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Abstract
Concern over the distributional effects of policies which induce changes in peer group
structure, or ‘associational redistributions’ (Durlauf, 1996c), motivates a substantial body of
theoretical and empirical research in economics, sociology, psychology, and education. A
growing collection of econometric methods for characterizing the effects of such policies are
now available. This chapter surveys these methods. I discuss the identification and estimation
of the distributional effects of partner reassignment in one-on-one matching models, the
average outcome and inequality effects of segregation, and treatment response in the
presence of spillovers.
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1. INTRODUCTION

Individuals exercise substantial control over who they associate with. Sometimes directly,

as is the case with spousal choice, and sometimes indirectly, as when a family, by choosing

to reside in a certain neighborhood, gains access to specific schools (and hence peers) for

their children. Associations or reference groups, such as families, co-workers, neighbors

and classmates, define (partially) isolated environments in which social interaction takes

places (Durlauf, 1996c). These interactions may, in turn, affect the acquisition of human

capital, the availability of employment opportunities, or even influence one’s aspirations

and values. If this is the case, then inequality in social context may contribute to socioeco-

nomic inequality.2 Conversely, policies which alter the composition of social groups –

‘associational redistributions’ – either directly or indirectly (by changing the incentives

governing their formation) can lessen inequality (Durlauf, 1996c).

Many of the most controversial social policies in the United States involve associ-

ational redistribution. Examples include affirmative action in admissions and hiring,

school desegregation policies, school assignment policies, single-sex schooling within

the public system, active labor market policies, and whether public housing should

be concentrated in a small number of locations or dispersed throughout a metropolitan

area. That these policies are controversial is understandable: many individuals view

their choice of associates as beyond the (direct) purview of public policy (cf., Piketty,

2000). Their controversial nature, however, is not wholly political. It also stems from

uncertainty surrounding their effects on average outcomes and inequality.

This chapter reviews econometric methods for evaluating the effects of reallocations

on the distribution of outcomes. In the social economics context ‘reallocations’ coin-

cide with associational redistributions. The methods outlined in this chapter, however,

are also of relevance to researchers in the fields of empirical industrial organization,

labor economics, public finance, educational studies, sociology, and public health.

Reallocations are distinguished from other policies by the fact that they involve no

augmentation, only redistribution, of resources. The study of reallocations necessitates

some foundational thinking. Consequently, this review devotes a substantial amount of

space to issues of measurement. Particularly to defining and motivating estimands

which measure the effects of reallocations.

Effective policy-making requires knowledge of the causal mapping from group

composition into outcomes. Consider the design of a school voucher program. Cali-

brated theoretical models suggest that any meaningful school voucher program would

generate large changes in the distribution of students, and hence peer groups, across

schools (e.g., Manski, 1992; Nechyba, 2006; Ferreyra, 2007). The magnitude and

structure of any peer group effect in learning would be an important determinant of
2 Loury (1977, 2002), for example, argues that segregated social networks generate inequality across racial groups.
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these changes. It would also determine their effects on the level and distribution of stu-

dent achievement. For these reasons knowledge of the exact form of any peer spillover

is required for optimal voucher design. Unfortunately, this information is not provided

by extant empirical research (cf., Piketty, 2000; Fernández, 2003).

Knowledge of the average effect of a unit increase in measured peer quality, the target

estimand of many papers, is only indirectly helpful (e.g., Angrist and Lang, 2004; Card

and Rothstein, 2007). This estimand measures the effect of an infeasible policy. Not all

individuals’ peer groups may be improved simultaneously; raising peer quality in some

schools or classrooms requires lowering it in others. If the target policy is a reassigning

one, then this will necessarily influence the precise form econometric analysis should take.

As a second example, consider the relationship between teacher quality and student

achievement. Few educators, parents, or students doubt the centrality of teachers in the

learning process (Jacob and Lefgren, 2007). Furthermore measured teacher quality var-

ies substantially across schools (e.g., Buddin and Zamarro, 2009). Yet, given the struc-

ture of a typical teacher labor market, is seems unlikely that the observed assignment of

teachers to schools corresponds to one which, say, maximizes student achievement.

One response to these observations is to implement policies that attempt to change

the distribution of teacher quality (e.g., policies which encourage highly able young

people to enter the teaching profession). Another, not mutually exclusive approach,

involves reassigning teachers across schools. Depending on the nature of the educa-

tional production function it may be possible to raises student achievement – holding

the population of available teachers fixed – by such reassignments.

Assignment problems have been widely studied by economists as well as those in

operations research (e.g., Koopmans and Beckmann, 1957; Gale, 1960; Roth and

Sotomayor, 1990; Burkard, Dell’Amico and Martello, 2009). Adding statistical content

to these problems in a manageable way is nontrivial. Doing so raises a number of inter-

esting and challenging econometric issues which are explored below.

Sections 2 begins with a brief overview of empirical work on one-to-one matching

problems. Econometric research on this class of models may be divided into two cate-

gories. In the first, which is the subject of Section 3, the econometrician observes the

match outcome of interest in addition to match characteristics. The goal is to recover

the match production function from these data and evaluate the effects of alternative

assignments or ‘matchings’ on the distribution of outcomes. In the second, which is

the subject of Section 4, only match characteristics are observed. Here the question

is what does one’s choice of match partner alone reveal about preferences? There are

connections between this question and the revealed preference approach to single

agent models of discrete choice (McFadden, 1974).3
3 As in most situations they are unobserved by the researcher, this chapter does not explore the identifying content of

transfers between agents.
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Section 5 studies a setting where social groups consist of a large number of agents,

for example neighborhoods or classrooms. Agents are binary-typed and heterogenous

in unobserved ability. Outcomes may vary with the type composition of one’s social

group. de Bartolome (1990), Benabou (1993, 1996) and Durlauf (1996a,b) study

non-stochastic versions of this set-up. While these papers have been influential in shap-

ing economists’ intuitions about the equity and efficiency implications of residential

segregation, their effect on empirical work has been more indirect.4 Section 5 outlines

one way to bring these models to the data.

Section 6 studies treatment response in the presence of spillovers. Here influencing the

structure of reference groups is not the policy-maker’s goal. Instead, the policy-maker

seeks to account for the effects of these groups when formulating an individualistic policy.

A pro-typical example involves optimal vaccine policy (e.g., Manski, 2009a,b).

This chapter does not review the growing literature on identifying peer effects per

se (e.g., Manski, 1993; Moffitt, 2001; Brock and Durlauf, 2001a; 2007; Glaeser and

Scheinkman, 2001, 2003; Graham, 2008). This literature is, of course, very much

related to the material surveyed here. Several good surveys of this material are now

available; including those of Brock and Durlauf (2001b), Durlauf (2004), Epple and

Romano (this Handbook), and Blume, Brock, Durlauf and Ioannides (this Handbook).

I also ignore models where the study of strategic interaction within groups is central.

Interactions of this type, which feature in the work of Manski (1993, 2010) and Brock

and Durlauf (2001a), are likely to be relevant in practice and important for some policy

questions, but a meaningful treatment of them would require a separate survey (cf.,

Blume, Brock, Durlauf and Ioannides in this Handbook).5 Finally, while I often refer

to empirical work in what follows, no comprehensive review is attempted.
2. AN OVERVIEW OF EMPIRICAL MATCHING MODELS

Consider a ‘market’ composed of two heterogeneous populations, say, ‘firms’ and

‘workers’ (i.e., men and women, teachers and students, etc.). Units in each population

may either self-produce or costlessly seek out a partner from the other population to

engage in joint production. Such settings generate one-to-one assignment or matching

problems. Matching models play important roles in many areas of economics. They

were famously used by Becker (1973, 1974) to characterize ‘marriage markets’ (cf.,

Mortesen, 1988; Chiappori and Oreffice, 2008). Other important applications include

the study of job matching (e.g., Crawford and Knoer, 1981; Kelso and Crawford,

1982), housing markets (Shapley and Scarf, 1974), auctions (Hatfield and Milgrom,
4 See Piketty (2000, pp. 462 – 467) and Fernández (2003, p.14) for related discussions.
5 The econometric study of games is an important project of empirical industrial organization (e.g., Aradillas-López

and Tamer, 2008).
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2005; Edelman, Ostrovsky and Schwarz, 2007), supply chains (Ostrovsky, 2008), and

the determinants of wage inequality (Sattinger, 1980, Kremer and Maskin, 1996).

Koopmans and Beckmann (1957) and Shapley and Shubik (1971) initiated the study

of matching problems in economics. They considered the transferable utility case

where, in addition to the assignment or matching, the division of match output

between partners is determined in equilibrium.6 Gale and Shapley (1962) studied the

case where agents have preferences over different candidate partners, but are unable

to make transfers to them.7

Each firm and worker has a utility function, allowing them to rank the desirability of

different matches. When utility is transferable across match partners, an equivalent rep-

resentation of agent utilities is in terms of a match-specific surplus and transfer. Theorists

treat these objects as primitives. An econometrician, in contrast, might ask under what

conditions they are identified by the joint distribution of match outcomes and/or partner

characteristics. Given identifiablility questions of estimation and inference remain.

Identifying the form of agent preferences or, when utility is transferrable, the match

surplus function allows the econometrician to undertake predictive exercises. Two types

of predictions are of particular interest. First, one might want to characterize how coun-

terfactual assignments (or policies which induce re-assignment as a by product), alter

the distribution of outcomes. Second, one might want to understand how changes in

the primitives of the market, for example the availability of certain types of workers

or firms, affects the equilibrium assignment.

The first question involves reallocations. Reallocations, unlike many policies more

widely studied in economics, do not involve changes in resource availability. Realloca-

tions leave the distribution of agent characteristics unchanged, only agent pairings are

changed. The second question does involve changes in the distribution of agent charac-

teristics, but recognizes that the effects of such changes are filtered through an equilib-

rium assignment process.

2.1 Some illustrative examples
Some empirical examples, and associated policy questions, help to motivate the mate-

rial that follows. As a first, canonical example, consider a firm that must assign distinct

tasks to heterogenous workers. A set of characteristics for each task and worker are

observed. Also available is a (historical) dataset with information on past worker char-

acteristics, assigned tasks, and estimates of productivity. How should a social planner

use this dataset to guide assignments? One organization with considerable interest in
6 In what follows I will call a pairing of two specific agents a ‘match’ or a ‘pairing’. I will call an assignment of all agents

an ‘allocation’, ‘assignment’ or a ‘matching’.
7 The theoretical analysis of assignment problems remains an active research area in economics and operations research

(e.g., Roth and Sotomayor, 1990; Burkard, Dell’Amico and Martello, 2009). Much of this literature focuses on

variants of two questions. First, what form does a surplus-maximizing assignment take? Second, are there

decentralized mechanisms, which lead to such an assignment? (cf., Roth and Vande Vate, 1990; Roth, 2008).
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such questions is the United States Military. A modest literature, surveyed by Warner

and Asch (1995), documents the relationship between various enlistee characteristics,

such as Armed Forces Qualification Test (AFQT) score, and military performance

(e.g., Fernandez, 1992). Such studies can inform the debate regarding the returns to

increasing measured enlistee quality.

A different question is how can the Armed Forces best use those enlistees available

right now? Optimally assigning enlistees to tasks could generate sizeable increases in

military productivity (cf., Carrell, Fullerton and West, 2009). Implementing such a

policy would require no augmentation of resources, the pool of available workers

and set of tasks are left unchanged. The question is of more than intellectual interest:

the military has substantial latitude over how it may employ its personnel (as do many

other large organizations).

Personnel-assignment problems are widely studied in the field of operations research

(e.g., Gale, 1960; Luenberger, 2005). The novelty here is statistical content: the

mapping from match attributes, in this case worker and task characteristics, into out-

comes is both stochastic and unknown.

A second example involves educational policy. Lankford, Loeb and Wyckoff (2003)

document widespread differences in measured teacher quality across schools in New

York City. These differences, in conjunction with residential segregation, generate sub-

stantial differences in average teacher quality across demographic groups. Understanding

the mechanics of teacher-to-school matching could aid in the design of policies, which

raise student achievement and/or reduce disparities in teacher quality across schools.

In a companion paper, Loeb, Boyd, Lankford and Wyckoff (2003) argue that the

teacher labor market resembles a two-sided matching model without transfers.8 They

assume that assignment follows the deferred acceptance procedure of Gale and Shapley

(1962): schools make offers to their most preferred candidate, candidates reject those

offers which are either dominated by other available offers or unemployment. This

process continues until all positions are filled or a school is unable to find an acceptable

candidate among those still available.9 They estimate the parameters of employer

(school) and teacher utility functions by the method of simulated moments.

With employer and employee preference estimates in hand it becomes possible, at

least in principle, to forecast the effects of alternative policies. For example, if teachers

prefer small class sizes, changes in the distribution of class size across schools would change

the equilibrium assignment of teachers to schools. The induced re-assignment of teachers

to schools thus becomes a consideration in the formulation of class size policy.10
8 They argue that collective bargaining agreements prevent school-specific wages from adjusting to equilibrate supply

and demand.
9 This algorithm leads to an employer-optimal stable matching (cf., Roth and Sotomayor, 1990).

10 For example, a reduction in average class size in predominately minority schools might, indirectly, lead to an increase

in average measured teacher quality in them.
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A third example is provided by Baccara, Imrohoroglu, Wilson and Yariv (2009)

who study the office choices of a group of academics who are connected through

friendship and coauthorship networks. Since individuals may value physical proximity

to those in their network, their choice of office affects the utility of others. An equilib-

rium assignment, even when transfers between agents are possible, need not be opti-

mal. Under certain assumptions an individual’s choice of office may provide

information about her valuation of proximity to network partners. The efficiency of

alternative assignments can then be compared to the status quo. The presence of

externalities suggests that large welfare gains may be available via reallocation.

As a final example consider the empirical analysis of marriage markets (e.g., Kremer,

1997; Choo and Siow, 2006a,b; Chiappori and Oreffice, 2008). Men are rivals with

one another when attempting to match with women and vice versa (Becker 1973,

1974). The distribution of men and women available for marriage, as well as the nature

of any surplus generated by marriage, drives marriage patterns. These patterns influ-

ence, among other outcomes, the intra-household division of resources, the acquisition

of human capital, fertility decisions and the evolution of inequality across generations.

Empirical models of marriage markets consequently play important roles in many areas

of family and household economics (cf., Weiss, 1997).

2.2 Econometric research on matching problems
Despite their prominent role in many areas of economics, comparatively little work

explores the econometric implications of matching models. Formal research on the

econometrics of matching is of relatively recent origin; with many of the key papers

as yet unpublished.11

Graham, Imbens and Ridder (2007, 2009a) introduced reallocation problems to the

econometrics literature. They study nonparametric estimation of, and inference on,

average reallocation effects (AREs) – differences in expected outcomes across feasible

assignments. Restrictions on the status quo assignment identify the match production

function, which is then averaged over alternative allocations. Graham, Imbens and

Ridder (2007) assume that match characteristics are discretely-value. This assumption

makes inference on average outcome-maximizing allocations feasible. Bhattacharya

(2009), also working in the discrete case, extends this work in a number of ways

(e.g., by considering other notions of optimality). Graham, Imbens and Ridder

(2009a) consider the case where match characteristics are continuously-valued. Since

inference on optimal allocations is difficult in this case, they introduce a semiparametric

family of reallocations, and present identification and estimation results for it.
11 A sophisticated literature in empirical labor economics studies structural models of search and matching (e.g.,

Eckstein and Wolpin, 1990; Flinn, 2006). Here my focus is on frictionless assignment models. Non-stochastic

versions of these models are widely-studied in the literature on linear and nonlinear programming (e.g., Luenberger,

2005). The game theoretic approach to such problems is summarized by Roth and Sotomayor (1990).
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In some settings, match surplus may be difficult to observe and/or measure. In such

situations, it is of interest to study what can be learned from data on the characteristics

of paired agents alone. The analogy with the revealed preference approach to consumer

behavior is quite sharp: under what conditions can an agent’s choice of partner reveal

the nature of her preferences? The two-sided nature of matching problems distinguish

them from traditional discrete-choice models of consumer demand (e.g., McFadden,

1974; Domencich and McFadden, 1975). Both parties of a partnership are complicit

in its formation, hence individuals are not unconstrained in their choice of partners.12

This suggests that in the matching context choice data reveal less about preferences

than in the textbook discrete choice model of consumer behavior.

Dagsvik (2000) appears to be the first in the econometrics literature to consider what

the distribution of match characteristics alone reveals.13 Choo and Siow (2006a,b)

develop a closely related framework (henceforth the ‘CS model’ or ‘CS framework’),

which has been extended by Chiappori, Salanié and Weiss (2010), Galichon and

Salanié (2009), and Siow (2009).14 Associated with each unit is a discretely valued

observed characteristic as well as an unobserved, continuously valued, characteristic.15

The unobserved characteristic indexes heterogeneity in preferences for different types

in the opposing population. By combining restrictions on how unobservables affect

match production with the assumption that the observed assignment satisfies pairwise

stability, they show that the net match surplus function is identified up to scale.16 This

result relies on parametric distributional assumptions.

Fox (2009a, b), in the first explicitly nonparametric treatment, also explores what

can be learned from data on partner characteristics alone. His approach is based on a

‘rank order property’. Consider two assignments, the rank order property states that

the assignment which generates more surplus in a deterministic version of the model

(i.e., one with no unobserved agent heterogeneity and/or match-specific output

‘shocks’), will be more frequently observed in the data. Although the rank order prop-

erty is intuitive, it can be difficult to justify primitively. Nevertheless his approach has

already been used in several applied papers (e.g., Fox and Bajari, 2009; Yang, Shi and

Goldfarb, 2009; Baccara, Imrohoroglu, Wilson and Yariv, 2009).
12 Echenique, Lee and Shum (2010) make this point quite elegantly. In a matching market equilibrium an individual

may choose A over B even if she prefers B. This is because B may be unavailable. Unlike in a single agent discrete

choice model, revealed preference is ambiguous.
13 In sociology, there is a small literature on two-sided logit models (Logan 1998, Logan, Hoff and Newton, 2008)

which is also explicitly grounded in economic models of matching.
14 Dagsvik (2000) considers the non-transferable utility case, while Choo and Siow (2006a,b) assume transferable utility.
15 The discretely-value characteristic may be a a composite of multiple primitive characteristics (e.g., age, gender, years

of schooling). The continuously valued characteristic is vector-valued (see below).
16 A natural notion of equilibrium in matching problems with transfers is pairwise stability: an assignment (and associated set

of transfers between units) corresponds to an equilibrium if no two pairs of agents can raise their total surplus by

exchanging partners. In one-to-one matching games with transfers pairwise stable assignments are generically unique,

although a continuum of transfers may sustain them (e.g., Shapley and Shubik, 1971; Roth and Sotomayor, 1990).
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A goal of the sections that follow, is to bring out common features of each of the

approaches mentioned above. To do this I break down a prototypical empirical matching

problem into three parts. First, associated with each matching market is a set of feasible

assignments. Two marginal distributions describe the distribution of observed and unob-

served agent attributes on each side of the market. A feasible assignment is a joint distribu-

tion of partner attributes, both observed and unobserved, consistent with these two marginals

(Graham, Imbens, and Ridder, 2007). Second, each match generates output or surplus.

Properties of the match surplus function are important for counterfactual policy analysis.

Third, there is a matching process that generates the observed assignment; this assignment

may correspond to a decentralized equilibrium or be exogenously determined. Identify-

ing the outcome effects of reallocations require restrictions on one or more of these parts

of the problem. The necessary assumptions vary with the question begin asked, which is

embodied in the target estimand. I assume that the econometrician knows the joint dis-

tribution of observed partner characteristics. In some situations, she may also know the

conditional distribution of match outcomes given observed partner characteristics.
3. IDENTIFICATION AND ESTIMATION OF ONE-TO-ONE MATCHING
MODELS WHEN MATCH OUTPUT IS OBSERVED

This section outlines econometric methods for the analysis of one-to-one matching pro-

blems appropriate for situations where match output, in addition to match characteristics

is observed. For example, we may observe student achievement (the output) as well as

measures of teacher and student quality (the match characteristics). Section 4 reviews

methods appropriate for the case where only match characteristics are observed.

Section 3.1 begins with a discussion of assignments. An assignment is a feasible alloca-

tion of ‘workers’ to ‘firms’. All empirical matching models, explicitly or implicitly, impose

restrictions on the status quo assignment. Since the sampling process only reveals the distri-

bution of observed match characteristics, restrictions on the conditional distribution of

unobserved match characteristics are needed to identify the match surplus function. This

point is explicit in Graham, Imbens and Ridder (2007, 2009a). There the fully nonpara-

metric nature of the match surplus function necessitates rather strong restrictions on the

status quo allocation. Less obviously, the structural model of Choo and Siow (2006a, b)

also implies strong restrictions on the status quo allocation. There a priori restrictions on

the match surplus function induce equilibrium (i.e., status quo) assignments where the

conditional distribution of unobserved match characteristics takes a particular form.

Section 3.1 discusses two classes of assignments in detail: those which satisfy an ‘as if’

double randomization condition and those which satisfy a weaker no matching on unob-

servables condition. The idea of doubly randomized assignment, introduced in Graham

(2008), is straightforward. The no matching on unobservables condition, introduced

here, is more subtle. A theme of Section 3.1 is that data distributions in matching pro-

blems are conceptually more challenging than those induced by random sampling from
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a single population. In matching problems, the data distribution reflects constraints

imposed by two separate, but interacting, populations. This material is tedious, but foun-

dational for what follows.

Section 3.2 considers average reallocation effects (AREs). AREs measure the change

in average outcomes induced by reassigning agents to different partners. The identifica-

tion of AREs requires a combination of restrictions on the status quo assignment and the

match surplus function. If the analyst wishes to leave the match surplus function non-

parametric, then strong restrictions on the status quo assignment are required. Alterna-

tively, imposing semiparametric restrictions on the match surplus function allows for

identification under weaker assumptions on the status quo. However, when considering

AREs a priori restrictions on the match output function should be imposed with consid-

erable caution. Assuming that match output is separable in a specific firm and worker

characteristic, for example, will imply that the distribution of match output is invariant

across a potentially large set of distinct allocations. Since the evaluation of reallocations

is a major motivation for undertaking empirical analysis this is undesirable.

For technical and/or pedagogical reasons Sections 3.1 to 3.2 emphasize settings

where agent characteristics are discretely valued. Section 3.3 discusses the case of con-

tinuously valued agent characteristics as in Graham, Imbens and Ridder (2009a). Issues

of estimation and inference are discussed in Section 3.4.

3.1 The structure of feasible assignments in one-to-one
matching problems
Consider a market composed of two large populations. The first population consists of

‘firms’. Associated with the ith firm is the observed, discretely-valued, characteristic

Wi 2 w1; . . . ;wKf g ¼ W and an unobserved characteristic, ei (which may be vector-

valued). In many cases Wi will contain purely qualitative information, in which case

we may set wk ¼ k for k ¼ 1, . . . , K. The general notation, however, allows for the

case where Wi has quantitative significance. Note that Wi may itself be a function of

multiple underlying characteristics (e.g., it may enumerate age-by-location-by-industry

cells). The population frequency of the kth type of firm is Pr(Wi ¼ wk) ¼ pk withPK
k¼1pk ¼ 1. To simplify what follows assume that pk > 0 for all k.

The second population is composed of ‘workers’. Associated with the jth worker is

the observed, discretely-valued, characteristic X j 2 x1; . . . ; xLf g ¼ X and unobserved

heterogeneity, n j (which may be vector-valued).17 The population frequency of the lth

type of worker is Pr(Xj ¼ xl) ¼ ql with
PL

l¼1ql ¼ 1 and ql > 0 for all l.

The education example introduced above helps to fix ideas. Here the population of

‘firms’ correspond to schools in a given metropolitan area. Schools vary according to their

size, demographic composition, location, and type (e.g., magnet, charter, neighborhood,

etc.). This vector of school attributes is observed by the econometrician and coded as
17 To emphasize the presence of two distinct populations I use subscripts to index firms and superscripts to index

workers.
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Wi 2 {w1, . . . , wK}. Schools are also heterogenous in ways unobserved by the econome-

trician (e.g., in terms of principal quality), these characteristics are contained in ei. The
population of ‘workers’ corresponds to teachers who vary in terms of their observed degree

type, years of experience, gender, etc. These attributes are coded as Xj 2 {x1, . . . , xL}.
Teachers also vary in unobservable ways, captured by n j. For example some teachers

may prefer to work in certain neighborhoods or in charter schools.

It is convenient to maintain an inclusive definition of firm and worker type. That is

to assume that ei is independent of Wi and n j is independent of Xj. When Wi and Xj

are exogenous unit characteristics, which in the present context means they are unaf-

fected by the assignment process, we can impose this restriction by normalization

(cf., Graham, Imbens and Ridder, 2009b).

Assumption 3.1 (INCLUSIVE DEFINITION OF TYPES)

ei ?Wi; n j?X j:

To see how Assumption 3.1 may be imposed by normalization let e�i denote the

unnormalized firm attribute. Defining ei ¼ Fðe�i jWiÞ then yields ei independent of

Wi as required. We interpret ei as a firm’s ranking in the unobserved attribute amongst

firms of its same type.18 If there are two types of workers, those with college degrees

and those without, Assumption 3.1 means that we absorb any differences in the distri-

bution of unobserved ability across these two groups into our ‘definitions’ of types.

From the standpoint of a firm, part of the benefit of hiring a random draw from the

distribution of college-educated workers is her higher expected ‘innate’ ability. The

econometrician adopts a similar perspective, the justification of which hinges on the

class of policies under consideration. In contrast to other policies typically studied in

empirical microeconomics, reallocations do not involve changes in the characteristics

of agents and, consequently, we are not interested in their causal effects.

The assignment process matches workers with firms. Restrictions on this process

drive the identification results reported below. Such restrictions may be directly

imposed by the researcher, as in experiments. Alternatively, a particular decentralized

assignment mechanism may be posited which induces status quo assignments with

properties that facilitate identification. Regardless of whether the observed assignment

was imposed by a centralized authority, or represents the equilibrium of a decentralized

process, its properties will feature in any identification analysis. Therefore, before turn-

ing to the actual mechanics of assignment in Section 4, I discuss the mathematical

structure of feasible matchings abstractly.

For simplicity, consider the case where the two populations are equally-sized and all

units match. Define the assignment function m(i ) ¼ j if the jth worker matches with the

ith firm. Let Xm(i) ¼ Xi and nm(i) ¼ ni denote the observed and unobserved
18 Graham, Imbens and Ridder (2009b) show how to extend this argument to the case where e�i is vector-valued.
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characteristics of the ith firm’s worker; hence Xi equals the type of worker assigned to

firm i (i.e., i indexes both firms and matches). For clarity assume that the unobserved

firm and worker characteristics are discretely-valued such that

ei 2 E ¼ e1; . . . ; eFf g; n j 2 V ¼ v1; . . . ; vGf g;
with fe(ef ) and fv(vg) respectively denoting the marginal frequency of the events ei ¼ ef
and n j ¼ vg. Let fe ¼ ( fe(e1), . . . , fe(eF))

0 and fv ¼ ( fv(v1), . . . , fv(vG))
0 be the F � 1 and

G � 1 vectors describing the marginal distributions of ei and n j.
The discrete support assumption for the unobservables is not required for the results

that follow; it makes their development more transparent. In particular, in highlights

the important idea that, in large populations, allocations can be conceptualized as con-

strained joint distributions.

Under the maintained large matching market assumption, a feasible assignment is

equivalent to any joint probability mass function

PrðWi ¼ w;Xi ¼ x; ei ¼ e; ni ¼ vÞ ¼ hðw; x; e; vÞ; ð1Þ
which satisfies the KF þ LG feasibility constraints

XG
g¼1

XL
l¼1

hðwk; xl; ef ; vgÞ ¼ pk feðef Þ; k ¼ 1; . . . ;K ; f ¼ 1; . . . ;F

XF
f¼1

XK
k¼1

hðwk; xl; ef ; vgÞ ¼ ql fvðvgÞ; l ¼ 1; . . . ;L; j ¼ 1; . . . ;G;

ð2Þ

and the adding-up condition

XF
f¼1

XG
g¼1

XK
k¼1

XL
l¼1

hðwk; xl; ef ; vgÞ ¼ 1: ð3Þ

Note that the product structure on the right-hand side of the equalities in (2) follows

from Assumption 3.1. After eliminating the two redundant constraints using the

marginal adding-up restrictions �
PF

f¼1

PK
k¼1pk feðef Þ ¼

PG
g¼1

PL
l¼1ql fvðvgÞ ¼ 1 –

feasibility places a total of KF þ LG � 1 constraints on the allocation probability mass

function (1). Consequently, any feasible allocation may be defined in terms of a total of

(KF � 1) � (LG � 1) probability masses. Let H be the KF � LG matrix of probabil-

ities such that h(wk, xl, ef , vg) is contained in the (F(k � 1) þ f, G(l � 1) þ g)th entry.

An assignment is completely characterized by the form of H.19

Imposing additional structure on the assignment generates more parsimonious para-

meterizations for H. Such parsimony can facilitate identification. Here I want to
19 In the large population context, where many agents may be identical in both observed and unobserved attributes, it is

possible for distinct allocations to have identical values for Ha. For example, two identical pairs can switch partners

without changing Ha. This lack of uniqueness has no substantive implications for empirical research.



Table 1 A re-parameterized feasible joint density for observed match characteristics

W\X x1 . . . xL�1 xL fW (w)

w1 r11 . . . r1 L�1 p1 �
XL�1

l¼1

r1l p1

..

. ..
. . .

. ..
. ..

.

wK�1 rK�11 rK�1 L�1 pK�1 �
XL�1

l¼1

rK�1l pK � 1

wK q1 �
XK�1

k¼1

rk1 . . . qL�1 �
XK�1

k¼1

rkL�1 1�
XK�1

k¼1

pk �
XL�1

l¼1

ql þ
XK�1

k¼1

XL�1

l¼1

rkl pK

fX(x) q1 . . . qL � 1 qL
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emphasize two classes of feasible assignments. The first is the class of assignments

satisfying an ‘as if’ double randomization condition (cf., Graham, 2008). I also consider

a natural extension of double randomization, which involves additional conditioning.

A second class of assignments, which imposes fewer restrictions on H, satisfies a no

matching on unobservables condition.

3.1.1 Double randomization
Under double randomization we have, letting Pr(Wi ¼ w, Xi ¼ x) ¼ rWX(w, x),

hðw; x; e; vÞ ¼ rWXðw; xÞ feðeÞ fv ðvÞ: ð4Þ
Allocations of the form (4) may be implemented as follows. First, choose rWX(w, x),

a feasible joint allocation density for (Wi, Xi). Second, form type-k-firm-to-type-l-

worker matches (henceforth k-to-l matches) by drawing a worker at random from

the subpopulation of workers with Xj ¼ xl and assigning her to a firm drawn at random

from the subpopulation of firms with Wi ¼ wk. Under double randomization the joint

distribution of unobserved agent attributes is the same across all types of matches, as

defined in terms of observed attributes.

After eliminating redundant terms using the marginal constraints

XL
l¼1

rWXðwk; xlÞ ¼ pk; k ¼ 1; . . . ;K

XK
k¼1

rWXðwk; xlÞ ¼ ql; l ¼ 1; . . . ;L;

and the adding-up condition, the allocation density for the observed match characteristics

can be represented in terms of (K� 1) (L� 1) parameters. LetRWX be theKLmatrix with
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rWX(wk, xl)¼ rkl as its (k, l )
th entry. Assume that the marginal constraints are used to repar-

ameterize the Kth row and Lth column in terms of the other (K � 1) (L � 1) joint proba-

bility masses and the K þ L marginal probability masses. This is illustrated in Table 1.

Using the above notation we can express an allocation which satisfies double ran-

domization as a KF � LG matrix of the form

H ¼ RWX � fe fv
0 ð5Þ

subject to the restrictions that

RWX iL ¼ p; R0
WX iK ¼ q; i0KRWX iL ¼ 1; ð6Þ

and a non-negativity constraint on each element of RWX (iL denotes a L column vector

of ones).

Note that double randomization does not restrict the degree of assortativeness in

observed attributes embodied in RWX: it may differ arbitrarily from the random alloca-

tion pq0 (subject to the requirement that it is feasible). For example perfect positive

assortative matching of Wi on Xj is not inconsistent with double randomization. Dou-

ble randomization only restricts the matching process within k-by-l cells.

To get a feel for the structure of doubly randomized assignments consider the

special case where F ¼ G ¼ K ¼ L ¼ 2. The marginal constraints on RWX impose

the K þ L � 1 ¼ 3 restrictions

r12 ¼ p1 � r11; r21 ¼ q1 � r11; r22 ¼ 1� p1 � q1 þ r11;

Under a double randomized assignment we therefore have,

Hðr11Þ ¼
r11 p1 � r11

q1 � r11 1� p1 � q1 þ r11

� �
� fe ðe1Þ fv ðv1Þ fe ðe1Þ fv ðv2Þ

fe ðe2Þ fv ðv1Þ fe ðe2Þ fv ðv2Þ

� �
: ð7Þ

Note that r11�p1q1 indexes the ‘assortativeness’ of the allocation or the frequency with

which type W ¼ w1 firms are matched with type X ¼ x1 workers relative to the ran-

dom matching benchmark.20 Inspection of (7) illustrates that doubly randomized allo-

cations allow for arbitrary amounts of sorting on observables, but no sorting or

matching on unobservables.

Double randomization allows us to express the KF � LG mass points in H in terms

of just the (K � 1) (L � 1) parameters which uniquely define RWX. This reduces the

specification of H by KL(FG � 1) � K(F � 1) � L(G � 1) parameters relative to the

imposition of feasibility alone. Doubly randomized allocations represent a small subset

of the class of feasible allocations.
20 Feasibility also requires that r11 satisfy the inequality p1 � min {p1, q1} � r11 � min {p1, q1} (cf., Graham, Imbens and

Ridder, 2007).
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Doubly randomized allocations are of interest from a policy perspective. Consider a

social planner who is able to centrally assign workers to firms. If the planner is unable

to observe ei and n j, or legally constrained from using such knowledge when making

assignments, the class of reallocations available to her is of the form given by (5).

3.1.2 Conditional double randomization
A useful generalization of double randomization is conditional double randomization.

The motivation for this extension is two-fold. First, such assignments may characterize

some types of non-experimental matching market data. Second, it illustrates how the

two-agent aspect of matching models complicates their analysis and generates new

and interesting econometric issues.

Let Ze and Zv be observable proxies or signals for, respectively, e and v. I modify

Assumption 3.1 so that firm type is independent of ewithin subpopulations homogenous

in the signal Ze. Likewise, worker type is conditionally independent of v given Zv.

Assumption 3.2 (CONDITIONAL INCLUSIVE DEFINITION OF TYPES)

ei ?Wi jZei; v j ? X j jZ j
v:

A conditionally doubly randomized allocation is a joint density for Wi, Xi, ei, vi, Zei

and Zni of the form

hðw; x; ze; zv; e; vÞ ¼ rWXZeZv
ðw; x; ze; zvÞ fe jZeðe j zeÞ fv jZv

ðv j zvÞ: ð8Þ

A member of this class of allocations may be formed as follows. First, the planner

chooses a feasible joint distribution for Wi, Xi, Zei and Zni. Second, within each

Wi ¼ w and Zei ¼ ze by Xi ¼ x and Zni ¼ zv cell, the required matches are formed

by drawing workers at random from the subpopulation of workers with Xj ¼ x and

Zni ¼ zv and assigning them to firms drawn at random from the subpopulation of firms

with Wi ¼ w and Zei ¼ ze.

This class of assignments allows for dependence between ei and v j. This is because

dependence between Zei and Zni induces dependence between ei and vi since, for

rZeZv
ðze; zvÞ ¼

PK
k¼1

PL
l¼1 rWXZeZv

ðwk; xl; ze; zvÞ,

fe;vðe; vÞ ¼
XD
d¼1

XE
e¼1

fe jZeðe j zedÞfv jZv
ðv j zveÞ rZeZv

ðzed; zveÞ ;

which does not equal fe(e) fv(v) unless rZeZv
ðze; zvÞ coincides with the product of its two

marginals. In contrast with pure double randomization, higher quality firms may match

with higher quality workers.

The educational example introduced above suggests why conditional double ran-

domization may be useful in practice. Recall that Wi and Xj denote observed charac-

teristics of the school and teacher. Let ei and v j denote unobserved characteristics of the

school and teacher, say average student ability and teacher quality, that are important
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determinants of student achievement (the outcome of interest to the econometrician).

Let Zei and Zv
j be proxies for these characteristics, such as the average student’s intake

test score and a teacher’s licensure test score. Under a conditionally doubly randomized

assignment of teachers to schools the joint distribution of Wi, Xi, Zei and Zni is

restricted only by feasibility. However, within the subpopulation of matches homoge-

nous in these observables, student ability is independent of teacher quality. Such an

assumption can be plausible when Zei and Zv
j closely approximate agents’ information

sets for ei and v j; but is more difficult, though not impossible, to justify otherwise.21

3.1.3 No matching on unobservables
An alternative approach to relaxing the requirement of double randomization is to

consider allocations that satisfy a ‘no matching on unobservables’ restriction. Unlike

conditional double randomization, this extension does not require the introduction

of proxy variables.

Let

se jXðe j xÞ ¼ Prðei ¼ e jXi ¼ xÞ; sv jwðv jwÞ ¼ Prðvi ¼ v jWi ¼ wÞ;

denote the conditional densities of the unobserved firm and worker characteristics, say

productivity and ability, given, respectively, observed worker and firm type. Alloca-

tions with the no matching on unobservables property have joint densities of the form

hðw; x; e; vÞ ¼ rWXðw; xÞ se jXðe j xÞ sv jW ðv jwÞ; ð9Þ

subject to the F þ G þ K þ L marginal constraintsPL
l¼1se jXðef j xlÞql ¼ feðef Þ;

PK
k¼1sv jW ðvg jwkÞpk ¼ fvðvgÞPL

l¼1rWXðwk; xlÞ ¼ pk;
PK

k¼1rWXðwk; xlÞ ¼ ql

ð10Þ

and the K þ L þ 1 adding up conditions

XF
f¼1

se jXðef j xlÞ ¼ 1; l ¼ 1; . . . ;L

XG
g¼1

sv jW ðvg jwkÞ ¼ 1; k ¼ 1; . . . ;K

XF
f¼1

XG
g¼1

XK
k¼1

XL
l¼1

rWXðwk; xlÞse jXðef j xlÞsv jW ðvg jwkÞ ¼ 1:

ð11Þ
21 Rigorously justifying this claim is not attempted here. Heckman and Vytlacil (2007a, b) provide an extensive

discussion of the role of informational assumptions in the econometric analysis of single agent models. Many of their

insights should apply here as well.
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Restrictions (10) and (11) can be compared with their double randomization counter-

parts (2) and (3).

Inspection of (9) indicates that assignments which satisfy the no matching on unob-

servables condition are special. Like doubly randomized assignments, they impose con-

ditional independence of ei and vi given (Wi, Xi). However, unlike doubly randomized

assignments, they do allow for a limited type of ‘input endogeneity’. Consider the

conditional distribution of ei given Xi (the analysis of the conditional distribution of vi is

entirely parallel). The distribution of ei is allowed to arbitrarily vary with Xi. If we equate

ei with firm productivity, then this allows productive firms to be more frequently matched

with certain types of workers (defined in terms of their values ofXj). This is entirely analo-

gous to a conventional production function problem where a firm’s observed input choice

may co-vary with its unobserved productivity (e.g., Griliches and Mairesse, 1998). This

type of endogenous input choice is ruled out under doubly randomized assignments.

Note, however, that (9) requires that ei’s conditional distribution be constant in Wi

conditional on Xi. This implies that the relationship between a firm’s (unobserved) pro-

ductivity and its (observed) input level, is independent of its (observed) type. If the

observed and unobserved firm characteristics, respectively Wi and ei, enter the produc-
tion function non-separably, then it will generally be the case that firms with specific

configurations of Wi and ei, as opposed to just ei alone, will differentially demand cer-

tain types of workers. Phrased in this way it is clear that the no matching on unobser-

vables restriction is quite strong. Nevertheless it is weaker the requiring an allocation to

satisfy the double randomization condition.

Consider once again the education example. Under a no matching on unobserva-

bles allocation we do allow schools with unobserved high quality principals to differen-

tially hire teachers with certain types of observed qualifications. We do not allow them

to differentially hire teachers with certain types of unobserved qualifications. Likewise

we allow teachers with certain unobserved attributes to differentially work at schools

with certain types of observed characteristics, but do not allow them to differentially

work at schools with certain types of unobserved characteristics. Assume that both

principal and teacher years of experience are observed but ‘qualities’ are not. No

matching on unobservables implies that schools with high quality principals may hire

more experienced teachers. Likewise high quality teachers may work at schools with

more experienced principals. This, in turn, implies that the conditional distributions

of principal and teacher quality will vary across subpopulations of matches defined in

terms of observed principal and teacher experience. However, within such subpopula-

tions, there is no matching on unobserved quality.

Let sel ¼ (sejX(e1jxl), . . . , sejX(eFjxl))0 and svk ¼ (svjW(v1jwk), . . . , svjW(vGjwk))
0. This

gives Se ¼ (se1, . . . , seL) and Sv ¼ (sv1, . . . , svK) equal to, respectively, the F � L and

G � K matrices of probability masses which define the conditional distributions of ei
given Xi and vi given Wi. Using this notation the (k, l )th block of H, for an allocation
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satisfying the no matching on unobservables assumption, takes the form rklsels
0
vk (which

is of dimension F � G). Therefore

H ¼ ðRWX�iFi0GÞ � �Se � �S
0
v; ð12Þ

where the notation �Se � �S
0
v denotes the Hadamard, or entrywise product, of the

matrices

�Se ¼ iK�ðSe�i0GÞ; �Sv ¼ iL�ðSv�i0FÞ:
Restrictions (10) and (11) may be expressed in matrix form as

Seq ¼ fe; Svp ¼ fv; RWX iL ¼ p; R0
WX iK ¼ q;

S0eiF ¼ iL; S0viG ¼ iK ; i0KRWX iL ¼ 1:
ð13Þ

These conditions imply that Se admits a (F � 1) � (L � 1) parameterization and Sv
a (G � 1) � (K � 1) parameterization. This, along with a (K � 1) � (L � 1) parame-

terization of RWX means that no matching on unobservables imposes

ðKF � 1Þ � ðLG � 1Þ � ðF � 1Þ � ðL � 1Þ � ðG � 1Þ � ðK � 1Þ � ðK � 1Þ � ðL � 1Þ;
additional conditions on H beyond those required for feasibility. Relative to the double

randomization condition, the no matching on unobservables condition adds a total of

(F � 1) � (L � 1) þ (G � 1) � (K � 1) degrees of freedom to H.

Consider once again the special case where F ¼ G ¼ K ¼ L ¼ 2. Implementing a

no matching on unobservables allocation requires choosing feasible values for Se, Sv
and RWX. The latter choice was described above. The choice of Se involves selecting

a 2 � 2 matrix with columns summing to one and rows summing to fe. This imposes

3 non-redundant constraints on Se (since fe(e1) þ fe(e2) ¼ 1). Let se11 ¼ sejX(e1jx1), the
conditional frequency of type ei ¼ e1 firms among those matched to type Xi ¼ x1
workers, and sv11 ¼ svjW (v1jw1), the conditional frequency of type v j ¼ v1 workers

among those matched to type W j ¼ w1 firms. We have

Seðse11Þ ¼
se11

feðe1Þ � se11q1

1� q1

1� se11 1� feðe1Þ � se11q1

1� q1

0
BBB@

1
CCCA; Svðsv11Þ ¼

sv11
fvðv1Þ � sv11p1

1� p1

1� sv11 1� fvðv1Þ � sv11p1

1� p1

0
BBB@

1
CCCA:

To gauge the effects of se11 and sv11 on the properties of the assignment note that the

average difference in productivity between firms who match with type 2 (‘high’) versus

type 1 (‘low’) workers is

E½ei jXi ¼ x2� � E½ei jXi ¼ x1� ¼ � feðe1Þ � se11

1� q1

� �
ðe2 � e1Þ⋛ 0 as se11⋛ f eðe1Þ:
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If se 11 > fe(e1), then ‘low’ productivity firms (i.e., ei ¼ e1) more frequently choose

‘low’ type workers (i.e., Xi ¼ x1). In such an allocation observed worker type predicts

unobserved firm productivity. Knowing a firm’s type, however, does not help to predict

its productivity.

Similarly the average difference in ability between workers who match with type

2 (‘high’) versus type 1 (‘low’) firms is

E½vi jWi ¼ w2� � E½vi jWi ¼ w1� ¼ � fvðv1Þ � sv11

1� p1

� �
ðv2 � v1Þ⋛ 0 as sv11⋛ f vðv1Þ;

so that if sv11 > fv(v1), then ‘low’ ability workers (i.e., v j ¼ v1) more frequently choose

‘low’ type firms (i.e., W j ¼ w1). In such an allocation firm type predicts unobserved

worker ability. Knowing a worker’s type, however, does not help to predict its ability.

If se11 ¼ fe(e1) and sv11 ¼ fv(v1) we recover the doubly randomized assignment.

Finally, as with double randomization, the no matching on unobservables requirement

does not restrict the degree of assortativeness on observed firm and worker attributes.

3.2 Average reallocation effects (AREs)
A major motivation for the empirical analysis of matching markets is to predict the distri-

bution of outcomes that would prevail under alternative feasible assignments of workers

to firms. Here, following Graham, Imbens and Ridder (2007, 2009a), I consider identify-

ing the change in average outcomes induced by a different allocations (i.e., average reallo-

cation effects (AREs)). In some settings implementing a particular assignment, while in

principle feasible, might be difficult in practice. For example, the private incentives for

re-matching may be strong under certain assignments, suggesting that they would

‘unravel’ if actually implemented. I ignore these issues in what immediately follows.

There are at least two motivations for doing so. First, an exploration of the outcome

effects of alternative assignments is a prelude to more complete policy formulation. If

the social benefits from a particular assignment are deemed large relative to the status

quo, then further thought can be given to developing a decentralized mechanism which

produces the desired assignment. In contrast, the mechanism design question is less

interesting if the distribution of outcomes is largely invariant across different assign-

ments. Second, in some institutional settings agents’ exercise little control over whom

they match with. In these settings the estimands introduced below are directly relevant.

3.2.1 Definition of target estimands
In order to identify AREs, knowledge of the match output function, or certain features

of it, is required. A general form for the match output associated with the pairing of

firm i with worker j is

Yði;jÞ ¼ kðWi;X
j; ei; n jÞ: ð14Þ
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Equation (14) is a fully nonparametric specification of match output, being non-sepa-

rable in the unobserved attributes of the matched firm and worker. Importantly, it

allows for arbitrary complementarity or substitutability between observed and unob-

served firm and worker attributes. No dimensionality or monotonicity assumptions

on ei or n
j are imposed.

Since ei and n j enter nonseparably, the identification of (14) may be too ambitious a

goal. Instead, we might consider conditions under which we can identify the average

match output function (AMF):

dðw; xÞ ¼
Ð Ð

kðw; x; e; vÞ feðeÞ fvðvÞ dedv
¼ Eei ½Evj ½kðw; x; ei; v jÞ��:

ð15Þ

The second line of (15) establishes notation for an expectation taken with respect to the

product of two marginals.

The AMF corresponds to the expected match output associated with a pairing of a

type W ¼ w firm with a type X ¼ x worker when both the firm and worker are independent

and random draws from their respective subpopulations.

The AMF is an average with respect to the product of two unobserved heterogene-

ity distributions, one for each side of the matching market. The analog to (15) in a sin-

gle agent model would be the average structural function (ASF) of Blundell and Powell

(2003). A direct application of the ASF definition to (14) would involve replacing fe(e)

fv(v) in (15) with fe,v(e,v). Such a definition would not correspond to a structural object

as fe,v(e,v) is not invariant across feasible assignments; it is a by-product of such

assignments.

Now consider the effect of a reassignment of workers-to-firms on the distribution

of match output. As a benchmark consider the case where the planner is unable to

use information on ei and v j when making her assignments; that is she is constrained

to choose an allocation from among the set of doubly randomized allocations. Let

gðRa
WXÞ ¼

ðð
dðw; xÞ raWXðw; xÞ dwdx

denote average match output under the alternative doubly randomized allocation

RWX
a ; for Wi and Xj discretely-valued,

gðRa
WXÞ ¼

XK�1

k¼1

XL�1

l¼1

rakl � fdðwK ; xLÞ � dðwK ; xlÞ � ½dðwk; xLÞ � dðwk; xlÞ�g

þ
XL�1

l¼1

ql fdðwK ; xlÞ � dðwK ; xLÞg þ
XK�1

k¼1

pK fdðwk; xLÞ � dðwK ; xLÞg

þ dðwK ; xLÞ
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The equality follows from using the K þ L � 1 non-redundant marginal constraints to

re-parameterize RWX
a (see Table 1). Let RWX

sq denote the K � L matrix of mass prob-

abilities which define the joint distribution of Wi and Xi under the status quo. The

effect of choosing allocation RWX
a on average match output relative to RWX

sq , the aver-

age reallocation effect (ARE) of Graham, Imbens, and Ridder (2007, 2009a), is then

bðRa
WXÞ ¼ gðRa

WXÞ � gðRsq
WXÞ ¼

XK�1

k¼1

XL�1

l¼1

rakl � r
sq
kl

� �
� fKLkl; ð16Þ

where

fKLkl ¼ dðwK ; xLÞ � dðwK ; xlÞ � ½dðwk; xLÞ � dðwk; xlÞ�; ð17Þ

is a measure of average local complementarity (ALC) between W and X. To see this

observe that (17) measures the expected difference between the incremental return

associated with hiring a type L versus l worker across type K versus k firms. Consider

two randomly sampled firms and workers; if (17) is positive the sum of expected output

across an assortative (K,L) and (k,l) assignment will exceed that across an anti-assorta-

tive (K,l ) and (k,L) assignment.

It is important to understand that fKLkl is a local measure of complementarity.

Consider K > m > k and L > n > l we may have fKLkl > 0 and fmnkl < 0; there

is no presumption that d(w,x) exhibits increasing differences or is supermodular (e.g.,

Topkis, 1998). This a priori flexibility vis-a-vis d(w,x) is important for making the

study of reallocations empirically interesting.

The representation of the average reallocation effect in terms of (K � 1) (L � 1)

ALC parameters facilitates its identification since, as we shall see below, (17) may be

identified even if d(w,x) is not.

Some focal assignments Among the class of feasible allocations positive and negative

assortative matchings have attracted substantial attention (e.g., Becker, 1973; Legros

and Newman, 2002). These allocations maximize output when d(w,x) is, respectively,
super-modular and submodular. The definition of these allocations requires that K ¼ L

with wkþ1 > wk and xkþ1 > xk for all k ¼ 1, . . . , K � 1. In a positive assortative matching

(pam) the rank order of Wi and Xi, to the extent that feasibility allows, coincide. The

highest type firms are assigned to the highest type workers. In a negative assortative match-

ing (nam) the opposite pattern occurs: the highest type firms are assigned to the lowest

type workers. Mathematically these two allocations concentrate the maximal feasible

amount of probability mass on, respectively, the primary and secondary diagonals of

RWX
a .

Recall that when K ¼ L ¼ 2, the set of feasible allocations is indexed by r11. In this

case the positive assortative matching chooses r
pam
11 ¼ minðp1; q1Þ. This choice induces

the maximal amount of feasible assortativeness yielding an ARE of
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bpam ¼ min p1 � r
sq
11 ; q1 � r

sq
11f g f2211:

The negative assortative matching chooses rnam11 ¼ max 0; p1 þ q1 � 1f g, which induces

the maximal feasible amount of mixing. This yields an ARE of

bnam ¼ �max r
sq
11 ; 1� p1 � q1 þ r

sq
11f gf2211:

When K ¼ L ¼ 3 the set of feasible allocations is indexed by r11, r12, r21 and r22. The

positive assortative matching chooses the values

r
pam
11 ¼ minðp1; q1Þ
r
pam
12 ¼ maxð0;min q2; p1 � r

pam
11f gÞ

r
pam
21 ¼ maxð0;min p2; q1 � r

pam
11f gÞ

r
pam
22 ¼ maxð p2 � r

pam
21 ; q2 � r

pam
12 Þ;

with the negative assortativematching constructed analogously. For the generalK¼ L case a

recursive algorithm can be used to construct the positive and negative assortative matchings.

An interesting feature of both the bpam and bnam estimands is their dependence on

marginal distributions of firm andworker type as well as on the production technology. This

dependence affects the sampling properties of their analog estimates (see Section 4.5). It also

highlights, yet again, the interplay between the resource constraint, here the firm andworker

type distributions, and the production technology in the analysis of matching problems.

A third focal allocation is the random matching, the ARE of which is given by

brm ¼ bðpq0Þ ¼
XK�1

k¼1

XL�1

l¼1

fpkql � r
sq
kl g � fKLkl:

This captures the outcome effects of switching to an assignment in which agents are

randomly paired to one another.

In many situations it may be of interest to assess the maximum gain in average out-

comes available via reallocation or the maximum average reallocation effect (MRE). One

attractive feature of the assumption that Wi and Xj are discretely-valued is that this is

a tractable estimand. The MRE, analyzed by Graham, Imbens and Ridder (2007)

and Bhattacharya (2009), is

bmre ¼ max
Ra
WX2R

XK�1

k¼1

XL�1

l¼1

frakl � r
sq
kl g � fKLkl; ð18Þ

where R denotes the set of feasible allocations:

R ¼ Ra
WX : Ra

WX iL ¼ p; Ra0

WX iK ¼ q; i0KR
a
WX iL ¼ 1; rakl � 0 for all k; l

n o
:
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This is a linear assignment program, a special case of the transportation problem (e.g.,

Luenberger, 2005, Chapter 5). While the maximizing allocation need not be unique,

the value function will be. An allocation can be thought of as a (K � 1) � (L � 1)

dimensional polyhedron, the extreme points of which correspond to extreme alloca-

tions. By the Fundamental Theorem of Linear Programming (Luenberger, 2005;

Chapter 2.4) an optimal allocation will be one of the extreme allocations. The maxi-

mum reallocation effect, bmre, can be used to assess the efficiency of the status quo

(Bhattacharya, 2009).

When K ¼ L ¼ 2 the two extreme allocations respectively correspond to the posi-

tive and negative assortative matchings. Since the optimal allocation must be one of

these two assignments we get the elegant solution (Graham, Imbens and Ridder, 2007)

rmre
11 ¼ minðp1; q1Þ	1 ðf2211 � 0Þ þmax 0; p1 þ p2 � 1f g	1 ðf2211 < 0Þ;

with

bmre ¼ ðrmre
11 � r

sq
11Þ � f2211:

When K, L > 2 the form of bmre is more complicated, but is easily solved for numeri-

cally using linear programming methods. The solution in the K ¼ L ¼ 3 case is dis-

cussed in Graham, Imbens and Ridder (2007).

3.2.2 Identification under double randomization
First, consider unrestricted match output functions of the form given in (14). If the sta-

tus quo allocation satisfies the doubly randomized restriction the AMF is identified by

E½Yi jWi ¼ wk;Xi ¼ xl� ¼ dðw; xÞ:

Identification of fKLkl and the average reallocation effect b(Ra) follows directly under

additional support conditions.

Proposition 3.1 (Identification Under Double Randomization) If

(i) Y(i,j) ¼ k(Wi, X
j, ei, n

j),

(ii) the status quo assignment is of the form given by (4), and

(iii) rakl > 0 only if r
sq
kl > 0, then

E½Yi jWi ¼ wk;Xi ¼ xl� ¼ dðw; xÞ

and bðRa
WXÞ is identified. If r

sq
kl > 0 for all k ¼ 1, . . . , K and l ¼ 1, . . . , L, then bmre is also

identified.

Condition (iii) requires the status quo and alternative allocations share a common

support. Proposition 3.1 is implicit in Graham, Imbens and Ridder (2007).

Identification of d(w, x) under conditional double randomization is more involved.

Consider the proxy variable regression
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gðw; x; ze; zvÞ ¼ E½Yi jWi ¼ w;Xi ¼ x;Ze ¼ ze;Zv ¼ zv�

¼
ðð

kðw; x; e; vÞfe jZeðe j zeÞfv jZv
ðv j zvÞ dmðeÞdmðvÞ;

with the second equality following from the conditional double randomization

assumption. This suggests recovering d(w,x) by

dðw; xÞ ¼ EZe ½EZv
½gðw; x;Ze;ZvÞ��: ð19Þ

Equation (19) is similar to the partial mean estimand introduced by Newey (1994)

and widely-used in recent work on the nonparametric identification of single agent mod-

els (e.g., Blundell and Powell, 2003; Imbens, 2007a). It is distinctive in that it involves

two marginal averages, as opposed to one. To understand the importance of sequentially

averaging over the two marginal distributions, note that the conventional partial mean

EZe;Zv
½gðw; x;Ze;ZvÞ�;

does not equal the AMF. This is because any unobserved dependence between ei and
n j will be mirrored in the observed dependence between Ze and Zv. Therefore averag-

ing over the joint distribution of the latter will not recover the AMF. The idea that

unobserved heterogeneity may be ‘averaged out’ in a two-agent model by averaging

over the product of two proxy variable marginal distributions, one for each agent,

appears to be new (cf., Graham, Imbens, Ridder, 2009b).

This idea is summarized by Proposition 3.2.

Proposition 3.2 (Identification Under Conditional Double Randomization) If

(i) Y(i, j) ¼ k(Wi, X
j, ei, n

j),

(ii) the status quo assignment is of the form given by (8),

(iii) the support of Wi, Xi given Ze ¼ ze, Zv ¼ zv, does not depend on (ze, zv),

(iv) the joint support of Ze and Zv coincides with the product of its two marginals’ supports,

(iv) rakl > 0 only if r
sq
kl > 0, then,

dðw; xÞ ¼ EZe ½EZv
½gðw; x;Ze;ZvÞ��;

for gðw; x; ze; zvÞ ¼ E½Yi jWi ¼ w;Xi ¼ x;Ze ¼ ze;Zv ¼ zv� and bðRa
WXÞ is identified.

If r
sq
kl > 0 for all k ¼ 1, . . . , K and l ¼ 1, . . . , L, then bmre is also identified.

Condition (iii) ensures that for any configuration of proxies all types of matches,

defined in terms of their (Xi, Wi) value, are observed. This is similar to the ‘overlap’

assumption in the program evaluation literature. Condition (iv) is specific to the

matching context. It requires that their not be too much dependence between Zei

and Zvi. Averaging over the the two marginal distributions in (19) eliminates any bias

due to observed matching on Zei and Zvi (which proxies for unobserved matching on

e and v). If there is two much dependence between Zei and Zvi in the status quo this

double averaging cannot be performed. Conditions (iii) and (iv) are strong conditions.
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In situations where point identification fails, bðRa
WXÞ and bmre may still be set identi-

fied. This possibility is not explored here.

3.2.3 Identification under no matching on unobservables
Propositions 3.1 and 3.2 leave the match output function unrestricted, but make strong

a priori assumptions about the form of the status quo assignment. If we restrict the

match output function positive identification results are possible without assuming

double randomization. Consider the following restricted match outcome function

kðWi;X
j; ei; n jÞ ¼ dðWi;X

jÞ þ lðei;X jÞ þ rðWi; n jÞ; ð20Þ

where

E½lðei; xÞ� ¼ E½rðw; n jÞ� ¼ 0: ð21Þ

These normalizations imply that that d(w,x) is the AMF as defined in (15) above.

Restriction (20) will also feature in the analysis of equilibrium matching data when

agent characteristics alone are observed (Section 4 below).

Equation (20) is restrictive. Holding unobserved firm and worker complementarity

fixed we have, for w0 > w and x0 > x,

kðw0; x0; e; nÞ � kðw; x; e; nÞ � ½kðw; x0; e; nÞ � kðw; x; e; nÞ�
¼ dðw0; x0Þ � dðw; xÞ � ½dðw; x0Þ � dðw; xÞ�:

The degree of complementarity between observed firm and worker attributes does not

vary with unobserved firm and worker attributes.

Similarly, holding observed match characteristics fixed, for e0 > e and n0 > n,

kðw; x; e0; n0Þ � kðw; x; e0; nÞ � ½kðw; x; e; n0Þ � kðw; x; e; nÞ� ¼ 0;

which rules out complementarity in unobserved agent attributes.

The match surplus function does allow for complementarity between ei and Xj as

well as Wi and v j. Specifically

kðw; x0; e0; nÞ � kðw; x; e0; nÞ � ½kðw; x0; e; nÞ � kðw; x; e; nÞ�
¼ lðe0; x0Þ � lðe0; xÞ � ½lðe; x0Þ � lðe; xÞ�;

and

kðw0; x; e; n0Þ � kðw0; x; e; nÞ � ½kðw; x; e; n0Þ � kðw; x; e; nÞ�
¼ rðw0; n0Þ � rðw0; nÞ � ½rðw; n0Þ � rðw; nÞ�;

may be non-zero.

The form of the surplus function drives matching incentives. Restriction (20)

has strong implications for these incentives. While it does allow for complementarity

between observed attributes, generating incentives for matching on observables, it does

not allow for complementarity between unobserved attributes. This eliminates any
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incentive to sort on unobservables within k-by-l assignment cells. It also restricts the

types of complementarity allowed between observed and unobserved inputs. While it

allows for complementarity between ei and Xj, so that firms will seek out different

types of workers depending on their value for ei, this complementarity is constant in

firm type (Wi). This suggests that the intensity of any matching of ei on Xj will not vary

with Wi. Complementarity between v j and Wi is similarly restricted.

Under (20) and the no matching on unobservables restriction we have

E½Yi jWi ¼ w;Xi ¼ x� ¼ dðw; xÞ þ �lðxÞ þ �rðwÞ; ð22Þ

for �lðxÞ ¼ E½lðei;XiÞ jXi ¼ x� and �rðwÞ ¼ E½rðWi; nmðiÞÞ jWi ¼ w�22.
Unlike the case of double randomization, average output across matches with

Wi ¼ w and Xi ¼ x does not coincide with d(w,x). The two additional terms, �lðxÞ
and �rðwÞ, are due to selection bias. Under the no matching on unobservables assump-

tion it is still possible that firms with different values of ei differentially match with

workers of type Xj ¼ x. This matching of ei on Xj is captured by �lðxÞ. Likewise work-
ers with different values of v j may differentially match with firms of type Wi ¼ w. This

matching of v j on Wi is captured by �rðwÞ.
Although allocations which satisfy the no matching on unobservables restriction do

not allow for identification of the AMF, they do allow for identification of average

local complementarity. To see this note that (22) implies that

E½Yi jWi ¼ w0;Xi ¼ x0� � E½Yi jWi ¼ w0;Xi ¼ x�
� ðE½Yi jWi ¼ w;Xi ¼ x0� � E½Yi jWi ¼ w;Xi ¼ x�Þ

¼ dðw0; x0Þ � dðw; xÞ � ½dðw; x0Þ � dðw; xÞ�:

The ‘difference-in-differences’ structure of the ALC estimand means that any selection

bias allowed for by the no matching on unobservables restriction is differenced away

(assuming the production function is given by (20) above).

Since b(Ra) only depends on d(w,x) through the ALC terms it is also identified

under additional support conditions.

Proposition 3.3 (Identification Under No Matching on Unobservables) If

(i) Y(i,j) ¼ d(Wi,X
j) þ l(ei,X

j) þ r(Wi,n
j),
22 To see this note that

E½YijWi ¼ w;Xi ¼ x� ¼
XF

f¼1

XG

g¼1
kðw; x; ef ; vgÞsejX ðef jxÞsvjW ðvgjwÞ

¼ dðw; xÞ þ
XF

f¼1
lðef ; xÞsejX ðef jxÞ þ

XG

g¼1
rðw; vgÞsvjW ðvgjwÞ

¼ dðw; xÞ þ E½lðei;XiÞjXi ¼ x� þ E r Wi; nmðiÞ
� ����Wi ¼ w

h i
dðw; xÞ þ �lðxÞ þ �rðwÞ:
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(ii) the status quo assignment is of the form given by (9), and

(iii) rakl > 0 only if r
sq
kl > 0, then

fKLkl ¼ E½Yi jWi ¼ wK ;Xi ¼ xL� � E½Yi jWi ¼ wK ;Xi ¼ xl�
� ðE½Yi jWi ¼ wk;Xi ¼ xL� � E½Yi jWi ¼ wk;Xi ¼ xl�Þ;

and bðRa
WXÞ is identified. If r

sq
kl > 0 for all k ¼ 1, . . . , K and l ¼ 1, . . . , L, then bmre is also

identified.

Proposition 3.3 is new. It is a consequence of (i) the ‘difference-in-differences’ or

‘increasing differences’ structure of the ALC estimand and (ii) the type of selection bias

allowed under the no matching on unobservables assumption. Consider the difference

in match output across matches with workers of type Xi ¼ x0 versus Xi ¼ x:

E½Yi jWi ¼ w0;Xi ¼ x0� �E½Yi jWi ¼ w0;Xi ¼ x� ¼ dðw0;x0Þ � dðw0;xÞ þ �lðx0Þ � �lðxÞ:
ð23Þ

The first term – d(w0,x0) � d(w0,x) – is the systematic return that a type Wi ¼ w0

firm gets from hiring a type Xi ¼ x0 versus Xi ¼ x worker. The second term

��lðx0Þ � �lðxÞ� captures the difference in average firm productivity across the two

types of matches. This may arise from selective input choice on the part of the firm.

The key point is that the combination of the restricted match output function (20)

and the no matching on unobservables assumption implies that this latter term is

constant in firm type. Consequently we also have

E½Yi jWi¼w;Xi¼x0��E½Yi jWi¼w;Xi¼x�¼dðw;x0Þ�dðw;xÞþ�lðx0Þ��lðxÞ: ð24Þ

Subtracting (24) from (23) yields the ALC. Underlying Proposition 3.3 are strong

assumptions the appropriateness of which will vary from application to application.

The proposition does highlight the gains from directly searching for restrictions which

identify ALC (as opposed to first identifying the AMF and then computing ALC).

3.2.4 Further thoughts on the identification of AREs
The definition of the AMF as an average over the product of two unobserved hetero-

geneity distributions makes identification of reallocation effects particularly challenging.

This section has outlined two approaches. The first leaves the match surplus function

nonparametric but imposes strong restrictions on the status quo assignment. These

restrictions can be weakened somewhat by additional conditioning (Proposition 3.2).

The second approach involves imposing separability assumptions on the match output

function. As noted above these restrictions are strong, particularly in the context of

allocation problems where complementarity properties are paramount. However, such

assumptions allow for the formulation of positive identification results under weaker

restrictions on the status quo assignment.
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An area that merits further thought is the value of partially identifying restrictions of

the type discussed in Manski (2003). For example sign, monotonicity or other restric-

tions on the ALC may be both well motivated and informative about reallocation

effects in some situations.

3.3 Continuously-valued match characteristics
Graham, Imbens, and Ridder (2009a) study identification and estimation of AREs

when match characteristics are continuously-valued. Continuity of agent characteristics

makes some features of assignment problems simpler. For example the definitions of

the positive and negative assortative matchings are less clumsy in this case. Other

aspects of the problem become more challenging. The class of feasible assignments

becomes very large, making identification of optimal allocations difficult. Formally

the planner’s problem is a nonconvex functional (i.e., infinite dimensional) optimiza-

tion problem. Such problems, unlike linear programs, are quite hard to solve in general

(e.g., Luenberger, 1969).

As before match output is given by Y(i,j) ¼ k(Wi, X
j, ei, n

j). However, now both Wi

and Xj are continuously-valued. The average match output function is

dðw; xÞ ¼
ðð

kðw; x; e; nÞ feðeÞ fnðvÞdedv

with fe(e) and fn(v) the marginal density functions for, respectively, firm productivity

and worker ability.

To keep the exposition simple assume double randomization such that the status

quo assignment density is given by

hsq ðw; x; e; vÞ ¼ r
sq
WXðw; xÞ feðeÞ fnðvÞ;

so that the AMF is identified by dðw; xÞ ¼ E½Yi jWi ¼ w;Xi ¼ x�.
Feasibility of an assignment density, rWX(w, x), requires thatð

w

rWXðw; xÞ dw ¼ fXðxÞ;
ð
x

rWXðw; xÞ dx ¼ fW ðwÞ; ð25Þ

with fW(w) and fX(x) the marginal density functions for, respectively, the firm and

worker attributes (or types). The class of reallocations studied by Graham, Imbens

and Ridder (2009a) consists of all joint densities satisfying (25).

The first estimand they consider is expected outcome gain from perfect assortative

matching of Wi on Xj:

bpam ¼ E½dðF�1
W ðFXðXiÞÞ;XiÞ � Yi�; ð26Þ

where FX(X
j) denotes the CDF of Xj, and F�1

W ðqÞ is the q-th quantile of the distribu-

tion of Wi. Therefore F�1
W ðFXðXiÞÞ computes the location of match i0s worker on the
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CDF of Xj and reassigns her to a firm on the corresponding quantile of the distribution

of Wi. Those workers with the highest value of Xj are reassigned to firms with the

highest value of Wi, and so on.

The average outcome gain from negative assortative matching follows similarly with

bnam ¼ E½dðF�1
W ð1� FXðXiÞÞ;XiÞ � Yi�: ð27Þ

Note that (26) and (27) are related to the partial mean estimand introduced by Newey

(1994). While the average match function d(w,x) is a bivariate function, both (26) and

(27) are averages over a single random variable. This reflects the fact that under per-

fectly assortative matchings the conditional distributions of Wi given Xi is degenerate:

knowledge of Xi implies knowledge of Wi. This feature of the b
pam and bnam estimands

affects the limiting distribution of their sample analogs (see Section 3.4).

Because the class of feasible allocations is so large, Graham, Imbens and Ridder

(2009a) do not attempt to identify optimal allocations. Instead they introduce a two

parameter family of feasible allocations called correlated matchings. Let H(	, 	; r) denote
the CDF of a standard bivariate normal random variable with correlation coefficient

r.23 Let Rsq(w, x), in a change of notation, denote the CDF of the joint distribution

of (Wi, Xi) under the status quo. Correlating matchings are given by

Rcm ðw; x; t; rÞ ¼ tRsq ðw; xÞ þ ð1� tÞHðF�1ðFW ðwÞÞ;F�1ðFXðxÞÞ;rÞ;

for t between zero and one and r between �1 and 1.

The effect of implementing a correlated matching on average outcomes is thus

bcm ðr; tÞ ¼ ð1� tÞ

�
ð
w

ð
x

dðw; xÞfðF
�1ðFW ðwÞÞ;F�1ðFXðxÞÞ;rÞ

fðF�1ðFW ðwÞÞÞfðF�1ðFXðxÞÞÞ
fW ðwÞ fX ðxÞ dwdx� E½Yi�

8<
:

9=
;:

ð28Þ

By varying r from 1 to �1 for t ¼ 0 correlated matchings trace a path from the posi-

tive, through the random (r ¼ 0), to the negative assortative matching. By setting t ¼ 1

they can reproduce the status quo assignment. Note that unless d(w,x) is supermodular,

bcm(r,t) need not vary monotonically with r. Furthermore there is no guarantee that

an average outcome maximizing allocation corresponds to a correlated matching.

Indeed, it would be surprising if it did.

One way to conceptualize correlated matchings is to view them as particular pertur-

bations of the random allocation. To see this note that

bcm ðr; tÞ ¼ ð1� tÞ EWi
½EX j ½dðWi;X

jÞ�ðWi;X
j;rÞ�� � E½Yi�

� �
;

23 To avoid small denominator problems, they actually work with a truncated bivariate normal distribution function.
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for

� ðWi;X
j; rÞ ¼ fðF�1ðFW ðWiÞÞ;F�1ðFXðX jÞÞ; rÞ

fðF�1ðFW ðWiÞÞÞfðF�1ðFXðX jÞÞÞ
:

If r ¼ 0, the weight function �(w, x; r) is identically equal to one for all w and x and

bcm ð0; tÞ ¼ ð1� tÞ EWi
½EX j ½dðWi;X

jÞ�� � E½Yi�f g. If r > 0, then �(w, x; r) will be
larger for pairs of Wi and Xj that correspond to similar quantiles of their respective

marginal distributions. Likewise if r < 0, then �(w, x; r) will be larger for pairs of

Wi and Xj that correspond to very different quantiles. In the limit as r ! 1 the weight

function �(Wi, X
j; r) is only non-zero when the quantiles of Wi and Xj coincide, as in

the perfect positive assortative matching. When r ! �1 we recover the negative

assortative matching.

Identification of bpam, bnam and bcm(r, t) requires strong support conditions. A suf-

ficient condition for identification is that the joint support of the status quo assignment

Rsq(w,x) coincides with the product of its marginals’ support. This condition allows

the econometrician to learn about d(w,x) at all conceptually possible combinations of

w and x. Given this knowledge the average outcome across any feasible assignment

can be computed by integration. Unfortunately in many datasets this support condition

will fail (or effectively fail) to hold. For example, if under the status quo there is strong

positive dependence between Wi and Xi, then it will be difficult to identify bnam. This
is because bnam is an average of d(w,x) over pairs of w and x where w is large (small) and

x is small (large). These are precisely the match types that are infrequently observed in a

status quo with ‘lots of’ positive dependence.

In addition to being difficult to identify, assignments that are distant from the status

quo may be less policy relevant. Policies which represent incremental modifications of

the status quo may be politically and/or logistically easier to implement than large real-

locations.24 Motivated by these issues Graham, Imbens and Ridder (2009a) also study

local reallocation effects (LREs) (i.e., the effects of small reallocations ‘away’ from the sta-

tus quo and ‘toward’ the perfect positive assortative matching).

They derive the LRE by matching on a family of transformations of Xi and Wi,

indexed by a scalar parameter l, where for some values of l the matching is on

Wi (corresponding to the status quo), and for other values of l the matching is on Xi or

�Xi, corresponding to positive and negative assortative matching respectively. Assume

that the supports of Wi and Xi are given by the intervals [wl, wu] and [xl, xu]. Let d(w) be

the following smooth function that goes to zero at the boundary of the support of Wi:

dðwÞ ¼ 1w>wm
	ðwu � wÞ þ 1w�wm

	ðw � wlÞ;

where wm is the midpoint of the support of W.
24 Of course some organizations, like the military, have a greater ability to implement radical organizational changes.



996 Bryan S. Graham
For l 2 [�1, 1], define the random variable Uli as the following transformation of

(Xi, Wi):

Uli ¼ l 	 Xi 	 dðWiÞ1� j l j þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
Þ 	Wi:

Now we consider reallocations based on positive assortative matching on Uli:

blr ðlÞ ¼ E½dðF�1
W ðFUlðUliÞÞ;XiÞ�: ð29Þ

For l ¼ 0 and l ¼ 1 we have Uli ¼ Wi and Uli ¼ Xi respectively, and hence blr(0)
recovers the status quo average outcome E½Yi� and blr (1) ¼ bpam. The negative assor-
tative matching is also nested in this framework since

Prð�X j � �xÞ ¼ PrðX j � xÞ ¼ 1� FXðxÞ;

and hence for l ¼ �1 we have blr(�1) ¼ bnam. Values of l close to zero induce real-

locations of Wi that are ‘local’ to the status quo, with l > 0 and l < 0 generating shifts

toward positive and negative assortative matching respectively.

Graham, Imbens and Ridder (2009a) consider the direction of the effect on average

outcomes associated with a small step toward the positive assortative matching:

blc ¼ @blr

@l
ð0Þ: ð30Þ

Theorem 3.1 of their paper presents two representations of this derivative:

blc ¼ E dðW Þ 	 C @

@w
dðW ;XÞ;X jW

� �
 �
; ð31Þ

and

blc ¼ E oðW ;XÞ	 @2

@w@x
dðW ;XÞ


 �
; ð32Þ

where the weight function o(w,x) is non-negative and has the form

oðw;xÞ¼ dðwÞ	
FX jW ðx jwÞ	ð1�FX jW ðx jwÞÞ

fX jW ðx jwÞ 	ðE½X jX > x;W ¼w��E½X jX � x;W ¼w�Þ:

The first representation of blc motivates their approach to estimation. It implies that

blc will be positive if the conditional covariance between @
@w dðW ;XÞ and X is positive.

This will occur if the return to increases in firm type, @
@w dðW ;XÞ, tends to be larger

when X exceeds its conditional mean E½X jW �. Intuitively this suggests that increasing

assortativeness should raise average outcomes. Representation (31) makes this intuition

precise.
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The second representation shows that blc is a weighted average measure of comple-

mentarity between firm and worker type. This provides a connection between the

presence of complementarity and reallocation effects.

3.4 Estimation of AREs when match output is observed
The estimation of matching models raises complex and interesting statistical issues.

Some of these issues are well-known from the literature on semiparametric estimation

(Powell, 1994), others are less familiar. Consider the structure of the ARE estimand. It

is a function of three primitives (i) the production technology, (ii) the marginal distri-

bution of the two inputs (firm and worker type) and (iii) the chosen allocation. This

intertwined aspect of the target parameter can generate surprises. For example,

Graham, Imbens and Ridder (2007) show that the limiting distribution of bpam, when
firm and worker type are discretely-valued, changes discontinuously in the marginal

distributions on W and X. Discontinuities in limit distributions arise elsewhere in

econometrics, for example in the literature on unit roots, weak instruments, and

moment inequalities, but their presence in assignment problems is, at least a priori,

surprising. When W and X are continuously-valued Graham, Imbens and Ridder

(2009a) show that the rate of convergence is slower for their estimates of the two extre-

mal allocations bpam and bnam, than for non-extremal correlated matchings bcm.

3.4.1 Estimation of the average match output function (AMF)
Consider a setting where the status quo assignment is ‘as if’ conditionally doubly ran-

domized as described in Section 3.1. If all covariates are discretely-valued the estimated

proxy variable regression introduced in Proposition 3.2 is given by the cell mean

ĝðw; x; ze; zvÞ ¼
PN

i¼1Yi1ðWi ¼ w;Xi ¼ x;Zei ¼ ze;Zvi ¼ zvÞPN
i¼11ðWi ¼ w;Xi ¼ x;Xei ¼ ze;Zvi ¼ zvÞ

:

When covariates are continuously-valued g(w, x, ze, zv) can be estimated by kernel

regression. Graham, Imbens and Ridder (2009a) use the Nearest Interior Point (NIP)

kernel estimator of Imbens and Ridder (2009). This estimator eliminates boundary bias

present in the standard Nadaraya-Watson estimate.

In either case the average match output function (AMF) is recovered by separately

averaging over the sample distributions of Zei and Zvj:

d̂ðw; xÞ ¼ 1

N 2

XN
i¼1

XN
j¼1

ĝðw; x;Zei;ZvjÞ: ð33Þ

Equation (33) is similar to the partial mean estimator of Newey (1994b). It differs

in that it averages over a product of two marginals instead of the joint distribution of
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(Zei, Zvj). Its asymptotic properties are unknown, although they should be straightfor-

ward to derive.

For simplicity in what follows I will assume the status quo assignment is doubly ran-

domized. Many of the results will also hold if instead it satisfies the no matching on

unobservables condition and the match production function is given by (20). When

this is the case should be obvious by the context. Under double randomization, with

discretely-valued covariates, we may estimate the AMF by

d̂ðw; xÞ ¼
PN

i¼1Yi1ðWi ¼ w;Xi ¼ xÞPN
i¼11ðWi ¼ w;Xi ¼ xÞ

; ð34Þ

With continuously-valued covariates d(w,x) may be estimated by NIP kernel

regression.

3.4.2 AREs with discretely-valued covariates
Fixed ‘interior’ allocations Inference on AREs for fixed interior allocations when

match characteristics are discretely-valued is straightforward. To illustrate I consider

only the simple K ¼ L ¼ 2 case. Generalizing what follows to allow for K, L > 2 is

straightforward, albeit tedious.

Recall from Section 3.1 that when K ¼ L ¼ 2 we have the one parameter

representation

Ra
WXðra11Þ ¼

ra11 p1 � ra11
q1 � ra11 1� p1 � q1 þ ra11

� �
;

for all r11
a such that Ra

WX is a valid joint distribution or

p1 �min p1; q1f g � ra11 � min p1; q1f g: ð35Þ

Interior allocations consist of all allocations where r11
a is non-stochastic and the

inequalities in (35) are strict.

Letting b(Ra) ¼ ba the analog estimator is

b̂
a ¼ ra11 � r̂

sq
11

� �
� f̂;

with

f̂ ¼ d̂22 � d̂21 � d̂12 � d̂11
� �

;

and d̂kl ¼ d̂ðwk; xlÞ given by (34) above. Note that sampling error in b̂
a
will reflect

both uncertainty in (i) the form of the match production technology (in this case f,
the complementarity measure) and (ii) the status quo assignment distribution (in this

case r11
sq).
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The delta method gives

ffiffiffiffiffi
N

p
ðf̂� f0Þ!

D N 0;
s211
r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

þ s222
1� p1 � q1 þ r

sq
11

� �
;

where s2kl ¼ VðYi jWi ¼ wk;Xi ¼ xlÞ.
The status quo assignment, which enters the definition of ba through r11

sq, is assumed

unknown. However it may be consistently estimated by

p̂1 ¼
1

N

XN
i¼1

1ðWi ¼ w1Þ; q̂1 ¼
1

N

XN
i¼1

1ðXi ¼ x1Þ; r̂
sq
11 ¼

1

N

XN
i¼1

1ðWi ¼ w1;Xi ¼ x1Þ;

with a large sample distribution equal to

ffiffiffiffiffi
N

p p̂1 � p1
q̂1 � q1
r̂
sq
11 � r

sq
11

0
@

1
A!D N

0

0

0

0
@

1
A;

p1ð1� p1Þ r
sq
11 � p1q1 r

sq
11ð1� p1Þ

r
sq
11 � p1q1 q1ð1� q1Þ r

sq
11ð1� q1Þ

r
sq
11ð1� p1Þ r

sq
11ð1� q1Þ r

sq
11ð1� r

sq
11Þ

0
@

1
A

0
@

1
A:

Note that sampling error in the estimate of Rsq is asymptotically independent of that

in f̂.
Since b̂

a
is a continuous function of sample averages b̂

a
is consistent for ba. A sec-

ond application of the delta method then gives an asymptotic sampling distribution of

ffiffiffiffiffi
N

p
ðb̂a � baÞ!D Za ð36Þ

where Za is the normally distributed random variable

Za 
 N 0; ðra11 � r
sq
11Þ

2 s211
r
sq
11

þ s212
p1 � r

sq
11

þ :

( 

s221
q1 � r

sq
11

þ s222
1� p1 � q1 þ r

sq
11

g þ f2
0r

sq
11ð1� r

sq
11Þ
�
:

The asymptotic sampling variance of b̂
a
has two components. The first reflects

sampling error in f̂, the degree of average local complementarity between W and

X, as well as the distance between the new allocation and the status quo, ra11 � r
sq
11 .

The greater the distance between the counterfactual assignment of interest and

the status quo, the greater our uncertainty about the magnitude of the ARE. The

second source of sampling error in b̂
a
arises from our imperfect knowledge of the sta-

tus quo assignment distribution; sampling error in r̂
sq
11. Since all the components

entering its asymptotic variance are consistently estimable, conducting large sample

inference on b̂
a
is straightforward.
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Extreme allocations Estimation of, and inference on, extremal allocations raises new

and interesting issues. First consider the case of the positive assortative matching. When

K ¼ L ¼ 2 the positive assortative matching chooses r
pam
11 ¼ min p1; q1f g, so that

bpam ¼ min ðp1 � r
sq
11Þf; ðq1 � r

sq
11Þff g: ð37Þ

The analog estimator is

b̂
pam ¼ minfðp̂1 � r̂

sq
11Þf̂; ðq̂1 � r̂

sq
11Þf̂g:

Since the function min ðp1 � r
sq
11Þf; ðq1 � r

sq
11Þff g is continuous we have, by the con-

tinuous mapping theorem, b̂
pam!p bpam . While the demonstration of consistency is

straightforward, characterizing the asymptotic sampling distribution of b̂
pam

is more

difficult. This is because the definition of bpam depends on unknown features of the

population distribution of firm and worker types. In particular b̂
pam

has three possible

limit distributions depending on whether (i) p1 > q1, (ii) p1 < q1, or (iii) p1 ¼ q1. Since

we do not know which case obtains a priori Graham, Imbens and Ridder (2007) sug-

gest a conservative approach to inference. To describe this approach to inference we

first need to characterize the three limiting distributions.

Case 1 p1 > q1: When p1 > q1, so that type 1 firms are more numerous than type 1

workers, we haveffiffiffiffiffi
N

p
ðmin p̂1; q̂1f g �min p1; q1f gÞ ¼

ffiffiffiffiffi
N

p
ðmin p̂1; q̂1f g � q1Þ

¼ min
ffiffiffiffiffi
N

p
ðp̂1 � p1Þ þ

ffiffiffiffiffi
N

p
ðp1 � q1Þ;

ffiffiffiffiffi
N

p
ðq̂1 � q1Þ

� �
:

Since
ffiffiffiffiffi
N

p
ðp1 � q1Þ > 0 this gives

j
ffiffiffiffiffi
N

p
ðmin p̂1; q̂1f g �min p1; q1f gÞ �

ffiffiffiffiffi
N

p
ðq̂1 � q1Þ j !

p
0;

which allows us to replace min ðp̂1 � r̂
sq
11Þf̂; ðq̂1 � r̂

sq
11Þf̂

n o
in (79) with ðq̂1 � r̂

sq
11Þf̂.

Following a sequence of steps analogous to those described above for fixed interior

allocations we then get ffiffiffiffiffi
N

p
b̂
pam � bpam

� �
!D Zq�r ; ð38Þ

with Zq�r the normal random variable

Zq�r 
 N 0; ðq1 � r
sq
11Þ

2 s211
r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

( 

þ s222
1� p1 � q1 þ r

sq
11

)
þ f2ð1� q1 � r

sq
11Þðq1 � r

sq
11Þ
!
:
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Note that uncertainty in two features of the status quo, q1 and r11
sq, are reflected in the

sampling variance of Zq�r. This is because q1 enters in the definition of bpam.
Case 2 p1 < q1: When p1 < q1, so that type 1 firms are less numerous than type 1

workers, we have, following an argument parallel to case 1 above,ffiffiffiffiffi
N

p
ðb̂pam � bpam Þ!D Zp�r ð39Þ

with Zp�r the normal random variable

Zp�r 
 N 0; ðp1 � r
sq
11Þ

2 s211
r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

( 

þ s222
1� p1 � q1 þ r

sq
11

)
þ f2ð1� p1 � r

sq
11Þðp1 � r

sq
11Þ
!
:

Case 3 p1 ¼ q1: The limit distribution for the third case, which corresponds to the

marginal distributions of W and X coinciding, is nonstandard. To see this note that

when p1 ¼ q1 we haveffiffiffiffiffi
N

p
ðmin p̂1; q̂1f g �min p1; q1f gÞ ¼ min

ffiffiffiffiffi
N

p
ðp̂1 � p1Þ;

ffiffiffiffiffi
N

p
ðq̂1 � q1Þ

n o
!D min ðUp;UqÞ;

with (Up, Uq) the bivariate normal random variable:

Up

Uq

� �

 N 0

0

� �
;

p1ð1� p1Þ r
sq
11 � p21

r
sq
11 � p21 p1ð1� p1Þ

� �� �
:

Recalling the definition of bpam we then getffiffiffiffiffi
N

p
ðb̂pam � bpam Þ!D min Zp�r ;Zq�r

� �
;

with Zq�r and Zp�r the normal random variables defined by (38) and (39) above. Their

covariance is given by

ðp1 � r
sq
11Þðq1 � r

sq
11Þ

s211
r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

þ s222
1� p1 � q1 þ r

sq
11

( )

�f2ðp1 � r
sq
11Þðq1 � r

sq
11Þ:

While the distribution of min{Zp�r,Zq�r} is difficult to characterize analytically, it

is straightforward to simulate from: (i) draw Zp�r and Zq�r jointly, (ii) calculate

their minimum, and (iii) repeat. If we knew that p1 ¼ q1 in the population, then we

could simulate critical values for testing hypotheses. Consider the null hypothesis
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bpam ¼ bpam0 versus the alternative bpam 6¼ bpam0 . The proposal is to construct the statistic

TN ¼
ffiffiffiffiffi
N

p
b̂
pam � bpam0

� �
and reject if jTNj > C1�a where C1�a is the 1� a quantile of

the simulated distribution of jmin{Zp�r,Zq�r}j. To obtain a 1 � a confidence level we

invert the test.

In practice we do not know which state of the world obtains: p1 > q1, p1 < q1 or

p1 ¼ q1. Graham, Imbens and Ridder (2007) suggest calculating the critical value for

each case and choosing the largest of the three. That is reject if jTNj > C1�a with

C1�a such that

sup
p1>q1;p1<q1;p1¼q1

lim
N!1

Pr j
ffiffiffiffiffi
N

p
ðb̂pam � bpam0 Þ j > C1�a

� �
� a

n o
:

An interesting feature of the above analysis is that attributes of the distribution of the

‘regressors’ feature centrally in the inferential procedure. This is quite different from

textbook hypothesis testing. The difference arises from the nature of the estimand:

the distribution of agent characteristics features directly in the definition of bpam.
Inference on the negative assortative matching is essentially the same as in the posi-

tive case. The negative assortative matching sets

rnam11 ¼ max 0; p1 þ q1 � 1f g;

yielding the estimand

bnam ¼ max �r
sq
11f;�ð1� p1 � q1 þ r

sq
11Þff g:

As before we must consider three cases: (i) p1 > 1 � q1 (which also corresponds to

the p1 < q1 case above), (ii) p1 < 1 � q1 (which corresponds to p1 > q1 case above) and

(iii) p1 ¼ 1 � q1 (which need not coincide with the p1 ¼ q1 case discussed above).

In the first case p1 > 1 � q1 so the limiting distribution of b̂
nam

coincides with that

of � 1� p̂1 � q̂1 þ r̂
sq
11ð Þf̂ givingffiffiffiffiffi

N
p

b̂
nam � bnam

� �
!D Z1�p�qþr ð40Þ

for Z1�p�qþr the normal random variable

Z1�p�qþr 
 N 0; ð1� p1 � q1 þ r
sq
11Þ

2 s211
r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

( 

þ s222
1� p1 � q1 þ r

sq
11

g þ f2ðp1 þ q1 � r
sq
11Þð1� p1 � q1 þ r

sq
11Þ
!
:

In the second case p1 < 1 � q1 so the limiting distribution of b̂
nam

coincides with

that of �r̂
sq
11f̂ giving
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ffiffiffiffiffi
N

p
b̂
nam � bnam

� �
!D Z�r ð41Þ

for Z�r the normal random variable

Z�r 
 N 0; r
sq
11

� 
2 s211
r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

þ s222
1� p1 � q1 þ r

sq
11

( )
þ f2r

sq
11 1� r

sq
11

� 
 !
:

In the third case p1 ¼ 1 � q1 so that the limit distribution coincides with

ffiffiffiffiffi
N

p
b̂
nam � bnam

� �
!D max Z�r ;Z1�p�qþr

� �
;

with Z1�p�qþr and Z�r as defined in (41) and (40) with a covariance of

r
sq
11 1� p1 � q1 þ r

sq
11ð Þ s211

r
sq
11

þ s212
p1 � r

sq
11

þ s221
q1 � r

sq
11

þ s222
1� p1 � q1 þ r

sq
11

( )

�f2r
sq
11 1� p1 � q1 þ r

sq
11ð Þ:

We can conduct inference on bnam in a manner analogous to the method described for

the positive assortative matching above.

Optimal allocations The average reallocation effect associated with an optimal

assignment is given by, continuing with the K ¼ L ¼ 2 case, bmre ¼ max{bpam, bnam}.
It is consistently estimated by

b̂
mre ¼ max b̂

pam
; b̂

nam
n o

:

Let Zpam denote a random variable whose distribution coincides with the limiting

distribution of
ffiffiffiffiffi
N

p
ðb̂pam � bpam Þ. Recall from the discussion above that this limit

distribution may take any of three forms. If bpam > bnam in the population then we

have
ffiffiffiffiffi
N

p
ðb̂mre � bmre Þ!D Zpam . Let Znam denote the limiting distribution offfiffiffiffiffi

N
p

ðb̂nam � bnam Þ, which may also take three forms. If bpam < bnam, then we haveffiffiffiffiffi
N

p
ðb̂mre � bmre Þ!D Znam . Finally consider the degenerate case where bpam ¼ bnam

(this occurs if the ALC is identically equal to zero). In the degenerate case the limit

distribution is given by
ffiffiffiffiffi
N

p
ðb̂mre � bmre Þ!D max Zpam ;Znamf g.

As in the case of the two extremal allocations conservative tests and confidence

intervals may be constructed by computing critical values under all possible cases and



Table 2 Possible limit distributions for the maximum average reallocation effect when K ¼ L ¼ 2
Limiting distributions for

Marginal Type Distribution Zpam Znam

Panel A: Positive assortative matching optimalffiffiffiffiffi
N

p
b̂
mre � bmre

� �
!D Zpam with:

p1 > q1 Zq�r n.a.

p1 < q1 Zp�r n.a.

p1 ¼ q1 min{Zp�r, Zq�r} n.a.

Panel B: Negative assortative matching optimalffiffiffiffiffi
N

p
b̂
mre � bmre

� �
!D Znam with:

p1 < 1 � q1 n.a. Z�r

p1 > 1 � q1 n.a. Z1�p�qþr

p1 ¼ 1 � q1 n.a. max{Z�r, Z1�p�qþr}

Panel C: Degenerate caseffiffiffiffiffi
N

p
b̂
mre � bmre

� �
!D max Zpam ;Znamf g with:

p1 > q1 & p1 < 1 � q1 Zq�r Z�r

p1 < q1 & p1 > 1 � q1 Zp�r Z1�p�qþr

p1 ¼ q1 & p1 < 1 � q1 min{Zp�r, Zq�r} Z�r

p1 ¼ q1 & p1 > 1 � q1 min{Zp�r, Zq�r} Z1�p�qþr

p1 > q1 & p1 ¼ 1 � q1 Zq�r max{Z�r, Z1�p�qþr}

p1 < q1 & p1 ¼ 1 � q1 Zp�r max{Z�r, Z1�p�qþr}
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picking the largest one. Now however there are now a total of 12 possible limit distri-

butions to consider (see Table 2).25

The number of cases that must be considered will increase with K and/or L. Given

its conservative nature the approach to inference outlined above is likely to have low

power for modestly large K and/or L (this is consistent with the pattern found by

Bhattacharya (2009) in his empirical application).

An alternative method of inference would adopt a Bayesian perspective. The plan-

ner would formulate a prior distribution for the parameters characterizing the status

quo assignment as well as those of the production function. Inference would then be

based on the resulting posterior distribution. Chamberlain (2009) considers some
25 Bhattacharya (2009) also considers inference on bmre, however he assumes that the marginal type distributions are

known so he needs to only consider a total of three limit distributions when K ¼ L ¼ 2.
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Bayesian aspects of unconstrained treatment choice. A number of his insights might be

applicable here. Graham, Imbens, and Ridder (2007) provide a preliminary treatment

of some decision theoretic issues.

3.4.3 AREs with continuously-valued covariates
Fixed ‘interior’ allocationsThe starting point for estimating the average outcome gain

associated with implementing a correlated matching is equation (28) above. Note that

bcm(r, t) is an integral over the product of the marginal pdfs of W and X, not the joint.

Graham, Imbens, and Ridder (2009a) estimate bcm(r, t) by replacing these integrals with
sums over the two empirical distribution functions to get the analog estimator

b̂
cm ðr; tÞ ¼ ð1� tÞ 1

N2

XN
i¼1

XN
j¼1

d̂ðWi;X jÞ
f F�1ðF̂W ðWiÞÞ;F�1ðF̂XðX jÞÞ;r
� 


f F�1ðF̂W ðWiÞÞ
� 


f F�1ðF̂XðX jÞÞ
� 
� 1

N

XN
i¼1

Yi

8<
:

9=
;:

This estimator would be a standard second order V-statistic if d(w,x), FW(w) and FX(x)
were known. Instead b̂

cm ðr; tÞ depends on nonparametric estimates of each of these

objects. Sampling error in these nuisance parameters affects b̂
cm ðr; tÞ’s sampling properties.

To characterize the large sample properties of b̂
cm ðr; tÞ Graham, Imbens and

Ridder (2009a) first formulate a general theorem for double averages of kernel esti-

mates (Theorem A.3). Their results demonstrate that the average outcome effects of

correlated matchings are estimable at the regular
ffiffiffiffiffi
N

p
parametric rate. The influence

function for their estimator is complicated with functions of the production technol-

ogy, the marginal distributions of firm and worker types, the status quo assignment,

and the precise correlated matching under consideration entering.

Extreme allocations Graham, Imbens and Ridder (2009a) also present estimation

results for the extremal positive and negative assortative matchings. Their estimates

are the sample analogs of (26) and (27) above, namely,

b̂
pam ¼ 1

N

XN
i¼1

d̂ F̂
�1

W ðF̂XðXiÞÞ;Xi

� �
� 1

N

XN
i¼1

Yi; ð42Þ

and

b̂
nam ¼ 1

N

XN
i¼1

d̂ F̂
�1

W ð1� F̂XðXiÞÞ;Xi

� �
� 1

N

XN
i¼1

Yi: ð43Þ

It is straightforward to demonstrate consistency of these estimates. The nonparametric

estimates d̂ðw; xÞ; F̂W ðwÞ, and F̂XðxÞ are uniformly consistent under their assumptions.

Consistency then directly follows. The derivation of their sampling distributions is

more involved. In contrast with correlated matchings, both b̂
pam

and b̂
nam

involve
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only a single average. This is because the conditional distribution of Wi given Xi

is degenerate under an extremal assignment. Since in the first stage d̂ðw; xÞ is

estimated with two arguments, but in the second stage averaged over only one, its sam-

pling error dominates the asymptotic variances of b̂
pam

and b̂
nam

. This property

is shared by the partial mean estimator of Newey (1994b). Graham, Imbens and

Ridder (2009a) nevertheless propose accounting for asymptotically dominated

terms when conducting inference. Their Monte Carlo results suggest that this idea

has some merit.

Local reallocations The local reallocation effect is estimated by

b̂
lc ¼ 1

N

XN

i¼1

@

@w
d̂ðWi;XiÞ 	 dðWiÞ 	 ðXi � m̂ðWiÞÞ; ð44Þ

where m̂ðWiÞ is the NIP kernel regression estimate of E½Xi jWi�. This estimator is sim-

ilar to the class of weighted average derivative estimators surveyed by Powell (1994)

and Newey and McFadden (1994). To see this note that if Xi � m̂ðWiÞ is removed

from (44), then the estimator coincides with an weighted average derivative estimator

(with d(Wi) equalling the known weight function). The derivation of b̂
lc
’s asymptotic

sampling distribution closely parallels that of weighted average derivatives. However

the covariance structure of the estimator, as well as the additional nonparametrically

estimated object, m̂ðWiÞ, renders its influence function more complicated (see Theo-

rem 4.4 of Graham, Imbens and Ridder, 2009a).

Implementation issues A precise implementation of the methods described in

Graham, Imbens and Ridder (2009a) would prove challenging to the typical empirical

researcher. The absence of easily usable software implementing the NIP kernel estima-

tor of Imbens and Ridder (2009) is one barrier. An additional issue is that an analog

approach to variance estimation would require non-parametric estimation of many

objects. Finally, as in much of the semiparametric literature, the issue of bandwidth

selection is left unaddressed.

Nevertheless the simple analog structure of the estimators suggests several natural

shortcuts that may be appropriate for empirical work (at least experimentally). First

d(Wi, Xi),
@
@w dðWi;XiÞ and m(Wi) may be estimated by local linear regression methods.

One can estimate FX(Xi) by the empirical CDF and F�1
W ðtÞ by the tth sample quantile.

With these objects in hand the computation of b̂
cm ðr; tÞ, b̂pam ; b̂

nam
and b̂

lc
involves

only summation. For this last step it may be advisable to trim observations that are near

the boundary of the joint support of Wi and Xi. No nonlinear optimization is involved.

Each of these steps can be performed with commercial software. Finally, while Gra-

ham, Imbens and Ridder (2009a) provide no formal justification for it, the bootstrap

can be used to conduct inference.
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4. IDENTIFICATION AND ESTIMATION OF ONE-TO-ONE
MATCHING MODELS WHEN MATCH OUTPUT IS UNOBSERVED:
EQUILIBRIUM APPROACHES

This section considers what features of the match output function are identified when

only match attributes are observed. What does the choice of one’s partner alone reveal

about preferences and/or match output? As noted above, this question shares important

similarities with those which motivated the development of single agent discrete choice

models (McFadden, 1974; 1981). The two-sided nature of the matching problem,

however, complicates the identification challenge. I emphasize choice in a decentra-

lized market where agents are ‘rivals to match’ and transfers between agents adjust to

clear the market (e.g., Becker, 1973). Conveniently this allows the econometrician

to focus directly on match output, as opposed to the separate utility functions of the

two agents. This is the case considered by Choo and Siow (2006a,b), which are the

key references.

When match output is observed, as was assumed in the previous section, identify-

ing AREs requires identifying (features of) the average match output function

(AMF). This is difficult because units may purposely select their match partners;

hence the observed ‘inputs’ in the production function will covary with the unob-

served ones. When match output is unobserved, in contrast, the challenge is not to

‘correct for’ the effects of purposeful matching, but rather to draw inferences directly

from it. This requires an explicit behavioral model of partner choice or a ‘structural’

matching model.26

Section 4.1 outlines one such model. Under specific distributional assumptions the

model corresponds to the one introduced byChoo and Siow (2006a, b); this point is devel-

oped in Section 4.2. Matching is one-to-one. Each firmmatches with one worker and vice

versa; hence firms are rivals (as are workers). Associated with each match is an unobserved

transfer from the firm to the worker. The level of this transfer, which may be negative, is an

equilibrium outcome. For concreteness, I will sometimes refer to this transfer as a wage.

The equilibrium concept is that of pairwise stability: in equilibrium no firm is willing to

pay the wage required to match with a different worker and no worker is willing to accept

the wage offered by a different firm (e.g., Roth and Sotomayor, 1990).

The matching market consists of a finite number of ‘firm’ and ‘worker’ types.

However there are a large number of firms and workers of each type. This large market

assumption is important. It effectively transforms the matching problem into an applied

general equilibrium one.

Section 4.3 considers the identifying content of micro-data pairwise comparisons

without distributional assumptions as first proposed by Fox (2009a,b). A key aspect
26 Structural model of partner choice may also be helpful in settings where match output is observed and, of course,

(features of) the matching mechanism are central to any approach to identification.
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of his approach is the interpretation of assortativeness in the data, the tendency for, say,

high quality teachers to match with high quality schools, as evidence of complementar-

ity. This is also implicit in Choo and Siow (2006a,b).27,28 Writing down explicit data

generating process under which this inference is valid is non-trivial.

As a prelude to nonparametric analysis, Section 4.3 begins by showing that the Choo

and Siow (2006a,b) model can be identified and estimated via micro-data pairwise compar-

isons. This point, while straightforward to show, appears to be new. I term the resulting

estimation procedure ‘pairwise logit’. Pairwise logit is intriguingly similar to the fixed effects

conditional logit estimator for binary choice panel data models (e.g., Chamberlain, 1980).

However there are important differences. For example, the pairwise logit estimate is the

minimum of a U-process, to which standard M-estimation theory does not directly apply.

The pairwise implications of the CS model are interesting for at least three reasons.

First, they highlight that the method interprets local assortativeness as evidence of local

complementarity. Second, they provide a way to estimate the model without aggregate

data. Third, they show that method relies on the same insight which underlies Fox’s

(2009a,b) semiparametric approach: pairwise stability implies that if we draw any two

pairs of matches at random, then switching match partners should not raise welfare.

In addition to its potential empirical applicability, the pairwise logit estimator sug-

gests natural semiparametric extensions. Section 4.3 explores these extensions under

one set of primitive conditions. The main result is given in Theorem 4.1. The primary

contribution of Theorem 4.1 is to provide a primitive justification for a specific version

of the pairwise method first suggested by Fox (2009a,b). An explicit data generating

process, with unobserved heterogeneity on both sides of the market, is specified from

which the identifying population restriction is formally derived.

The assumption of transferable utility is not tenable in some settings. Some thoughts

on the non-transferable case, as well as a brief survey of existing results, are provided in

Section 4.4. Issues of estimation and inference are discussed in Section 4.5.

4.1 A two-sided model of multinomial choice
Consider an assignment where firm i matches with worker j. The firm’s profit from

such a match is assumed to be

PðWi;X
j; eiÞ ¼ dðWi;X

jÞ þ lðei;X jÞ � tðWi;X
jÞ; ð45Þ
27 The complementarity measure discussed by Galichon and Salanié (2009) and Siow (2009), for example, is the

logarithm of the likelihood ratio measure of dependence (e.g., Lehmann, 1966).
28 This interpretation of dependence in the data has obvious pitfalls. A simple example illustrates the problem. Say

agents on both sides of the market are characterized by two binary attributes only the first of which is observed.

These two attributes are positively dependent so that if an agent has the first attribute, she is more likely to have the

second and vice versa. Now say there is complementarity in match output between the first pair of attributes and

substitutability between the second. If the substitutability in the unobserved agent attribute is strong enough we may

observe negative assortative matching on the observed attribute despite the underlying structural complementarity.
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where d(Wi,X
j) þ l(ei,X

j) is the firm’s match output and E½lðei; xÞ� ¼ 0. This output

consists of two parts: (i) a deterministic or average component, d(Wi,X
j), and (ii) a

firm-specific component, l(ei,X
j). The transfer/wage paid by the firm to the worker

is given by t(Wi,X
j). Note that the transfer function, t(Wi, X

j), depends only on

observed firm and worker characteristics. That this is an equilibrium feature of the

model will become apparent below (cf., Galichon and Salanié, 2009).

The effect of ei is to generate heterogeneity, across observationally identical firms, in

the incremental return to matching with a type x0 instead of a type x worker:

Pðw; x0; eÞ �Pðw; x; eÞ ¼ dðw; x0Þ � dðw; xÞ þ ½lðe; x0Þ � lðe; xÞ�:

Such heterogeneity ensures that the conditional distribution of observed worker type,

given observed firm type will be non-degenerate in equilibrium (cf., Galichon and

Salanié, 2009; Siow, 2009).

Equation (45) imposes a strong restriction: firm match profits are constant in

unobserved worker characteristics, n j. Put differently neither firm output, or the wage

paid, depends on the particular worker employed, only her type matters. From the per-

spective of firms, workers, conditional on their type, are homogenous inputs or

perfectly substitutable. This assumption will be reasonable in some settings and

strain credulity in others. Choo and Siow (2006a,b) and, especially, Chiappori,

Salanié, and Weiss (2010) and Galichon and Salanié (2009) discuss this assumption

further.

Let tk ¼ (t(wk, x1), . . . , t(wk, xL))
0 denote the L vector of wages/transfers at which

a type Wi ¼ wk firm can ‘hire’ each of the L types of workers. Firm’s treat these trans-

fers as fixed when matching. Therefore, under the maintained assumption of profit

maximization, the type of worker hired by firm i, Xi, is equal to

Xi ¼ argmax
x2X

PðWi; x; eiÞf g;

with P(Wi, x, ei) as defined by (45).

Consider an assignment where worker j matches with firm i. The worker’s utility

from such a match is

V ðWi;X
j; n jÞ ¼ tðWi;X

jÞ þ rðWi; n jÞ; ð46Þ

where r(Wi, n
j) is a utility shifter such that E½rðw; n jÞ� ¼ 0. Observationally identical

workers may rank the desirability of matching with different types of firms differently.

That is, a worker’s utility is individual-specific, but analogous to firm profits, does not

depend on the specific firm at which she works, only its type.

Let tl ¼ (t(w1, xl), . . . , t(wK, xl))
0 denote the K vector of wages/transfers available

to a worker of type Xj ¼ xl in exchange for matching with each of the K types of firms.

Utility maximization implies that worker j will match with a firm of type
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Wj ¼ argmax
x2W

V ðw;X j; n jÞ

with V(w, Xj, n j) as defined by (46).

Total match surplus Y(i,j) is equal to the sum of (45) and (46),

Yði;jÞ ¼ dðWi;X
jÞ þ lðei;X jÞ þ rðWi; n jÞ;

which is identical to the restricted match surplus function (20) discussed in Section 3.2

above.29

In the absence of an outside option with exogenously-specified utility (i.e., the abil-

ity not to match), it is clear that an across the board increase or decrease in equilibrium

transfers will leave both firm and worker preferences unchanged. In particular changing

transfers to t�k ¼ tk þ t leaves type Wi ¼ wk firms’ rankings over worker types

unchanged. Likewise t�l ¼ tl þ t leaves type Xj ¼ xl workers’ rankings unchanged.

Consequently the equilibrium transfer vector will be non-unique. Therefore I normal-

ize the first element of tk and tl to zero for all firm and worker types. This generates

K þ L � 1 non-redundant normalizations.30

Note that the restriction that firms (workers) are indifferent across workers (firms)

of the same type implies that in equilibrium the transfer function will vary with Wi

and Xj alone. Firms are unwilling to pay a premium for workers with different realiza-

tions of n j, neither are they required to compensate workers for variability in their own

realization of ei. This means that some firms and workers will earn inframarginal rents

in equilibrium.

Associated with each firm is a vector of L productivities: one specific to each of the

L types of workers with which it may match. This vector is independently and iden-

tically distributed across firms:

ðlðei; x1Þ; . . . ; lðei; xLÞÞ0 
 Fl: ð47Þ

Consistent with Condition 3.1 this distribution is constant in firm type.

Associated with each worker is a vector of K utility shifters: one specific to each of

the K types of firms with which it may match:

ðrðw1; n jÞ . . . ;rðwK ; n jÞÞ0 
 Fr: ð48Þ

This vector is independently and identically distributed across all workers.
29 The interpretation of the two sources of unobserved heterogeneity, l(ei, X
j) and r(Wi, n

j), is somewhat more

flexible then suggested by the language adopted here (cf., Chiappori, Salanié, and Weiss, 2010).
30 The introduction of an outside option for each firm and worker type (with an exogenously given utility level), will

eliminate this indeterminancy. The parallel with the role of an outside good in discrete choice models of demand is

quite close (e.g., Nevo, 2000).
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For what follows it will sometimes be convenient, as well as conceptually helpful,

to use the abbreviated notation

ðl1i; . . . ; lLiÞ0 
 Fl; ðr j
1 ; . . . ; r

j
KÞ

0 
 Fr;

where lli ¼ l(ei, xl) and r j
k ¼ rðwk; n jÞ.

The equilibrium assignment of workers to firms is determined by the interaction of

three primitives of the model: (i) the marginal distributions of firm and worker types,

respectively p ¼ (p1, . . . pK)
0 and q ¼ (q1, . . . qL)

0, (ii) the distribution functions of the firm

productivities and worker utilities, respectively Fl and Fr, and (iii) the production function

at each possible (w,x) pair d ¼ ðd01; . . . d0KÞ
0
(where dk¼ (d(wk, x1), . . . , d(wk, xL))0 denotes

the ‘deterministic’ component of the L vector of outputs available to a type k firm).

Consider a type k firm facing the wage/transfer vector tk. This vector contains the
wage a type k firm must pay in order to match with each of the L types of workers.

The total demand for matches with type l workers by type k firms is

rDkl ¼ PrðXi ¼ xl jWi ¼ wk; tk; dk; FlÞ � pk: ð49Þ

The first term in (49) is the conditional probability that a type k firm’s most preferred

match is with a type l worker given the vector of prevailing wages tk. The precise form
of this conditional probability will depend on the joint distribution of unobserved pro-

ductivities, Fl. The second term in (49) is the marginal frequency of type k firms in the

population. The product of the two terms gives the total demand for k-to-l matches.

Now consider a type l worker facing the wage/transfer vector tl. This vector con-
tains the wages available to a type l worker in exchange for matching with each of the

K types of firms. The total supply of matches with type k firms by type l workers is

rSkl ¼ PrðWj ¼ wk jX j ¼ xl; tl;GrÞ � ql: ð50Þ

The first term in (50) is the conditional probability that a type l worker’s most preferred

match is with a type k firm given the vector of available wages tl. The second is the

marginal frequency of type l workers in the population. Their product gives the total

supply of k-to-l matches.

The (K � 1) � (L � 1) non-normalized transfers adjust to equate supply and

demand for each of the K � L types of matches. That is t
eq
k and t

eq
l adjust to satisfy

PrðXi ¼ xl jWi ¼ wk; t
eq
k ; dk;FlÞ � pk ¼ PrðWj ¼ wk jX j ¼ xl; t

eq
l ; FrÞ � ql; ð51Þ

for k ¼ 1, . . . , K and l ¼ 1, . . . , L. After eliminating the K þ L � 1 redundant con-

ditions, we are left with (K � 1) � (L � 1) equilibrium conditions which pin down the

(K � 1) � (L � 1) transfers.

Given the equilibrium transfer vectors, the equilibrium frequency of k-to-l

matches,r
eq
kl , is given by (49) or (50) after substituting in t

eq
k or t

eq
l .
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4.2 Parametric identification of AREs when match
output is unobserved
If Fl and Fr belong to parametric families indexed by parameter �, then the analysis of

identification is conceptually straightforward (although, as in single agent multinomial

choice models, the details may be involved). The problem is one of multinomial choice

subject to the (K � 1) � (L � 1) market clearing conditions (51). The parametric

assumptions on Fl and Fr induce specific functional forms for the conditional choice

probabilities (49) and (50). Fixing y ¼ (d0, �)0 one can therefore use (51) to solve for

the set of transfers which will clear the market t(y). This vector is then plugged back

into the firm’s conditional demand equation. Finally, y is chosen to align the predicted

with the actual match-type ‘market shares’.

Specifically, let GD
klðy; tÞ and GS

klðy; tÞ be the parametric forms for, respectively,

type k firms’ demand for type l workers and type l workers’ supply to type k firms.

These forms are induced by the parametric assumptions on Fl and Fr. In ‘step 1’ we

find, fixing y, the vector of transfers t(y) which solve the k ¼ 1, . . . , K � 1 and

l ¼ 1, . . . , L � 1 market clearing conditions

GD
klðy; tðyÞÞ � pk ¼ GS

klðy; tðyÞÞ � ql: ð52Þ

In ‘step 2’ we choose y such that

GD
kl ðy; tðyÞÞ � pk ¼ rkl ð53Þ

for all k ¼ 1, . . . , K � 1 and l ¼ 1, . . . , L � 1. Here rkl denotes the equilibrium or

status quo frequency of k-to-l matches (I drop the ‘sq’ superscript to simplify the

notation).

Under conventional distributional assumptions ‘demand’ GD
klðy; tÞ will be strictly

decreasing in ‘price’ tkl and ‘supply’ GS
klðy; tÞ will be strictly increasing in ‘price’ tkl;

consequently (52) should be straightforward to solve.31 However without additional

assumptions y is not point identified. Equation (53) provides only (K � 1) � (L � 1)

equations for dim (y) ¼ dim(d) þ dim(�) ¼ KL þ dim(�) unknowns. Point identifica-
tion requires additional assumptions. Two basic options are available. First, we might

impose extra structure on the KL match-specific surpluses so that d ¼ d(b) for some

low dimensional b. If the support points of Wi and Xj have a natural ordering then

such structure can be quite natural (e.g., following from smoothness assumptions on

d(w, x)).32 A priori restrictions on d(w, x) allow for more flexibility in the specification
31 Depending on the precise distributional assumptions uniqueness issues could arise. Goeree, Holt and Palfrey (2005) give

examples of distributional assumptions that lead to choice probabilities which are non-monotone in their indices.
32 If Wi and X j are themselves functions of multiple underlying characteristics then separability assumptions could also

be imposed on d(w, x).
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of the joint distributions of unobserved firm productivities and worker preferences (i.e.,

a higher dimensional �). Even if Fl and Fr are known, additional assumptions will be

required in order to identify the KL match-specific surpluses d. One approach, which

may be both useful and empirically relevant, is to allow agents not to match. Introdu-

cing an outside option for each firm and worker type, and normalizing its profit/utility

to zero, will sometimes allow for the identification of d.
As an example of a parametric treatment consider the work of Choo and Siow

(2006a,b). They study the model outlined above under the additional assumption

that l(ei,xl) and r(wk,n
j) are independently and identically distributed centered

Type I extreme value random variables. Galichon and Salanié (2009) relax this assump-

tion by allowing the common scale parameter for the firm heterogeneity to differ

from that associated with the worker heterogeneity. Adopting this latter formulation

assume that

Flðl1; . . . ; lLÞ ¼
QL

l¼1 exp �exp �ll
sl

 ! !

Frðr1; . . . ;rKÞ ¼
QK

k¼1 exp �exp �rk
sr

 ! !
:

ð54Þ

Under this assumption McFadden (1974) shows that there exist closed form

expressions for the equilibrium firm demand equations (49) of, letting

teqkl ¼ teqkl ðwk; xlÞ and dkl ¼ d(wk,xl),

rk1 ¼ pk
1

1þ
XL
m¼2

exp s�1
l ½dkm � dk1 � teqkm�

� 
 ; l ¼ 1; ð55Þ

rkl ¼ pk
exp s�1

l ½dkl � dk1 � teqkl �
� 


1þ
XL
m¼2

exp s�1
l ½dkm � dk1 � teqkm�

� 
 ; l ¼ 2; . . . ;L ð56Þ

for k ¼ 1, . . . , K (recall that tk1 ¼ 0 by normalization). Taking logarithms of (55) and

(56) and subtracting then gives

sl ln ðrkl=rk1Þ ¼ dkl � dk1 � teqkl : ð57Þ

Similarly the equilibrium worker supply equations (50) take the form



1014 Bryan S. Graham
r1l ¼ ql
1

1þ
XK
m¼2

exp s�1
r ½teqml �

� � ; k ¼ 1 ð58Þ

rkl ¼ ql

exp s�1
r ½teqkl �

� �
1þ

XK
m¼2

exp s�1
r ½teqml �

� � ; k ¼ 2; . . . ;K ; ð59Þ

for l ¼ 1, . . . , L (recall that t1l ¼ 0 by normalization). Taking logarithms of (58) and

(59) and subtracting then gives

srln ðrkl=r1lÞ ¼ teqkl : ð60Þ

Finally, adding (57) and (60) yields (cf., Equation (10) of Choo and Siow (2006a)):

slln ðrkl=rk1Þ þ srln ðrkl=r1lÞ ¼ dkl � dk1: ð61Þ

Further manipulation then gives (Galichon and Salanié, 2009; Siow, 2009):

ln
rKL

rKl

rkl

rkL

� �
¼ dKL � dKl � ½dkL � dkl�

sl þ sr
¼ fKLkl

sl þ sr
;

k ¼ 1; . . . ;K � 1; l ¼ 1; . . . ;L � 1

ð62Þ

which identifies the average local complementarity (ALC) between Wi and and Xj up

to scale. Knowledge of fKLkl up to scale is sufficient to identify b(Ra) up to scale (see

Section 3.2).

In the CS model the (K � 1) � (L � 1) average local complementarity (ALC) para-

meters are parametrically just identified by the (K � 1) � (L � 1) non-redundant entries

in Rsq. Embodied in the setup are a number of strong, a priori, restrictions. To see this

consider the case where Wi and Xj equal male and female years of completed school-

ing. Consider a man with k years of schooling, it seems likely that if his idiosyncratic

valuation of women with l years of schooling, lli, is above average, then so is his valu-

ation of women with l þ 1 years of schooling, llþ1i. Men who are particularly attracted

to college educated women may be similarly attracted to those with graduate degrees. The

CS model rules out such correlations in unobserved tastes. Furthermore, in the absence

of placing additional structure elsewhere, such correlations are unidentified. Unfortunately,

if they are present in the population, the model will generate poor forecasts of, say, the

effect of increasing the fraction of women who are college graduates on the equilibrium
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pattern of marriages. The problem is analogous to McFadden’s (1981) well-known Red

bus/Blue bus problem.33

As noted above if d ¼ d(b) for some low dimensional b, then it will typically be

possible to make the parametric assumption on Fl and Fr less restrictive.34 Methods

refined in the empirical industrial organization (IO) literature on differentiated product

demand may be helpful in this regard (e.g., Berry, Levinsohn and Pakes, 1995;

Nevo, 2000; Ackerberg, Benkard, Berry and Pakes, 2007). In recent work, Chiappori,

Salanie and Weiss (2010), have emphasized the identifying power of observing multiple

markets where (i) the distribution of agent preferences in the same across markets, but

(ii) the distribution of agent types varies.
4.3 Nonparametric identification
Fox (2009a) initiated the study of nonparametric identification in transferable utility

matching games when only agent characteristics are observed. In addition to approach-

ing the problem nonparametrically, his results, unlike Choo and Siow (2006a,b), who

work with aggregate ‘market share’ data, rely only on match-level pairwise compari-

sons. Fox’s (2009a) theorems require that a ‘rank order property’ hold. This property

ensures that, across a population of observationally identical markets, assignments

which yield more surplus when the stochastic component of match surplus is ignored

will be more frequently observed. While this assumption is intuitive, and analogous to

those underlying single agent discrete choice models, Fox (2009a) notes that it is diffi-

cult to write down data generating processes under which it holds.

A virtue of Choo and Siow’s (2006a,b) likelihood-based approach is its complete

specification of the data generating process. Unfortunately its heavy reliance on the

conditional logit model is unattractive. The discussion in Section 4 clarifies that the

CS model is perhaps best viewed as particular specification of a two-sided multinomial

discrete choice problem subject to market clearing conditions. Manski (1975) demon-

strated semiparametric identification of a single agent multinomial choice model and

proposed an associated ‘maximum score’ estimator (see also Lee, 1995; Matzkin,

2007; Powell and Ruud, 2008). The discrete-choice structure of the CS model sug-

gests that it too may have semiparametric analog.

To explore this possibility this section begins by developing some ‘pairwise impli-

cations’ of the CS model. This leads naturally to a semiparametric approach based on

pairwise comparisons similar to those first suggested by Fox (2009a). The valued-added
33 In recent, pedagogically-oriented work, Imbens (2007b) has re-cast this as the Chez Panise/Lalime’s problem.

Debreu (1960) is the first published account of this problem.
34 Galichon and Salanié (2009) consider restrictions of the form d ¼ d(b); however they do not use the resulting extra

degrees of freedom to relax the Type I extreme value forms for Fl and Fr. Instead they use the extra restrictions for

specification testing.
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here, relative to Fox (2009a), is in providing a primitive justification for these com-

parisons. A limitation is that this justification hinges on agent characteristics being

discretely-valued (which allows me to adopt a two-sided multinomial modelling

approach). In contrast Fox (2009a), under the maintained rank order property, can

accommodate continuously-valued agent characteristics. Fox (2009a) is also able to

accommodate situations where matching is many-to-many.

4.3.1 Pairwise logit identification
Consider the subpopulation of type k and m firms that choose to match with either

type l or n workers. Likewise consider the subpopulation of type l and n workers that

choose to match with either type k or m firms. This defines a conditional analog of the

simple 2 � 2 assignment problem discussed above. Consider two matches, say match i

and match j, which are independent random draws from a population of equilibrium

matches. Let

Aklmn
ij ¼ 1ðWi 2 wk;wmf gÞ1ðWj 2 wk;wmf gÞ1ðXi 2 xl; xnf gÞ1ðX j 2 xl; xnf gÞ; ð63Þ

be a binary indicator for the event that both matches belong to the klmn sub-allocation

(i.e., belong to the set of k-to-l, k-to-n, m-to-l and m-to-n matches). There are a total

of J ¼ K

2

� �
� L

2

� �
such sub-allocations.35 Each randomly sampled pair of matches

will belong to at least one sub-allocation. If Wi 6¼ Wj and Xi 6¼ Xj, an event I will con-

dition on below, then they will belong to a unique sub-allocation.

We can imagine locally reallocating workers across firms within the klmn sub-

allocation of matches. If we normalize

rklmn ¼ rkl

rkl þ rkn þ rml þ rmn

pklmn ¼ rkl þ rkn

rkl þ rkn þ rml þ rmn

qklmn ¼ rkl þ rml

rkl þ rkn þ rml þ rmn
;

ð64Þ

then the set of feasible sub-reallocations is summarized in Table 3. The klmn sub-

allocation may be made more assortative by increasing rklmn, and less so by decreasing it.

Now, for randomly sampled matches i and j, define

Sij ¼ sgn ðWi �WjÞðXi � X jÞ
� �

: ð65Þ
35 Note that this definition allows two sub-allocations to be over-lapping. For example the KLkl and KLmn sub-

allocations overlap.



Table 3 The set of feasible klmn sub-allocations
W\X X ¼ xl X ¼ xn

W ¼ wk rklmn pklmn � rklmn pklmn

W ¼ Wm qklmn � rklmn 1 � pklmn � qklmn þ rklmn 1 � pklmn

qklmn 1 � qklmn
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If match i and j are assortatively paired, consisting of, for example, one (k, l ) and

one (K, L) match, then Sij ¼ 1. If, in contrast, the two matches are ‘integrated’ or

anti-assortatively paired, consisting of, for example, one (k, L) and one (K, l ) match,

then Sij ¼ �1. If either firm or worker type (or both) are the same across the two

drawn matches then Sij ¼ 0. In such cases a switch of workers by the two firms would

leave the joint distribution of (Wi, Xi) unchanged. This case corresponds to sampling

matches which belong to multiple sub-allocations. The above discussion assumes, as

is conventional, that the support points of Wi and Xj are ordered in increasing

magnitude.

Consider the probability of drawing an assortatively matched pair conditional on (i)

the draw being either assortative or anti-assortative and (ii) the pair belonging to the

klmn sub-allocation. By the definition of conditional probability we have

PrðSij ¼ 1 j Sij 2 �1; 1f g;Aklmn
ij ¼ 1Þ

¼ rklmnð1� pklmn � qklmn þ rklmnÞ
rklmnð1� pklmn � qklmn þ rklmnÞ þ ðpklmn � rklmnÞðqklmn � rklmnÞ:

By equation (62) above the right-hand-side of this expression, under the maintained

assumptions of the CS model, is

PrðSij ¼ 1 j Sij 2 �1; 1f g;Aklmn
ij ¼ 1Þ ¼

exp
dmn�dml�ðdkn�dklÞ

slþsr

� �
1þ exp

dmn�dml�ðdkn�dklÞ
slþsr

� � :
Recall that fmnkl ¼ dmn � dml � (dkn � dkl) equals average local complementarity

(ALC) in the klmn sub-allocation. Let Aij be the J � 1 vector of all sub-allocation

indicators and f the corresponding set of average local complementarities. We have

shown

PrðSij ¼ 1 j Sij 2 �1; 1f g;AijÞ ¼
exp ððsl þ srÞ�1

A0
ijfÞ

1þ exp ððsl þ srÞ�1
A0

ijfÞ
: ð66Þ
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Equation (66) has the form a two-period panel data conditional logit probability (e.g.,

Chamberlain, 1980). This is a consequence of its pairwise formulation and event

conditioning (i.e., discarding Sij ¼ 0 draws). Insights from the panel data literature

on discrete choice will prove useful below (Manski, 1987; Chamberlain, 2010).

Galichon and Salanié (2009) propose the following parameterization of the average

match surplus function

dðw; xÞ ¼ aðwÞ þ bðxÞ þ eðw; xÞ0b; ð67Þ

for e(w,x) a known low dimension vector of basis functions and a(w) and b(x)

arbitrary.36 Define

mmnkl ¼ eðwm; xnÞ � eðwm; xlÞ � ½eðwk; xnÞ � eðwk; xlÞ�;

and let M be the matrix composed of J rows of the form m0
mnkl. This gives f ¼ Mb and

hence

PrðSij ¼ 1 j Sij 2 �1; 1f g;AijÞ ¼
exp ððsl þ srÞ�1

A0
ijMbÞ

1þ exp ððsl þ srÞ�1
A0

ijMbÞ
:

Now, imposing the scale normalization sl þ sr ¼ 1, consider the the criterion

function

LN ðbÞ ¼
XN
i¼1

X
j<i

j Sij j SijA
0
ijMb� ln ½1þ exp ðSijA0

ijMbÞ�
n o

: ð68Þ

Assuming that in the population rkl > 0 for all k and l the minimizer of (68), the pairwise

logit estimate b̂PL , will be consistent for b. This estimate is the minimizer of a second

order U-Statistic. This class of estimators was introduced by Huber (1964). Honoré and

Powell (1994) provide distribution theory for minimizers of U-processes.37 The sampling

properties of the minimizer of (68) are outlined in Section 4.5 below.

4.3.2 Nonparametric identification in a 2 � 2 matching market
This section demonstrates that the sign of f is identified in semiparametric analog of

the CS model. Fox (2009a,b) also shows that the sign of local complementarity is iden-

tified, but under non-primitive assumptions about the data generating process. The

derivation given below provides a primitive justification of Fox’s (2009a,b) approach.

To keep the analysis simple initially consider a market with just two types of firms

and two types of workers (i.e., Wi 2 {wk, wm} and Xj 2 {xl, xn}). This allows a
36 There is a close connection between (67) and models used to parameterize K � L ordinal contingency tables (e.g.,

Goodman, 1979).
37 Honoré and Powell (2005) characterize the large sample properties of minimizers of kernel weighted U-statistics. In

the statistics literature Bose (1998, 2002) studies the asymptotic properties of U-statistic minimizers.
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demonstration of identification that formally resembles Manski’s (1987) extension of

maximum score to two period binary choice panel data models.

As in Section 4 firm profits are given by

P ðWi;X
j; eiÞ ¼ dðWi;X

jÞ þ lðei;X jÞ � tðWi;X
jÞ

and worker utility by

V ðWi;X
j; n jÞ ¼ tðWi;X

jÞ þ rðWi; n jÞ:

There are four types of matches in a 2 � 2 market. To show identification it suffices

to consider just two of them. Consider first matches between Wi ¼ wm firms and

type Xj ¼ xn workers. Firms in such matches, at the equilibrium vector of transfers,

prefer type n to type l workers. This generates the inequality, first recalling the notation

dkl ¼ d(wk,xl), tkl ¼ t(wk,xl), lli ¼ l(ei,xl) and rjk ¼ rðwk;n jÞ,

dmn � tmn þ lni � dml � tml þ lli: ð69Þ

The left-hand-side equals firm profits when matched with a type n worker, the right-

hand-side profits when matched with a type l worker. Rearranging yields the equiva-

lent expression

lli � lni � dmn � dml � ðtmn � tmlÞ;

which says that a firm chooses a type n worker if the systematic ‘gains’, dmn � dml �
(tmn � tml), exceed the idiosyncratic ‘losses’, lli � lni, from doing so. Since transfers

adjust such that all type m firms who prefer type n workers may match with one in

equilibrium we have

Fll�lnðdmn � dml � ðtmn	 � tmlÞÞ ¼ rmn=pm; ð70Þ

with Fll�lnð	Þ the (unknown) distribution of lli � lni and rmn/pm the fraction of type m

firms matching with type n workers in equilibrium.

Now consider the opposite side of the market. For type n workers who choose to

match with type m firms we must have

tmn þ rmðiÞm � tkn þ rmðiÞk ;

so that

Frk�rmðtmn � tknÞ ¼ rmn=qn; ð71Þ

with Frk�rmð	Þ the (unknown) distribution of rjk � rjm and rmn/qn the fraction of type n

workers matching with type m firms in equilibrium.

Now consider type k firms who choose to match with type l workers. For such

firms we have



1020 Bryan S. Graham
dkl � tkl þ lli � dkn � tkn þ lni;

so that

1� Fll�lnðdkn � dkl � ðtkn � tklÞÞ ¼ rkl=pk: ð72Þ

Finally for type l workers who choose to match with type k firms we have

tkl þ rmðiÞk � tml þ rmðiÞm ;

so that

1� Frk�rmðtml � tklÞ ¼ rkl=ql: ð73Þ

Assume that both Fll�lnð	Þ and Frk�rmð	Þ are strictly increasing on the entire real

line with continuous, bounded derivatives. Subtracting the sum of the inverses of

(72) and (73) from the sum of the inverses of (70) and (71) yields.

F�1
ll�ln

1� pk � ql þ rkl

1� pk

 !
þ Frk�rm

1� pk � ql þ rkl

1� ql

 !

�F�1
ll�ln

pk � rkl

pk

 !
� F�1

rk�rm

ql � rkl

ql

 !
¼ dmn � dml � ðdkn � dklÞ;

ð74Þ

where the feasibility conditions pm ¼ 1 � pk, qn ¼ 1 � ql and rmn ¼ 1 � pk � ql þ rkl are

also substituted in.

Equation (74) shows that the average local complementarity parameter fmnkl¼ dmn�
dml � (dkn � dkl) can be written in terms of the observed allocation and the unobserved

heterogeneity distribution functions. Under the extreme value assumption of Section 4

equation (74) is equivalent to the complementarity measure derived by Galichon and

Salanié (2009) and Siow (2009) (see (62) above).

Observe that if rkl ¼ pk ql the left-hand-side of (74) evaluates to

F�1
ll�lnð1� qlÞ þ F�1

rk�rm
� 1ð1� pkÞ � F�1

ll�lnð1� qlÞ � F�1
ll�lmð1� pkÞ ¼ 0:

If the status quo allocation is the random allocation we may conclude that fmnkl ¼ 0.

Differentiating with respect to rkl yields

1

fll�ln
1� pk � ql þ rkl

1� pk

 ! 1

1� pk
þ 1

frk�rm
1� pk � ql þ rkl

1� ql

 ! 1

1� ql

þ 1

fll�ln
pk � rkl

pk

 ! 1

pk
þ 1

frk�rm
ql � rkl

ql

 ! 1

ql
> 0:
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So that if rkl > pkql we may conclude that fmnkl > 0 and if rkl < pkql we can conclude

the opposite. Summarizing we have

sgn rkl � pkqlf g ¼ sgn fmnklf g; ð75Þ

so that assortativeness implies complementarity and mixing implies substitutability.

Now consider the median of Sij conditional on it equalling 1 or �1. Since Sij always

equals 1 or �1 its median is necessarily one or the other with

medðSij j Sij 2 �1; 1f gÞ ¼ 1 , ð1� pk � ql þ rklÞrkl > ð1� pkÞð1� qlÞ
medðSij j Sij 2 �1; 1f gÞ ¼ �1 , ð1� pk � ql þ rklÞrkl < ð1� pkÞð1� qlÞ:

Since ð1� pk � ql þ rklÞrkl > ð1� pkÞð1� qlÞ , rkl > pkql we have therefore have

medðSij j Sij 2 �1; 1f gÞ ¼ sgnðfmnklÞ:

4.3.3 Nonparametric identification in a K � L matching market
Generalizing the argument outlined above to general K � L matching markets requires

imposing additional structure on the distributions of firm and worker heterogeneity.

Theorem 4.1 provides a formal result based on one sufficient set of conditions. The

proof shows how monotonicity of the firm demand and worker supply probabilities

in their indexes, combined with the assumption that the matching market clears, deli-

vers a conditional quantile restriction that can be used to identify the sign of fmnkl.

Theorem 4.1 (Semiparametric Identification)

Consider the two-sided multinomial discrete choice model described in Section 4.1 with firm

profits given by (45) and worker utilities by (46). If

(i) rkl is known for all k ¼ 1, . . . , K and l ¼ 1, . . . , L,
(ii) Xi ¼ xl implies that P (Wi,xl,ei) � P (Wi,xn,ei) for all n ¼ 1, . . . , L and W j ¼ wk

implies that V (wk,X
j,n j) � V (wm,X

j,n j) for all m ¼ 1, . . . , K,
(iii) at the equilibrium wage schedule all firms hire their preferred type of worker, and all workers

are employed by their preferred firm type,

(iv) Flðl1i; . . . ; lLi jWiÞ ¼
YL
l¼1

FlðlliÞ; Frðrj1; . . . ;r
j
K jX jÞ ¼

YK
l¼1

Fr rjk
� 


, and

(v) Fl(lli) and FrðrjkÞ are strictly increasing on the entire real line, with bounded, continuous

derivatives, then the sign of average local complementarity (ALC)

fmnkl ¼ dmn � dml � ðdkn � dklÞ

is identified, for rklmn, pklmn and qklmn as defined in (64) above, by

sgn rklmn � pklmnqklmn
� �

¼ sgn fmnklf g;

for all k, m (with k 6¼ m) and all l, n (with l 6¼ n).
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Proof. The proof consists of four parts. First, following Manski (1975), I use (iv)

and (v) to show monotonicity of the choice probabilities in the deterministic firm

and worker payoffs (so that if, for example, dmn � tmn > dmo � tmo, then Pr(Xi ¼ xn
jWi ¼ wm) > Pr(Xi ¼ xojWi ¼ wm)). Second, following Fox (2009c), I show that

monotonicity holds within subsets. Parts one and two of the proof are entirely standard

and included only for completeness. Let Fll�lnð	 jWi ¼ wm;Xi 2 xl; xnf gÞ be the distri-
bution function for lli � lni in the subpopulation of type m firms who choose to match

with either type l or n workers in equilibrium and let Fll�lnð	 jWi ¼ wk;Xi 2 xl; xnf gÞ
be the same function for type k firms. The third part of the proof uses monotonicity

and market clearing (iii) to show that Fll�lnð	 jWi ¼ wm;Xi 2 xl; xnf gÞ and

Fll�lnð	 jWi ¼ wk;Xi 2 xl; xnf gÞ cross just once and at that this point of crossing is

their 1 � qklmn quantile (qklmn is defined by (64) above). Finally, this conditional quan-

tile restriction is then used to show the main result in an adaptation of the simple argu-

ment developed for the 2 � 2 case in the previous section.

Part 1: The conditional probability that a type m firm chooses a type n worker is,

using (ii) and (iv), given by

PrðXi ¼ xn jWi ¼ wmÞ ¼ Prðlo � ln < dmn � dmo � ðtmn � tmoÞ; o ¼ 1; . . . ;L; o 6¼ nÞ

¼
ð1

�1

YL
o¼1;o6¼ n

Flðln þ dmn � dmo � ðtmn � tmoÞÞflðlnÞ dln;

so that for all l 6¼ n

PrðXi ¼ xn jWi ¼ wmÞ � PrðXi ¼ xl jWi ¼ wmÞ

¼
ð1

�1

" YL
o¼1;o 6¼ n

Flðlþ dmn � dmo � ðtmn � tmoÞÞ

�
YL

o¼1;o 6¼ l

Flðlþ dml � dmo � ðtml � tmoÞÞ
#
flðlÞdl:

This gives, using (v),

PrðXi ¼ xn jWi ¼ wmÞ v PrðXi ¼ xl jWi ¼ wmÞ ð76Þ

according to whether

dmn � dml � ðtmn � tmlÞv 0:

Part 2: Dividing both sides of (76) by Pr(Xi ¼ xnj Wi ¼ wm) þ Pr(Xi ¼ xljWi ¼ wm)

does not change the inequality that so that by the definition of a conditional probability

we have

PrðXi ¼ xn jWi ¼ wm;Xi 2 xl; xnf gÞv PrðXi ¼ xl jWi ¼ wm;Xi 2 xl; xnf gÞ
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according to whether dmn � dml � ðtmn � tmlÞ v 0. Replicating the above arguments

also gives

PrðWj ¼ wm jX j ¼ xn;W
j 2 wk;wmf gÞ v PrðWj ¼ wk jX j ¼ xn;W

j 2 wk;wmf gÞ

according to whether tmn � tkn v 0.

Part 3: Note that

PrðXi¼ xn jWi¼wm;Xi 2 xl;xnf gÞ¼ Fll�lnðdmn�dml�ðtmn� tmlÞ jWi¼wm;Xi 2 xl;xnf gÞ
PrðXi¼ xn jWi¼wk;Xi 2 xl;xnf gÞ¼Fll�lnðdkn�dkl�ðtkn� tklÞ jWi ¼wk;Xi 2 xl;xnf gÞ

Conditional monotonicity implies that these two CDFs cross just once. Furthermore,

market clearing, or hypothesis (iii), implies the sub-allocation feasibility condition:

ð1� pklmnÞFll�lnðdmn � dml � ðtmn � tmlÞ jWi ¼ wm;Xi 2 xl; xnf gÞ
þpklmnFll�lnðdkn � dkl � ðtkn � tklÞ jWi ¼ wk;Xi 2 xl; xnf gÞ ¼ 1� qklmn:

That is, within the klmn suballocation, the ‘demand’ for matches with type n workers

equals the available ‘supply’. This gives the conditional quantile restriction

F�1
ll�lnð1� qklmn jWi ¼ wm;Xi 2 xl; xnf gÞ ¼ F�1

ll�lnð1� qklmn jWi ¼ wk;Xi 2 xl; xnf gÞ:
ð77Þ

A parallel argument gives

F�1
rk�rm

ð1� pklmn jX j ¼ xn;W
j 2 wk;wmf gÞ ¼ F�1

rk�rm
ð1� pklmn jX j ¼ xl; 	Wj 2 wk;wmf gÞ:

ð78Þ

Part 4: Inverting the conditional ‘demands’ and ‘supplies’ yields

F�1
ll�ln

1� pklmn � qklmn þ rklmn

1� pklmn

�����Wi ¼ wm;Xi 2 xl; xnf g
 !

¼ dmn � dml � ðtmn � tmlÞ

F�1
rk�rm

1� pklmn � qklmn þ rklmn

1� qklmn

�����X j ¼ xn;W
j 2 wk;wmf g

 !
¼ tmn � tkn

F�1
ll�lL

pklmn � rklmn

pklmn

�����Wi ¼ wk;Xi 2 xl; xnf g
 !

¼ dkn � dkl � ðtkn � tklÞ

F�1
rk�rm

qklmn � rklmn

qklmn

�����X j ¼ xl;W
j 2 wk;wmf g

 !
¼ tml � tkl:

Following the derivation beginning with Equation (74) in the discussion of the 2 � 2

case gives the result. ▪
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The assumption of independence across the elements of Fl(l1, . . . ,lL) and

Fr(r1, . . . ,rK) could be relaxed to exchangeability (cf., Goeree, Holt and Palfrey,

2005; Fox, 2009c).

The conclusion of Theorem 4.1 is a discrete analog of Fox’s (2009a, Theorem 5.1)

derivative-based approach to identifying local complementarity for continuously-

valued inputs. The underlying intuition behind the two results coincide: assortativeness

suggests complementarity. The value-added of Theorem 4.1 is that it is an implication

of an explicitly specified data generating process, whereas Fox’s (2009a) result is not

primitively justified.

The availability of a large number of each type of firm and worker is essential for

the conclusion of Theorem 4.1. Market thickness ensures that equilibrium transfers

depend only on firm and worker types. This allows the econometrician to construct

functions of the data that are invariant to these transfers. Identification requires the

observation of only a single market. In contrast, Fox (2009a) formally considers identi-

fication in a population of many small markets. If markets are truly small, with only a

few agents on each side, one can, using the linear programming representation of the

equilibrium matching and a parametric specification of Fl and Fr, write down a likeli-

hood for the market-level assignment (cf., Fox, 2009b). When markets are medium-

sized this approach is less tractable numerically. In such situations the large market

result of Theorem 4.1 may be an useful approximation.

Theorem 4.1 generates, recalling the definitions of Sij, Aij, and f given in the dis-

cussion of pairwise logit above, the following conditional median restriction

medðSij j Sij 2 �1; 1f g;AijÞ ¼ sgnðA0
ijfÞ: ð79Þ

Note that (79) has the form of the conditional median restriction derived by Manski

(1987) in the context of a two period binary choice panel data model. In the absence

of additional structure only the signs of the ALC parameters are identified. This loss of

point identification relative to the pairwise logit case is intriguingly analogous to

Chamberlain’s (2010) identification analysis for binary choice panel data.

If we assume that f ¼ Mb, then (79) suggests choosing b̂MRC to maximize the rank

correlation criterion suggested by Han (1987):

LN ðbÞ ¼
XN
i¼1

X
j<i

sgnðA0
ijMbÞSij: ð80Þ

This criterion was first advocated by Fox (2009a,b) and Fox and Bajari (2009) in the

matching context.

Since A0
ijM is discretely-valued b̂MRC will be set-valued and this will remain true as N

grows large. Consequently b is only set identified, however if its dimension is small relative

tof, then the identified setmay be quite small (seeCavanagh and Sherman, 1998, Section 5).



1025Econometric Methods for the Analysis
4.4 Identification in one-to-one matching markets without transfers
In some contexts it may be difficult for match partners to make transfers to one

another. For example the institutional structure of the teacher labor market in New

York limits the amount of variation in wages across schools (Loeb, Boyd, Lanford

and Wyckoff, 2003). Theorists, starting with the seminal paper by Gale and Shapley

(1962), have extensively studied two-sided matching problems without transfers (e.g.,

Roth and Sotomayor, 1990). Little econometric work on these models has been

undertaken.

In a change of notation assume that firm utility is given by

UðWi;X
j; eiÞ ¼ #ðWi;X

jÞ þ lðei;X jÞ;

and worker utility by

V ðWi;X
j; n jÞ ¼ fðWi;X

jÞ þ rðWi; n jÞ:

Consider two matches, i and j, that are assortatively configured. That is matches i and j

consist of, respectively type w and w0 firms and x and x0 workers with w < w0 and x < x0.
For this configuration to be stable we require that either the firm in match i or the worker

in match j (or both) prefer the status quo (i.e., U(w,x,ei) > U(w,x0,ei) and/or V(w0,x0,n j) >
V(w,x0,n j)). If this were not the case then this pair could block the assignment by leaving

their partners and forming a new match. Similarly stability requires that either the worker

in match i or the firm in match j (or both) prefer the status quo (i.e.,U(w0,x0,ej)>U(w0,x,ej)
and/or V(w,x,ni) > V(w0,x,ni)).38

These stability conditions, which rule out so called blocking pairs, are considerably

more complicated than those needed when utility is transferable. One implication of

the absence of transfers is that the relationship between complementarity and assorta-

tiveness is weakened (cf., Becker and Murphy, 2000). Consider the case where

#(w, x) ¼ #w(w) þ #x(x) and f(w,x) ¼ fw(w) þ fx(x) such that there is no comple-

mentarity. If #x(x
0) > #x(x) and fw(w

0) > fw(w) agents will nevertheless assortatively

match (assuming, as maintained above, that l(ei,x0) and l(ei,x) are identically distributed
and similarly for r(w0,n j) and r(w,n j)).

When agents make transfers to one another the equilibrium assignment is (i) gener-

ically unique and (ii) surplus maximizing.39 In the absence of transfers neither of these

two conditions typically holds. Multiplicity of equilibria complicate empirical model-

ling. These considerations suggests that the recovery of agent preferences from match

characteristics alone is likely to be even more difficult than in the case with transfers.
38 Stability also requires that each matched agent prefer their assignment to the always available alternative of not

matching at all. For simplicity assume that this condition holds in what follows.
39 If externalities are present, as in Baccara, Imrohoroglu, Wilson and Yariv (2009), then multiple equilibria are possible

even when transfers between agents are allowed.
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While identification in two-sided matching problems without transfers has not been

formally studied, several papers have implemented different estimation procedures.

These papers make various simplifying assumptions. Loeb, Boyd, Lankford and

Wyckoff (2003) rule out multiplicity by assuming the status quo assignment is the

product of the Gale and Shapley (1962) deferred acceptance algorithm (with firms

proposing). Gordon and Knight (2009), in contrast, restrict preferences to ensure

uniqueness. S�rensen (2007) and Logan, Hoff and Newton (2008) use Bayesian meth-

ods. The latter paper attempts to sidestep the issue of multiplicity by choosing the dis-

tribution of firm and worker utilities to maximize the probability that the observed

assignment is stable. Unfortunately it seems likely that ‘the’ maximizing distribution

of preferences is not unique, particularly if the matching market is small.

4.5 Estimation on the basis of match characteristics alone
Variants of the simple two-sided conditional logit model outlined in Section 4.2

underlie a growing body of empirical work. In an early application Dagsvik, Brunborg

and Flaaten (2001) fit the model with population register data from Norway. Their

point estimates suggest substantial decline in the net returns to marriage over the

1986 to 1994 period. Chiappori, Salanié and Weiss (2010) use another variant of

the model to study changes in the ‘returns’ to education on the U.S. marriage market

since the 1970s. Siow (2008) studies the effects of sex ratio imbalances generated by a

famine associated with the ‘Great Leap Forward’ on the marriage market in Sichuan,

China.

These applications notwithstanding, a systematic approach to inference in the CS

model has yet to be developed. Fortunately the close connection between the model

and a K � L contingency table, suggests that the development of the required estima-

tion and inference theory is likely to be straightforward. Indeed some of the required

results are provided in Siow (2009) and Galichon and Salanié (2009). Some additional

results, based on its pairwise logit representation, are given below.

When firm and worker preferences are not parametrically specified an estimator

based on Theorem 4.1 can be used. This leads to a simple rank regression estimator.

The asymptotic properties of rank regression are well-known (Han, 1987; Cavanagh

and Sherman, 1998). The lack of point identification in the matching context results

in some inferential challenges. These may be solved using methods recently developed

for models defined by moment inequalities (e.g., Rosen, 2008; Andrews and Soares,

2010; Romano and Shaikh, 2010).

4.5.1 Testing for supermodularity
Siow (2009) exploits methods developed for contingency table analysis to test for

super-modularity of the match surplus function. Assessing this hypothesis has been

a focus of empirical research since Becker (1973). Equation (62) shows that the
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two-sided conditional logit model equates average local complementarity (ALC) with

local dependence as measured by the local log-odds ratio:

ln
rkþ1lþ1

rkþ1l

rkl

rklþ1

� �
¼ dkþ1lþ1 � dkþ1l � ½dklþ1 � dkl�

sl þ sr
; k¼ 1; . . . ;K � 1; l ¼ 1; . . . ;L� 1:

Positivity of all (K � 1) (L � 1) of these local log odds ratios implies that d(w,x) exhi-
bits ‘increasing differences’ or is supermodular (Topkis, 1998). Assessing the supermo-

dularity hypothesis therefore corresponds to a multivariate one-sided testing problem

of the type first studied by Kudo (1963).40 The supermodularity null corresponds to

H0 : dkþ1lþ1 � dkþ1l � ½dklþ1 � dkl� > 0; k ¼ 1; . . . ;K � 1; l ¼ 1; . . . ;L � 1;

with the alternative that the inequality is weak or reversed for at least one k and l pair.

Siow (2009) notes that this null is formally equivalent to testing whether a K � L con-

tingency table is totally positive of order 2 (TP2) (cf., Douglas et al. 1990):

H0 : lnðrkþ1lþ1Þ � lnðrkþ1lÞ� ½lnðrklþ1Þ� lnðrklÞ�> 0; k¼ 1; . . . ;K � 1; l ¼ 1; . . . ;L� 1:

ð81Þ

Siow (2009) conceptualizes his data as a N draw random draws from a multinomial

population with the probabilities for each match type given by the K � L assignment

matrix RWX introduced in Section 3.1 above. This allows him to form a likelihood

ratio statistic for the supermodularity null. Unfortunately the sampling distribution of

this statistic is not w2 (it follows a ‘chi-bar-square’ distribution). Dardanoni and Forcina

(1998) describe how to compute critical values.

4.5.2 Parametric modeling of average match surplus
Recall the f ¼ Mb parameterization for the ALC terms proposed by Galichon and

Salanié (2009) and discussed in Section 4.3 above. From (62) we have, after imposing

the scale normalization sl þ sr ¼ 1, the equality

ln
rmn

rml

rkl

rkn

� �
¼ fmnkl:

The left-hand-side of this expression is consistently estimable from a random sample

of matches (with a asymptotic sampling variance that is also consistently estimable).

Galichon and Salanié (2009) then suggest estimating the structural parameters b in a

second step by minimum distance (e.g., Chamberlain 1982, 1984).41 To be precise
40 The Silvapulle and Sen (2005) monograph summarizes the extensive statistics literature on this, and related, testing

problems.
41 Section 5.2 of their paper also introduces an alternative moment matching estimator.
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let f̂ be vector of all estimated local odds ratios and V̂ an estimate of their asymptotic

sampling variance. An efficient minimum distance estimator is

b̂ ¼ argmin
b

f̂�Mb
� �0

V̂
�1

f̂�Mb
� �

¼ M 0V̂
�1
M

� ��1

M 0V̂
�1
f̂

� �
:

4.5.3 Pairwise logit estimation
An alternative to minimum distance estimation is the pairwise logit procedure

introduced in Section 4.3. The ‘one step’ nature of the pairwise logit procedure is

attractive, as is its direct connection to the pairwise stability concept emphasized by

Fox (2009a,b). In very large datasets, however, the minimum distance approach may

be preferable for computational reasons (since it requires no nonlinear optimization).

A comparison of the asymptotic properties of the two procedures is beyond the scope

of this chapter.

Recall the suggested criterion function

LN ðbÞ ¼
2

NðN � 1Þ
XN
i¼1

X
j<i

j Sij j SijA
0
ijMb� ln ½1þ exp ðSijA0

ijMbÞ�
n o

: ð82Þ

Let

sðZi;b0Þ ¼ E j Sij jM 0Aij 1ðSij ¼ 1Þ �
exp ðA0

ijMb0Þ
1þ exp ðA0

ijMb0Þ

( )�����Wi;Xi

" #
;

with O0 ¼ E½sðZi;b0ÞsðZi;b0Þ0� and

G0 ¼ lim
N!1

M 0 2

NðN � 1Þ
XN
i¼1

X
j<i

j Sij j
exp ðA0

ijMb0Þ
½1þ exp ðA0

ijMb0Þ�2
AijA

0
ij

( )
M :

The results of Honoré and Powell (1994, 2005) yield a large sample distribution for the

minimizer of (82) equal toffiffiffiffiffi
N

p
b̂PL � b0
� �

! Nð0;L0Þ; L0 ¼ 4G�1
0 O0G�1

0 : ð83Þ

This limiting variance may be estimated by L̂ ¼ 4Ĝ
�1
ÔĜ

�1
with

Ô ¼ 1

N

XN
i¼1

sN Zi; b̂PL
� �

sN Zi; b̂PL
� �0

;

for

sN ðZi;bÞ ¼ M 0 1

N � 1

XN
j¼1;j 6¼ i

j Sij jAij 1ðSij ¼ 1Þ �
exp ðA0

ijMbÞ
1þ exp ðA0

ijMbÞ

( )( )
;
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and

Ĝ ¼ �M 0 2

NðN � 1Þ
XN
i¼1

X
j<i

j Sij j
exp A0

ijM b̂PL
� �

1þ exp A0
ijM b̂PL

� �h i2AijA
0
ij

8><
>:

9>=
>;M :

Formulating primitive regularity conditions under which (83) holds is beyond the

scope of this chapter. However to get a feel for the small sample properties of the method

Tables 4 and 5 summarize the results of a simple Monte Carlo experiment. I consider

two designs. In both cases K ¼ L ¼ 3. In the first design the ALCs take the form

fmnkl ¼ b1ðwm � wkÞðxn � xlÞ;

with b1 ¼ 1. This implies that d(w,x) is supermodular. As a result the equilibrium

assignment, reported in Panel B of Table 4, is highly assortative.

In the second design I set

fmnkl ¼ b1ðwm � wkÞðxn � xlÞ þ b2f1ðwm ¼ 3; xn ¼ 3Þ � 1ðwm ¼ 3; xl ¼ 3Þ
�½1ðwk ¼ 3; xn ¼ 3Þ � 1ðwk ¼ 3; xl ¼ 3Þ�g;

with b1 ¼ 1 and b2 ¼ �2. This induces a more complicated equilibrium assignment.

The upper-left-hand 2 � 2 portion of the assignment matrix is assortatively matched,

while the lower-right-hand 2 � 2 portion is anti-assortatively matched. Other features

of the two designs are summarized in Panel A of Table 4.

For both designs I draw 1000 samples of 1000 matches each from the equilibrium

assignment distributions. For each draw I estimate b by pairwise logit, form an esti-

mated standard error, and a 95% asymptotic confidence interval. Table 5 summarizes

the results. Across both designs the pairwise logit estimates are, up to simulation error,

mean and median unbiased. Their Monte Carlo sampling distributions are also well-

approximated by the asymptotic distribution theory sketched above.

4.5.4 Pairwise maximum score estimation
Fox (2009b) studies semiparametric estimation of matching models. His criterion func-

tion is similar to the one suggested by Theorem 4.1 above. While set identification is

not generic in his set-up, it can occur. For this reason he recommends the use of subsam-

pling methods for conducting inference (e.g., Delgado, Rodrı́guez-Poo and Wolf, 2001;

Romano and Shaikh, 2010). Fox and Bajari (2009) provide an empirical illustration.
5. SEGREGATION IN THE PRESENCE OF SOCIAL SPILLOVERS

Debates about the social costs and benefits of ‘segregation’ are present in many areas of

social policy. As a famous example consider the effect of racial segregation in schools

on academic achievement. Coleman et al. (1966), in research which helped initiate



Table 4 Pairwise logit Monte Carlo designs
Panel A: Parameterizations of Monte Carlo Designs

a(w) b(x) e(w,x) e2(w,x) b1 b2 (p1, p2, p3) (q1, q2, q3)

Design 1 w x w 	 x – 1 – (1/3, 1/3, 1/3) (1/3, 1/3, 1/3)

Design 2 w x w 	 x 1(w ¼ 3, x ¼ 3) 1 �2 (1/3, 1/3, 1/3) (1/3, 1/3, 1/3)

Panel B: Average Match Surplus & Equilibrium Assignment

Design 1

Average Match Surplus Equilibrium Assignment

W\X 1 2 3 W\X 1 2 3

1 3 5 7 1 0.205 0.100 0.028

2 5 8 11 2 0.100 0.133 0.100

3 7 11 15 3 0.028 0.100 0.205

Design 2

Average Match Surplus Equilibrium Assignment

W\X 1 2 3 W\X 1 2 3

1 1 2 3 1 0.198 0.080 0.055

2 2 4 5 2 0.080 0.088 0.165

3 3 6 7 3 0.055 0.165 0.113

NOTES: Panel A summarizes the two data generating processes. Panel B reports the average match surplus for each w and x combination as well as the equilibrium
assignment, R

sq
WX . The equilibrium assignments were computed using the algorithm given in Section 6 of Galichon and Salanié (2009). These allocations are then

checked against equation (62) above.
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Table 5 Monte Carlo results for Pairwise Logit estimator
(1) (2) (3) (4) (5) (6)
Mean
b̂(m)

Median
b̂(m)

Std. Dev.
b̂(m)

Mean
ase(b̂(m))

Median
ase(b̂(m))

Coverage
(nom. 0.95)

Design 1

b1(¼ 1) 0.998 0.998 0.0667 0.0669 0.0667 0.9480

Design 2

b1(¼ 1) 1.002 1.001 0.0723 0.0753 0.0751 0.958

b2(¼ �2) �2.002 �2.010 0.1939 0.2002 0.2001 0.956

NOTES: Monte Carlo results based on 1,000 samples of size N ¼ 1, 000 drawn from the two equilibrium assignments

listed in Table 4. Columns 1 through 3 report the mean, median and standard deviation of b̂
ðmÞ

across the Monte Carlo

replications. Columns 4 and 5 report the mean and median estimated asymptotic standard error of b̂
ðmÞ

. Column 6
reports the actual coverage of an asymptotic 95% confidence interval.
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widespread court-ordered desegregation in the 1970s, argued that racial isolation low-

ered the academic achievement of black students. Despite the substantial body of

subsequent social science research, there remains widespread disagreement about the

effects of segregation in schools. The absence of a consensus opinion among social

scientists is, at least partially, due to methodological difficulties (Schofield, 1995).

This section outlines a framework for measuring the ‘equity and efficiency’ impli-

cations of segregation in the presence of social spillovers based on Graham, Imbens

and Ridder (2009b). The applied theory literature on segregation in the presence of

social spillovers is rich (see the Epple and Romano chapter in this Handbook for a

review). As in other successful applications of economic theory to real world problems,

much of this work is highly stylized. For example Benabou (1996) models agents as

binary-typed but otherwise identical (cf., Becker and Murphy, 2000). While the result-

ing analysis is insightful and elegant, in particular allowing for a sharp characterization

of the laissez faire assignment against which the planner’s solution may be compared, it

is not obvious how to empirically evaluate it.

Section 5.1 extends the basic set-up employed by Benabou (1996) to include unob-

served individual- and neighborhood-level heterogeneity. Sections 5.2 and 5.3 then

outline two sets of estimands. The first measure the effects of global reallocations.

The second measure the effects of reallocations which only slightly perturb the status

quo. Some parametric examples are explored in Section 5.4.

5.1 Population setup
Consider a population of individuals (‘students’) indexed by i 2 I. Individuals are

binary-typed, Ti 2 {0, 1}, and heterogenous in unobserved ability, Ai. As in Section

2 I maintain an inclusive definition of type such that Ti and Ai are independent.
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A second population of locations (‘classrooms’) indexed by c 2 C also exists. These

locations are where reference groups ‘reside’. Locations are also heterogenous with

their unobserved quality given by Uc. For example, teacher quality might vary across

classrooms.

Let Gi ¼ c if individual i is assigned to location c. To avoid double-subscripting

let, in an abuse of notation, Ui ¼ UGi
denote the quality of individual i’s location

of residence. The assignment vector G ¼ (G1, . . . , GI)
0 completely summarizes the

population assignment of individuals to groups. An individual’s peer or reference

group consists of all other individuals who reside in her location or the index set:

pðiÞ ¼ j : Gj ¼ Gi; i 6¼ j
� �

:

An individual’s overall neighborhood environment is completely characterized by

(i) the types and abilities of her peers and (ii) her location’s quality. Let T pðiÞ;ApðiÞ be
the vectors of individual i0s peers’ types and abilities. Without loss of generality assume

that peers are sorted such that low types come first, followed by high types, so that

ApðiÞ ¼ ðAL
pðiÞ;A

H
pðiÞÞ, with AL

pðiÞ the ability vector for i0s low type peers and AH
pðiÞ for

her high type peers. Collecting terms let Qi ¼ ðT pðiÞ;ApðiÞ;UiÞ be an individual’s over-

all ‘neighborhood quality’. Observe that there are two sources of variation in unob-

served neighborhood quality: (i) that due to variation in the ability structure of peers

and (ii) that due to variation in location-specific characteristics.

Graham, Imbens and Ridder (2009b) posit the existence of an individual-specific

allocation response function

YiðgÞ; g 2 G; ð84Þ

where G denotes the set of all feasible assignments; Yi(g) gives the potential outcome

for individual i associated with allocation g 2 G. Let G denote the observed assign-

ment, then the observed outcome Yi coincides with Yi(G). To make further progress

Graham, Imbens and Ridder (2009b) impose two additional restrictions on Yi(g). First

they rule out spillovers across groups. Second they assume peers of the same type are

exchangeable within groups (i.e., equally influential).

The first assumption implies that if the two assignments g and ~g are such that

qi ¼ ~qi, then YiðgÞ ¼ Yið~gÞ. This implies that the allocation response function varies

with qi alone:

YiðgÞ ¼ YiðqiÞ ¼ YiðtpðiÞ; apðiÞ; uiÞ: ð85Þ

The second assumption implies that

YiðqiÞ ¼ Yiðs�i; tNL
ðaLpðiÞÞ; tNH

ðaHpðiÞÞ; uiÞ; ð86Þ
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where N ¼ NL þ NH is total group size, s�i ¼ 1
N�1

P
j2pðiÞTj is the fraction of high

type peers, tNL
aL
pðiÞ

� �
is the vector of the first NL elementary symmetric polynomials

on aLpðiÞ, and tNH
aHpðiÞ

� �
is defined analogously.42

Equation (86) indicates the allocation response is an individual-specific function of

peers’ types, peers’ abilities and location quality. There are three distinct sources of

unobserved heterogeneity in this setup: (i) own ability, (ii) peers’ ability and (iii) loca-

tional quality. This heterogeneity arises from two distinct populations: that of indivi-

duals and that of locations. This represents a substantial complication over a

conventional single agent econometric model. Identification arguments in such a

setting will necessarily involve restrictions on the conditional distribution of the three

sources of unobserved heterogeneity given observables.

To keep what follows simple I will assume a version of double randomization holds.

To understand the required condition consider a social planner who must assign indi-

viduals to locations. Assignment is done on the basis of the individual-level binary

characteristic. No additional individual- or location-level characteristics are used by

the planner. For simplicity assume that each location accommodates the same number

of individuals. Since the planner only acts on knowledge of Ti we may assume that

each high type individual in a group is an independent random draw from the subpop-

ulation of high types (and likewise for low types). Groups, so formed, are randomly

assigned to a location.

Under a doubly randomized assignment mechanism individual i’s expected out-

come given assignment to a group where s�i of her peers’ are high types is

Y e
i ðS�iÞ ¼

ð ð
	 	 	
ð
Yi s�i; tNL

aLpðiÞ

� �
; tNH

aHpðiÞ

� �
; ui

� �Y
j2pðiÞ

fAðajÞ daj

2
4

3
5fUðuiÞ dui: ð87Þ

Note that Y e
i ðs�iÞ is an expectation over a product of marginals. This is because double

randomization ensures independence between own and peer ability and own ability

and location quality. Loosely speaking it rules out ‘sorting’ and ‘matching’ on unobser-

vables. If the planner is constrained, either informationally or institutionally, to imple-

ment only double randomized allocations, then she only requires knowledge of the

distribution of Y e
i ðs�iÞ.

Restricting counterfactual assignments to be doubly randomized is reasonable; an

econometrician cannot do social planning calculations if knowledge of individual abil-

ity and/or location quality is required. Assuming the status quo assignment is doubly

randomized is harder to motivate (outside of the important special case of experimental
42 Allowing for multiple group-sizes is straightforward but ignored here in order to keep the notation simple.
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settings). Much of what follows can be extended to settings where double randomiza-

tion does not hold, at least if auxiliary restrictions on the production technology are

also imposed. These extensions are important for empirical work, but substantially

complicate both the notation and analysis (see Graham, Imbens and Ridder, 2009b).

Here I wish to focus on a more basic issue: that of measurement. In particular how

one can define estimands that give statistical content to the various ‘equity versus effi-

ciency’ questions that typically arise when considering desegregation policies?

5.2 Global reallocations: the social planner’s problem
Let mH(s) denote the expected outcome for a high type individual in a group with com-

position s, when groups are formed according to the doubly randomized mechanism. Let mL(s) be

the corresponding expected outcome for low types. If m�
Lðs�iÞ ¼ E½Y e

i ðs�iÞ jTi ¼ 0�
and m�

Hðs�iÞ ¼ E½Y e
i ðs�iÞ jTi ¼ 1� with Y e

i ðs�iÞ given by (87) above, then

mLðsÞ ¼ m�
L

sN

N � 1

� �
; mLðsÞ ¼ m�

L

sN � 1

N � 1

� �
:

The composition weighted average

mðsÞ ¼ smHðsÞ þ ð1� sÞmLðsÞ; ð88Þ
gives the expected average outcome, irrespective of type, in a group of composition s.

If the status quo is doubly randomized then

E½Yi j Si ¼ s;Ti ¼ 1� ¼ mHðsÞ; E½Yi j Si ¼ s;Ti ¼ 0� ¼ mLðsÞ: ð89Þ
Equation (89) is intuitive, perhaps even obvious, under doubly randomized assign-

ment, but showing the equality holds formally requires some work. This is because

mH(s) and mL(s) are averages over the products of several marginal distributions: one

ability distribution for each group member and one locational quality distribution (cf.,

Graham, Imbens and Ridder, 2009b). In what follows I assume that (89) holds. In

practice other ways of identifying mH(s) and mL(s), which might involve introducing

separability assumptions of the type explored in the context of two-sided matching

models above, may be important.

Now consider a planner who, given knowledge of m(s) and the population fre-

quency of high types, pH, chooses a distribution of group composition, FS(s), to maxi-

mize the average outcome:

max
FSð	Þ

ð
mðsÞfSðsÞds; ð90Þ

subject to the feasibility constraint ð
sfSðsÞds ¼ pH : ð91Þ
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The problem defined by (90) and (91) is one of functional optimization. Although

in general such problems are quite difficult to solve, Graham, Imbens and Ridder

(2009b) show that the above problem has a simple solution. Before considering their

solution it is helpful to underscore why the planner’s problem is, at least on the surface,

a challenging one. Consider the case where both mH(s) and mL(s) are constant in s. This

corresponds to a complete absence of social spillovers. In this case we have the maxi-

mand in (90) equal toð
½smH þ ð1� sÞmL � fS ðsÞds ¼ pHmH þ ð1� pHÞmL;

where the equality follows by substituting in the feasibility constraint (91). In the

absence of social spillovers the average outcome is invariant across all feasible assign-

ments. For the assignment problem to be interesting we require the presence of social

spillovers. The presence of such spillovers also makes the planner’s problem non-trivial.

This is because the form of the social spillover is left nonparametric.

It is helpful to begin by analyzing the planner’s problem under two special cases: (i)

m(s) is globally concave and (ii) m(s) is globally convex (i.e., rssm(s) is respectively less

than and greater than zero for all s 2 [0, 1]). These two cases are the focus of an exten-

sive applied theory literature on multi-community models (e.g., Benabou, 1993, 1996;

Becker and Murphy, 2000; de Bartolome, 1990; Durlauf 1996a,b, 2004; Epple and

Romano, 1998; Fernández, 2003).

When m(s) is globally concave Jensen’s inequality implies that

mðpHÞ � EFS ½mðSÞ�;

for any feasible FS(	). Since the restriction holds with equality for the degenerate distri-

bution concentrated at pH, corresponding to the perfectly integrated assignment, global

concavity of m(s) implies that integration maximizes the average outcome.

If m(s) is globally convex, then a mean value expansion and the feasibility constraint

(91) gives

EFS ½mðSÞ� ¼ mðpHÞ þ EFS ½rssmð�SÞðS � pHÞ2�;

for �S an intermediate value between S and pH. Convexity of m(s) yields the upper and

lower bounds

mðpHÞ þ min
�s2½0;1�

rssmð�sÞ

 �

	 VFSðSÞ � EFS ½mðSÞ� � mðpHÞ þ max
�s2½0;1�

rssmð�sÞ

 �

	 VFSðSÞ:

These bounds are maximized at the most dispersed distribution on [0, 1] with mean pH.

This distribution, which corresponds to the perfectly segregated assignment, places a

mass of pH on one and a mass of 1 � pH on zero. Global convexity of m(s) therefore
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implies that segregation maximizes the average outcome. Figure 1 illustrates the plan-

ner’s solution when m(s) is convex or concave.

The difficult case corresponds to situations where rssm(s) may change signs on

[0, 1]; that is where m(s) is neither concave or convex. Let M(s) be the concave enve-

lope of m(s). Formally M(s) is a function whose truncated lower epigraph coincides

with the convex hull of the truncated lower epigraph of m(s) (e.g., Rockafellar,
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Figure 1 Social planner’s assignment when m(s) is globally convex and concave.
Notes: Panel A of the figure plots the type specific group composition response functions mH(s)
(black line) and mL(s) (gray line). Panel B plots the associated �(s) (solid line) and �(s) þ l(s) (dashed
line) functions. The sign of these functions indicate whether a local increase in segregation at point
s would raise, respectively, movers’ and stayers’ average outcomes. Panel C plots m(s), its concave
envelope, M(s), and the maximal attainable average outcome (point A).
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1970; Horst, Pardalos and Thoai, 2000). Intuitively it is the uniformly best concave

overestimator of m(s). If the planner could ‘produce on’ M(s), then an optimal assign-

ment, by virtue of concavity, would be the perfectly integrated one. This assignment

would yield an average outcome of M(pH). This observation yields the following

inequality on the planner’s maximand

EFS ½mðSÞ� � MðpHÞ;

for any feasible FS(	). Now let sL and sU be the first points respectively below and above

pH where m(s) and its envelope coincide:

sL ¼ max s : 0 � s � pH ;MðsÞ ¼ mðsÞf g
sU ¼ min s : pH � s � 1;MðsÞ ¼ mðsÞf g:

Since M(s) is linear on the interval [sL, sU] the upper bound on the maximand is

attained by the assignment

F
opt
S ðsÞ ¼ ð1� pÞ1ðs � sLÞ þ p1ðs � sUÞ; p ¼

pH � sL

sU � sL
sL < sU

1

2
sL ¼ sU

:

8>><
>>:

Panels C.1 & C.2 of Figure 2 illustrate the planner’s solution. In the figures point A

corresponds to (pH, M(pH)). To achieve this bound the planner forms two types of

groups. The first has a fraction of high types equal to the s-axis value of point B in

the figure, corresponding to sL; the second the s-axis value of point C, corresponding

to sU. The feasibility constraint determines the relative frequency of the two types of

groups. It is then not hard to see that the average outcome associated with this assign-

ment is equal to M(pH). Since M(pH) is an upper bound to the planner’s objective func-

tion this assignment is indeed an optimal one.

With the planner’s solution characterized we can define the maximum change in

the average outcome available via reassignment as

bmre ¼ 1

sU � sL
½ðsU � pHÞ mðsLÞ þ ðpH � sLÞ mðsUÞ� � E½Y �: ð92Þ

Given knowledge of the extreme points of the concave envelope of m(s) the maxi-

mum reallocation effect is straightforward to compute. Unfortunately finding the concave

envelope ofm(s) requires knowledge ofm(s) at all points on the unit interval. This requires

that the status quo assignment, F
sq
S ð	Þ, have support along the entire unit interval.

Graham, Imbens and Ridder (2009b) do not develop estimation and inference

results for bmre. Showing consistency of a simple plug in estimator should be straight-

forward. If m̂ðsÞ is some uniformly consistent nonparametric estimate of m(s), say the

NIP estimate used by Graham, Imbens and Ridder (2009a), then sL and sU should be

consistently estimable and hence so should bmre. Characterizing the asymptotic
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sampling properties of such an estimator would be more challenging. Consider the case

where sL, sU and pH are known, then b̂
mre

, which would be a function of m̂ðsLÞ and
m̂ðsUÞ, would behave similarly to a nonparametrically estimated conditional mean.

When sL, sU and pH are replaced with estimates, the effects of the additional sampling

error would need to be ascertained.
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5.3 Local reallocations: movers versus stayers
Studying the effects of small, local, reallocations on outcomes generates additional

insights. Consider the set of groups with group composition s. As before, high- and

low-type individuals in these groups are random draws from their respective subpopula-

tions and assignment to locations is random. Now consider the following local realloca-

tion. In half of the groups the fraction high is increased from s to s þ ds. This change is

accommodated by reducing the fraction high from s to to s – ds in the remaining groups.

Implementing this reallocation requires low type individuals in the first half of groups to

switch places with high type individuals in the second half of groups. Call the set of indi-

viduals who actually switch groups as part of the reallocation movers.

The change in average outcomes for high type movers is given by

mHðsþ dsÞ � mHðsÞ; ð93Þ

while that for low type movers is given by

mLðs� dsÞ � mLðsÞ: ð94Þ

The average outcome of movers will increase if the sum of (93) and (94) is positive. For

ds infinitesimally small this is equivalent to the condition

rsmHðsÞ � rsmLðsÞ > 0: ð95Þ

Equation (95) is a measure of local complementarity between own and peers’ type. If, at

group composition s, high type individuals gain more from small increases in peer qual-

ity than do low type individuals, then (95) will be positive. In such situations, a high

type and a low type can raise their total expected outcome by switching groups. Note

that such a switch will often involve a ‘winner’ and a ‘loser’. For example if rsmH(s)

and rsmL(s) are both positive, then (95) implies that the outcome gain for the high

type mover exceeds the outcome loss for the low type mover.43

Those individuals who do not move as part of the reallocation, or stayers, also expe-

rience changes in expected outcomes. This is because the reallocation changes these

individuals’ peer groups. To see this note that the total change in expected outcomes,

movers and stayers inclusive, is given by

mðsþ dsÞ þ mðs� dsÞ � 2mðsÞ
2

:

43 The locational sorting literature emphasizes the case where (95) is positive for all s 2 [0, 1] (e.g., Benabou, 1996). This

corresponds to assuming that own and peer types are global complements. Assuming that (i) utility is linear in the expected

outcome and (ii) that there is a functioning market for ‘seats’ or ‘residences’ in groups, this condition generates strong

incentives for sorting. Since a high type individual initially in a group with composition s gains more from moving to a

group with composition sþ ds than a low type loses from making the reverse move, high types will outbid low types for

spots in high s groups.
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For ds infinitesimally small this change will be positive if

rssmðsÞ > 0:

Local convexity of m(s) implies that locally increasing segregation will raise average

outcomes. Now observe that

rssmðsÞ ¼ 2�ðsÞ þ lðsÞ: ð96Þ

for

�ðsÞ ¼ rsmHðsÞ � rsmLðsÞ; lðsÞ ¼ srssmHðsÞ þ ð1� sÞrssmLðsÞ:

The first term in (96), �(s), equals the local complementarity term of (95) above. If it

is positive movers will benefit, on net, from local increases in segregation. The second

term, l(s), is what Benabou (1996) has termed ‘curvature’. The direction of the real-

location’s impact on the stayers’ average outcome depends on the relative magnitudes

of complementarity and curvature. In particular if �(s) þ l(s) is negative then stayers

will be hurt, on net, by local increases in segregation. Panels B of Figures 1 and 2 plot

�(s) and �(s) þ l(s) for four different pairs of mH(s) and mL(s). In three of these four

examples the effects of local increases in segregation on movers and stayers are oppo-

site signed for at least some values of s. Situations where �(s) þ l(s) and �(s) do not

have the same sign are of particular interest as they suggest that the private and social

returns to segregation are grossly misaligned. Even when the two terms share a com-

mon sign, there will exist a wedge between the private and social returns to sorting.

This wedge arises because movers have no incentive to internalize the effects of their

actions on stayers.

Translating the above analysis into meaningful estimands is challenging. One

approach would involve estimating mH(s) and mL(s), as well as their first and second

derivatives, pointwise and constructing sample analogs of Figures 1 and 2. Figures of

this type would give some indication of the likely effects of small increases in segrega-

tion at various values of s. This approach is conceptually simple, but would likely result

in noisy inferences (e.g., the maximal feasible rate of convergence for l(s) would be

that of a one dimensional second derivative). Graham, Imbens and Ridder (2009b)

propose an alternative method. They introduce a family of feasible reallocations that

involves perturbing the group composition distribution across its entire support. They

then study the effects of such reallocations on average outcomes and inequality. They

focus on the case where the resulting reallocation becomes vanishingly close to the sta-

tus quo. While this approach has obvious limitations it does lead to an intuitive esti-

mand and a tractable estimator (which converges at the normal parametric rate).

Their approach is most likely to be informative about the effects of modest changes

in the degree of segregation or integration.
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Decompose the derivative of m(s) as

rsmðsÞ ¼ pðsÞ þ eðsÞ;

with

pðsÞ ¼ mHðsÞ � mLðsÞ; eðsÞ ¼ srsmHðsÞ þ ð1� sÞrsmLðsÞ:

The first term, p(s), captures the private, or compositional effect, of a small change in

group composition on the average outcome. The second term, e(s), in an external

effect. It captures the effect of changes in group composition on the outcomes of

stayers.

Now consider implementing a reallocation of the following form

DSc ¼ lðSc � pH ;kÞ � dkðScÞ; l > 0 ð97Þ

with dk(s) ¼ 1 (s > k) 1 (s < 1 � k) for some k 2 (0, 1) and pH ;k ¼ E½Ti j dkðSiÞ ¼ 1�.
This allocation takes high type individuals in predominately low type groups and

switches them with low type individuals in predominately high type groups. The func-

tion dk(Sc) excludes groups with compositions close to zero or one from the realloca-

tion. This ensures that, for small enough l, (97) is feasible. The dk(s) also serves as a

fixed trimming device for estimation purposes.

Graham, Imbens and Ridder (2009b) show that the sign of the effect on average

outcomes from implementing (97) in the limit where l approaches zero coincides with

the sign of

blsoe ¼ E½dkðSiÞrsmðSiÞðSi � pH ;kÞ�: ð98Þ

They term blsoe the local segregation outcome effect (LSOE). The form of blsoe is intuitive.
If rsm(Si) tends to be larger for Si < pH,k, then increasing segregation should lower

average outcomes. This is because the returns to group composition are highest in

those groups that have few high types. Increasing segregation therefore involves taking

high types away from groups where the return to their presence is highest.

The LSOE can be broken down into the two components

almse ¼ E½dkðSiÞpðSiÞðSi � pH ;kÞ�
alsse ¼ E½dkðSiÞeðSiÞðSi � pH ;kÞ�;

with blsoe ¼ almse þ alsse. The signs of almse and alsse respectively coincide with the

signs of the reallocation’s effect on the average outcomes of movers and stayers. To

show this Graham, Imbens and Ridder (2009b) provide the following representations

almse ¼ pkVðSi j dkðSiÞ ¼ 1Þ � E½oðSiÞ�ðSiÞ j dkðSiÞ ¼ 1�
alsse ¼ pkVðSi j dkðSiÞ ¼ 1Þ � E½oðSiÞ �ðSiÞ þ lðSiÞf g j dkðSiÞ ¼ 1�;
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for pk ¼ E½dkðSiÞ� and o(Si) a mean one weight function. That is almse is equal to a

weighted average of the local complementarity measure �(s). Recall that it is the sign

of �(s) that determines whether movers gain from local increases in segregation in

the neighborhood of s. A weighted average of these local measures gives the overall

direction of implementing (97) on movers. Likewise alsse is equal to a weighted average

of �(s) þ l(s), the sign of which determines the effect of local increases in segregation

on stayers’ average outcomes.

Under random sampling analog estimation of blsoe is straightforward; rsm(Si) may

be estimated by differentiating the Nadarya-Watson kernel regression estimate of

m(Si) and pH,k by the trimmed sample mean of Ti. With these estimates in hand b̂
lsoe

is given by the sample analog of (98) after replacing rsm(Si) and pH,k with their esti-

mates. Characterizing the limiting distribution of the resulting estimator is more

involved. Graham, Imbens and Ridder (2009b) derive the appropriate influence func-

tion and show how to properly take into account the group-structure of the data when

conducting inference.

Policy debates which touch on issues of segregation often center on its implications

for inter-type inequality. Graham, Imbens and Ridder (2009b) show that the sign of

the effect of a local increase in segregation on inter-type inequality is given by

blsie ¼ E
dkðSiÞ
pH

mHðSiÞ þ SirsmHðSiÞf gðSi � pH ;kÞ
" #

�E
dkðSiÞ
1� pH

�mLðSiÞ þ ð1� SiÞrsmLðSiÞf gðSi � pH ;kÞ
" #

:

They call blsie the local segregation inequality effect (LSIE). As with the LSOE they

propose an analog estimator and characterize its large sample properties.
5.4 Parametric examples
Empirical work on the socioeconomic effects of segregation generally assumes para-

metric forms for mH(s) and mL(s). This section evaluates several widely-used parametric

models in light of the material reported in Sections 5.2 and 5.3 above.

Perhaps the most common empirical peer effects model is the linear-in-means

one analyzed by Manski (1993). A reduced form version of this model amounts to

assuming that

mHðsÞ ¼ aH þ bs; mLðsÞ ¼ aL þ bs:

This model restricts the marginal effect of group composition to be the same for high and

low type individuals. Sincers mH(s)¼rs mL(s)¼ b andrss mH(s)¼rss mL(s)¼ 0 this-

model implies that the LSOE is zero by construction. All assignments lead to the same
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average outcome. The model does allow for segregation to generate inequality. The

LSIE, for example, equals

blsie ¼ VðSiÞ �
2b

pHð1� pHÞ
;

where, to simplify the expression, I set k ¼ 0 such that dk(s) ¼ 1. Note that segregation

always increases inequality (if b > 0). Although the linear-in-means model is widely-

used (e.g., Graham, 2008) it is clearly inappropriate for studying the effects of alterna-

tive assignments to groups.

A slight generalization of the linear-in-means model allows the return to group

composition to vary by type. This model is frequently employed in analyses of the

effects of racial segregation on student achievement (e.g., Schofield, 1995; Angrist

and Lang, 2004; Guryan, 2004; Card and Rothstein, 2007). We have

mHðsÞ ¼ aH þ bHs

mLðsÞ ¼ aL þ bLs:

This model, while more flexible than the linear-in-means one, also rules out curvature

by construction: l(s) ¼ 0. This means that the interests of movers and stayers are per-

fectly aligned. This is an important limitation given the focus on inefficient segregation

in theoretical work.

In this model the LSOE equals

blsoe ¼ VðSiÞ � 2ðbH � bLÞ:

Note that the sign of blsoe coincides with the sign of bH � bL. Features of the status

quo group composition distribution cannot alter the LSOE’s sign. The LSIE effect is

given by

blsie ¼ VðSiÞ � 2
ð1� pHÞbH þ pHbL

pHð1� pHÞ

� �
:

As with the outcome effect, the direction of the effect of local increases in segregation

on inter-type inequality is independent of the status quo.

A simple parametric model that allows for curvature is the ‘quadratic-in-means’

model:

mHðsÞ ¼ aH þ bHsþ gHs
2

mLðsÞ ¼ aL þ bLsþ gLs
2:

In this model complementarity equals �(s) ¼ (bH � bL) � (gH � gL) s and curvature is

given by l(s) ¼ � [s gH þ (1 � s) gL]. Global complementarity is not assumed a priori

and the model is flexible enough to allow for a misalignment between the interests of

movers and stayers (see Figures 1 and 2 above for examples).
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The LSOE in this model is given by

blsoe ¼ VðSiÞ � 2ðbH � bL þ gLÞ þ 2pH þ VðSiÞ1=2SðSiÞ
h i

� 3ðgH � gLÞ
h i

;

where SðSiÞ is the skewness of Si. Note that features of the status quo assignment

meaningfully enter the above expression. The sign of 2pH þ VðSiÞ1=2SðSiÞ will vary

depending on the form of F
sq
S ð	Þ. Thus, even if the production function is the same

across two ‘societies’, the effect of small increases in segregation need not be. The

interplay between the production technology and the distribution of types in the pop-

ulation is a fundamental feature of assignment problems. This feature is often obscured

when simple parametric forms for the production technology are employed. It moti-

vates the focus on nonparametric approaches throughout this chapter.
6. TREATMENT RESPONSE WITH SPILLOVERS

The conventional approach to causal inference assumes the absence of interference

between units (Holland, 1986). In practice many interventions are likely to generate

spillover effects. For example, providing college scholarships to a few students may

increase the college attendance of non-recipients within the same school. The proba-

bility of viral infection for unvaccinated individuals may vary with the fraction of their

close peers who are vaccinated (e.g., Ali et al. 2005). A common reaction to ‘interfer-

ence’ among statisticians has been to treat it as a nuisance; something to be avoided by

experimental design or method of data collection (see Rosenbaum (2007) for a related

discussion). This approach is problematic since social planning requires knowledge of

the entire treatment response; inclusive of any spillover effects. This point is elegantly

made by Manski (2009a,b).

In recent work Hudgens and Halloran (2008) and Manski (2010) have developed

frameworks for analyzing treatment response in the presence of social spillovers. The

exposition here follows Manski (2010). Let i 2 I index individuals in a population

who receive treatment Ti 2 T . In the most general setup an individual’s potential out-

come may vary with the entire population vector of treatment assignments. This yields

a treatment response function of

YiðtIÞ; ð99Þ

where tI is one element of the Cartesian product of T across the entire population:

T I ¼ �i2IT . Note the similarity, in terms of the degree of interconnectedness across

agents, with the allocation response function introduced in the previous section (equa-

tion (84) above).

Manski (2010) emphasizes two sets of restrictions on (99). The first, which he calls

constant treatment response (CTR), assumes that outcomes remain constant when tI
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varies within specified subsets of T I . For example an individual’s outcome might only

depend on own and peers’ treatments. Reference groups may be person-specific, but

are assumed to be non-manipulable.44 The second restriction is that interactions are

distributional. This corresponds to exchangeability of peers within reference groups.

These two assumptions play roles similar to those of the no spillovers across groups

and peer exchangeability assumptions made by Graham, Imbens and Ridder (2009b).

Let ci(	) be a function mapping the population treatment vector onto a set. The

CTR assumptions is that, for treatment vectors tI and sI,

ciðtIÞ ¼ ciðsIÞ ) YiðtIÞ ¼ YiðsIÞ: ð100Þ

Let Gi � I be individual i’s reference group. If (99) varies only with own and peers’

treatments, then ciðtIÞ ¼ tGi .

Let G�i denote the leave-own-out reference group and QðtG�iÞ the distribution of

treatments across i’s peers. If interactions occur only within-groups and are additionally

distributional then

ciðtIÞ ¼
ti

QðtG�iÞ

� �
: ð101Þ

If the treatment is binary-valued then the within-group distribution of treatment effects

is entirely summarized by the fraction of one’s peers who are treated (implicit in Man-

ski’s formulation of distributional interactions is that reference group size does not mat-

ter). This means that if Ti is binary (100) and (101) give

YiðtIÞ ¼ Yiðti;�tiÞ: ð102Þ

Note that, in contrast to the allocation response function introduced in the previous

section, peer unobservables do not directly enter (102). This simplification arises

because here peer groups are non-manipulable.

The law of total probability yields an identification region for P½Yiðti;�tiÞ�, the distri-
bution of Yiðti;�tiÞ, equal to

H P½Yiðti;�tiÞ�f g ¼ P½Yiðti;�tiÞ jTi ¼ ti; �Ti ¼ �ti�	P½Ti ¼ ti; �Ti ¼ �ti�f

þ d	P½Ti 6¼ tior �Ti 6¼ �ti�; d 2 DYg;

where DY denotes the space of all probability distributions on Y. Manski (2010) studies

a variety of additional restrictions that may tighten H P½Yiðti;�tiÞ�f g.

44 That is reference groups may be directional in the sense that i may belong to j’s reference group but not vice-versa

(i.e., reference groups may be overlapping). This differs from Graham, Imbens and Ridder (2009b) who require

that reference groups form a non-overlapping partition of the population.
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Manski (2009a,b) studies social planning problems in the presence of treatment spil-

lovers. Let uiðti;�tiÞ ¼ ui½Yiðti;�tiÞ; ti;�ti� be the utility of individual i when she is assigned

treatment Ti ¼ ti and �ti of her reference group receives treatment. Define

að�tiÞ ¼ E½uið0;�tiÞ�; bð�tiÞ ¼ E½uið1;�tiÞ�;

to be the average utility of a non-treated and treated individual, respectively, when �ti of
reference group members are treated. For example bð�tiÞ and að�tiÞ might be the average

probability of infection given vaccination and non-vaccination when �ti of the reference
group is vaccinated. Assume that bð�tiÞ adjusts for the cost of vaccination as well as any

vaccine side-effects.

What fraction of the reference group should be vaccinated? The planner’s criterion

function is

W ð�tiÞ ¼ ð1� �tiÞað�tiÞ þ �tibð�tiÞ: ð103Þ

If the vaccine is fully effective, then bð�tiÞ ¼ b. Assume further that spillovers onto the

untreated are linear

að�tiÞ ¼ ð1� �tiÞa0 þ �tia1:

Under these assumptions Manski (2009a) shows that the optimal vaccine rate is

�t�i ¼ max 0;min
1

2
þ 1

2

bþ a0
a1 � a0

; 1

� �� �
:

Knowledge of the structure of any treatment spillovers, in this case, a0 and a1, is
required to implement this rule. Manski (2009a,b) also studies social planning under

ambiguity. The point I wish to make here is that social planning requires knowledge

of the external effect.
7. AREAS FOR FURTHER RESEARCH

Several areas touched on in this chapter merit further study. Developing identification

results and estimation methods for nontransferable utility matching models is one. Since

the set of stable matchings can be large it seems likely that the parameters of these models

will be set identified in absence of additional restrictions on the matching mechanism.

Results for more complex matching structures, such as those with one-to-many and

many-to-many matching, are also needed. Fox (2009a,b) provides some results along

these lines. Relatedly, tractable, yet microtheory-founded, econometric models of net-

work formation would help empirical researchers in their analyses of (increasingly avail-

able) social network data (e.g., Christakis, Fowler, Imbens and Kalyanaraman, 2010).

The material surveyed above has unduly focused on restrictions which result in

point identification of the parameter of interest. The underlying economics of the class
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of models surveyed above naturally generates partially identifying restrictions (e.g., sta-

bility inequalities). Developing results based on these restrictions would help to extend

the material surveyed above to a larger number of empirical problems.
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