

1cπα)+ (γ0 − 1)2v(Wc;πε)+ 2(γ0 − 1)c(Wc;πε)�
where v(Wc;πε)= V(min(εc)|Wc;πε) and c(Wc;πε)= C(min(εc)� εc|Wc;πε)�

With the conditional distribution of εc identified, we can compute v(Wc;πε)
and c(Wc;πε) (perhaps by simulation). With v(Wc;πε) and c(Wc;πε) known,
γ0 is then identified by the nonlinear (in πα and γ0) regression function
E[Gb

c −Gw
c |Wc]� This sequential procedure can be given a method-of-moments

representation, allowing for inference. The important point of the example,
however, is that identification via conditional variance restrictions is not spe-
cific to the linear-in-means model of social interactions. Researchers with dif-
ferent focal models can apply the same basic identifying principles to estima-
tion.
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