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BY BRYAN S. GRAHAM

THIS APPENDIX CONTAINS PROOFS of the results contained in the main paper.
All notation is as defined in the main text unless explicitly noted otherwise.
Equation numbering continues in sequence with that established in the main
text. To simplify notation, let β denote the true parameter value β0 unless
explicitly stated otherwise; similarly, the 0 subscript is removed from other ob-
jects, such as the propensity score, when doing so does not cause confusion.

A. PROOF OF THEOREM 2.1

The proof closely follows that of Theorem 1 in Chamberlain (1992) and con-
sists of three steps.

STEP 1—Demonstration of Equivalence With an Unconditional GMM Prob-
lem: The first step is to show that restrictions (4) and (5) are, in the multino-
mial case, equivalent to a finite set of unconditional moment restrictions. Un-
der the multinomial assumption, we have X ∈ {x1� � � � � xL} for some L. Let
the L × 1 vector B have a 1 in the lth row if X = xl and 0 elsewhere, and
τl = Pr(X = xl) (observe that

∑L

l=1 τl = 1). Denote the value of the selection
probability at X = xl by ρl and define ρ = {ρ1� � � � � ρL}′; this vector gives the
values of p(·) at each of the mass points ofX . Using this notation, we can write
p(X)= B′ρ�

Under the multinomial assumption, restrictions (4) and (5) are equivalent to
the L+K × 1 vector of unconditional moment restrictions

E[m(Z�β�ρ)] = E

[
m1(Z�ρ)

m2(Z�β�ρ)

]
= E

⎡
⎢⎢⎣
B

(
D

B′ρ
− 1

)
D

B′ρ
ψ(Z�β)

⎤
⎥⎥⎦ = 0�

To verify that this is the case, note that by iterated expectations

E[m1(Z�ρ)] =

⎛
⎜⎜⎜⎜⎝
τ1E

[(
D

p(X)
− 1

)∣∣∣X = x1

]
���

τLE

[(
D

p(X)
− 1

)∣∣∣X = xL
]

⎞
⎟⎟⎟⎟⎠ �
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and hence E[m1(Z�ρ)] = 0 if and only if E[ D
p(X)

− 1|X] = 0 for all X ∈
{x1� � � � � xL}� We also have

E[m2(Z�β�ρ)] = E

[
D

p(X)
ψ(Z�β)

]
= 0�

so E[m(Z�β�ρ)] = 0 if and only if (4) and (5) are satisfied as claimed.

STEP 2—Application of Lemma 2 of Chamberlain (1987): Chamberlain
(1987, Lemma 2) showed that for Z a multinomial random variable, the vari-
ance bound for β under the sole restriction that E[m(Z�β�ρ)] = 0 is

{(M ′V −1M)−1}22�

where {(M ′V −1M)−1}22 is the lower right K ×K block of (M ′V −1M)−1 with

V
def≡ E[m(Z�β�ρ)m(Z�β�ρ)′]�

M
def≡ E

[
∂m(Z�β�ρ)

∂ρ′ �
∂m(Z�β�ρ)

∂β′

]
�

The application of Chamberlain’s result requires that M has full column rank
and that V is nonsingular. The calculations made in Step 3 below demonstrate
that these conditions are implied by the assumption that Γ has full column
rank, p(X) is bounded away from zero, and Λ is nonsingular.

STEP 3—Calculation of the Bound: The final step is to solve for an explicit
expression for {(M ′V −1M)−1}22. This requires some simple, albeit tedious, al-
gebra. Partitioning V0,

V
L+K×L+K

=
(
V11 V12

V ′
12 V22

)
�

we have the lower right-hand block, letting ψ=ψ(Z�β) and q(X)= E[ψ|X],
given by

V22
K×K

= E[m2(Z�β�ρ)m2(Z�β�ρ)
′](9)

= E

[
E[ψψ′|X]
p(X)

]

= E

[
V(ψ|X)
p(X)

+ 1 −p(X)
p(X)

q(X)q(X)′ + q(X)q(X)′
]

=
L∑
l=1

τl

[
Σl

ρl
+ 1 − ρl

ρl
qlq

′
l + qlq′

l

]
�
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where ql = E[ψ(Z�β)|xl] and Σl = V(ψ|xl)�
The upper right-hand block is similarly derived as

V12
L×K

= E[m1(Z�β)m2(Z�β�ρ)
′](10)

= E

[
B

(
D

B′ρ
− 1

){
Dψ(Z�β)

B′ρ

}′]

= E

[
B

(
1 −p(X)
p(X)

q(X)′
)]

=
(
τ1

1 − ρ1

ρ1
q1 · · · τL

1 − ρL
ρL

qL
)′
�

Finally the upper left-hand block is given by

V11
L×L

= E

[
B

(
D

B′ρ
− 1

)(
D

B′ρ
− 1

)
B′

]
(11)

= E

[
BB′

(
1 −p(X)
p(X)

)]

= diag
{
τ1

1 − ρ1

ρ1
· · · τL

1 − ρL
ρL

}
�

Now partition M

M
L+K×L+K

=
(
M1ρ 0
M2ρ M2β

)
�

where, from similar calculations to those made above, we have

M1ρ
L×L

= −diag
{ τ1

ρ1
· · · τL

ρL

}
�(12)

M2ρ
K×L

= −
(
τ1
q1

ρ1
· · · τL

qL

ρL

)
� M2β

K×K
= Γ�

Applying standard results on partitioned inverses then yields

M−1 =
(

M−1
1ρ 0

−M−1
2βM2ρM

−1
1ρ M−1

2β

)
�

Note that the existence of M−1
1ρ and M−1

2β follows from the assumptions that
p(X) is bounded away from zero and the assumption that Γ has full column
rank.
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Redundancy of knowledge of the propensity score suggests that M−1V M−1′

will be block diagonal. A sufficient condition for this is that (cf. Prokhorov and
Schmidt (2009))

V ′
12 =M2ρM

−1
1ρ V11�(13)

To verify that this condition holds, use (11) and (12) to show that

M2ρM
−1
1ρ V11 =

(
τ1

1 − ρ1

ρ1
q1 · · · τL

1 − ρL
ρL

qL
)
�

which equals V ′
12 as required. Exploiting the resulting simplifications yields

M−1V M−1′ =
(
M−1

1ρ V11M
−1
1ρ 0

0 M−1
2β (V22 − V ′

12V
−1

11 V12)M
−1′
2β

)

and hence

(M−1V M−1′)22 =M−1
2β (V22 − V ′

12V
−1

11 V12)M
−1′
2β �

By M2ρM
−1
1ρ = (q1� � � � � qL) and (13), we have

V ′
12V

−1
11 V12 =M2ρM

−1
1ρ V11M

−1′
1ρ M

′
2ρ

=
L∑
l=1

τl
1 − ρl
ρl

qlq
′
l

= E

[
1 −p(X)
p(X)

q(X)q(X)′
]

and hence, using (9),

V22 − V ′
12V

−1
11 V12 = E

[
V(ψ|X)
p(X)

+ q(X)q(X)′
]

=Λ�

Using this result and taking the partitioned determinant gives

det(V )= det(V11)det(V22 − V ′
12V

−1
11 V12)= E

[
1 −p(X)
p(X)

]
det{Λ}�

and hence V is nonsingular under overlap (Assumption 1.4) and nonsingularity
of Λ�

SinceM2β = Γ , we have Im(β0)= Γ ′Λ−1Γ as claimed. For completeness, the
upper left-hand portion of the full variance–covariance matrix is given by

M−1
11 V11M

−1′
11 = I −1

m (ρ0)

= diag
{
p(x1)(1 −p(x1))

f (x1)
� � � � �

p(xL)(1 −p(xL))
f (xL)

}
�
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where f (x)= ∑L

l=1 τl × 1(x= xl)�

B. PROOF OF THEOREM 3.1

The first two steps of the proof of Theorem 3.1 are analogous to those of
Theorem 2.1 and are therefore omitted. The actual calculation of the bound,
while conceptually straightforward, is considerably more tedious. Details of
this step are provided here.

Assume that the marginal distributions ofX1 andX2 have I andM points of
support with probabilities π1� � � � �πI and ς1� � � � � ςM . Let L= I×M and let τim
denote the joint probability Pr(X1 = x1�i�X2 = x2�m). Let λ= (λ1� � � � � λM)

′ be
the values of h(·) at each of the mass points of X2 (for simplicity I assume that
dim(h(x2))= P = 1 in the calculations below, but the results generalize). LetC
be aM×1 vector with a 1 in themth row ifX2 = x2�m and 0s elsewhere. Finally
it is convenient to use the shorthand Ψ = q(X)q(X)′� In what follows I use
both the single and double subscript notation to denote a point on the support
ofX as is convenient. We can map between the two notations by observing that
xim = xl for l= (i− 1)M +m.

For the multinomial case, the conditional moment problem defined by (4),
(5), and (6) is equivalent to the unconditional problem

E[m(Z�θ)] = E

⎡
⎣ m1(Z�ρ)

m2(Z�ρ�λ�δ�β)

m3(Z�ρ�β)

⎤
⎦ = 0�

with θ= (ρ′�λ′� δ′�β′)′ and

m1(Z�ρ)
L×1

= B
(
D

B′ρ
− 1

)
�

m2(Z�ρ�λ�δ�β)
LK×1

= (B⊗ IK)
(
D

B′ρ
(ψ(Z�β)− q(X�δ�C ′λ;β))

)
�

m3(Z�ρ�β)
K×1

= D

B′ρ
ψ(Z�β)�

Partition V = E[m(Z�θ)m(Z�θ)′] as

V
L+KL+K×L+KL+K

=
⎛
⎝V11

V21 V22

V31 V32 V34

⎞
⎠ �

where, using calculations similar to those given in the proof of Theorem 2.1,
we have

V11
L×L

= diag
{
τ1

1 − ρ1

ρ1
� � � � � τL

1 − ρL
ρL

}
�
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V12
L×KL

= (0� � � � �0)�

V22
KL×KL

= diag
{
τ1
Σ1

ρ1
� � � � � τL

ΣL

ρL

}
�

V31
K×L

=
(
τ1

1 − ρ1

ρ1
q1� � � � � τL

1 − ρL
ρL

qL

)
�

V32
K×KL

=
(
τ1
Σ1

ρ1
� � � � � τL

ΣL

ρL

)
�

V33
K×K

=
L∑
l=1

τl

[
Σl

ρl
+ 1 − ρl

ρl
qlq

′
l + qlq′

l

]
�

We can partition the Jacobian matrix

M
L+KL+K×L+M+J+K

=
⎛
⎝M1ρ 0 0 0

0 M2λ M2δ 0
M3ρ 0 0 M3β

⎞
⎠ �

where

M1ρ
L×L

= −diag
{
τ1

ρ1
� � � � �

τL

ρL

}
�

M2λ
KL×M

= −(H ′
1� � � � �H

′
I)

′�

M2δ
KL×J

= −
⎛
⎝ τ1∇δq1

���

τL∇δqL

⎞
⎠ �

M3ρ = −
(
τ1
q1

ρ1
· · · τL

qL

ρL

)
�

M3β = Γ�
where Hi = diag{τi1∇hqi1� � � � � τiM∇hqiM} for i = 1� � � � � I with qim = q(xim�δ�
h(x2�m);β).

The variance bound for β is given by the lower right-hand K ×K block of
(M ′V −1M)−1� We begin by calculating V −1� Partition V as

V =
(
B11 B12

B′
12 B22

)
�

with

B11
L+KL×L+KL

= diag {V11 V22 } � B12
L+KL×K

= (V31 V32 )
′ � B22 = V33�
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Now partition V −1 as

V −1
0 =

(
C11 C12

C ′
12 C22

)
�(14)

where the partitioned inverse formula gives

C11
L+KL×L+KL

= diag {V −1
11 V −1

22 } +D′
E[Ψ ]−1D�

C ′
12

K×L+KL
= −E[Ψ ]−1D� C22

K×K
= E[Ψ ]−1�

with D= (A′ (ιL ⊗ IK)′)= B′
12B

−1
11 and A= (q1 · · · qL)′ a L×K matrix.

Expression (14) follows since

C22 = (B22 −B′
12B

−1
11 B12)

−1

=
L∑
l=1

τl

[
Σl

ρl
+ 1 − ρl

ρl
qlq

′
l + qlq′

l

]
−

L∑
l=1

τl

[
1 − ρl
ρl

qlq
′
l +

Σl

ρl

]

=
{

L∑
l=1

τlqlq
′
l

}−1

= E[Ψ ]−1�

We also have C ′
12 = −C22B

′
12B

−1
11 = −E[Ψ ]−1D and

C11 = B−1
11 +B−1

11 B12C22B
′
12B

−1
11 = diag{V −1

11 V −1
22 } +D′

E[Ψ ]−1D�

We now evaluate I f
m(θ)=M ′V −1M to

⎛
⎜⎜⎝
M ′

1ρV
−1

11 M1ρ 0

0 M ′
2λ[V −1

22 + (ιL ⊗ IK)E[Ψ ]−1(ιL ⊗ IK)′]M2λ

0 M ′
2δ[V −1

22 + (ιL ⊗ IK)E[Ψ ]−1(ιL ⊗ IK)′]M2λ

0 −M ′
3βE[Ψ ]−1(ιL ⊗ IK)′M2λ

0
M ′

2λ[V −1
22 + (ιL ⊗ IK)E[Ψ ]−1(ιL ⊗ IK)′]M2δ

M ′
2δ[V −1

22 + (ιL ⊗ IK)E[Ψ ]−1(ιL ⊗ IK)′]M2δ

−M ′
3βE[Ψ ]−1(ιL ⊗ IK)′M2δ

0
−M ′

2λ(ιL ⊗ IK)E[Ψ ]−1M3β

−M ′
2δ(ιL ⊗ IK)E[Ψ ]−1M3β

M ′
3βE[Ψ ]−1M3β

⎞
⎟⎟⎠ �
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where I have made use of the equality M ′
1ρA=M ′

3ρ�

Observe that, as in the standard semiparametric missing data model, I f
m(θ)

satisfies Stein’s condition for redundancy of knowledge of the propensity score
for β� However, the structure of the bound does indicate that knowledge of
the finite-dimensional parameters and nonparametric portions of the CEF
of ψ(Z�β) given X does increase the precision with which β can be esti-
mated.

The variance bound for β0 is given by the lower right-hand K × K block
of the inverse of this matrix. Because of block diagonality, we only need to
consider the lower right-hand block. Partition this block as

(
B11 B12

B′
12 B22

)
�

where B11, B12, and B22 are redefined to equal

B11 =
(
M ′

2λV
−1

22 M2λ M ′
2λV

−1
22 M2δ

M ′
2δV

−1
22 M2λ M ′

2δV
−1

22 M2δ

)

+
(
M ′

2λ(ιL ⊗ IK)
M ′

2δ(ιL ⊗ IK)
)

E[Ψ ]−1 ( (ιL ⊗ IK)′M2λ (ιL ⊗ IK)′M2δ )

B12 =
(
M ′

2λ(ιL ⊗ IK)
M ′

2δ(ιL ⊗ IK)
)

E[Ψ ]−1M3β�

B33 =M ′
3βE[Ψ ]−1M3β�

The information bound is, therefore, given by

I f
m(θ)= B22 −B′

12B
−1
11 B12

=M ′
3βE[Ψ ]−1M3β

−M ′
3βE[Ψ0]−1 ( (ιL ⊗ IK)′M2λ (ιL ⊗ IK)′M2δ )

×
{(
M ′

2λV
−1

22 M2λ M ′
2λV

−1
22 M2δ

M ′
2δV

−1
22 M2λ M ′

2δV
−1

22 M2δ

)

+
(
M ′

2λ(ιL ⊗ IK)
M ′

2δ(ιL ⊗ IK)
)

E[Ψ ]−1

× ( (ιL ⊗ IK)′M2λ (ιL ⊗ IK)′M2δ )

}−1

×
(
M ′

2λ(ιL ⊗ IK)
M ′

2δ(ιL ⊗ IK)
)

E[Ψ ]−1M3β
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=M ′
3β

[
E[Ψ ] + ( (ιL ⊗ IK)′M2λ (ιL ⊗ IK)′M2δ )

×
(
M ′

2λV
−1

22 M2λ M ′
2λV

−1
22 M2δ

M ′
2δV

−1
22 M2λ M ′

2δV
−1

22 M2δ

)−1 (M ′
2λ(ιL ⊗ IK)

M ′
2δ(ιL ⊗ IK)

)]−1

×M3β�

where I have used the identity A−1 −A−1U(B−1 +U ′A−1U)−1U ′A−1 = (A+
UBU ′)−1�

Using the partitioned inverse formula and multiplying out the expression in
[·] above then gives

I f
m(θ)=M ′

3β ×
[
E[Ψ ] + (ιL ⊗ IK)′

[
M2λ(M

′
2λV

−1
22 M2λ)M

′
2λ

+ (M2δ −M2λ(M
′
2λV

−1
22 M2λ)

−1M ′
2λV

−1
22 M2δ)

× (M ′
2δV

−1
22 M2δ −M ′

2δV
−1

22 M2λ(M
′
2λV

−1
22 M2λ)

−1M ′
2λV

−1
22 M2δ)

−1

× (M2δ −M2λ(M
′
2λV

−1
22 M2λ)

−1M ′
2λV

−1
22 M2δ)

′](ιL ⊗ IK)
]−1

×M3β�

We can now use the explicit expressions for V0 and M0 given above to gener-
ate an interpretable bound. The required calculations are tedious but straight-
forward (details are available from the author on request); they give an infor-
mation bound of I f

m(θ) as defined in the main text of the paper.

C. PROOF OF THEOREM 3.2

In calculating the efficiency bound for the semiparametric missing data
model defined by restriction (1) and Assumptions 1.1–1.5 above, I follow the
general approach outlined by Bickel, Klaassen, Ritov, and Wellner (1993) and,
especially, Newey (1990, Section 3). First, I characterize the nuisance tangent
space. Second, I demonstrate pathwise differentiability of the parameter of in-
terest, β� The efficient influence function for this model equals the projection
of the pathwise derivative onto the tangent space. In the present example, the
direct calculation of this projection appears to be particularly difficult. How-
ever, inspection of the variance bound associated with the conditional moment
problem defined by restrictions (4), (5), and (6) provides a conjecture for the
form of the efficient influence function. The third and final step of the proof
therefore involves demonstrating that (i) this conjectured influence function
lies in the model tangent space and (ii) that it is indeed the required projec-
tion (i.e., that it satisfies equation (9) in Newey (1990, p. 106)). The result then
follows from an application of Theorem 3.1 in Newey (1990).
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STEP 1—Characterization of the Nuisance Tangent Space: Recalling that
Y = DY1, the joint density function for (Y�X�D), making use of Assump-
tion 1.3, is given by

f (y�x�d)= f (y1|x)dp(x)d[1 −p(x)]1−df (x)�

Assumption 1.5 also requires that f (y1|x) satisfy the restriction∫
ρ(z�δ0�h0(x2);β0)f (y1|x)dy1 = 0�

where ψ(z�β)=ψ(x� y1�β) and

ρ(z�δ�h(x2);β)=ψ(x� y1�β)− q(x�δ�h(x2);β)�
Consider a regular parametric submodel with f (y�x�d;η) = f (y�x�d) at

η= η0. The submodel joint density is given by

f (y�x�d;η)= f (y1|x;η)dp(x;η)d[1 −p(x;η)]1−df (x;η)(15)

and satisfies the restriction∫
ρ(z�δ(η)�h(x2;η);β0)f (y1|x;η)dy1 = 0�(16)

The submodel score vector equals

sη(y�x�d;η)= dsη(y1|x;η)+ d−p(x;η)
p(x;η)[1 −p(x;η)]∇ηp(x;η)(17)

+ tη(x;η)�
where

sη(y�x�d;η)= ∇η log f (y�x�d;η)�
sη(y1|x;η)= ∇η log f (y1|x;η)� tη(x;η)= ∇η log f (x;η)�

By the usual mean zero property of (conditional) scores, we have

E[sη(Y1|X)|X] = E[tη(X)] = 0�(18)

where suppression of η in a function means that it is evaluated at its population
value (e.g., tη(x)= tη(x;η0)).

Condition (16) imposes additional restrictions on sη(Y1|X) beyond condi-
tional mean-zeroness. To see the structure of these restrictions, differentiate
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(16) with respect to η through the integral and evaluate the result at η= η0:

∂q0(X)

∂δ′
∂δ(η0)

∂η′ + ∂q0(X)

∂h′
∂h(X2;η0)

∂η′

= E
[
ρ(Z�δ0�h0(X2);β0)sη(Y1|X)′|X

]
�

The conditional covariance between ρ(Z�δ0�h0(X2);β0) and sη(Y1|X) has a
particular structure induced by the semiparametric restrictions on the form of
E[ψ(Z�β)|x]�

From (17), (18), and the above equality, the tangent set is evidently

T = {
ds(y1|x)+ a(x)[d−p(x)] + t(x)}�(19)

where a(x) is unrestricted, and t(x) and s(y1|x) satisfy

E[t(X)] = 0�

E[s(Y1|X)|X] = 0�

E
[
ρ(Z�δ0�h0(X2);β0)s(Y1|X)′|X

]
=

(
∂q0(X)

∂δ′

)
c+

(
∂q0(X)

∂h′

)
k(X2)�

with c a constant matrix and k(x2) an unrestricted matrix-valued function of x2.

STEP 2—Demonstration of Pathwise Differentiability: Under the paramet-
ric submodel, β(η) is identified by the unconditional moment restriction

Eη

[
ψ(Z;β(η))] = 0�

Differentiating under the integral and evaluating at η= η0 gives

∂β(η0)

∂η′ = −Γ −1
0 E

[
ψ(Z;β0)

∂ log f (Y1�X;η0)

∂η′

′]
�

To demonstrate pathwise differentiability of β, we require F(Y�X�D) such
that

∂β(η0)

∂η′ = E[F(Y�X�D)sη(Y�X�D)′]�

It is easy to verify that the function

F(Y�X�D)= −Γ −1
0

{
D

p0(X)
ρ(Z�δ0�h0(X2);β0)

}
+ q(X�δ0�h0(X2);β0)
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satisfies this condition (cf. Hahn (1998)).

STEP 3—Verification That the Conjectured Efficient Influence Function
Equals the Required Projection: Inspection of the variance bounds associated
with the conditional moment problem suggests the candidate efficient influ-
ence given by (7) in the main text. I first verify that φf

β(Z�η0�β0) lies in the
model tangent space. The last term in (7) plays the role of t(x); a zero plays
the role of a(x)[d − p(x)]. Finally, the first two terms in (7) play the role of
ds(y1|x)� To see this note that in addition to being both conditionally mean
zero, we have

E

[
ρ(Z;β0)

{
H0(X2)Υ

h
0 (X2)

−1

(
∂q0(X)

∂h′

)′
Σ0(X)

−1ρ(Z;β0)

+ E[G0(X)]I f
m(δ0)

−1G0(X)
′Σ(X)−1ρ(Z;β0)

}′∣∣∣X]

=
(
∂q0(X)

∂δ′

)
c+

(
∂q0(X)

∂h′

)
k(X2)

with

c = I f
m(δ0)

−1
E[G0(X)]′�

k(X2)= Υh
0 (X2)

−1{H0(X2)
′ −Υhδ

0 (X2)c}�
The candidate efficient influence function therefore belongs to the model tan-
gent space as required.

I next show that φf
β(Z�η0�β0) is indeed the required projection by verifying

that it satisfies

E
[{F(Y�X�D)−φf

β(Z�η0�β0)}t′
] = 0 for all t ∈ T

(cf. equation (9) in Newey (1990, p. 106)). We have

F(Y�X�D)−φf
β(Z�η0�β0)

= Γ −1
0 D

{
1

p0(X)
−H0(X2)Υ

h
0 (X2)

−1

(
∂q0(X)

∂h′

)′
Σ(X)−1

− E[G0(X)]I f
m(δ0)

−1G0(X)
′Σ(X)−1

}
ρ(Z;β0)�

By the conditional independence of Y1 and D given X (Assumption 1.3), and
by conditional mean-zeroness of ρ(Z;β0), it is easy to show that F(Y�X�D)−
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φf
β(Z�η0�β0) is orthogonal to any functions of the form a(x)[d − p(x)] and

t(x)� All that remains is to show orthogonality with ds(y1|x). We have

E
[{F(Y�X�D)−φf

β(Z�η0�β0)}Ds(Y1|X)′
]

= E

[
Γ −1

0

{
IK −H0(X2)Υ

h
0 (X2)

−1

(
∂q0(X)

∂h′

)′(
Σ(X)

p(X)

)−1

− E[G0(X)]I f
m(δ0)

−1G0(X)
′
(
Σ(X)

p(X)

)−1}

×
{(
∂q0(X)

∂δ′

)
c +

(
∂q0(X)

∂h′

)
k(X2)

}]
�

where I have made use of the special structure of the conditional covariance
E[ρ(Z;β0)sη(Y1|X)′|X]� Multiplying out terms yields

E
[{F(Y�X�D)−φf

β(Z�η0�β0)}Ds(Y1|X)
]

= Γ −1
0 E

[
∂q0(X)

∂δ′ c+H0(X2)k(X2)

−H0(X2)Υ
h
0 (X2)

−1Υhδ
0 (X2)c−H0(X2)k(X2)

− E[G0(X)]I f
m(δ0)

−1Υδ
0 (X2)c

+ E[G0(X)]I f
m(δ0)

−1Υhδ
0 (X2)

′Υh
0 (X2)

−1Υhδ
0 (X2)c

− E[G0(X)]I f
m(δ0)

−1Υhδ
0 (X2)

′k(X2)

+ E[G0(X)]I f
m(δ0)

−1Υhδ
0 (X2)

′k(X2)

]

= Γ −1
0

{
E[G0(X)]c− E[G0(X)]c

} = 0�

where

Υδ
0 (X2)= E

[
D

(
∂q0(X)

∂δ′

)′
Σ0(X)

−1

(
∂q0(X)

∂δ′

)∣∣∣X2

]

and the first equality follows from iterated expectations and the second equal-
ity follows from the definitions of G0(X) and I f

m(δ0) in the main text.
The result then follows from an application of Theorem 3.1 in Newey (1990).

D. PROOF OF PROPOSITION 3.1

The difference in the variance bounds is given by

Im(β0)
−1 − I f

m(β0)
−1 = Γ −1

0 (Λ0 −Ξ0)Γ
−1′

0 �
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with Λ0 and Ξ0 as defined in the main text.
First observe that E[G0(X)] has the covariance representation

E[G0(X)] = E

[
∂q0(X)

∂δ′ −
(
∂q0(X)

∂h′

)
Υh

0 (X2)
−1Υhδ

0 (X2)

]

= C(ξ1� ξ
′
2)�

with ξ1 and ξ2 as defined in the main text. This follows since

E

[
D

p0(X)
ρ(Z;β0)ρ(Z;β0)

′Σ0(X)
−1

×
{
∂q0(X)

∂δ′ −
(
∂q0(X)

∂h′

)
Υh

0 (X2)
−1Υhδ

0 (X2)

}]

= E

[
∂q0(X)

∂δ′ −
(
∂q0(X)

∂h′

)
Υh

0 (X2)
−1Υhδ

0 (X2)

]

and also

E

[
DH0(X2)Υ

h
0 (X2)

−1

(
∂q0(X)

∂h′

)′
Σ0(X)

−1ρ(Z;β0)ρ(Z;β0)
′Σ0(X)

−1

×
{
∂q0(X)

∂δ′ −
(
∂q0(X)

∂h′

)
Υh

0 (X2)
−1Υhδ

0 (X2)

}]
= 0�

Similar calculations yield the variance representations

V(ξ1)= E

[
Σ0(X)

p0(X)
−H0(X2)Υ

h
0 (X2)

−1H0(X2)
′
]
�

V(ξ2)= E[DG0(X)
′Σ0(X)

−1G0(X)]�
with the result directly following.

E. PROOF OF PROPOSITION 3.2

Part (i) follows from Theorem 3.2. For part (ii), condition (a) implies the
equality

E

[
DH0(X2)Υ

h
0 (X2)

−1

(
∂q∗(X)
∂h′

)′
Σ0(X)

−1ρ∗(Z;β0)
∣∣∣X2

]

=H0(X2)E

[(
∂q∗(X)
∂h′

)′
Σ0(X)

−1

(
∂q∗(X)
∂h′

)∣∣∣X2

]−1

× E

[(
∂q∗(X)
∂h′

)′
Σ0(X)

−1ρ∗(Z;β0)
∣∣∣X2

]
�
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Condition (b) implies that Σ0(X) = Φ0(X2)� Let L(X2)L(X2)
′ = Φ0(X2) be

the Cholesky decomposition of Φ0(X2). This implies that the term to the right
of the last equality equals

H0(X2)E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1

(
∂q∗(X)
∂h′

)}∣∣∣X2

]−1

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′
L(X2)

−1ρ∗(Z;β0)
∣∣∣X2

]
�

Since all expectations in the above expression condition on X2� L(X2) may be
treated as nonstochastic so that

L(X2)
−1H0(X2)= E

[
L(X2)

−1

(
∂q∗(X)
∂h′

)∣∣∣X2

]
�

Recall that a linear predictor passes through the mean of the outcome variable
at the means of the predictor variables (when a constant is included). Con-
dition (c) implies that each row of ∂q∗(X)/∂h′ includes such a constant and
hence that

L(X2)
−1

E[ρ∗(Z;β0)|X2]
=L(X2)

−1H0(X2)

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1

(
∂q∗(X)
∂h′

)}∣∣∣X2

]−1

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′
{L(X2)

−1ρ(Z;β0)}
∣∣∣X2

]

and, therefore, that

E

[
DH0(X2)Υ

h
0 (X2)

−1

(
∂q∗(X)
∂h′

)′
Σ0(X)

−1ρ∗(Z;β0)
∣∣∣X2

]
= E[ρ∗(Z;β0)] = −E[q∗(X)]�

This implies that the first part of φf
β(Z�η∗�β0) has mean −E[q∗(X)]�

Using conditions (a)–(c) and arguments analogous to those given immedi-
ately above, we have

L(X2)
−1G0(X)

=L(X2)
−1 ∂q0(X)

∂δ′

−L(X2)
−1

(
∂q0(X)

∂h′

)
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× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1

(
∂q∗(X)
∂h′

)}∣∣∣X2

]−1

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1 ∂q0(X)

∂δ′

}∣∣∣X2

]
�

so that E[L(X2)
−1G0(X)|X2] = L(X2)

−1
E[G0(X)|X2] = 0. The law of iter-

ated expectations then gives E[G0(X)] = 0� This implies that the second part
of φf

β(Z�η∗�β0) is mean zero. The third part of φf
β(Z�η∗�β0) has mean

E[q∗(X)]. The result follows as claimed.

F. PROOF OF COROLLARY 3.1

From the proof to Proposition 3.2, we have E[G0(X)] = 0. So the result
follows if

E

[
Σ0(X)

p0(X)
−H0(X2)Υ

h
0 (X2)

−1H0(X2)
′
]

= 0�

Under conditions (a) and (b) of Proposition 3.2(ii), we have

E

[
Σ0(X)

p0(X)
−H0(X2)Υ

h
0 (X2)

−1H0(X2)
′
]

= E

[
Φ0(X2)

e0(X2)
− 1
e0(X2)

H0(X2)

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1

(
∂q∗(X)
∂h′

)}∣∣∣X2

]−1

×H0(X2)
′
]

= E

[
Φ0(X2)

e0(X2)
− L(X2)

e0(X2)
E

[
L(X2)

−1

(
∂q∗(X)
∂h′

)∣∣∣X2

]

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1

(
∂q∗(X)
∂h′

)}∣∣∣X2

]−1

× E

[
L(X2)

−1

(
∂q∗(X)
∂h′

)∣∣∣X2

]′
L(X2)

′
]
�
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where L(X2)L(X2)
′ =Φ0(X2) as above. Observe that

E

[
L(X2)

−1

(
∂q∗(X)
∂h′

)∣∣∣X2

]

× E

[{
L(X2)

−1

(
∂q∗(X)
∂h′

)}′{
L(X2)

−1

(
∂q∗(X)
∂h′

)}∣∣∣X2

]−1

× E

[
L(X2)

−1

(
∂q∗(X)
∂h′

)∣∣∣X2

]′

is equal to the multivariate conditional linear predictor of the K × K iden-
tity matrix givenL(X2)

−1( ∂q∗(X)
∂h′ ) evaluated at E[L(X2)

−1( ∂q∗(X)
∂h′ )|X2]; therefore

this object equals IK and we have

E

[
Σ0(X)

p0(X)
−H0(X2)Υ

h
0 (X2)

−1H0(X2)
′
]

= E

[
Φ0(X2)

e0(X2)
− L(X2)L(X2)

′

e0(X2)

]
= 0�

as required.
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