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Abstract

This paper shows that the semiparametric e¢ ciency bound for a parameter identi�ed by an
unconditional moment restriction with data missing at random (MAR), coincides with that of a
particular augmented moment condition problem. The augmented system consists of the inverse
probability of observation weighted (IPW) original moment restriction and an additional conditional
moment restriction which exhausts all other implications of the MAR assumption. While e¢ ciency
bounds for these types of problems are widely-known, the general equivalence result is apparently
new. Demonstrating equivalence provides fresh intuitions for several apparent �paradoxes� in the
missing data literature, including the well-known results that smoothness and exclusion priors on
the propensity score do not increase the e¢ ciency bound for the parameter of interest and that
weighting by a nonparametric estimate of the propensity score results in an e¢ cient estimator while
weighting by the true propensity score does not. The �equivalent�GMM problem also suggests new
e¢ cient estimators.

This paper also analyzes the e¤ect of imposing additional semiparametric restrictions on the
conditional expectation function (CEF) of the original moment function given always-observed co-
variates on the variance bound. In the program evaluation context such restrictions are generated by
semiparametric models for the CEFs of the two potential outcomes given covariates. By exploiting
the insight that these restrictions simply add conditional moments to the �equivalent�augmented
system I apply Chamberlain�s (1992a) methods to calculate the corresponding variance bound.

Some related results and intuitions are provided for a family of data combination problems. This
family of problems includes the average treatment e¤ect on the treated (ATT) estimand.

JEL Classification: C14, C21, C31
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1 Introduction

Let Z = (Y 01 ; Y
0
0 ; X)

0 be vector of modelling variables, fZig1i=1 be an independent and identically
distributed random sequence drawn from the unknown distribution F0, � aK�1 unknown parameter
vector and  (Z; �) =  1 (Y1; X; �) �  0 (Y0; X; �) a known vector-valued function of the same

dimension.2 The only prior restriction on F0 is that for some �0 2 B � RK

E [ (Z; �0)] = 0: (1)

Chamberlain (1987) showed that the maximal asymptotic precision with which �0 can be estimated

under (1) (subject to identi�cation and regularity conditions) is given by the inverse of

E [�0 (X)]0 E [
0 (X)]�1 E [�0 (X)] ; (2)

with

�0 (x) = E
�
@ (Z; �0) =@�

0��x�

0 (x) = V ( (Z; �0)jx) + [q1 (x;�0)� q0 (x;�0)] [q1 (x;�0)� q0 (x;�0)]0 ;

where E [Aj c] = E [AjC = c], V (Aj c) = V ar (AjC = c) and qj (x;�) = E
�
 j (Yj ; X; �) jx

�
for

j = 0; 1:

Now consider the case where a random sequence from F0 is unavailable. Instead only a �selected�

sequence of samples is available. Let D be a binary selection indicator. When D = 1 we observe

Y1 and X, when D = 0 we observe Y0 and X; Y1 and Y0 are never simultaneously observed for a

single unit. This paper considers estimation of �0 under restriction (1) and the following additional

assumptions.

Assumption 1.1 (Random Sampling) fZi; Dig1i=1 is an independent and identically distributed
random sequence from F0.

Assumption 1.2 (Observed Data) For each unit we observe X; D and Y = (1�D)Y0 +DY1:

Assumption 1.3 (Conditional Independence) (Y1; Y0) ? DjX:

Assumption 1.4 (Strong Overlap) Let p0 (x) = Pr(D = 1jX = x), then 0 < � � p0 (x) �
1� � < 1 for all x 2 X � Rdim(x) and some 0 < � < 1:

2Extending what follows to the overidenti�ed case is straightforward.
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Restriction (1) and Assumptions 1.1 to 1.4 constitute a semiparametric model for the data.

Henceforth I refer to this model as the semiparametric missing data model or the missing at ran-

dom (MAR) setup. The �MAR setup� has been applied to a number of important econometric

and statistical problems, including program evaluation as surveyed by Imbens (2004), non-classical

measurement error (e.g., Robins, Hsieh and Newey 1995, Chen, Hong and Tamer 2005), missing

regressors (Robins, Rotnitzky and Zhao 1994) and attrition in panel data (e.g., Wooldridge 2002).

Chen, Hong and Tarozzi (2004) and Wooldridge (2007) discuss several other applications.

The maximal asymptotic precision with which �0 can be estimated under the MAR setup has

been characterized by Robins, Rotnitzky and Zhao (1994) and is given by the inverse of

I (�0) = E [�0 (X)]0 E [�0 (X)]�1 E [�0 (X)] ; (3)

with

�0 (x) =
�0 (x;�0)

1� p0 (x)
+
�1 (x;�0)

p0 (x)
+ [q1 (x;�0)� q0 (x;�0)] [q1 (x;�0)� q0 (x;�0)]0 ;

where �j (x;�0) = V( j (Yj ; X; �0)
��X = x) for j = 0; 1:

The associated e¢ cient in�uence function (Bickel, Klassen, Ritov and Wellner 1993, Newey 1990)

is given by

� (z; �0) = E [�0 (X)]�1 �
�

d

p0 (x)
 1 (y1; x; �0)�

1� d
1� p0 (x)

 0 (y0; x; �0) (4)

�
�
q1 (x;�0)

p0 (x)
+
q0 (x;�0)

1� p0 (x)

�
(d� p0 (x))

�
:

for � =
�
p; q00; q

0
1; �

0�0 :
The calculation of (3) is a now standard.3 Knowledge of (3) is useful because it quanti�es the

cost �in terms of asymptotic precision �of the missing data4 and because it can be used to verify

whether a speci�c estimator for �0 is e¢ cient. To simplify what follows I will explicitly assume that

I (�0) is well-de�ned (i.e., that all its component expectations exist and are �nite, and that all its
component matrices are nonsingular).

Several globally e¢ cient estimators for �0 are available. The inverse probability weighting (IPW)

3An accessible derivation of this result can be found in Chen, Hong and Tarozzi (2004, Theorem 8).
4The di¤erence �0 (x)� 
0 (x) equals

�0 (x;�0)

�
p0 (x)

1� p0 (x)

�
+�1 (x;�0)

�
1� p0 (x)

p0 (x)

�
+ 2�12 (x;�0)

where �01 (x;�0) = C ( 0 (Y0; X; �0) ;  1 (Y1; X; �0)jX = x) with C (A;Bj c) = Cov (A;BjC = c) : This sum is
bounded below by zero.
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estimator with a nonparametrically estimated selection probability attains the bound (Hirano, Im-

bens and Ridder 2003). Cheng (1994), Hahn (1998), Chen, Hong and Tarozzi (2004, 2007) and

Imbens, Newey and Ridder (2005) propose e¢ cient imputation estimators. Locally e¢ cient, in the

sense de�ned by Newey (1990, p. 120), augmented inverse probability weighting (AIPW) estimators,

which combine the weighting and imputation approaches along with auxiliary parametric assump-

tions, are common in the statistics literature (cf., Robins, Rotnitzky and Zhao 1994, Scharfstein,

Rotnitzky and Robins 1999, Bang and Robins 2005, Tsiatis 2006). Wooldridge (2007) studies IPW

estimation with parametrically estimated selection probabilities.

This paper shows that the semiparametric e¢ ciency bound for �0 under the MAR setup, coin-

cides with the bound for a particular augmented moment condition problem. The augmented system

consists of the inverse probability of observation weighted (IPW) original moment restriction (1)

and an additional conditional moment restriction which exhausts all other implications of the MAR

setup (useful for estimating �0).
5 This general equivalence result is apparently new. Demonstrating

equivalence provides fresh intuitions for several apparent �paradoxes�in the missing data literature,

including the well-known results that smoothness and exclusion priors on the propensity score do not

increase the precision with which �0 can be estimated (Robins, Hsieh and Newey 1995, Robins and

Rotnitzky 1995, Hahn 1998, 2004) and that weighting by a nonparametric estimate of the propensity

score results in an e¢ cient estimator while weighting by the true propensity score does not (Hirano,

Imbens and Ridder 2003, cf., Wooldridge 2007).

Equivalence also allows for a simple GMM characterization of the double robustness property of

the class of locally e¢ cient augmented inverse probability weighted (AIPW) estimators introduced

by Robins, Rotnitzky and Zhao (1994). AIPW estimators require the analyst to make two auxiliary

parametric assumptions, one about the form of the propensity score and the other about (certain

features of) the conditional distribution of (Y0; Y1) given X. The AIPW estimate is semiparametri-

cally e¢ cient if the maintained auxiliary restrictions happen to hold in the population being sampled

from but remains consistent if one or the other of the two parametric restrictions are violated (i.e.,

it is �doubly robust�). Using the �equivalent�GMM problem I show that this property follows from

standard results on robustness of sequential GMM estimators to �rst step misspeci�cation (e.g.,

Theorem 6.2 of Newey and McFadden (1994, p. 2180)).

Augmented inverse probability weighting is only e¢ cient when the auxiliary restrictions imposed

at the estimation stage are not viewed as part of the prior restriction. When they are viewed

5Similar �equivalence� results hold in other well-known statistical models. I am grateful to Jinyong Hahn for
providing the following simple but illuminating example. Consider the classical regression model where Y = X 0�0 + "
with "jX � N

�
0; �20

�
; in that model the variance bound is given by the Cramer-Rao lower bound. Since the variance

bound for the unconditional moment problem E [X"] = 0 coincides with that Cramer-Rao lower bound (when the
homoscedasticity restriction is used to simplify the variance expression), we can conclude that the weaker moment
restrictions �exhausts�all the information content of the full model.
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as part of the prior restriction they alter the e¢ ciency bound. As is well-known the �rst set of

auxiliary restrictions, those on the propensity score do not alter the bound, however those on the

conditional distribution of (Y0; Y1) given X do so. This also paper analyzes the e¤ect of imposing

additional semiparametric restrictions on the conditional expectation functions (CEFs) q0 (x;�) =

E [ 0 (Y0; X; �) jX = x] and q1 (x;�) = E [ 1 (Y1; X; �) jX = x]. In the program evaluation context

such restrictions are generated by semiparametric models for the CEFs of the two potential outcomes

given covariates.

In an innovative paper, Wang, Linton and Härdle (2004) consider this problem with  1 (Y1; X; �) =

Y1 � � and  0 (Y0; X; �) = 0 (i.e., they seek to estimate the marginal mean of an outcome which is

missing at random). They impose a partial linear structure, as in Engle et al (1986), on E [Y1jX]. In
making their variance bound calculation they assume that the conditional distribution of Y1 given

X is normal with a variance that does not depend on X. They do not provide a bound for the

general case but conjecture that it is �very complicated�(p. 338).

By exploiting the insight that semiparametric restrictions on the forms of q0 (x;�) and q1 (x;�)

simply add conditional moments to the �equivalent�GMM problem I am able to apply Chamberlain�s

(1992a) methods to calculate the variance bound given the extra restrictions. Formally I derive the

variance bound for the semiparametric problem de�ned by (1), Assumptions 1.1 to 1.4 and

Assumption 1.5 (Functional Restrictions) Partition X = (X 0
1; X

0
2)
0, then

E [ 0 (Y0; X; �0) jX = x] = q0 (x; �00; h00 (x2) ;�0)

E [ 1 (Y1; X; �0) jX = x] = q1 (x; �10; h10 (x2) ;�0) ;

where q0 (x; �0; h0 (x2) ;�) and q1 (x; �1; h1 (x2) ;�) are known functions, �0 and �1 are J � 1 �nite
dimensional unknown parameters, and h0 (�) and h1 (�) are unknown functions of X2.

To the best of my knowledge, the variance bound for this problem, the MAR setup with �func-

tional�restrictions, has not been previously calculated. The most relevant research is that of Wang,

Linton and Härdle (2004). I am also aware of two additional related results. Robins, Mark and

Newey (1992) consider the model with  1 (Y1; X; �) = Y1 and  0 (Y0; X; �) = Y0 + � and the func-

tional restrictions E [Y0jX = x] = g0 (x) and E [Y1jX = x] = �0 + g0 (x) for g0 (x) some smooth

unknown function of X.6 These additional restrictions are implied by a constant additive treatment

e¤ect (CATE) assumption. Under the CATE assumption they note that E [Y jX;D] = �0D+g0 (X)

for Y = DY1 + (1�D)Y0. This gives the partially linear model for which Chamberlain (1992a)
derived the semiparametric e¢ ciency bound.

6When evaluating the variance bound they also assume homoscedasticity, but this is not part of the prior restriction.
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Hahn (2004), working with the same  (Z; �) function partitions X = (X 0
1; X

0
2)
0 and assumes

that the two potential outcomes are independent of X2 given X1: This implies that Assumption 1.3

holds conditional on X1 alone. The variance bound is therefore given by (3) with X1 replacing X.

The bounds calculated by Wang, Linton and Härdle (2004) and Robins, Mark and Newey (1992)

are special cases of the one given in Theorem 5.1 below. Hahn�s (2004) results, as they involve

independence, as opposed to only mean independence, assumptions do not �t into my setup.

While it is relatively straightforward to construct globally e¢ cient estimators for �0 in the model

which also imposes Assumption 1.5, it does not appear generally possible to construct estimators

that are e¢ cient while remaining robust its violation. The bene�ts of the extra semiparametric

restrictions imposed by Assumption 1.5 must be weighed against the risk of misspeci�cation.

Section 2 reports the �rst result of the paper: an equivalence between the �MAR setup�and a

particular method-of-moments problem. Speci�c examples of equivalence are discussed by Newey

(1994a) and Hirano, Imbens and Ridder (2003). I discuss the connection between their results and

the general result provided below. Section 3 uses the equivalent method-of-moments problem to

develop alternative intuitions for the various �puzzles�mentioned above. This section demonstrates

the pedagogical value of the equivalence result. It provides a simple explanation for Hahn�s (1998)

�nding that knowledge of the propensity score does not lower the information bound for the MAR

problem, why the estimator of Hirano, Imbens and Ridder (2003) attains this bound and for the

double robustness property of AIPW estimators. I also show that Wooldridge�s (2007) three-step

average treatment e¤ect (ATE) estimator (cf., Hirano and Imbens 2002, Robins and Rotnitzky 1995)

is asymptotically equivalent to Robins, Rotnitzky and Zhao�s (1994) AIPW estimator.

Section 4 explores the implications of GMM equivalence for estimation. First, building on

work by Robins, Rotnitzky and Zhao (1994) and Newey (1994a, Section 5.3), I propose a new

globally e¢ cient estimator for �0. An advantage of the proposed estimator is that it allows for

straightforward incorporation of smoothness and exclusion priors on the propensity score without

sacri�cing asymptotic e¢ ciency; something that is not straightforward with other available e¢ cient

estimators. Second, for the known propensity score case, I show how the equivalent GMM problem

suggests a simple way to modify the Horvitz-Thompson estimator so that it is semiparametrically

e¢ cient.

Section 5 calculates the variance bound for �0 when the MAR setup is augmented by Assumption

1.5. It also (informally) discusses estimators which exploit Assumption 1.5. Requiring double ro-

bustness apparently precludes fully e¢ cient estimation. Section 6 brie�y discusses a related GMM

equivalence result for a family of data combination problems. This family includes the average

treatment e¤ect on the treated (ATT) estimand studied by Hahn (1998). Section 7 summarizes and

concludes with a discussion of open questions.

6



2 Equivalence result

Under Assumptions 1.1 to 1.4 the inverse probability of observation weighted moment condition

E
�

D

p0 (X)
 1 (Y1; X; �0)�

1�D
1� p0 (X)

 0 (Y0; X; �0)

�
= 0; (5)

is valid (e.g., Hirano, Imbens and Ridder 2004, Wooldridge 2007). Under Assumptions 1.1 to 1.4

the conditional moment restriction

E
�

D

p0 (X)
� 1
����X� = 0 8 X 2 X ; (6)

also holds and nonparametrically identi�es p0 (x) :While the terminology is inexact, in what follows

I call (5) the identifying moment and (6) the auxiliary moment.

That the MAR setup is equivalent, with respect to the information it provides about �0, to an

augmented moment problem de�ned by restrictions (5) and (6) is implied by the following Theorem.

Theorem 2.1 (GMM Equivalence) Suppose that (i) the distribution of Z has a known, �nite

support, (ii) there is some �0 2 B � RK and �0 = (�1; : : : ; �L)
0 where �l = p0 (xl) 2 P � [�; 1� �]

for each l = 1; : : : ; L and some 0 < � < 1 (with X = fx1; : : : ; xLg the known support of X) such that
restrictions (5) and (6) hold, (iii) E [�0 (X)] and I (�0) = E [�0 (X)]0 E [�0 (X)]�1 E [�0 (X)] are
nonsingular with probability one and (iv) other regularity conditions hold (cf., Chamberlain 1992b,

Section 2), then I (�0) is the Fisher information bound for �0:

Proof. See Appendix A.
The proof of Theorem 2.1 involves only some tedious algebra and a straightforward application

of Lemma 2 of Chamberlain (1987). Assuming that Z has known, �nite support makes the prob-

lem fully parametric. The unknown parameters are the probabilities associated with each possible

realization of Z, the values of the propensity score at each of the L mass points of the distribution

of X, �0 = (�1; : : : ; �L)
0, and the parameter of interest, �0:

The multinomial assumption is not apparent in the form of I (�0), which involves only conditional
expectations of certain functions of the data. This suggests that the bound holds in general since

any F0 which satis�es (5) and (6) can be arbitrarily well-approximated by a multinomial distribution

also satisfying the restrictions. Chamberlain (1992a, Theorem 1) demonstrates that this is indeed

the case. Therefore I (�0)�1 is the maximal asymptotic precision with which �0 can be estimated
when the only prior restrictions on F0 are (5) and (6). Since this variance bound coincides with (3)

I conclude that (5) and (6) �exhaust�all of the prior restrictions implied by the MAR setup (that

are helpful for estimating �0).
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The connection between semiparametrically e¢ cient estimation of moment condition models

with missing data and �augmented�systems of moment restrictions has been noted previously for

the special case of data missing completely at random (MCAR) with  (Z;�) =  1 (Y1;X;�). In

that case Assumptions 1.1 to 1.4 hold with p0 (X) equal to a (sometimes known) constant. Newey

(1994a) shows that an e¢ cient estimate of �0 can be based on the pair of moment restrictions

E [D 1 (Y1; X; �0)] ; Cov (D; q1 (X;�0)) = 0;

with q1 (X;�) as de�ned above. Hirano, Imbens and Ridder (2003) discuss a related example with

X binary and the data also MCAR. In their example e¢ cient estimation is possible with only a

�nite number of unconditional moment restrictions (a construction that is also used in the proof

of Theorem 2.1). Theorem 2.1 provides a formal generalization of the Newey (1994a) and Hirano,

Imbens and Ridder (2003) examples to the missing at random (MAR) case.

Hirano, Imbens and Ridder (2003) emphasize connections between semiparametric e¢ ciency

and empirical likelihood estimation and it is illuminating to discuss these connections here as well.

When Z is multinomial, as is assumed in Theorem 2.1, the results of Chamberlain (1987) imply

that the GMM estimate of �0 is equivalent to the (constrained) maximum likelihood estimate, the

Fisher information bound of which is provided by Theorem 2.1. Imbens (1997, Section 3) shows an

equivalence of the constrained MLE with the empirical likelihood estimate when Z is multinomial.

Therefore, for multinomial Z empirical likelihood estimation of �0 is semiparametrically e¢ cient.

For continuous X e¢ cient estimation is less straightforward due to the presence of the unknown

function p0 (x), but the equivalent method-of-moments problem nonetheless suggests a number of

�natural�estimators some of which are discussed below.

3 Some method-of-moments intuitions

The method-of-moments formulation provides a useful framework for understanding several apparent

paradoxes found in the missing data literature. It clari�es why smoothness and exclusion priors on

the propensity score do not lower the asymptotic variance bound for �0 (Robins, Hsieh and Newey

1995, Hahn 1998, 2004) and why weighting by an estimate of the propensity score is typically more

e¢ cient than weighting by the true propensity score (Hirano, Imbens and Ridder 2003, Wooldridge

2007). The GMM structure also provides a simple intuition for the �doubly robust�property of the

class of AIPW estimators introduced by Robins, Rotnitzky and Zhao (1994).

Consider �rst the absence of any e¢ ciency gain associated with imposing (valid) prior restrictions

on the propensity score. An extreme example of such restrictions is complete knowledge of the

propensity score. One might expect that such information, by eliminating sampling uncertainty in
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the propensity score, would increase the precision with which it is possible to estimate �0. That

such information is not helpful in this way is somewhat puzzling. This result has proved particularly

perplexing to practitioners as it apparently suggests that incorporation of prior knowledge regarding

features of the selection probability is incompatible with e¢ cient estimation (cf., Robins, Rotnitzky

and Zhao 1994, pp. 854 - 855, Hahn 1998, pp. 324 - 325, Imbens 2004, pp. 16 - 17).

Under the conditions of Theorem 2.1 calculations provided in Appendix A imply that the GMM

estimates of �0 and �0 (recall that �0 contains the values for the propensity score at each of the

mass points of the distribution of X) have an asymptotic sampling distribution of

p
N

 " b�b�
#
�
"
�0

�0

#!
D! N

 "
0

0

#
;

"
IM (�0)�1 0

0 IM (�0)�1

#!
;

with I (�0) as de�ned in (3) and I (�0) as de�ned in Appendix A.
That knowledge of various features of the propensity score does not alter the e¢ ciency bound is

thus a consequence of information matrix block diagonality between �0 and �0. As is well-known,

under block diagonality sampling error in b� does not a¤ect, at least to �rst order, the asymptotic
sampling properties of b�. While block diagonality is formally only a feature of the multinomial
approximation to the true data generating process, the result nonetheless provides a useful intuition

for understanding why prior knowledge of the propensity score is not valuable asymptotically.

Analogous results hold for other important GMM problems. For example, in unconditional

moment problems, the infeasible estimator which sets an optimal linear combination of the sample

moments equal to zero is �rst-order equivalent to the feasible one based on setting a noisy estimate

of that linear combination equal to zero. It is well-known, however, that this largely re�ects the

limits of the usual asymptotic approximation: weight matrix estimation does a¤ect the higher-

order properties of GMM estimates (Newey and Smith 2004). Ichimura and Linton (2005) show

that the e¤ects of propensity score estimation do show-up in the �second-order�asymptotics of the

Hirano, Imbens and Ridder (2003) estimate of �0. This suggests that the ability to incorporate

smoothness and exclusion priors on the propensity score, while at the same time maintaining (�rst

order) e¢ ciency, is likely to result in an estimator with superior small-sample performance.

A related puzzle is the �nding of Hirano, Imbens and Ridder (2003) and Wooldridge (2007) that

weighting by the true propensity score is typically ine¢ cient.7 The true weights estimator is the

solution to
1

N

NX
i=1

Di
p0 (Xi)

 1(Y1i; Xi;
b�)� 1�Di

1� p0 (Xi)
 0(Y0i; Xi;

b�) = 0: (7)

7Versions of this puzzle are actually quite old. For example it shows up in the choice-based sampling literature (cf.,
Cosslett 1981). Imbens (1992) provides method of moments intuition for that case (cf., Wooldridge 1999a).
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Ine¢ ciency of the true weights estimator stems from its failure to impose the additional restrictions

given by (6). These additional restrictions are valuable because they can be used to reduce sampling

variance in (5). One approach to e¢ cient estimation in this case would be to consider a joint

GMM estimator which chooses b� such that sample analogs of (5) and (6) hold simultaneously. An
alternative approach, which is practically and pedagogically useful, is to, following Newey (1994a),

modify (6) so that it is conditionally uncorrelated with D=p0 (X)� 1 given X. This is accomplished
by choosing b� to set the sample mean of the (population) residuals associated with the conditional
linear predictor of D (Z; �0) =p0 (X) given D=p (X)� 1 conditional on X equal to zero. Such a b�
solves

1

N

NX
i=1

s(Zi; p0 (Xi) ; bq0(Xi; b�); bq1(Xi; b�); b�) = 0; (8)

where bq0(Xi;�) and bq1(Xi;�) are some nonparametric estimates and s (Z; p; q0; q1; �) is given by
s (Z; p; q0; q1; �) =

D

p (X)
 (Z; �)

�E�
�

D

p (X)
 1 (Y1; X; �)�

1�D
1� p (X) 0 (Y0; X; �)

���� D

p (X)
� 1;X

�
=

D

p (X)
 1 (Y1; X; �)�

1�D
1� p (X) 0 (Y0; X; �)

�
�
q1 (X;�)

p (X)
+
q0 (X;�)

1� p (X)

�
(D � p0 (X)) ;

which is identical to the e¢ cient score function for �0 (the notation E� [Y jX;Z] denotes the (mean
squared error minimizing) linear predictor of Y given X within a subpopulation homogenous in Z).8

E¢ ciency of this estimator follows from the fact that it incorporates all the information about �0
contained in the auxiliary conditional moment restriction by using it to reduce the sampling variance

in the identifying moment (since s (Z; p; q0; q1; �0) and D=p (X) � 1 are conditionally uncorrelated
by construction). Ine¢ ciency of (7) follows from its failure to exploit this information.

The GMM formulation also provides a simple intuition for why replacing p0 (Xi) in (7) with

a nonparametric estimate of the propensity score is e¢ cient. Hirano, Imbens and Ridder (2003)

propose approximating the propensity score by p
�
RM (Xi)

0 �M
�
where p (�) is the logistic CDF and

RM (Xi) is a vector of series terms, the length of which is indexed by M . They show that the

solution to

1

N

NX
i=1

Di

p
�
RM (Xi)

0 b�M� 1(Y1i; Xi; b�)� 1�Di
1� p

�
RM (Xi)

0 b�M� 0(Y0i; Xi; b�) = 0;
8Wooldridge (1999b, Section 4) collects some useful results on conditional linear predictors.
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attains the semiparametric e¢ ciency bound when M grows with the N at a certain rate, b�M is

estimated by a logit procedure and other technical conditions hold. One intuition for their e¢ ciency

result follows from the fact that any given estimator in their sequence is numerically identical to the

unconditional joint GMM estimator which chooses b� and b�M to solve

1

N

NX
i=1

 
m1(Zi; b�M )
m2(Zi; b�; b�M )

!
= 0;

where

m1(Z; �M ) =

 
D

p
�
RM (X)0 �M

� � 1! RM (X)

p
�
RM (X)0 �M

�
m2(Z; �; �M ) =

D

p
�
RM (X)0 �M

� 1(Y1; X; �)� D

1� p
�
RM (X)0 �M

� 0(Y0; X; �):
Replacing p0 (Xi) with the sequence of estimated propensity scores p

�
RM (Xi)

0 b�M� is there-
fore numerically equivalent to solving a joint method-of-moments problem that imposes both the

identifying moment (5) and a sequence of unconditional moment restrictions that, in large enough

samples, are equivalent to the conditional restriction given in (6) above. Note that weighting by a

parametric estimate of the propensity score, as in Wooldridge (2007), is generally ine¢ cient: the

MLE �rst order conditions do not (asymptotically) impose all the restrictions implied by (6).9

The equivalent GMM problem also provides a simple explanation for the �doubly robust�property

of the class of AIPW estimations introduced by Robins, Rotnitzky and Zhao (1994). These estima-

tors are motivated by the structure of the e¢ cient score. A common method of constructing globally

e¢ cient estimators is to form a M-estimator based on a nonparametric estimate of the e¢ cient score

(cf., Newey 1990). Robins, Rotnitzky and Zhao (1994, cf., Equations 9 and 15) instead propose a

M-estimator based on a parametric estimate of the e¢ cient score. Their method requires making

auxiliary assumptions about the form of the propensity score as well as the conditional distributions

of Y0 and Y1 given X. Under these maintained extra assumptions their estimator attains the semi-

parametric e¢ ciency bound. Scharfstein, Rotnitzky and Robins (1999) show that AIPW remains

consistent if either, but not both, of the auxiliary parametric models are misspeci�ed (although it

is not e¢ cient in such cases). Tsiatis (2006) provides a survey of research on double robustness in

missing data models.

Assume, possibly incorrectly, that both the propensity score and the conditional densities of Y0
and Y1 given X belong to known parametric families, p0 (X) = p (X; 
0) ; f0 (Y0jX) = f0 (Y0jX; �00),
and f1 (Y1jX) = f1 (Y1jX; �10) indexed by the unknown �nite dimensional parameters 
 and �0 and

9Wooldridge�s (2007) estimator is generally more e¢ cient than the one which uses the true propensity score.
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�1. Let b
; b�0 and b�1 denote MLEs (the latter two computed using the D = 0 and D = 1 subsamples

respectively) and de�ne

qj(x;b�j ;�) = Z  j(yj ; x; �)fj(yj jx;b�j)dyj ; j = 0; 1:

The �doubly robust�AIPW estimate of �0 solves

1

N

NX
i=1

s(Zi; b�; p (Xi; b
) ; q0(Xi;b�0; b�); q1(Xi;b�1; b�)) = 0: (9)

An important application of (9) arises in the causal inference literature when  1(Y1; X; �) = Y1 and

 0(Y0; X; �) = Y0+�: In that case calculating q1(x;b�1;�) = R y1f(y1jx;b�1)dy1 amounts to specifying
and estimating a parametric model for E [Y1jX = x] and similarly for q0(x;b�0;�) (Lunceford and
Davidian 2004, Bang and Robins 2005).

To understand the robustness properties of AIPW estimators it is helpful to �rst consider an

M-estimator for �0 based on a nonparametric estimate of the e¢ cient score. That is, choose b� to
solve

1

N

NX
i=1

s(Zi; b�; bp (Xi) ; bq0(Xi; b�); bq1(Xi; b�)) = 0; (10)

where bp (Xi) ; bq0(Xi;�) and bq1(Xi;�) are nonparametric estimates.
From Newey (1994b, Proposition 3, p. 1360), it follows that nonparametric estimation of the

propensity score does not a¤ect the asymptotic variance of b� since
E
�
@s (Z; �0; p0 (X) ; q0 (X;�0) ; q1 (X;�0))

@p0

����X� = 0: (11)

Similarly, nonparametric estimation of qj(Xi;�) for j = 0; 1 does not e¤ect the asymptotic variance

of b� since
E
�
@s (Z; �0; p0 (X) ; q0 (X;�0) ; q1 (X;�0))

@qj

����X� = 0; j = 0; 1: (12)

In the parametric GMM context zeroness of the expectation of the derivative of a moment

with respect to an estimated nuisance parameter is associated with robustness to ��rst step�mis-

speci�cation. A similar property holds here. Consider the solution to (10) where the consistent

nonparametric estimate bp (Xi) is replaced with the inconsistent parametric estimate p (Xi; b
). Let

� be the limiting value of b
; although p (X; 
�) 6= p0 (X) this estimator remains consistent for �0

12



since, by iterated expectations,

E [s (Z; �0; p (X; 
�) ; q0 (X;�0) ; q1 (X;�0))] = E [q1 (X;�0)� q0 (X;�0)]

= E [ (Z; �0)] = 0:

Now replace bqj(Xi;�) in (10) with qj(Xi;b�j ;�) and assume that fj (Yj jX) does not belong to
the presumed parametric family. Analogously to the misspeci�ed propensity score case we have

qj(x; �j�;�) 6= qj (x;�) for j = 0; 1: Nonetheless b� remains consistent for �0 since
E [s (Z; �0; p0 (X) ; q0 (X; �0�;�0) ; q1 (X; �1�;�0))] = 0

for any qj(x; �j�;�). The above arguments demonstrates that the �doubly robust�property of AIPW

estimators follows from standard results on robustness of sequential GMM estimators to �rst-stage

misspeci�cation (e.g., Newey and McFadden 1994, Theorem 6.2).

Wooldridge (2007) has recently suggested a doubly robust alternative to AIPW estimation of the

average treatment e¤ect (cf., Hirano and Imbens 2001, Robins and Rotnitzky 1995). Wooldridge

(2007) does not provide distribution theory for his estimator, here I note that his estimator is locally

e¢ cient.

De�ne � =
�

00; �

0
0; �

0
1; �
�0, with �0 equal to the ATE; Wooldridge�s sequential estimator is equiv-

alent to joint GMM applied to the moment function

 (Z; �) =

8>>>><>>>>:

D�p(X;
)
p(X;
)[1�p(X;
)]

@p(X;
)
@


1�D
1�p(X;
)X(Y0 �X

0�0)
D

p(X;
)X(Y1 �X
0�1)

� �X 0 (�1 � �0)

9>>>>=>>>>; :

The maintained assumptions are that p0 (X) = p (X; 
0) ; E [Y0jX] = X 0�00 and E [Y1jX] = X 0�10:

Under these assumptions it is straightforward to show that the GMM estimate of b� has an asymptotic
sampling variance of

E
�

�20 (X)

1� p (X; 
0)

�
+ E

�
�21 (X)

p (X; 
0)

�
+ (�1 � �0)0 V ar (X) (�1 � �0) ;

where �2j (X) = V (Yj jX) for j = 0; 1. Wooldridge�s (2007) estimator is thus locally e¢ cient. It

is attractive relative to AIPW since it can be computed in a small number of steps using standard

software.
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4 New approaches to estimation

This section proposes two new estimators for �0 (under restriction (1) and Assumptions 1.1 to 1.4)

suggested by the equivalent GMM problem. The �rst proposal builds on work by Newey (1994a).

Its large sample properties can be rigorously derived using his results. For this reason I do not

specify the detailed regularity conditions needed for a formal demonstration of its consistency and

asymptotic normality. Second, for the known propensity score case, I suggest a simple and e¢ cient

modi�cation of the Horvitz-Thompson estimator.10

The �rst proposed estimate of �0 is an M-estimate based on a nonparametric estimate of the

e¢ cient score (10), where bp (Xi), bq0(Xi;�) and bq1(Xi;�) are nonparametric series estimates. Let
RMk (X) = (r1 (X) ; : : : ; rMk

(X))0 be the �rst Mk terms in a sequence of approximating functions

(e.g., a power series in a one-to-one bounded transformation of X). Let M =M0+M1+ : : :+M2K

and de�ne

Ri
M�(1+2K)

=

0BBBBB@
R
cM0 (Xi) 0 � � � 0

0 R
cM1 (Xi)

...
...

. . . 0

0 � � � 0 R
cM2K (Xi)

1CCCCCA
with cMk for k = 0; : : : ; 2K denoting the (possibly) data-dependent number of approximating terms

in each column of Ri. De�ne the 1 + 2K row vector

Wi (�) =
�
Di; (1�Di) 0 (Y0i; Xi; �)0 ; Di 1 (Y1i; Xi; �)0

�
:

A series estimate of h (Xi; �) = (h1 (Xi) ; h2 (Xi; �) ; h3 (Xi; �)) = E [Wi (�) jXi] is given by

bh (Xi; �) = (�N (eh1 (Xi));eh2 (Xi; �) ;eh3 (Xi; �))
where �N (�) is a trimming function which ensures that bh1 (Xi) lies in the [�; 1� �] interval and

eh (Xi; �i) = b�Ri; b� =  1
N

NX
i=1

Wi (�)R
0
i

! 
1

N

NX
i=1

RiR
0
i

!�
;

with (�)� denoting a generalized inverse.
The nonparametric series estimates of the propensity score and the conditional means of the two

10 I thank Guido Imbens for suggesting that I attempt to develop a simple modi�cation of the Horvitz-Thompson
estimator that is e¢ cient in the known propensity score case.
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parts of the moment function are then given by

bp (Xi) = bh1(Xi); bq0(Xi;�) = bh2(Xi; �)0bh1(Xi) ; bq1(Xi;�) = bh3(Xi; �)0bh1(Xi) ;

with b� found by solving (10).11
A consistent estimate of the large sample variance of b� is given by (b�0b��1b�)�1=N with

b� = 1

N

NX
i=1

Dibp (Xi) @ (Zi; b�)@�0
; b� = 1

N

NX
i=1

bsibs0i;
where bsi = s(Zi; b�; bp (Xi) ; bq0(Xi; b�); bq1(Xi; b�)):

A simpler estimator would use the same number of series terms to approximate each of the

1 + 2K elements of h (Xi; �). To understand why the increased generality might be useful con-

sider the case where  0 (Y0; X; �) = Y0 + � and  1 (Y1; X; �) = Y1: In that case h1 (X) = p0 (X) ;

h2 (X;�) = (1� p0 (X)) fE [Y0jX] + �g and h3 (X;�) = p0 (X)E [Y1jX] : The �nite sample prop-
erties of b� might improve if the number of series terms used to approximate h1 (Xi) ; h2 (Xi; �) and
h2 (Xi; �) respectively re�ect the amount of smoothness in the propensity score and the degree of

�response heterogeneity�in the control and active treatments (as opposed to using an equally rich

approximation for all three CEFs). In contrast, the estimator of Hirano, Imbens and Ridder (2003)

e¤ectively requires over�tting of the propensity score if q0 (X;�) and/or q1 (X;�) vary sharply in X,

while the imputation estimators of Chen, Hong and Tarozzi (2004) or Imbens, Newey and Ridder

(2005) provide no mechanisms for incorporating a correctly smoothed estimate of the propensity

score.12

In some cases prior knowledge of the selection probability might be particularly sharp. If �0
is the ATE and the data are generated by a randomized experiment then the propensity score is

known. Another case where the propensity score is known is M-estimation under variable probability

sampling with known retention frequencies as in Wooldridge (1999a, 2007). In other situations

we may be willing to assume that p0 (X) = p (X1; 
0) for some known function p (�; �) ; unknown
�nite dimensional parameter 
0 and X1 a subvector of X. Let b
 be the MLE of 
0 and bq0(Xi;�)
and bq1(Xi;�) as estimated above (in particular we require that the denominators of bq0(Xi;�) and
11An alternative estimator would replace bh1(Xi) with the series logit estimator (SLE) of Hirano, Imbens and Ridder

(2003).
12 Imbens, Newey and Ridders�(2005) results do imply that such information would help determine the optimal (in

a MSE sense) number of approximating terms to use when estimating q0 (X;�) and q1 (X;�) :
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bq1(Xi;�) use the nonparametric series estimate of the propensity score), then
1

N

NX
i=1

s(Zi; b�; p (X1i; b
) ; bq0(Xi; b�); bq1(Xi; b�)) = 0; (13)

is locally e¢ cient for �0 and consistent irrespective of whether or not p0 (X) = p (X1; 
0) for some


0 (for the known propensity score case we simply replace p (Xi; b
) with the true propensity score
in (13)). Like the �doubly robust�estimator of Robins, Rotnitzky and Zhao (1994) semiparametric

e¢ ciency of b� requires that the imposed restrictions on the propensity score are correct. However,
unlike their estimator, semiparametric e¢ ciency and consistency holds without having to correctly

specify parametric forms for q0 (X;�) and q1 (X;�) :

My second proposal is a simple modi�cation of the Horvitz-Thompson estimator. This es-

timator replaces the empirical measure used by the Horvitz-Thompson estimator with an esti-

mated measure which satis�es a sequence of unconditional restrictions implied by (6). Let aMi =

(Di=p0 (Xi)� 1)RM (Xi) ; aM =
PN
i=1 aMi=N; BM =

PN
i=1 aMia

0
Mi=N and de�ne the (closed-form)

weights

!Mi =
1� a0MB

�1
M aMiPN

i=1 1� a0MB
�1
M aMi

; i = 1; : : : ; N;

then let b� be the solution to
NX
i=1

!Mi

�
Di

p0 (Xi)
 1(Y1i; Xi;

b�)� 1�Di
1� p0 (Xi)

 0(Y0i; Xi;
b�)� = 0:

If M grows with N at the appropriate rate then b� will attain the semiparametric e¢ ciency bound
(under appropriate regularity conditions). The intuition for this claim is that b� is equivalent to the
GMM estimate where the �known weights�identifying moment (5) is augmented by the additional

M unconditional moment restrictions (cf., Brown and Newey 1998)

E
��

D

p0 (X)
� 1
�
RM (X)

�
= 0:

IfM grows with N then this sequence of unconditional auxiliary moment restrictions will be equiva-

lent to the conditional moment restriction (6) in large samples and b� should be e¢ cient. Any GMM
software that accepts user weights can be used to implement this estimator. If  1 (Y1; X; �) = Y1��
and  0 (Y0; X; �) = 0, then b� exists in closed-form as

b� =XN

i=1
!Mi

Di
p0 (Xi)

Y1i; (14)
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which is a weighted version of the Horvitz-Thompson estimator of the marginal mean of Y1. Observe

that (14) replaces the empirical distribution function with the bF!M (z) = PN
i=1 !Mi1 (Zi � z) : An

important feature of bF!M (z) is thatZ
d

p0 (x)
d bF!M (z) = 1; Z

d

p0 (x)
RM (x) d bF!M (z) = Z RM (x) d bF!M (z) :

Replacing the empirical distribution function with bF!M (z) ensures that the inverse probability
weights, Di=p0 (Xi), sum to one and also that the inverse probability weighted mean of RM (Xi) in

the Di = 1 subsample equals its mean over the entire sample. Intuitively the �balancing�property of

the propensity score holds in the reweighted sample. For example if RM (Xi) =
�
1; Xi; : : : ; X

M�1
i

�
;

then using bF!M (z) ensures that the �rstM�1 inverse probability weighted sample moments of Xi in
the Di = 1 subsample equal their overall sample moments. Closely related estimators, including ones

appropriate for the unknown propensity score case, are developed fully in Egel, Graham and Pintos

(2007).13 They also develop connections with empirical likelihood (e.g., Imbens 1997). The main

point I want to emphasize here is how the equivalent GMM problem suggests new and conceptually

simple approaches to e¢ cient estimation of �0 in the semiparametric missing data problem.

5 Semiparametric functional restrictions

Consider the MAR setup augmented by Assumption 1.5. To the best of my knowledge, the max-

imal asymptotic precision with which �0 can be estimated in this model has not been previously

characterized. In this section I exploit the fact that Assumption 1.5 simply adds the two conditional

moment restrictions

E [ 0 (Y0; X; �0)� q0 (X; �00; h00 (X2) ;�0) jX] = 0 (15)

E [ 1 (Y1; X; �0)� q1 (X; �10; h10 (X2) ;�0) jX] = 0;

to the equivalent GMM problem (de�ned by (5) and (6)). I then apply Chamberlain�s (1992a)

approach to the new problem de�ned by (5), (6) and (15) to calculate the variance bound for �0.

13 In fact, replacing p0 (Xi) with a MLE in the above procedure is semiparametrically e¢ cient.
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For j = 0; 1 let qj (X) = qj (X; �j0; hj0 (X2) ;�0) and �j (X) = V( j (Yj ; X; �0)
��X) de�ne

�hj (X2)
K�1

= E

"
@qj (X)

@h0j

�����X2
#
; ��j (X2)

K�J
= E

"
@qj (X)

@�0j

�����X2
#

�hj (X2)
1�1

= E

" 
@qj (X)

@h0j

!0 �
�j (X)

(1� j) (1� p (X)) + jp (X)

��1 @qj (X)
@h0j

!�����X2
#

��j (X2)
J�J

= E

" 
@qj (X)

@�0j

!0 �
�j (X)

(1� j) (1� p (X)) + jp (X)

��1 @qj (X)
@�0j

!�����X2
#

�hj�j (X2)
1�J

= E

" 
@qj (X)

@h0j

!0 �
�j (X;�0)

(1� j) (1� p (X)) + jp (X)

��1 @qj (X)
@�0j

!�����X2
#
;

and

Aj (X2) = �hj (X2)�hj (X2)
�1�hj (X2)

0

Bj (X2) = ��j (X2)��hj (X2)�hj (X2)
�1�hj�j (X2)

Cj (X2) = ��j (X2)��hj�j (X2)
0�hj (X2)

�1�hj�j (X2)

and

� = E
�
(q1(X)� q0(X)) (q1(X)� q0(X))0

�
+ E [A0 (X2)] + E [B0 (X2)]E [C0 (X2)]�1 E [B0 (X2)]0

+ E [A1 (X2)] + E [B1 (X2)]E [C1 (X2)]�1 E [B1 (X2)]0 :

The variance bound for �0 is given in the following theorem.

Theorem 5.1 (Efficiency with Semiparametric Functional Restrictions) Suppose that
(i) the distribution of Z has a known, �nite support, (ii) there is some �0 2 B � RK ; �0 =
(�1; : : : ; �L)

0 where �l = p0 (xl) 2 P � [�; 1� �] for each l = 1; : : : ; L and some 0 < � < 1 (with

X = fx1; : : : ; xLg the known support of X), �j0 2 Dj � RJ for j = 0; 1 and hj0 (x2;m) = �0;m

2 L � R1 for j = 0; 1 and each m = 1; : : : ;M (with X2 = fx2;1; : : : ; x2;Mg the known support of X2)
such that restrictions (5), (6) and (15) hold, (iii) �0 and

If (�0) = E [�0 (X)]0 ��10 E [�0 (X)]

are nonsingular with probability one and (iv) other regularity conditions hold (cf., Chamberlain

1992b, Section 2), then If (�0) is the Fisher information bound for �0:
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Proof. See Appendix A.
The following Corollary gives the bound when q0 (X;�0) and q1 (X;�0) are parametrically spec-

i�ed.

Corollary 5.1 (Efficiency with Parametric Functional Restrictions)When qj (X;�0) =
q0 (X; �j0;�0) for some �j0 2 Dj � RJ ; j = 0; 1 and the other assumptions of Theorem 5.1 are

satis�ed then

If (�) = E [�0 (X)]0
�
E
�
(q1(X)� q0(X)) (q1(X)� q0(X))0

�
+ E [��1 (X)]E [��1 (X)]

�1 E [��1 (X)]
0

+E [��0 (X)]E [��0 (X)]
�1 E [��0 (X)]

0
i�1

E [�0 (X)]

is the Fisher information bound for �0:

The general expression for If (�0) is admittedly unwieldy, however it is interpretable for some
important special cases. A leading example is when �0 equals the ATE so that  1 (Y1; X; �) = Y1

and  0 (Y0; X; �) = Y1+� and the CEFs of Y0 and Y1 take a partially linear structure. If the variance

of Y0 and Y1 are both constant in X (but homoscedasticity is not part of the prior restriction) and

we de�ne e0 (X2) = Pr (D = 1jX2), then evaluating the bound gives

If (�0) = V ar
�
X 0
1 (�1 � �0) + h1 (X2)� h0 (X2)

�
+ �21

�
E
�

1

e0 (X2)

�
+E

�
C (D;X 0

1jX2)
e0 (X2)

�
E [e0 (X2)V (X1jX2; D = 1)]�1 E

�
C (D;X 0

1jX2)
e0 (X2)

�0�
+ �20

�
E
�

1

1� e0 (X2)

�
+E

�
C (D;X 0

1jX2)
1� e0 (X2)

�
E [(1� e0 (X2))V (X1jX2; D = 0)]�1 E

�
C (D;X 0

1jX2)
1� e0 (X2)

�0�
;

where C (A;Bj c) = Cov (A;BjC = c) : After some manipulation, this expression agrees with the

one obtained by Wang, Linton and Härdle (2004, Theorem 3.4) (who did assume normality and

homoscedasticity as part of the prior restriction).14

When is imposing the partial linear structure on E [Y0jX] and E [Y1jX] likely to be valuable? If
X1 is highly predictive for treatment in subpopulations homogenous in X2 (i.e., C (D;X1jX2) 6= 0),
then within such subpopulations the distribution of X1 will di¤er across treatment and controls. In

14To be precise Wang, Linton and Härdle (2004) only provide the bound for the marginal mean of Y1, but their
result easily generalizes to the ATE estimand.
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such situations imposing the restriction that X1 enters E [Y0jX] and E [Y1jX] linearly facilitates
extrapolation. This may substantially improve the precision with which �0 can be estimated.

E¢ cient estimation under Assumption 1.5 is conceptually straightforward (Appendix A pro-

vides expressions for the e¢ cient in�uence function). For example, the semiparametric regression

imputation estimator which solves

XN

i=1
Di

n
 1i(Y1i; Xi;

b�)� q0(Xi;b�0;bh0 (X2i) ; b�)o
� (1�Di)

n
 0(Y0i; Xi;

b�)� q1(Xi;b�1;bh1 (X2i) ; b�)o = 0;
should be e¢ cient as long as the estimates of b�0 and b�1 are semiparametrically e¢ cient. Wang,
Linton and Härdle (2004), however, argue that such an estimator is unlikely to be useful in practice

(p. 338). For example, in the partially linear model semiparametric e¢ cient estimation of b�0 requires
nonparametric estimation of the conditional variance of Y0 given X; a di¢ cult problem when the

dimension of X is high.

When q0 (X;�) and q1 (X;�) are parametrically speci�ed, the imputation estimator is generally

considered unattractive due to its sensitivity to misspeci�cation (e.g., Imbens 2004, p. 24). Similar

concerns arise in the semiparametric case: partial linear imputation is an e¢ cient way to �deal with�

limited (conditional on X2) overlap of X1 across treatment and controls but it may be very biased if

the partial linear structure is false. In practice, the e¢ ciency gains promised by Theorem 5.1, must

be weighed against the risk of bias due to violations of Assumption 1.5.

6 Equivalent GMM problem for semiparametric data combination

Consider the following multinomial sampling procedure. With probability Q0 the analyst randomly

draws a unit from a population with distribution function G0 and records its realizations of Y1 and

X; with probability 1 � Q0 the analyst randomly draws a unit from a di¤erent population (with

distribution function H0) and records its realizations of Y0 and X0. Let D = 1 if a unit so sampled is

from the �rst population and zero otherwise. The sampling distribution induced by the multinomial

scheme, F0, has density

f0 (z; d) = Qd0 (1�Q0)
1�d g0 (z)

d h0 (z)
1�d ;

where g0 (z) and h0 (z) are the densities of G0 and H0. The parameter of interest, �0, is de�ned by

the restriction

EF0 [ (Z; �0)jD = 1] = EG0 [ (Z; �0)] = 0: (16)
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A familiar example helps to �x ideas. Deheija and Wahba (1999) combine two distinct samples

to estimate the e¤ect of the National Supported Work (NSW) demonstration, a labor training

program, on post-intervention earnings. Their merged sample consists of 185 NSW participants from

an evaluation sample and 2,490 non-participants drawn from the Panel Study of Income Dynamics

(PSID). Let Y1 and Y0 denote the potential post-intervention earnings associated with assignment

to NSW training (D = 1) and non-training (D = 0) respectively. This merged sampled cannot be

conceptualized as a random one from a meaningful population. Deheija and Wahba (1999) therefore

focus on estimating a feature of the �study�population (NSW participants). In my notation, they

set  1 (Y1; X; �) = Y1 and  0 (Y0; X; �) = Y0 + � and de�ne �0 as the solution to (16) or

�0 = EF0 [Y1 � Y0jD = 1] ;

which gives the average treatment e¤ect on the treated (ATT).

I call the problem de�ned by restriction (16) and Assumptions 1.1 to 1.4 the semiparametric

data combination problem.15 Chen, Hong and Tarozzi (2004), Tarozzi and Deaton (2007) and Egel,

Graham and Pintos (2007) provide several examples of semiparametric data combination problems.

The bound for these problems was �rst calculated by Hahn (1998) for the special case where �0 is the

ATT and the propensity score is either completely known or unknown. Recently Chen, Hong and

Tarozzi (2004, 2007) have extended these results to the general moment condition case and have also

considered the bound when the propensity score is known to belong to a parametric family (indexed

by an unknown parameter).

When the propensity score is unknown the information bound is (Chen, Hong and Tarozzi 2004,

2007)

J (�0) = E
�
p0 (X)

Q0
�0 (X)

�0
E [�0 (X)]�1 E

�
p0 (X)

Q0
�0 (X)

�
; (17)

with

�0 (x) =

�
p0 (x)

Q0

�2��0 (x;�0)
1� p0 (x)

+
�1 (x;�0)

p0 (x)
(18)

+
1

p0 (x)
[q1 (x;�0)� q0 (x;�0)] [q1 (x;�0)� q0 (x;�0)]0

�
:

When p0 (X) = p (X; 
0) for some known function p (�; �) and unknown parameter 
0 the bound is
15 In fact for data combination problems Assumption 1.4 can be weakened. The propensity score can be zero for

some values of X but still needs to be strictly below one for all values of X (i.e., �weak overlap�).
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given by (17) with

�0 (x) =

�
p0 (x)

Q0

�2��0 (x;�0)
1� p0 (x)

+
�1 (x;�0)

p0 (x)
(19)

+ [q1 (x;�0)� q0 (x;�0)] [q1 (x;�0)� q0 (x;�0)]0
	

+ E
�
q1 (X;�0)� q0 (X;�0)

Q0

@p (X; 
0)

@


0�
E
�
S
S

0



��1 E �@p (X; 
0)
@


q1 (X;�0)� q0 (X;�0)0

Q0

�
;

where S
 =
D�p0(X)

p0(X)[1�p0(X)]
@p(X;
0)

@
 : Finally, when p0 (X) is known the bound is given by (17) with

�0 (x) =

�
p0 (x)

Q0

�2��0 (x;�0)
1� p0 (x)

+
�1 (x;�0)

p0 (x)
(20)

+ [q1 (x;�0)� q0 (x;�0)] [q1 (x;�0)� q0 (x;�0)]0
	
:

Here I provide an analog of Theorem 2.1 for this problem and brie�y discuss some of its implica-

tions for e¢ cient estimation. I work with an identifying moment of (cf., Hirano, Imbens and Ridder

2003)

EF0
�
p0 (X)

Q0

�
D

p0 (X)
 1 (Y1; X; �0)�

1�D
1� p0 (X)

 0 (Y0; X; �0)

��
= 0; (21)

and the auxiliary moment given by (6).

Theorem 6.1 (GMM Equivalence for Data Combination Problems with Unknown Propen-

sity Score) Suppose that (i) the distribution of Z has a known, �nite support, (ii) there is some un-

known �0 2 B � RK and �0 = (�1; : : : ; �L)
0 where �l = p0 (xl) 2 P � [0; 1� �] for each l = 1; : : : ; L

and some 0 < � < 1 (with X = fx1; : : : ; xLg the known support of X) such that restrictions (21) and
(6) hold, (iii) E [�0 (X)] and J (�0) = E [�0 (X)]0 E [�0 (X)]�1 E [�0 (X)] are nonsingular with prob-
ability one for �0 (x) as de�ned by (18) and (iv) other regularity conditions hold (cf., Chamberlain

1992b, Section 2), then J (�0) is the Fisher information bound for �0:

Proof. See Appendix A.
The bounds for the cases where the propensity score belongs to a parametric family and is known

are given by the following Corollaries.

Corollary 6.1 (GMM Equivalence for Data Combination Problems with Parametric

Propensity Score) Suppose the conditions of Theorem 6.1 hold and p0 (x) = p (x; 
0) 2 P � [0; 1� �]
for some unknown 
0 2 G � Rdim(
); 0 < � < 1 and all x 2 X , then J (�0) is the Fisher information
bound for �0 with �0 (x) as given in (19).
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Corollary 6.2 (GMM Equivalence for Data Combination Problems with Known Propen-

sity Score) Suppose the conditions of Theorem 6.1 hold with p0 (x) known, then J (�0) is the Fisher
information bound for �0 with �0 (x) as given in (20).

Since their respective bounds coincide, I conclude that restrictions (21) and (6) exhaust the

information content of the semiparametric data combination model. The equivalent GMM problem

can be used to provide fresh intuitions for various features of the data combination problem. These

extensions are relatively straightforward. Here I con�ne myself to a brief comment about e¢ cient

estimation.

De�ne the moment function

m (Z; p0 (X) ; q0 (X;�0) ; q1 (X;�0) ; �0) =
p0 (X)

Q0

�
D

p0 (X)
 1 (Y1; X; �)�

1�D
1� p0 (X)

 0 (Y0; X; �)

�
�E�

�
p0 (X)

Q0

�
D

p0 (X)
 1 (Y1; X; �0)�

1�D
1� p0 (X)

 0 (Y0; X; �0)

����� D

p0 (X)
� 1;X

�
=

p0 (X)

Q0

�
D

p0 (X)
 1 (Y1; X; �)�

1�D
1� p0 (X)

 0 (Y0; X; �)

�
�
q1 (X;�0)

p0 (X)
+
q0 (X;�0)

1� p0 (X)

�
(D � p0 (X))

�
:

Now consider the estimator which chooses b� to solve
1

N

XN

i=1
m(Zi; bp0 (Xi) ; bq0(Xi; b�); bq1(Xi; b�); b�);

with bq0(Xi; b�) and bq1(Xi; b�) nonparametric series estimates as described in Section 4 and bp0 (Xi)
a series estimate, the parametric MLE, or the known propensity score (as is appropriate). Using

standard results on semiparametric- or parametric- two-step estimation (e.g., Newey 1994a, 1994b,

Newey and McFadden 1994) it is straightforward to show that b� is semiparametrically e¢ cient
(under regularity conditions). An advantage of this approach to estimation is that the same moment

condition is used for all levels of prior knowledge of the propensity score. In contrast both the IPW

and imputation estimators of, respectively, Hirano, Imbens and Ridder (2003) and Chen, Hong and

Tarozzi (2004, 2007) must be modi�ed to e¢ ciently incorporate prior knowledge about the selection

process.
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7 Conclusion

This paper has shown that the semiparametric e¢ ciency bound associated with what I have termed

the �MAR setup�is equivalent to the bound associated with a particular augmented set of moment

restrictions. The demonstration of equivalence improves our understanding of this class of estima-

tion problems. Several �puzzles�in the missing data literature can be understood as special cases of

standard GMM results (e.g., Newey and McFadden 1994). In particular, I have shown that redun-

dancy of knowledge of the propensity score follows from information matrix block diagonality, that

IPW with a nonparametric estimate of the propensity score is equivalent to solving a sequence of

unconditional augmented moment problems (explaining the e¢ ciency gains found by Hirano, Im-

bens and Ridder 2003), and, �nally, that double robustness of AIPW follows from standard results

on sequential GMM estimators (I also show that Wooldridge�s (2007) three-step estimator for the

average treatment e¤ect is locally e¢ cient as well as doubly robust).

Equivalence is also constructive, suggesting new estimators with desirable features not displayed

by other currently available e¢ cient estimators. For example, the �rst estimator outlined in Section

4 allows a researcher to incorporate smoothness and exclusion priors on the propensity score while

maintaining asymptotic e¢ ciency and robustness. As noted earlier, the �second order�expansions

of Ichimura and Linton (2005) suggest that imposing such restrictions may result in appreciably

better small sample performance. I am aware of no other e¢ cient estimation strategy with similar

properties.

I also derive the e¢ ciency bound for �0 when semiparametric restrictions on the CEFs of

 1 (Y1; X; �) and  0 (Y0; X; �) given X are imposed. My result fully generalizes the work of Wang,

Linton and Härdle (2004) for the partial linear case under normality and homoscedasticity.

Finally I provide an equivalent GMM problem for a class of semiparametric data combination

models which covers the ATT estimand. Inspired by the equivalent GMM problem I suggest an

approach to e¢ cient estimation that automatically makes optimal use of smoothness and exclusion

priors on the propensity score. Again I am aware of no other e¢ cient estimators with this property.

This paper suggests several open questions that may merit further research. First, a rigorous

development of the various estimators suggested here is required, as is an evaluation of their small

sample properties. Second, GMM equivalence may facilitate the derivation of new results on the

�higher order�properties of various estimates of �0 as in Ichimura and Linton (2005) and Imbens,

Newey and Ridder (2005). Consider the case where the propensity score is parametrically speci�ed.

Let b
 be the MLEs of the parameters indexing the parametric family and b� the solution to augmented
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problem
NX
i=1

0@ �
Di

p(Xi;b
) � 1
�
RM (Xi)

Di
p(Xi;b
) 1

�
Y1i; Xi; b��� 1�Di

1�p(Xi;b
) 0
�
Y0i; Xi; b��

1A = 0:

If M grows with N at the appropriate rate this estimator will attain the e¢ ciency bound. However,

in �nite samples it is not known how to optimally choose M: However the similarity between this

problem and that of choosing the number of moments in conditional moment problems, as in Donald,

Imbens and Newey (2002), suggests a natural starting point.

Finally, the modi�ed Horvitz-Thompson estimator discussed in Section 4 hints at connections

with empirical likelihood. Some of these connections are developed more fully in Egel, Graham and

Pintos (2007).

A Proofs and derivations

A.1 Proof of Theorem 2.1

To simplify notation in the Appendices let � denote the true parameter value �0 unless explicitly stated otherwise
(similarly the �0�subscript is removed from other objects, such as the propensity score, when doing so does not cause
confusion).

The proof closely follows that of Theorem 1 in Chamberlain (1992b) and consists of three steps.

Step 1: Demonstration of equivalence with unconditional GMM problem The �rst step is to show that
restrictions (5) and (6) are, in the multinomial case, equivalent to a �nite set of unconditional moment restrictions.
Under the multinomial assumption we have X 2 fx1; : : : ; xLg for some L: Let the L� 1 vector B have a 1 in the lth

row if X = xl and zeros elsewhere and � l = Pr (X = xl) (observe that
PL
l=1 � l = 1). Denote the value of the selection

probability at X = xl by �l and de�ne � = f�1; : : : ; �Lg
0 ; this vector gives the values of p (�) at each of the mass points

of X. Using this notation we can write p (X) = B0�:
Under the multinomial assumption restrictions (5) and (6) are equivalent to the L+K�1 vector of unconditional

moment restrictions

E [m (Z; �; �)] = E
�

m1 (Z; �)

m2 (Z; �; �)

�
= 0;

where

m1 (Z; �) = B

�
D

B0�
� 1
�
, m2 (Z; �; �) =

D

B0�
 1 (Y1; X; �)�

1�D

1�B0�
 0 (Y0; X; �) :

To verify that this is the case note that by iterated expectations

E [m1 (Z; �)] =

0BBB@
�1E

h�
D

p(X)
� 1
����X = x1

i
...

�LE
h�

D
p(X)

� 1
����X = xL

i
1CCCA ;

and hence E [m1 (Z; �; �)] = 0 if and only if E
h

D
p(X)

� 1
���Xi = 0 for all X 2 fx1; : : : ; xLg : We also have

E [m2 (Z; �; �)] = E
�

D

p (X)
 1 (Y1; X; �)�

1�D

1� p (X)
 0 (Y0; X; �)

�
= 0;
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so E [m (Z; �; �)] = 0 if and only if (5) and (6) are satis�ed as claimed.

Step 2: Application of Lemma 2 of Chamberlain (1987) Chamberlain (1987, Lemma 2) shows that for Z a
multinomial random variable the variance bound for � under the sole restriction that E [m (Z; �; �)] = 0 is��

M 0V �1M
��1�

22

where
��

M 0V �1M
��1�

22

is the lower-right K �K block of
�
M 0V �1M

��1
with

V
def
� E

�
m (Z; �; �)m (Z; �; �)0

�
; M

def
� E

�
@m (Z; �; �)

@�0
;
@m (Z; �; �)

@�0

�
:

The application of Chamberlain�s result requires that M has full column rank and that V is non-singular. The
calculations made in Step 3 below demonstrate that these conditions are implied by the assumption that E [�(X)] has
full column rank, p (X) is bounded away from zero and one and non-singularity of E [
 (X)].

Step 3: Calculation of the bound The �nal step is to solve for an explicit expression for
��

M 0V �1M
��1�

22

.

This requires some simple, albeit tedious, algebra. Partitioning V0

V
L+K�L+K

=

�
V11 V12
V 012 V22

�
we have the lower right-hand block, letting  j =  j

�
Yj ; X; �

�
and qj (X) = E

�
 j
��X� for j = 0; 1, given by

V22 = E
�
m2 (Z; �; �)m2 (Z; �; �)

0� (22)

= E

"�
D 1
p (X)

� (1�D) 0
1� p (X)

��
D 1
p (X)

� (1�D) 0
1� p (X)

�0#

= E

"
E
�
 1 

0
1

��X�
p (X)

+
E
�
 0 

0
0

��X�
1� p (X)

#

= E
�
V ar ( 1jX)

p (X)
+
1� p (X)

p (X)
q1 (X) q1 (X)

0 + q1 (X) q1 (X)
0

V ar ( 0jX)
1� p (X)

+
p (X)

1� p (X)
q0 (X) q0 (X)

0 + q0 (X) q0 (X)
0
�

=
XL

l=1
� l

�
�1;l
�l

+
1� �l
�l

q1;lq
0
1;l + q1;lq

0
1;l

+
�0;l
1� �l

+
�l

1� �l
q0;lq

0
0;l + q0;lq

0
0;l

�
;

where
qj;l = E

�
 j
�
Yj ; X; �

�
jX = xl

�
; �j;l = V ar

�
 j
�
Yj ; X; �

�
jX = xl

�
; j = 0; 1:
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The upper right-hand block is similarly derived as

V12 = E
�
m1 (Z; �)m2 (Z; �; �)

0� (23)

= E

"
B

�
D

B0�
� 1
��

D 1 (Y1; X; �)

B0�
� (1�D) 0 (Y0; X; �)

1�B0�

�0#

= E
�
B

�
1� p (X)

p (X)
q1 (X)

0 + q0 (X)
0
��

=

0BB@
�1

1��1
�1

q01;1 + �1q
0
0;1

...
�L

1��L
�L

q01;L + �Lq
0
0;L

1CCA :

Finally the upper left-hand block is given by

V11 = E
�
B

�
D

B0�
� 1
��

D

B0�
� 1
�
B0
�

(24)

= E
�
BB0

�
D

p (X)
� 1
��

D

p (X)
� 1
��

= E
�
BB0

�
1� p (X)

p (X)

��
= diag

n
�1

1��1
�1

� � � �L
1��L
�L

o
:

Partition M

M
L+K�L+K

=

�
M1� 0

M2� M2�

�
;

where, from similar calculations to those made above, we have

M1� = �diag
n

�1
�1

� � � �L
�L

o
(25)

M2� = �
�
�1

q1;1
�1

+ �1
q0;1
1��1 � � � �L

q1;L
�L

+ �L
q0;L
1��L

�
; M2� = E [� (X)] :

Applying standard results on partitioned inverses then yields

M�1 =

 
M�1
1� 0

�M�1
2� M2�M

�1
1� M�1

2�

!
;

Note that the existence of M�1
1� and M�1

2� follows from the assumptions that p (X) is bounded away from zero and
one and the assumption that E [� (X)] has full column rank.

Redundancy of knowledge of the propensity score suggests that M�1VM�10 will be block diagonal. A su¢ cient
condition for this is that (cf., Prokhorov and Schmidt 2006)

V 012 =M2�M
�1
1� V11: (26)

To verify that this condition holds use (24) and (25) to show that

M2�M
�1
1� V11 =

�
�1

1��1
�1

q1;1 + �1q0;1 � � � �L
1��L
�L

q1;L + �Lq0;L

�
;
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which equals V 012 as required. Exploiting the resulting simpli�cations yields

M�1VM�10 =

 
M�1
1� V11M

�1
1� 0

0 M�1
2�

�
V22 � V 012V

�1
11 V12

�
M�10
2�

!

and hence �
M�1VM�10

�
22
=M�1

2�

�
V22 � V 012V

�1
11 V12

�
M�10
2� :

By M2�M
�1
1� =

�
q1;1 +

�1
1��1 q0;1; : : : ; q1;L +

�L
1��L q0;L

�
and (26) we have V 012V

�1
11 V12 equal to

V
0

12V
�1
11 V12 = M2�M

�1
1� V11M

�10
1� M 0

2�

=

LX
l=1

� l
1� �l
�l

q1;lq
0
1;l + � l

�l
1� �l

q0;lq
0
0;l + � lq1;lq

0
0;l + � lq0;lq

0
1;l

= E
�
1� p (X)

p (X)
q1 (X) q1 (X)

0 +
p (X)

1� p (X)
q0 (X) q0 (X)

0

+q1 (X) q0 (X)
0 + q0 (X) q1 (X)

0� ;
and hence, using (22),

V22 � V 012V
�1
11 V12 = E

�
V ar ( 1jX)

p (X)
+
V ar ( 0jX)
1� p (X)

+ (q1 (X)� q0 (X)) (q1 (X)� q0 (X))
0�

= E [� (X)] :

Using this result and taking the partitioned determinant gives

det (V ) = det (V11) det
�
V22 � V 012V

�1
11 V12

�
= E

�
1� p (X)

p (X)

�
det fE [� (X)]g ;

and hence V is non-singular under strong overlap (Assumption 1.4) and non-singularity of E [
 (X)] :
Since M2� = E [� (X)] we have

I (�0) = E [� (X)]
0 E [� (X)]�1 E [� (X)] ;

as claimed.
For completeness the upper left-hand portion of the full variance covariance matrix is given by

M�1
11 V11M

�10
11 = I�1 (�0) =

0BB@
1

f(x1)
p (x1) (1� p (x1)) � � � 0

...
. . .

...
0 � � � 1

f(xL)
p (xL) (1� p (xL))

1CCA
where f (x) =

PL
l=1 � l � 1 (x = xl) :
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A.2 Proof of Theorem 5.1

The �rst two steps of the proof of Theorem 5.1 are analogous to those of Theorem 2.1 and therefore omitted. The
actual calculation of the bound, while conceptually straightforward, is considerably more tedious. Details of this step
are provided here.

Assume that the marginal distributions of X1 and X2 have I and M points of support with probabilities
�1; : : : ; �I and &1; : : : ; &M . Let L = I �M and � im denote the joint probability Pr

�
X1 = x1;i; X2 = x2;m

�
. Let �j =�

�j;1; : : : ; �j;M
�0
be the values of hj (�) at each of the mass points ofX2. Let C be aM�1 vector with a 1 in themth row

ifX2 = x2;m and zeros elsewhere. Finally it is convenient to use the shorthand 	 = [q1 (X)� q0 (X)] [q1 (X)� q0 (X)]
0 :

In what follows I use both the single and double subscript notation to denote a point on the support of X as is con-
venient. We can map between the two notations by observing that xim = xl for l = (i� 1)M +m.

For the multinomial case the conditional moment problem de�ned by (5), (6) and (15) is equivalent to the
unconditional problem

E [m (Z; �)] = E

2664
m1 (Z; �)

m2 (Z; �; �0; �0; �)

m3 (Z; �; �1; �1; �)

m4 (Z; �; �)

3775 = 0;
with � =

�
�0; �00; �

0
0; �

0
1; �

0
1; �

0�0 and
m1 (Z; �)
L�1

= B

�
D

B0�
� 1
�
; m2 (Z; �; �0; �0; �)

LK�1
= � (B 
 IK)

�
1�D

1�B0�

�
 (Z; �)� q0(X; �0; C

0�0;�)
��

;

m3 (Z; �; �1; �1; �)
LK�1

= (B 
 IK)

�
D

B0�

�
 1 (Y1; X; �)� q1(X; �1; C

0�1;�)
��

m3 (Z; �; �)
K�1

=
D

B0�
 1 (Y1; X; �)�

1�D

1�B0�
 0 (Y0; X; �) ;

where, for j = 0; 1, qj(X; �j ; hj (X2) ;�) is a known function, �j an unknown �nite-dimensional parameter and hj (X2)

an unknown function of X2 with X =
�
X 0
1; X

0
2

�0
.

Partition V = E
�
m (Z; �)m (Z; �)0

�
as

V
L+2KL+K�L+2KL+K

=

0BB@
V11
V21 V22
V31 V32 V33
V41 V42 V43 V44

1CCA ;
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where, using calculations similar to those given in the proof of Theorem 2.1, we have

V11
L�L

= diag

�
�1
1� �1
�1

; : : : ; �L
1� �L
�L

�
; V12

L�KL
= (0; : : : ; 0) ; V13

L�KL
= (0; : : : ; 0) ;

V0;22
KL�KL

= diag

�
�1

�0;1
1� �1

; : : : ; �L
�0;L
1� �L

�
; V23

KL�KL
= 0;

V33
KL�KL

= diag

�
�1
�1;1
�1

; : : : ; �L
�1;L
�L

�
V41
K�L

=

�
�1

�
1� �1
�1

q1;1 + q0;1

�
; : : : ; �L

�
1� �L
�L

q1;L + q0;L

��
V42

K�KL
=

�
�1

�0;1
1� �1

; : : : ; �L
�0;L
1� �L

�
; V43

K�KL
=

�
�1
�1;1
�1

; : : : ; �L
�1;L
�L

�
V44
K�K

=
XL

l=1
� l

�
�1;l
�l

+
1� �l
�l

q1;lq
0
1;l + q1;lq

0
1;l +

�0;l
1� �l

+
�l

1� �l
q0;lq

0
0;l + q0;lq

0
0;l

�
;

and hence

V =

0BB@
V11 0 0 V 041
0 V22 0 V 042
0 0 V33 V 043
V41 V42 V43 V44

1CCA
We can partition the Jacobian matrix

M
L+2KL+K�L+2M+2J+K

=

0BB@
M1� 0 0 0 0 0

0 M2�0 M2�0 0 0 0

0 0 0 M3�1 M3�1 0

M4� 0 0 0 0 M4�

1CCA ;

where

M1�
L�L

= �diag
�
�1
�1
; : : : ;

�L
�L

�

M2�0
KL�M

=
�
H 0
0;1; : : : ; H

0
0;I

�0
; M2�0

KL�J
=

0B@ �1r�0q0;1
...

�Lr�0q0;L

1CA

M3�1
KL�M

= �
�
H 0
1;1; : : : ; H

0
1;I

�0
; M3�1

KL�J
= �

0B@ �1r�1q1;1
...

�Lr�1q1;L

1CA
M4� = �

�
�1

�
q1;1
�1

+
q0;1
1��1

�
� � � �L

�
q1;L
�L

+
q0;L
1��L

� �
; M4� = E [� (X)] :

where Hj;i = diag
�
� i1rhj qj;i1; : : : ; � iMrhj qj;iM

	
for i = 1; : : : ; I and j = 0; 1 with qj;im = qj(xim; �j ; hj

�
x2;m

�
;�).

The variance bound for � is given by the lower right-hand K�K block of
�
M 0V �1M

��1
:We begin by calculating

V �1: Partition V

V =

�
B11 B12
B012 B22

�
;
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with
B11

L+2KL�L+2KL
= diag

�
V11 V22 V33

	
; B12

L+2KL�K
=
�
V41 V42 V43

�0
; B22 = V44:

Now partition V �1 as

V �10 =

�
C11 C12
C012 C22

�
; (27)

where the partitioned inverse formula gives

C11
L+2KL�L+2KL

= diag
�
V �111 V �122 V �133

	
+D0E [	]�1D; C012

K�L+2KL
= �E [	]�1D; C22

K�K
= E [	]�1

with D =
�
A0 (�L 
 IK)

0 (�L 
 IK)
0 � = B012B

�1
11 and A =

�
q1;1 +

�1
1��1 q0;1 � � � q1;L +

�L
1��L q0;L

�0
a L�K

matrix.
Expression (27) follows since

C22 =
�
B22 �B012B

�1
11 B12

��1
=

�XL

l=1
� l

�
�1;l
�l

+
1� �l
�l

q1;lq
0
1;l + q1;lq

0
1;l +

�0;l
1� �l

+
�l

1� �l
q0;lq

0
0;l + q0;lq

0
0;l

�
�
�
�1

�
1� �1
�1

q1;1 + q0;1

�
; : : : ; �L

�
1� �L
�L

q1;L + q0;L

�
; �1

�0;1
1� �1

; : : : ; �L
�0;L
1� �L

; �1
�1;1
�1

; : : : ; �L
�1;L
�L

�
�diag

�
�1
1� �1
�1

; : : : ; �L
1� �L
�L

; �1
�0;1
1� �1

; : : : ; �L
�0;L
1� �L

; �1
�1;1
�1

; : : : ; �L
�1;L
�L

��1
�
�
�1

�
1� �1
�1

q1;1 + q0;1

�
; : : : ; �L

�
1� �L
�L

q1;L + q0;L

�
; �1

�0;1
1� �1

; : : : ; �L
�0;L
1� �L

; �1
�1;1
�1

; : : : ; �L
�1;L
�L

�0)�1
=

�XL

l=1
� l

�
�1;l
�l

+
1� �l
�l

q1;lq
0
1;l + q1;lq

0
1;l +

�0;l
1� �l

+
�l

1� �l
q0;lq

0
0;l + q0;lq

0
0;l

�
�
XL

l=1
� l

�
1� �l
�l

q1;lq
0
1;l +

�l
1� �l

q0;lq
0
0;l + q1;lq

0
0;l + q0;lq

0
0;1 +

�0;l
1� �l

+
�1;l
�l

��
=

�XL

l=1
� l
�
q1;l � q0;l

� �
q1;l � q0;l

�0��1
= E [	]�1 :

We also have C012 = �C22B012B�111 = �E [	]�1D and

C11 = B�111 +B�111 B12C22B
0
12B

�1
11 = diag

�
V �111 V �122 V �133

	
+D0E [	]�1D:
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We now evaluate If (�) =M 0V �1M to

0BBBBBBBBB@

M 0
1�V

�1
11 M1� 0 0

0 M 0
2�0

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2�0 M 0

2�0

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2�0

0 M 0
2�0

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2�0 M 0

2�0

h
V �122 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M2�0

0 M 0
3�1

(�L 
 IK)E [	]�1 (�L 
 IK)
0M2�0 M 0

3�1
(�L 
 IK)E [	]�1 (�L 
 IK)

0M2�0

0 M 0
3�1

(�L 
 IK)E [	]�1 (�L 
 IK)
0M2�0 M 0

3�1
(�L 
 IK)E [	]�1 (�L 
 IK)

0M2�0

0 �M 0
4�E [	]

�1 (�L 
 IK)
0M2�0 �M 0

4�E [	]
�1 (�L 
 IK)

0M2�0

0 0

M 0
2�0

(�L 
 IK)E [	]�1 (�L 
 IK)
0M3�1 M 0

2�0
(�L 
 IK)E [	]�1 (�L 
 IK)

0M3�1

M 0
2�0

(�L 
 IK)E [	]�1 (�L 
 IK)
0M3�1 M 0

2�0
(�L 
 IK)E [	]�1 (�L 
 IK)

0M3�1

M 0
3�1

h
V �133 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M3�1 M 0

3�1

h
V �133 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M3�1

M 0
3�1

h
V �133 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M3�1 M 0

3�1

h
V �133 + (�L 
 IK)E [	]�1 (�L 
 IK)

0
i
M3�1

�M 0
4�E [	]

�1 (�L 
 IK)
0M3�1 �M 0

4�E [	]
�1 (�L 
 IK)

0M3�1

0

�M 0
2�0

(�L 
 IK)E [	]�1M4�

�M 0
2�0

(�L 
 IK)E [	]�1M4�

�M 0
3�1

(�L 
 IK)E [	]�1M4�

�M 0
3�1

(�L 
 IK)E [	]�1M4�

M 0
4�E [	]

�1M4�

1CCCCCCCA
where I have made use of the equality M 0

1�A =M 0
4�:

Observe that, as in the standard semiparametric missing data model, If (�) satis�es Stein�s condition for redun-
dancy of knowledge of the propensity score for �: However the structure of the bound does indicate that knowledge of
the �nite dimensional parameters and nonparametric portions of the CEFs of  1 (Y1; X; �) and  0 (Y1; X; �) given X
does increase the precision with which � can be estimated.

The variance bound for �0 is given by the lower right-hand K �K block of the inverse of this matrix. Because of
block diagonality we only need to consider the lower right-hand block. Partition this block as�

B11 B12
B012 B22

�
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where B11, B12 and B22 are rede�ned to equal

B11 =

0BBB@
M 0
2�0

V �122 M2�0 M 0
2�0

V �122 M2�0 0 0

M 0
2�0

V �122 M2�0 M 0
2�0

V �122 M2�0 0 0

0 0 M 0
3�1

V �133 M3�1 M 0
3�1

V �133 M3�1

0 0 M 0
3�1

V �133 M3�1 M 0
3�1

V �133 M3�1

1CCCA

+

0BB@
M 0
2�0

(�L 
 IK)

M 0
2�0

(�L 
 IK)

M 0
3�1

(�L 
 IK)

M 0
3�1

(�L 
 IK)

1CCAE [	]�1
�
�
(�L 
 IK)

0M0;2�0 (�L 
 IK)
0M0;2�0 (�L 
 IK)

0M0;3�1 (�L 
 IK)
0M0;3�1

�
B12 =

0BB@
M 0
2�0

(�L 
 IK)

M 0
2�0

(�L 
 IK)

M 0
3�1

(�L 
 IK)

M 0
3�1

(�L 
 IK)

1CCAE [	]�1M4�

B33 = M 0
4�E [	]

�1M4� :

The information bound is therefore given by

If (�0) = B22 �B012B
�1
11 B12

= M 0
4�E [	]

�1M4� �M 0
4�E [	0]

�1

�
�
(�L 
 IK)

0M0;2�0 (�L 
 IK)
0M0;2�0 (�L 
 IK)

0M0;3�1 (�L 
 IK)
0M0;3�1

�
�

8>>><>>>:
0BBB@

M 0
2�0

V �122 M2�0 M 0
2�0

V �122 M2�0 0 0

M 0
2�0

V �122 M2�0 M 0
2�0

V �122 M2�0 0 0

0 0 M 0
3�1

V �133 M3�1 M 0
3�1

V �133 M3�1

0 0 M 0
3�1

V �133 M3�1 M 0
3�1

V �133 M3�1

1CCCA

+

0BB@
M 0
2�0

(�L 
 IK)

M 0
2�0

(�L 
 IK)

M 0
3�1

(�L 
 IK)

M 0
3�1

(�L 
 IK)

1CCAE [	]�1
�
�
(�L 
 IK)

0M0;2�0 (�L 
 IK)
0M0;2�0 (�L 
 IK)

0M0;3�1 (�L 
 IK)
0M0;3�1

�	�1
�

0BB@
M 0
2�0

(�L 
 IK)

M 0
2�0

(�L 
 IK)

M 0
3�1

(�L 
 IK)

M 0
3�1

(�L 
 IK)

1CCAE [	]�1M4�

= M 0
4�

�
E [	] +

�
(�L 
 IK)

0M2�0 (�L 
 IK)
0M2�0

�
�
 

M 0
2�0

V �122 M2�0 M 0
2�0

V �122 M2�0

M 0
2�0

V �122 M2�0 M 0
2�0

V �122 M2�0

!�1 �
M 0
2�0

(�L 
 IK)

M 0
2�0

(�L 
 IK)

�
+
�
(�L 
 IK)

0M3�1 (�L 
 IK)
0M3�1

�
�
 

M 0
3�1

V �133 M3�1 M 0
3�1

V �133 M3�1

M 0
3�1

V �133 M3�1 M 0
3�1

V �133 M3�1

!�1
�
�
M 0
3�1

(�L 
 IK)

M 0
3�1

(�L 
 IK)

�35�1M4� ;

where I have used the identity A�1 �A�1U(B�1 + U 0A�1U)�1U 0A�1 =
�
A+ UBU 0

��1
:
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Using the partitioned inverse formula and multiplying out the expression in [�] above then gives

If (�0) = M 0
4� � [E [	] + (�L 
 IK)

0
h
M2�0

�
M 0
2�0V

�1
22 M2�0

�
M 0
2�0

+

�
M2�0 �M2�0

�
M 0
2�0V

�1
22 M2�0

��1
M 0
2�0V

�1
22 M2�0

�
�
�
M 0
2�0V

�1
22 M2�0 �M 0

2�0V
�1
22 M2�0

�
M 0
2�0V

�1
22 M2�0

��1
M 0
2�0V

�1
22 M2�0

��1
�
�
M2�0 �M2�0

�
M 0
2�0V

�1
22 M2�0

��1
M 0
2�0V

�1
22 M2�0

�0#
+(�L 
 IK)

0
h
M3�1

�
M 0
3�1V

�1
33 M3�1

�
M 0
3�1

+

�
M3�1 �M3�1

�
M 0
3�1V

�1
33 M3�1

��1
M 0
3�1V

�1
33 M3�1

�
�
�
M 0
3�1V

�1
33 M3�1 �M 0

3�1V
�1
33 M3�1

�
M 0
3�1V

�1
33 M3�1

��1
M 0
3�1V

�1
33 M3�1

��1
�
�
M3�1 �M3�1

�
M 0
3�1V

�1
33 M3�1

��1
M 0
3�1V

�1
33 M3�1

�0#
(�L 
 IK)

#�1
�M4� :

We can now use the explicit expressions for V0 and M0 give above to generate an interpretable bound. The
required calculations are tedious but straightforward (details are available in a supplemental Web Appendix), they
give an information bound of:

If (�0) = E [� (X)]0 �
�
E
�
(q1(X)� q0(X)) (q1(X)� q0(X))

0�
+E [A0 (X2)]
+E [B0 (X2)]E [C0 (X2)]�1 E [B0 (X2)]0

+E [A1 (X2)]

+E [B1 (X2)]E [C1 (X2)]�1 E [B1 (X2)]0
i�1

� E [�0]

where

Aj (X2) = �hj (X2)�hj (X2)
�1�hj (X2)

0

Bj (X2) = ��j (X2)��hj (X2)�hj (X2)
�1�hj�j (X2)

Cj (X2) = ��j (X2)��hj�j (X2)
0�hj (X2)

�1�hj�j (X2)
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for j = 0; 1 with

�hj (X2)
K�1

= E

"
@qj (X)

@h0j

�����X2
#

��j (X2)
K�J

= E

"
@qj (X)

@�0j

�����X2
#

�hj (X2)
1�1

= E

" 
@qj (X)

@h0j

!0 �
�j (X)

(1� j) (1� p (X)) + jp (X)

��1 @qj (X)
@h0j

!�����X2
#

��j (X2)
J�J

= E

" 
@qj (X)

@�0j

!0 �
�j (X)

(1� j) (1� p (X)) + jp (X)

��1 @qj (X)
@�0j

!�����X2
#

�hj�j (X2)
1�J

= E

" 
@qj (X)

@h0j

!0 �
�j (X)

(1� j) (1� p (X)) + jp (X)

��1 @qj (X)
@�0j

!�����X2
#
:

Let Uj =  j
�
Yj ; X; �

�
� qj(X), the the e¢ cient in�uence function is evidently

� (Z; �) = E [� (X)]�1
�
D�h1 (X2)�h1 (X2)

�1
�
@q1 (X)

@h1

�
�1 (X)

�1 U1

+DE [B1 (X2)]E [C1 (X2)]�1
�
@q1 (X)

@�1

�
�1 (X)

�1 U1

�DE [B1 (X2)]E [C1 (X2)]�1�h1�1 (X2)�h1 (X2)
�1
�
@q1 (X)

@h1

�
�1 (X)

�1 U1

� (1�D)�h0 (X2)�h0 (X2)
�1
�
@q0 (X)

@h0

�
�0 (X)

�1 U0

� (1�D)E [B0 (X2)]E [C0 (X2)]�1
�
@q0 (X)

@�0

�
�0 (X)

�1 U0

+(1�D)E [B0 (X2)]E [C0 (X2)]�1�h0�0 (X2)�h0 (X2)
�1
�
@q0 (X)

@h0

�
�0 (X)

�1 U0

�
:

The bound for the parametric case is easily seen to be

If (�0) = E [� (X)]0
�
E
�
(q1(X)� q0(X)) (q1(X)� q0(X))

0�
+E

�
��1 (X)

�
E
�
��1 (X)

��1 E ���1 (X)�0
+E

�
��0 (X)

�
E
�
��0 (X)

��1 E ���0 (X)�0i�1 E [� (X)] ;
with an e¢ cient in�uence function evidently given by

� (Z; �) = DE [� (X)]�1 E
�
��1 (X)

��@q1 (X)
@�01

�0
�1 (X)

�1 U1

� (1�D)E [� (X)]�1 E
�
��0 (X)

��@q0 (X)
@�00

�0
�0 (X)

�1 U0

+E [� (X)]�1 (q1(X)� q0(X)) :

35



A.3 Proof of Theorem 6.1.

The �rst two parts of the proof are analogous to those of Theorem 2.1 above and are omitted. Here I sketch the
calculation of the bound. We let

m1 (Z; �) = B

�
D

B0�
� 1
�
, m2 (Z; �; �) =

B0�
Q

�
D

B0�
 1 (Y1; X; �)�

1�D

1�B0�
 0 (Y0; X; �)

�
and de�ne V and M as in the proof of Theorem 2.1. We again partition V and evaluate V22 as

V22 = E
�
m2 (Z; �; �)m2 (Z; �; �)

0� (28)

=
1

Q2
E

"�
D 1 �

p (X)

1� p (X)
(1�D) 0

��
D 1 �

p (X)

1� p (X)
(1�D) 0

�0#

=
1

Q2
E

"
p (X)E

�
 1 

0
1

��X�+ p (X)2

1� p (X)
E
�
 0 

0
0

��X�#

= E

"
p (X)2

Q2

(
E
�
 1 

0
1

��X�
p (X)

+
E
�
 0 

0
0

��X�
1� p (X)

)#

=
XL

l=1
� l
�2l
Q20

�
�1;l
�l

+
1� �l
�l

q1;lq
0
1;l + q1;lq

0
1;l

+
�0;l
1� �l

+
�l

1� �l
q0;lq

0
0;l + q0;lq

0
0;l

�
;

and V12 as

V0;12 = E
�
m1 (Z; �)m2 (Z; �; �)

0� (29)

= E

"
B

�
D

B0�
� 1
�
B0�
Q

�
D 1
B0�

� (1�D) 0
1�B0�

�0#

=
1

Q
E

"
B

�
D

B0�
� 1
��

D 1 �
B0�

1�B0�
(1�D) 0

�0#

=
1

Q
E
�
B
�
[1� p (X)] q1 (X)

0 + p0 (X) q0 (X)
0	�

=
1

Q0

0BB@
�1 (1� �1) q

0
1;1 + �1�1q

0
0;1

...
�L (1� �L) q

0
1;L + �L�Lq

0
0;L

1CCA ;

with V11 remaining as de�ned in the proof of Theorem 2.1 above. The components of the Jacobian M are given by

M1� = �diag
n

�1
�1

� � � �L
�L

o
(30)

M2� = �
1

Q0

�
�1

q0;1
1��1 � � � �L

q0;L
1��L

�
; M2� = E

�
p (X)

Q
� (X)

�
:

Straightforward algebra gives a variance bounds for � ofn
M�1VM�10

o
22

= M�1
2�

�
M2�M

�1
1� V11M

�10
1� M 0

2� � V 012M
�10
1� M 0

2� �M2�M
�1
1� V12 + V22

�
M�10
2�

= E
�
p (X)

Q
� (X)

��1
E [� (X)]E

�
p (X)

Q
� (X)

��10
;
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with � (x) as de�ned in (10).
If the propensity score is known, then the Jacobian simpli�es to M0 = (0;M

0
2�)

0. The variance-bounds is then

M 0V �1M = M 0
2�

�
V22 � V 012V

�1
11 V12

��1
M2�

= E
�
p (X)

Q
� (X)

�0
� E [� (X)]�1

�E
�
p (X)

Q
� (X)

�0
;

with � (x) as de�ned in (20). The bound given for the case where the propensity score is parametrically speci�ed
follows from similar calculations.
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