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We propose a new inverse probability weighting (IPW) estimator for moment condition models
with missing data. Our estimator is easy to implement and compares favourably with existing IPW
estimators, including augmented IPW estimators, in terms of efficiency, robustness, and higher-order
bias. We illustrate our method with a study of the relationship between early Black—White differences in
cognitive achievement and subsequent differences in adult earnings. In our data set, the early childhood
achievement measure, the main regressor of interest, is missing for many units.
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1. INTRODUCTION

Missing data are ubiquitous in applied econometric research. When data are missing at random
(MAR), or selection is on observables, a simple consistent procedure is to (i) reweight those
units without any missing data by the inverse of the probability of selection or the propensity
score and (ii) apply standard estimation methods to this reweighted subsangpléqoldridge
2007). Inverse probability weighting (IPW) is widely used to address attrition in panel data (e.g.
Abowd, Crépon and Kramar2001), program evaluation under exogenous treatment assignment
(e.g.Hirano, Imbens and Ridde2003), and to control biases caused by missing and/or mismea-
sured regressors (eBobins, Rotnitzky and Zhad 994).Chen, Hong and Taroz£2004) and
Wooldridge(2007) survey additional applications of IPW.

In this paper, we propose a modified version of IPW, which we call inverse probability tilting
(IPT). Our procedure coincides with the IPW estimatoreofj. Wooldridge(2007), except that
we replace the conditional maximum likelihood estimate (CMLE) of the propensity score with
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an alternative method-of-moments estimate. We show that if the unconditional moments used

to estimate the propensity score parameter are appropriately chosen, our procedure (i) is locally
efficient and (ii) remains consistent even if the propensity score is misspecified. These properties,
local efficiency and double robustness, which we carefully define below, are not shared by the

standard IPW estimatdr.

A key appeal of IPW is its conceptual and operational simplicity. IPT preserves this advan-
tage, while offering improvements in terms of estimator efficiency and robustness. However,
other modifications of IPW exist. A leading one, which shares IPT’s local efficiency and double
robustness properties, is the augmented inverse probability weighting (AIPW) estimator intro-
duced byRobins, Rotnitzky and Zha(994)? We characterize thbl—1 order asymptotic bias
of IPT and a class of AIPW estimators under conditions where they are first-order equivalent.
We find that IPT has smaller bias than AIPW in this setting. To our knowledge, these are the first
higher-order comparisons in the missing data literature.

In an illustrative empirical application, we revisit the analysislohnson and NedlL998)
of the Black—White wage gap for young men in the U.S. They find that approximately 60% of
the Black—White gap can be predicted by group differences in cognitive skills acquired prior
to labour market entry at age 18. We study the predictive value of group differences in skills
acquired prior to adolescenciee( by age 12). We find that preadolescent skill differences can
account for about 40% of the overall wage gap and two-thirds of pre-market effect found by
Johnson and Ne#1998).

Our analysis is complicated by the fact that a preadolescence test score is available for just
11% of respondentsin addition to being few in number, these complete cases are unrepresen-
tative of the sample as a whole. An analysis that ignores these facts may be both inconsistent
and imprecise. The IPT estimate of the wage gap conditional on the preadolescence test score
corrects for the unrepresentativeness of the complete cases. The IPT point estimate is also pre-
cisely determined. Its standard error is, respectively, one-third and one-half, the length of the
corresponding unweighted complete case and IPW ones. Our application provides a concrete
example of the type of efficiency gains IPT can provide. These gains arise despite the fact that
we implement IPW with a heavily overparameterized propensity score model, which theory sug-
gests should lead to a precisely determined point estinkéitar(o, Imbens and Ridde2003;
Wooldridge 2007).

The next section formally defines the class of problems to which our IPT procedure applies.
In Section3, we present our estimator and characterize its large-sample properties. Section
compares the higher-order bias of IPT with that of the class of AIPW estimators introduced
by Robins, Rotnitzky and Zha(1994). Sectiorb presents the empirical application. Sect®n
ends with some suggestions for further research. Selected proofs are collected in the
Appendix, which also includes details on computation. Additional proofs, further details on
the empirical application, and a full set of Monte Carlo experiments can be found in the Sup-
plemental Web Appendix. Software implementing our procedure is available online at
http://elsa.berkeley.edttbgraham/.

1. To be more specific, IPW is locally efficient at a rather peculiar data-generating process (DGP). Unfortunately,
this DGP is difficult to interpret and priori implausible. We discuss this point below.

2. While perhaps less familiar to econometricians, althodglano and Imbeng2001), Imbens(2004), and
Wooldridge(2007) are notable exceptions, AIPW methods are widely studied (and used) by statisfisiafis(2006)
provides a book length treatment.

3. Given the severity of the missing data problem in our sample, one may reasonably question the plausibility of
the MAR assumption. We emphasize that the goal of our empirical application is illustrative.
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2. A SEMIPARAMETRIC MISSING DATA MODEL

Here we describe a general moment condition model with data MAR. Our set-up is as in
Wooldridge(2007) except that our parameter is the solution to a moment condition, as opposed
to a population optimization, problem. L& = (Y, X’)’ be a random vectogy an unknown
parameter, and assume the following.

Assumption 2.1(Identification). For some known Kk 1 vector of functionsy (z, y),

Ely(Z,70] =0,

with (i) E[y(Z,7)] # 0 for all y # yo, y € G c RX, and G compact withyg € int(G), (ii)
lw(z,7)| < b(z) for all ze Z with b(z) a non-negative function o& andE[b(Z)] < oo, (iii)
w(z,y) is continuous org for each ze Z and continuously differentiable in a neighbourhood
of yo, (iv) E[ll ¥ (Z, 70) 1] < o0, and (VE[sup, ¢ IV, w(Z,7)I] < co.

Assumptior?.1provides a standard set of conditions under which the full-sample method-of-
moments estimate gfy, the solution toZiN=1 w(Zi,y)/N =0, will be consistent and asymp-
totically normal (cf.Newey and McFadderl994, Theorems 2.6 and 3.4). Our interest is in
identification and estimation wheYy is not observed for all units. LD be a binary indica-
tor variable. WherD = 1, we observer; and X, while whenD = 0, we observe only. Our
benchmark model is defined by Assumptibi as well as the following assumptions.

Assumption 2.2 (Random sampling). {Di,Xi,Yli}iN:1 is an independently and identically
distributed random sequence. We observe D, X, aedDYY; for each sampled unit.

Assumption 2.3(Missing at random). Pr(D = 1|X, Y1) =Pr(D = 1|X).

Assumption 2.4(Strong overlap). Let p(x) =Pr(D=1| X =X), then0 <x < po(x) <1
for some0 < x < 1and all xe X c RIMX),

Assumption 2.5(Propensity score model.  There is a uniquég € int(D*) with D* C RAIM(")

and compact, known vectokX) of linearly independent functions of X, and known function
G(-) such that (i) Q) is strictly increasing, continuously differentiable, and maps into the unit
interval withlim,_, _., G(v) = 0andlim,_ ., G(v) = 1, (ii) po(X) = G(r (x)/ég) forallx e X,

and (i) 0 < k < G(r (x)'6*) < 1for all 0* € D* and xe X.

We refer to the model defined by Assumptich§—2.5as the semiparametric missing data
model.Chen, Hong and Taroz£2008) study this model without maintaining Assumptiab,
i.e. with the propensity score left non-parametric. As is well known, removing Assumptton
from the prior restriction does not affect the asymptotic precision with whichhay be es-
timated Hahn, 1998). We nevertheless maintain it when deriving our local efficiency result
(Theorem3.1). Doing so is important for establishing regularity of our estimator. We also assess
the properties of IPT when Assumpti@rb fails (Theoren®.2).

To get a sense of the range of problems to which our methods may be applied, it is helpful to
consider a few specific examples.

Example 2.1 (Mean of a variable missing at random). Let Y; be a binary indicator for
an individual’s HIV status, let D= 1 if an individual is tested and zero otherwise; ¢ logi-
cally observable only when B 1. We would like to estimate the population prevalence of HIV:
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yo = E[Y1]. This corresponds to setting(Z, y) = Y1 — y . Assumptior2.3 says that the testing
decision is independent of HIV status in subpopulations homogenous in X. This may be plau-
sible if X includes measures of risk-taking behaviour and other background characteristics so
that it closely approximates an individual's own information set regarding their status. Assump-
tion 2.4 requires that at least some individuals in every subpopulation defined in terms-of X

get tested. Assumptidhs presumes the availability of a parametric model for the testing deci-
sion. This example is closely related to that of average treatment effect (ATE) estimation under
exogenous treatment assignment (see Se6timiow).

Example 2.2(Regression function estimation with missing regressojs Let X; be a vec-

tor of demographic characteristics,oXog earnings, Y armed forces qualification test (AFQT)
score, and % a vector of always observed surrogates or proxies for(&/g. scores on sub-
components of the test, on earlier tests, etc.). Let Dif a unit's test score is available and
zero otherwise. Let X= (X7, X5, X3)', v = (y{,75) and w(Z,y) = (X1, Y] (X2 = X{y1 —
Yiy2). Here y corresponds to the coefficient vector indexing the linear predictor of log earn-
ings given demographics and AFQT score aslalnson and Neal1998). This corresponds

to a linear regression model where the covariate of interest is subject to item non-response.
Assumption2.3 requires that across individuals with identical earningszfjXdemographics
(X1), and test proxies (), the probability of observing the AFQT score is independent of
its value.

Other examples of the semiparametric missing data model defined by Assuntbfie@ss
include panel data models with attrition, certain forms of censored durations, and M-estimation
under variable probability samplinghen, Hong and TarozZR004) andWooldridge (2007)
survey additional examples. See also Sechidelow.

3. INVERSE PROBABILITY TILTING

Our first result shows that standard IPW, where the propensity score is estimated by CMLE,
is typically inefficient under Assumptiorz.1-2.5. This motivates our search for an efficient
variant of IPW. The maximal asymptotic precision with whighcan be estimated under these
assumptions was characterized®ybins, Rotnitzky and Zha@d 994) and is given by the inverse

of

Z(y0) = TpAy'To, (6]
with
ow(Z,y0) Z(X;570) /
=F| === Ag=F| =22 X; X; , 2
I'o [ oy } 0 [ 550%) +a(X; yo)a( ,70):| (2)

whereX(x;y) =V(w(Z,y)|X =x) andq(X;y) =E[w(Z, y)|X = X]. We seek an estimator
that attains this bound.
To describe the textbook IPW estimator, we require some notatiom; ket (X;), w;(y) =
w(Zi,y), and yi = w(Zi,yo). Similarly, let G (6*) = G(r{0*) and Gj = G(r{d;). Denote
a random unit’s contribution to the score of the propensity score log-likelihood evaluated at
0" = dg by
D-G

¥ =5a-0)

G]_I',
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with Gs(v) = 85G(v)/6vS for s = 1,2* Finally, let q(Xi;y) = E[w(Zi,y)|Xi] and
d = q(Xi; yo)- The inverse probability weighted estimateygfis given by the solution to

ii Diy (Zi.7ew) _

- = 3
N = Gr(Xi)oy) ©

i=1

with 3;,”_ the CMLE estimate ofj;. Proposition3.1 summarizes the first-order asymptotic
properties ofjpw.

Proposition 3.1(Asymptotic sampling distribution of 7 |py). Suppose Assumptiofsd—25
hold, then (iW/N(Fipw — 70) = (0, AVar(fipw)) With

AVar(fipw) = Z(yo) 4

(3o ) (3-o-rew)

for Is=E[Qy S, |E[S+ S}*]_l
stants k.

and (i) K[AVar (ipw) — Z(y0) "1k > O for any vector of con-

Proof. See the Supplemental Web Appendix||

While the inefficiency of IPW, part (ii) of Propositiah 1, is well known, the asymptotic vari-
ance expressiord] provides new insight into its large-sample properties. Observalg&-
equals the best.é. mean squared error minimizing) linear predictm(@f— 1)q given Sy Sif
S+ happens to be a good predictor((g - l)q, then IPW will be nearly efficient. Consider the
case where the propensity score takes a logit form soGltay = exp(v)/[1 + exp(v)]. Some
basic calculations giv&;« = (g — l)G -r; therefore, if it so happens thgtcan be written as a
linear function ofG - r, then the asymptotic variance of IPW will coincide with that of an effi-
cient estimator. An interpretation éfirano, Imbens and Ridd€R003) is that if the dimension
of r is allowed to grow with the sample size, themwill eventually be arbitrarily well approxi-
mated by a linear function d& - r, so that this coincidence holds generallg (for all DGPs).
Wooldridge (2007) makes a related point: equatia €annot increase if the dimension of
r increases.

In practice, the researcher is only able to fit a finite-dimensional model for the propensity
score. Propositio. lindicates that, except under very special circumstances, the resulting IPW
estimate ofyg is inefficient under Assumptiora1-2.5. Expressiord] indicates that this inef-
ficiency is most acute Wheb(D—; —1)q is poorly approximated by a linear combination ®f,
the vector of estimating equations for the propensity score parawietdihis suggests that
changing the estimating equations §r such that a linear combination of them closely approx-
imates(g - 1)q, might improve estimator precision. This conjecture turns out to be correct. To
show this result, we begin by positing a working model for the conditional mean(4f yo)
given X.

4. To economize on notation, we often omit an argument of a function when it is being evaluated at the “truth”.
For exampleG1 = G1(r (X)'55) = 8G(r (X)'d5)/ov.
5. Note that by the conditional mean zero property of the score function and Assura@jon

(-] -o[2us ][0
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Assumption 3.1 (Moment Conditional Expectation Function (CEF) mode). For some
unique matrixIly and vector of linear independent functiori X) with a constant in the first
row, we have

Ely (Z, 70)IX] = It *(X).

The precise content of Assumpti8ridepends on the form @f (Z,y). If w(Z,y)=Y1—7,
as in Example?.1, then it is equivalent to assuming that the conditional mean &f a linear
function oft*(X). Example2.2 provides a more complicated illustration. In that case,

X1 X2 = X1 X]y1— XaE[Y1| X]'y2
Ely (Z, 70)|X] = ' ,
E[Y1[X] X2 = E[Y1| X] X171 = E[Y1Y{|X]y2

SO th%t selecting* (X) requires formulating models for the first and second conditional moments
of Yi.

Whenw(Z,y) is non-linear iny choosingt*(X) such that AssumptioB.1 holds is more
difficult. In this case, one can think of (X) as a vector of approximating functions as in the
literature on non-parametric sieve estimatierg(Chen,2007; see also Sectighbelow). We
emphasize that any approach to missing data that involves imputation also requires formulating
a model forE[yw (Z, yo)| X] (e.g. Little and Rubin,2002).

Lett(X) denote the union of all linearly independent elements {iX) andr (X) (recall that
r (X) are the functions oK entering the propensity score model in Assumpfids). Let 1+ M
equal the dimension df(X); this vector will include a constant arid known functions ofX.

Note thatt(X) = (r (X)’,r*(X)")’, wherer *(X) is the relative complement of(X) in t*(X).
Letting do = (95, )’ Where o = 0, we have under Assumptiors1 to 2.5 the following
just-identifiedunconditional moment problem:

D
E[mvl(zﬁo)] =0, )

*| (e )10 =0
G(t(X)'0)

Our proposed estimator choos&sT = 7p7s A{PT)’ to set the sample analogue of equatidss (
and (6) equal to zero:

(6)

1

N
w(Zi,7ipT) =0, (7)

Z 1 G(t (X| ) O1pT)

Di
——— —1)t(Xj)=0. 8
(G(t(Xi)’5|PT) ) ) ®

Several features of this estimator merit comment. First, as with the standard IPW estimator,
71pT IS the solution to an inverse probability weighted method-of-moments problem (compare
equation 7) with equation 8)). However, the fitted propensity score values used to construct

Mz

1
N -

H

6. To be explicit, assume th&[Y1|X] = h1(X)'zy and vecliE[Y1Y]|X]) = ho(X)'z>. Let h3(X) consist
of h1(X) and all non-redundant interactions between its elements and thoXe ahd X5, then settingt* (X) =
(ho(X)’, hg(X)")’ with any redundant entries removed is sufficient for Assumgidrio hold.
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the weights are not CMLEs. Insteadlpt is the solution to a method-of-moments problém.
Importantly, under Assumptio.1, a linear combination of the estimating equationsdfer
equals(% — 1)q, which Propositior8.1 suggests might be important for efficiericy.

Second, ifr (X) is not contained withit* (X), then we add moments to the propensity score
estimating equation, replacing(X) with t(X). These additional moments do not improve the
precision ofy\pT, but they do ensure that equatid®) €ontains a sufficient number of moment
restrictions to pin down the propensity score parameter. Third, in the opposite casd Wkore
is not contained withirr (X), we enrich the propensity score model, replaairi)’ds5 with
t(X)'dg in G(-). The effect of this replacement is to eliminate any overidentifying restrictions.
To see this note that

t(X)'do =1 (X)'55+1*(X)'no,

where, by Assumptio.5, 79 = 0. Nevertheless, including (X) in the propensity score model
ensures that the combined dimension of equatibyar{d (6) coincides with diyo) +dim (&) =

K 41+ M so thatfo = (74, dp) is just-identified. This approach to overidentification appears
to be noveP Theorem4.1below shows that it results in attractive higher-order properties.

An example helps to fix ideas. Let(Z,y) = Y1 —y as in Example.1with X scalar. We
assume that Assumptidh5 holds withr (X) = (1, X)’ so that the propensity score &g.logit
with an index linear inX. In choosing* (X) such that AssumptioB.1 holds, we are concerned
about possible non-linearities B[Y1|X = x], therefore we set*(X) = (1, X, X2)'. This gives
t(X) =t*(X) andr*(X) = X2. In this case, we fit a propensity score model with an index that
is quadratic inX despite the fact that Assumpti@i5 says that a linear one will suffice. We fit
this model not by CMLE but by choosingiet to solve equationg). Once we have fitted our
propensity score, we compufgT by choosing it to solve (7).

Now consider the case where the analyst believes that the propensity score might vary sharply
with X so that Assumptio.5 requiresr (X) = (1, X, X?)’ but thatE[Y1|X = x] is linear in X
so that Assumptior8.1 requires onlyt*(X) = (1, X)'. In this casef(X) = r(X) andr*(X)
is empty. Here the added moment serves only to tie down the propensity score parameter; it
does not increase the precision fT. There is no need to overfit the propensity score in
this case.

The main difference between IPW and IPT is that the latter approach (i) overfits the propen-
sity score if AssumptioB.1requires us to do so and (ii) we do not use CMLE to fit the propensity
score. In Appendix A, we show that the first step of our procedure requires solving a globally
concave programming problem with unrestricted domain. In theory, this is no harder than com-
puting the CMLE associated with a binary choice logit model, and in practice, we have found
this step to be straightforward. The second step of our procedure, as with the standard IPW one,
can be completed by any M-estimation program that is able to accept user-specified weights.

The next two theorems characterize the first-order asymptotic propertigsrofThe first
result shows that when Assumptiohd—2.5and Assumption3.1 hold, the asymptotic variance
of yipt equaIsI(yo)‘l. More precisely,;ypt is locally efficient foryg in the semiparametric
model defined by Assumptioizs1-2.5at DGPs which also satisfy Assumpti@nal.

7. ConsequentlyjpT is an inefficient estimate @) = (05,9

8. An earlier version of this paper derived equatiéjgs the solution to an optimal instrumental variable problem
based on the conditional moment formulation of the semiparametric missing data model stuGiedhg(2011). For
brevity, this derivation is omitted here.

9. Itis similar in spirit to the introduction of “tilting” parameters in the context of generalized empirical likelihood
(GEL) estimation of overidentified moment condition modelg(Imbens,1997). This observation is the source of IPT’s
name.
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Equation (1) is the information bound feg without imposing the additional auxiliary As-
sumption3.1. This assumption imposes restrictions on the joint distribution of the data not im-
plied by the baseline model. If these restrictions are added to the prior used to calculate the
efficiency bound, then it is generally possible to estimatenore precisely. We emphasize that
our estimator is not efficient with respect to this augmented model. Rather it attains the bound
defined by equationl| if Assumption3.1 happens to be trua the population being sampled
from butis not part of the prior restrictiorused to calculate the boundewey (1990, p. 114),
Robins, Rotnitzky and Zha(.994, pp. 852—-853), antsiatis(2006) discuss the concept of lo-
cal efficiency in detalil. In what follows, we will, for brevity, say thapr is locally efficient at
Assumption3.1.

Theorem 3.1(Local semiparametric efficiency ofy |p\y). Consider the semiparametric miss-
ing data model defined by Assumptich$—25, then forjp7 the solution to equation7, (i)

7T is regular and (i) locally efficient at AssumptiGil with /N (711 — 70) = A'(0,Z(y0)~1).
Proof. See Appendix A. ||

Theorem3.1 indicates that);pt has good efficiency properties. By choosing the estimat-
ing equation for the propensity score with the propertieEfaf(Z, yo)| X] in mind, efficiency
improvements over the standard IPW estimator are pos$ible.

Our next theorem shows that IPW has a double robustness properBa(ai.and Robins
2005;Tsiatis,2006;Wooldridge 2007). Restrictions (5) and (6) were derived under the baseline
missing data model defined by Assumptich$—2.5. Consequentlyggardlessof whether As-
sumption3.1 also holds e will be consistent forg and asymptotically normaf This is the
first part of double robustness.

Now consider a DGP where Assumptichd—2.4and3.1, but not2.5, hold. That is, a situ-
ation where the propensity score is misspecified but the implicit moment CEF model is not. In
this caseg L J«, Whered, is the pseudo-true value which solves equat®n This pseudo-true
value has an interesting property. Rearranging equaipme get

D
E [mt(X)} = E[t (X)]. 9)

The inverse probability weighted meant@X) in the D = 1 subpopulatiorcoincides with its
full population meanE[t (X)]. This property holdgegardlessof whether the true propensity
score is of the fornG (t (X)'d) for somed = dy.

In the sample, rearranging equati@),(we get

Di

1 —_—, (20)
N G(t(Xi) dipT)

N 1 N
iZ;/ﬂPT,it(Xi) = ﬁ;t(xi)’ TIPT, =

10. We comment that the standard IPW estimator is also locally efficient. However, this occurs not at DGPs which
satisfy Assumptior8.1, but rather at ones whely (Z, yg)|X] is linear inr (X) - G(r(X)/é(’;). We find this condition
a bit awkward from a modelling standpoint, however it does help to explain why IPW is often nearly efficient in Monte
Carlo experiments where the outcome equation is a direct function of the propensity scoBugsa. DiNardo and
McCrary, 2009). If the data are missing completely at random (MCAR) such pé&t) = Pr(D = 1) = Qg for all
x € X, then IPW and IPT will be locally efficient at the same DGPs as lorg &3 = t* (X).

11. Its asymptotic variance, however, will lie abaZéyg)~1, in the matrix sense, unless Assumptidr also
holds.
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so that the inverse probability weighted meart 0X) in the D = 1 complete cassubsample
coincides with its full-sample mean. By choosing the propensity score parameter to solve equa-
tion (8), we ensure that the estimated inverse probability weights satiséxaet balancing
property. For example, if(X;) = (1, X, X?)’ with X scalar, then, after reweighting the com-
plete case sample withpT,i, the mean and variance of will coincide with their full-sample
couqtzerparts. Since the first elementt@k;) is a constant, th&pt; weights will also sum
to 1.

Let F(x, y1) be the joint distribution o, Yi, then

N

FieT(6, y1) = > 2ipTi1(Xi < X)1(Y1i < ), (11)
i=1

is the estimate for the joint distribution of and Yy implied by the IPT estimator (cBack
and Brown,1993;Imbens,1997). By equationl0), this distribution function satisfies the exact
balancing condition

/ t00dBPT(X, Y1) = / t0d Py (), (12)

whereFy (x) is the full-sample empirical distribution function &f. SinceFy (x) is an efficient
estimate of the distribution oK, it is reassuring thatf|pT(x,y1) satisfies equationl@). We
discuss the properties &fpr(X, y1) further in Sectiord.

The exact balancing property &fp7(x, y1) implies thatj;pr may be consistent foro, even
if the maintained propensity score model is incorrect. lgt= (IT3, 0), under Assumptiol.1
we havellgE[t (X)] = E[II5t*(X)] = E[w(Z, yo)]. Using this equality, AssumptioR.3, and
exact balancing (9), we get

Dy(Z.p) ] [ PoX)w(Z.y)
[G(t(xw*)} =E T ea0a,) }_E["’(Z’”)]
_ | Py (Z, )]
_E G(t(X)’(S*):| ToEft (X)]
_ Po(X) B Po(X)
=BG V& ”} HOE[G(t(X)'(L)t(X)}
e[ PN g,z X1—Ely(z >|XJ}}=0 (13)
[Gaoyay T v |

Therefore,y = yg is a solution to the inverse probability weighted population moment even if
there is nodp such thatG(t(x)'dp) = po(x) for all x € X. This is the second part of double
robustness.

If w(Z,y) is lineariny, as in Example®.1 and2.2 above, thery = yo uniquely solves
equation (13). In the general non-linear case, ensuring uniqueness of the solution to ed@ation (
may require the imposition of additional conditions, depending on the fon(&f y ). As such
conditions are model specific, we do not formulate them here, but note that doing so is facilitated
by the fact that AssumptioB.4 and part (iv) of Assumptio.5 ensure thaipg(x)/G(t (X)'d)

12. Equation (10) highlights that the existencedpfr requires thaEiN:lt(Xi )/N lie within the convex hull of
the complete case subsample (a condition that is easy to check). Under Asswu2ntibis will be true in large enough
samples but may not be in small samples, particularly when overlap is poor.
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is bounded below by some positive constéhBroceeding under the assumption that yo
uniquely solves equatiori8), we get our second result.

Theorem 3.2(Double robustness of |p\y). Suppose AssumptioBd—24, either Assumption

25o0r 3.1, andy = yo uniquely solve equation (13), thaAN (JipT — y0) & N (0, ¥p), where
the form of¥o depends on whether Assumptib or 3.1 holds (see Appendix A).

Proof. See Appendix A. ||

Our formulation of the IPT estimator was undertaken with efficiency considerations at the
forefront. This led to an approach where the propensity score was parameterized with two con-
cerns in mind. First, the parametric propensity score family needs to be rich enough to con-
tain the true score. Second, it needs to be rich enough to balance those functinghath
enter the CEF ofy(Z, yo). Theorem3.2 shows that the dividend to this approach extends be-
yond local efficiency. Even if the propensity score is misspecified, IPT will remain consistent
if E[w(Z,y0)|X] is linear int(X). More heuristically, Theorer3.2 suggests that IPT will per-
form well for moderately rich forms df(X) wheneitherthe propensity score or the conditional
expectation ofy (Z, yo) is smooth inX. Researchers should chod$&) to be rich enough so
that it accurately approximates whichever function, eifligx) or go(X) = E[w (Z, yo)| X = X],
is believed to be the least smooth. The double robustness properties of IPT are illustrated via a
series of Monte Carlo experiments, summarized in the Supplemental Web Appendix.

4. OTHER ALTERNATIVES TO IPW AND HIGHER-ORDER COMPARISONS

Theorems3.1 and 3.2 provide one argument for routine use of IPT: it is (i) more robust than
either standard IPW or parametric imputation and (ii) locally efficient at AssumBtibrCom-
putationally, it is no harder than standard IPW (see Appendix A). Finally, the exact balancing
property is likely to be attractive to applied researchers. It is consistent with the intuition that
reweighting makes the complete case subsample more like the full sample. Tables that assess
balance after IPW are commonly featured in applied werk.Hirano and Imbens2001; see

also Table 14 in the Supplemental Web Appendix).

While the argument privileging IPT over IPW appears to be straightforward, other alterna-
tives to IPW exist. One such alternative is the class of AIPW estimators introdudedtigs,
Rotnitzky and Zha@1994). Like IPT, AIPW is locally efficient at Assumptid@nl. Itis also dou-
bly robust. In this section we present two theoretical arguments for privileging our IPT method
over AIPW ones. First, we show that the implicit estimate of the joint distributiod ahd Y,
associated with IPT is attractive relative to the ones associated with AIPW. Second, we compare
the higher-order bias of the two types of estimators.

4.1. A class of iterated AIPW estimators

Several versions of AIPW are now available (See 2010, for a recent survey). Here we
describe a general set-up which captures many of themowl@) = w (X, o) andv; () =
v(Di, X, d) be known, scalar-valued, non-negative weight functions. We requirebat X, 5)
is such thatE[v(D;, X, d)|X] = 1. Our family of AIPW estimators will be indexed by these

13. Wooldridge(2001, pp. 458-459) develops conditions for consistency of unweighted M-estimators when the
underlying sample is a stratified random one. His argument could be adapted to the current setting for cases where
E[w(Z,y0)] = 0 corresponds to the first-order condition of a population optimization problem.
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TABLE 1
Weight functions for different AIPW estimagor

AIPW estimator wj () vi () Locally efficient? Doubly robst?
Robins, Rotnitzky and Zha(994) Gj (6) G?(ia) Yes Yes
Newey(1994) 1 1 Yes No

LAt idi 1-Gi (¥ D;
Cao, Tsiatis and Davidia§2009) GO [A0) Yes Yes
Hirano and Imbeng2001)/Wooldridgg2007) 1 G?(i 5 Yes Yes

two weight functions. Letj(, ) be an AIPW estimate in the family, which is defined as the
solution to

N

1 Di ~ Q(D,(u)(xi 5 }?(v,w)) 3 ]
- ——v(Zi,Ypw) —————— (D =Gi (0 =0, 14
Né[ei(m)"’( P ,0) s (Om)) (14)

with dyL the CMLE of the propensity score parameter and

N -1

Vi i tj ti/:| t(x),

1D 1
Q. (X57) = [Nzé—'&). yi(y )ti/:| X {N,
i=1 ! i=1
with Gi = Gi (dwL), Di = vi (dmL), andéi = wi (dwL ). Note thatj, ) (x; 7 ) is the fitted value
associated with a weighted least squares fit;@f ) ontot;.

Settingy; (6) = Dj /Gj (6) andw; (6) = G; (J), we get the original AIPW estimator &obins,
Rotnitzky and Zha@§1994);v; (6) = 1 andw; (5) = 1 yieldNewey’s(1994, Section 5.3) estimator,
while v; (6) = Dj/Gj (d) andw; (0) = (1 — G (9))/Gj (d) give the estimator suggested Bygo,
Tsiatis and Davidia2009) (see Tabl&).14

Hirano and Imben§2001) and/Nooldridge(2007) propose a doubly robust estimator for the
ATE under exogenous treatment assignmiént.turns out that setting; (6) = Dj/G; () and
wj (0) = 1 gives their estimator. In the general moment model case, their approach cfigoses
to solve

N
1 . N
NZqHIW(Xi;VHIW) =0, (15)
i=1
whereguiw (X; y) is the weighted least squares fit

1Y p 1 & 1
qu(x;y):[Nzgmwt{}x{ﬁzgtit{] t(x). (16)

i=1 "1 i=1 "I

The following Proposition shows that equation (15) is also a member of our class of AIPW

estimators.

14. Many of the estimators listed in Tallevere originally proposed in the context of a specific formydiZ, y ).
We adapt to the general case as necesbkawey(1994) derives the large sample properties of his estimator where the
dimension ot (X) grows withN. Here we consider his estimator with the dimension(&f) held fixed.

15. Wooldridge's(2007) estimator is actually slightly more general than the one described heredpjydk; y )
need not correspond to a least squares fit.
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Proposition 4.1. The solution to equatiorilg) is numerically identical tg, ., with vi (J) =
Di/Gi () andw; (6) = 1.

Proof. Since the first element @f is a constant, we have, by the first-order condition asso-
ciated with (16),

1D .
NZE{W(Zi,V)—CIHIW(X;V)}=O- 17)
i=1
Adding the left-hand side of equatioh®) to equation15) and rearranging give the result.||

4.2. Implicit distribution function estimates

A useful way to understand the properties of first-order equivalent estimators is in terms of
their implicit distribution function estimates. After some simple algebra, we can show that the
solution to (14) coincides with that to

N
> A ¥ (Zis f.0) =0,
i=1
where 1D
R i
T(o,0),i =g & (0.0 (18)
N G;

with 1
N N -
o 1 Di 1 A N
()i = 11— |:N Z (é_l _ 1) ti/:| X |:N Zvi wit ti’:| X it ¢, (19)
i=1

i=1 2
fori =1,...,N. This implies that the estimate of the joint distribution associated #ith, is

N

Flo.o) (X, Y1) = Zﬁ'(n,w),i 1(X; <x)1(Y1 < y1) (20)
i—1

(seeBack and Brown1993, Proposition 1).
This distribution function has several interesting properties. First,# D;/G; (), which
is true for all the estimators listed in TakleexceptNewey’s(1994), then

/ LR (0 (X, Y1) = / £ d P (0).

The re-weighted meat(X) in the complete casel = 1) subsample coincides with its un-
weighted full-sample mean. Since the unweighted full-sample mea(Xofis an efficient es-
timate of its population analogue, then so is the re-weighted complete case sample mean. In
this sense, th@(v,w) (x, y1) inherits some of the efficiency propertiesgf (x). Since the first
element ot (X;) is 1, the AIPW distribution function estimate also integrates (belfdlf(,),w)
(X, y1) =1).

As nott)ad in the previous section, the IPT distribution function estimbi¢ &lso exactly
balances the mean ¢fX;) and integrates to 1. However, it differs froﬁ@u,w)(x, y1) in that
it is guaranteed to be non-decreasing, wheﬂ%@so) (X, y1) may be decreasing ir and/ory;
over some ranges. Put differently, some of g, i weights may be negative, while thgor
weights are positive by construction.
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To gain further insight into this problem, consider the distribution function estimator
associated with standard IPW (elgibens,2004):

N
N . . 1 b
Fiew(X, y1) = D zpw,i 1(Xi <)1(Y5 < Y1), Zipw, = Né_l' (21)
i=1 i
Now consider a random sample where
1 /D N 1
| ~
W;(Gi —1)t(Xi)>0—> ;mpw,it(xipﬁ;t(xi). (22)

In this case, the IPW estimate of the meart Of;) exceeds its unweighted full-sample coun-
terpart. The fact that the latter mean is efficient implies that the former is not. The AIPW
distribution function estimator corrects this inefficiency by adjusting the IPW weights as
follows:

T(v,0),i = TIPW,i X {(0,0),i

with é:(v’w)J as defined in equatiorl®). Under equation2@), large realizations df(X) are

“too frequent” in the complete case subsample (even after re-weighting by the inverse of the
estimated propensity score). In such a situatfqmw),i will be less than one fob = 1 units

with large values of (X) and greater than one for units with small values. In extreme cases,
the resultingz(,,«,),i may be negative or exceed one. Conditiaf)(is especially likely to occur
when the propensity score model is misspecified. In that €&seprresponds to a quasi-MLE
propensity score estimate, and henéezi'\‘zl(Di/éi — Dt(Xj) may differ from zero even in

large samples.

In practice, the IPW and AIPW distribution functions can generate non-sensical estimates.
Letw(Z,y) =Y1—y. Neitherjipw nory, ) is guaranteed to lie within the convex hull of the
data. IfY; € {0,1}, e.g.this means it is possible fgiipw andy(, ., to exceed one. In contrast,
71pT Will lie in the convex hull of the data by construction. In our view, an estimator that sets a
weighted mean ofs(Z, y) equal to zero, where these weights need not lie on the unit interval,
is a priori unattractive (cfRobinset al., 2007;Tan, 2010).

4.3. Higher-order bias

Another way IPT and AIPW can be compared is in terms of their higher-order bias. In this
section, we present higher-order bias expressions for both IPT and AIPW when Assumptions
2.1-2.5and3.1 hold. Bias comparisons are interesting in this case because IPT and AIPW are
first-order equivalent. Theorem1, which is based on an application of Lemma A.Nefvey

and Smith(2004), gives the result.

Theorem 4.1(Higher-order bias). Suppose Assumptio@sl—2.5, AssumptioB.1, and addi-
tional regularity conditions hold, then as N> oo

. Co  Cv(v,m) -
Fww =70+ o+ +O(N?), (23)

R C _
YIPT:VO+WO+O(N %), (24)
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where

1K
—_ -1
= ZkE |:8y8 } Z(y0) &

[ oy

r-E
+ 5y

1 1
F‘lp{ q}}+NF‘1E[ay, ‘lq],

Cv(v,0)=—-T"1E %E(X)A_ll'ISS;}

(D 1
+IE [B (Za)— I_D) —a)v] qq/A_ll'ISS;]

+I7E [ (9 —u) (E —1)qt/F—1t]
[ \p p o]

with & denotmg a Kx 1 vector with al in the kth row and zeros elsewhere=pG (t (X)'dp),
and = E[ =Ptt].

Proof. See Appendix A and the Supplemental Web AppendiX.

To understand Theorer 1, it is helpful to consider the asymptotic properties of an infea-
sible “oracle” estimator. This estimator chooges$o set the optimali(e. asymptotic variance
minimizing) linear combination of the sample mean of

o5 ¥/ (Z, 70) }
(o3 — Dao(X)

equal to zero. This estimator is infeasible becauspg(iX) andgg(X) are unknown and (i) the
optimal linear combination is also unknown. An implication@faham(2011, Theoren3.1) is
that the efficient Generalized Method of Moments (GMM) estimator based on equation (25) is
also semiparametrically efficient for the missing data problem defined by Assumpticrs5.

A direct application of Theorem 4.1 dfewey and Smith(2004) to equation25) gives
an asymptotic bias for this estimator Gb. This bias coincides with that gfipT, despite the
fact that the oracle estimator is based on the true propensity sus®), conditional mean
moment vectorgo(X), and optimal GMM weight matrix. In contrast, the bias expression for
the AIPW estimate)(, ) contains additional terms. The additional terms arise from AIPW’s
separation of the tasks of propensity score estimation and imposition of the optimal set of bal-
ancing restrictions implied by Assumptid@l. The first task generates no gains in terms of
asymptotic precision, while at the same time introducing sampling error into the vector of es-
timating equations fof(, ). The second task results in an overidentified system of moment
equations. The finite sample propertieggf,) may degrade as a result. It is straightforward to
construct stylized examples where the biaggf,) increases withivl, the dimension ot (X),
while that of yjpt does not. This will be especially true if the distributiont@) is skewed
and/or that ofy (Z, yo) is heteroscedastic (see the Supplemental Web Appendix for Monte Carlo
examples).

The contrast between the higher-order biaget andy(, ) in some ways parallels that
between empirical likelihood (EL) and two-step GMM for general moment condition models
(Newey and Smith2004). The EL estimator transforms an overidentified moment condition

w'(Z,y0) = { (25)
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problem into a just-identified one by introducing a vector of tilting parametersrtdiens,
1997). Our approach to overidentification, in contrast, involves overparameterizing the propen-
sity score. The idea of overfitting a nuisance function to eliminate overidentification appears to
be novel.

An alternative to IPT would be to apply GEL directly to the set of moment conditions
underlying the AIPW estimator (cRin, Zhang and Leung2009). LetL, = dim(r (X)) and
Li= =dim(t*(X)). Such an approach would apply GEL to ket L« + L, system of moments

D
Gr (X)) w(Z,y0)

; (s~ D0 _o

D—G(r (X)'d3) *
(G(r XY oI-G{ (()xyag)] )G(r (X)'5)r (X)

Computation ofjggL would involve solving a saddle point problem witlike+ L) + L+ pa-
rameters (Newey and SmitBp04, Section 3). In contrast, computifigr requires solving a

1+ M < L=+ L, dimensional globally concave problem and a just-identified moment condi-
tion problem withK parameters. Our approach involves a smaller parameter and sidesteps the
need to solve a saddle point problem.

5. BASIC SKILLS AND THE BLACK-WHITE WAGE GAP

In an important pair of paperkleal and Johnsof1996) andlohnson and Ne#1998) document

that Black—White skill differences preseptior to labour market entryi.e. by age 18) can
account for a substantial portion of the corresponding gap in adult hourly earnings. In particular,
they find that three-fifths of the raw 28% Black—White gap in average hourly earnings can be
predicted by differences in AFQT scores, a measure of basic skills used by the military.

Here we repeat the analysis &fhnson and NeglL998) after replacing AFQT scores with
measures of cognitive skills acquirpdor to adolescence. The idea is to measure how much of
Black—White differences in hourly earnings can be accounted for by differences in skills across
the two groups already manifest prior to adolescence. If a substantial portion of the wage gap
can be so accounted for, then educational interventions which aim to ameliorate racial inequality
might be more appropriately targeted towards younger chiltften.

We reconstruct the National Longitudinal Survey of Youth 1979 (NLSY79) extract analysed
by Johnson and Nel998). This sample is a stratified random sample of young men from the
U.S. born between 1962 and 1964. Measurements of average hourly wages over the 1990-1993
period, race, as well as AFQT scores are available for each individual. The NLSY79 also col-
lected data from respondents’ school records. In some cases, these records included (nationally
normed) percentile scores on IQ tests taken at various ages. We use those scores corresponding
to tests taken between the ages of 7 and 12 as measures of cognitive skills acquired prior to ado-
lescence. Unfortunately, these scores are missing for almost 90% of individuals. An unweighted
analysis based on those individuals with complete information would be problematic for two
reasons: (i) there are few complete cases making precise inference difficult and (ii) the complete
cases are not representative of the full sample in terms of always-observed characteristics. Our
IPT estimator is designed to address both of these problems.

16. Interpreting any predictive relationship between early childhood test scores and subsequent labour market
earnings causally involves a number of subtleties. As our purposes are primarily illustrative, we do not dwell on this
issue here. Seldeal and Johnsof1996) for a discussion of some of the issues involved.
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TABLE 2
Replication of Table 14-1 dfohnson and Nedl1998) and unweighted complete case analysis with preadolescent
test scoe
D ) ©) 4
OoLS OoLS CC-OLS CC-OLS
Y EAROFBIRTH —0-0458 —0-0466 —0-0947 —0-0940
(0-0151y* (0-0147y* (0-0464) (0-0470y
BLACK —0-2776 —0-1079 —0-2708 —0-1606
(0-0261)* (0-0284y"* (0-0833)"* (0-0900)"
AFQT — 0-1645 — —
(0-0146)*
EARLYTEST — — — 01011
(0-0540y+
R? 0-062 0-183 0-068 0-11
N 1371 1371 144 144

Notes:Estimation samples are as described in the main text. The 1979 baseline sampling weights are used in place of
the empirical measure when computing all estimat&s?,“ *” and “+” denote that a point estimate is significantly
different from zero at the 1%, 5%, and 10% levels. Standard errors (in parentheses) allow for arbitrary patterns of
heteroscedasticity and dependence across units residing in the same household at baseline.

Columns 1 and 2 of Tabl2 replicate Columns 1 and 2 of Table 14-1Johnson and Neal
(1998, p. 483) (with the exception that we exclude Hispanics from our analys@)e first
column reports the least squares fit @@&WAGE onto a constant, ¥FAROFBIRTH, and BLACK.

The estimated wage gap between Blacks and Whites of the same age is 28%. Column 2 adds
AQFT to the set of explanatory variables. The wage gap between Blacks and Whites of the
same age with the same pre-market AFQT score is only 11%. Seventeen percentage points of
the unconditional Black—White hourly wage gap can be accounted for by average differences in
pre-market AFQT scores across the two groups. That a substantial portion of racial differences
in hourly wages can be accounted for by differences in skills acquired prior to entry into the
labour market is the central resultid€al and Johnsof1996).

Columns 3 and 4 of Tabl2replicate Columns 1 and 2 after replacing AFQT with our pread-
olescence test score AELY TEST). This is an unweighted analysis based on the 144 complete
cases. Conditioning on age alone, racial wage gaps in the complete case subsample are very
similar to those computed using the full sample (Column 3). The wage gap conditional on the
preadolescent test score is substantially lower (Column 4). Unfortunately, these wage gap esti-
mates are very imprecise; their standard errors are almost four times those of their Columns 1
and 2 counterparts. A second problem with this analysis is that those individuals with early test
scores differ systematically from those without them (See Table 11 in the Supplemental Web
Appendix).

To address bias due to non-randomness in the missingness process as well as to improve
precision, we re-estimated the TatdeColumn 4 model using our IPT procedure. To appro-
priately use IPT, we require thataBLY TEST is MAR (Assumption2.3). That is, conditional
on YEAROFBIRTH, BLACK, LOGWAGE, and AFQT, we require that the probability of observ-
ing EARLY TEST is independent of its value. Given the severity of missingness in our data set,
this assumption is potentially problematic. We nevertheless maintain it in order to illustrate the
practical application of IPT.

17. See also Columns 1 and 3 of Table Nieal and Johnsof1996, p. 875).
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The joint support of ¥AROFBIRTH and BLACK contains 3x 2 = 6 points. We included
in t(X) five non-redundant dummy variables foEXROFBIRTH-by-BLACK cell (Whites born
in 1962 are the excluded group). This resulted in full distributional balance for the discretely
valued components of. We also balanced the means, variances, and covariance of AFQT and
LoGWAGE conditional on race alone, and age alone, but not their interatfi@hat is,t (X)
also included AFQT, bGWAGE, AFQT?, LoGWAGE?, and AFQTxLOGWAGE as well as
the interactions of these variables with & Kk and the 2 years of birth dummies (1962 being the
excluded cohort). This led to a specificationt 0K) with 26 elements.

Our choice oft (X) was informed by two considerations. First, we wanté€x) to be rich
enough to allow for complex forms of selection into missingness (see Assun#fipas well
as for the conditional mean and variance ofREY TEST (see AssumptioB.1and Example.2).
Second, we wanted to re-weight the 144 complete cases such that an analyst with access to these
data alone woulthumerically exactly reprodudie results oflohnson and Ne#l998) (i.e.the
point estimates in Columns 1 and 2 of TaB)e®

Column 2 of Table3 reports IPT estimates of the best linear predictor ofsMVAGE given,

Y EAROFBIRTH, BLACK, and EARLY TEST. For comparison, the unweighted complete case es-
timates are reproduced in Column 1 of the table, while the standard inverse probability weighted
(IPW) estimates are given in Column 3. Relative to the unweighted complete case one, the
IPT estimate of the Black—White wage gap, conditional on skills acquired prior to adolescence
(EARLY TEST), is larger in absolute value with a standard error almost two-thirds smaller. Recall
that the wage gap conditional on age alone was 28% (TalI®lumn 1). Conditioning on skills
acquired prior to adolescence, this gap falls to 18%. This is larger than the 11% gap present after
conditioning on the later AFQT score but substantially smaller than the unconditional gap. Put
differently, roughly 40% of the raw Black—White wage gap can be accounted for by differences
in average skill levels across the two groups manifest prior to adolescence. This represents about
two-thirds of the pre-market effect found bieal and Johnsof1996).

Column 3 of Table3 reports IPW estimates of the same model. The IPW estimate of the
Black—White wage gap is imprecisely determined with a standard error over twice as large as
the IPT one. This provides a concrete example of the efficiency gains IPT can provide relative
to IPW (see PropositioB.1 and TheorenB.1). Columns 4 through 7 report estimates based
on the four implementations of AIPW described in SectlorThe AIPW point estimates, with
the exception oNewey’'s(1994), are very similar to their IPT counterpart, albeit with standard
errors about 10% largéf.

6. SUMMARY AND EXTENSIONS

The IPT procedure proposed in this paper is a promising alternative to standard IPW- and AIPW-
based approaches to missing data. We end by outlining some possible extensions to IPT that
might merit further research.

18. Given the near-normal distribution of AFQT and&WAGE in our sample focusing on the first two moments
of these variables seemed appropriate.

19. Our choice of (X) ensures that all those moments used to compute the full-sample least square®fit of L
WAGE onto a constant, ¥FAROFBIRTH, BLACK, and AFQT are exactly balanced. Consequently, the corresponding
IPT-weighted least squares fit based on the 144 complete cases alone will be numerically identical to the unweighted
full-sample fit.

20. In this particular example, the implicit AIPW distribution function estimates are reasonably similar to the IPT
one; AIPW does not give inordinate weight to any particular respondent and negative weight is attached to only a handful
of units. The exception islewey’s(1994) variant of AIPW. Theorem.1 suggests that this variant of AIPW is more
biased than the others, consistent with our empirical results.
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6.1. Program evaluation and related problems

Thus far we have focused on problems whérs completely observed ID = 1. Now consider
the case wher& = (X', Y}, Y;)" with D, X, andY = (1— D)Yo+ DY1 observed. That is we
observeYp if D =0 andY; if D = 1. Let the moment function take the separable form

v (z,7) = w1y, X, 7) — wo(Yo, X, 7).
Many problems fall into this basic set-up.

Example 6.1(Average treatment effects (ATEs). Let D=1and D=0, respectively, denote
assignment to an active and control program or intervention apdnf Y the corresponding
potential outcomes. The ATE is

yo=E[Y1—Y0],

which corresponds to setting (Y1, X, y) = Y1 and yo(Yo, X, y) = Yo+ y . Since each unit can
only be exposed to one intervention, eitherY Yg is missing for all unitsGraham, Pinto and
Egel(2011) discuss the application of IPT to this problem in detail and outline an implementa-
tion in STATA.

Example 6.2 (Two-sample instrumental variables (TSIV) estimation with compatible
samples). Assume thatlim(X) > dim(Yp) and consider the following instrumental variables
model

Y1=Yo+U, E[UX]=

This suggests a moment function with(Y1, X, y) = XY and wo(Yo, X, y) = XYyy. Two in-
dependent random samples of sizedwd Ny from the same population are available. In the
first sample, N values of Y and X are recorded, while in the second alues of ¥ and X are
recorded. For asymptotic analysis, we assume kg, ny— oo N1/(N1+ Ng) = Qo > 0. This

is the TSIV model analysed Bygrist and Kruege(1992).Ridder and Moffit{2007) provide a
technical and historical overview. This model is equivalent to a special case of the semiparamet-
ric missing data model, an observation that is apparently new. Assume that N units are randomly
drawn from some target population. With probability,@he it unit's values for Y and X are
recorded, while with probabilit — Qg its values of ¥ and X are recorded. The indicator vari-

able D denotes which set of variables are measured. The only difference between this sampling
scheme and that gfngrist and Kruegef1992) is that in the latter Nand N, are fixed by the
researcher, while in the missing data formulation they are random variables. An adaptation of
the argument given biynbens and Lancast€1996, Sections 2.1-2.2) shows that this difference
does not affect inference.

To apply IPT to these problems, we find nﬁng, 3|1PT, andy\pt which solve

1 i[ Di w1(Yai, Xi, yie7)  (A-— D')WO(YOi,Xi,JﬂPT)] _0
G(t(Xi) o) 1—G(t(Xi)6%) ’

1Q 1-D
= —1)t(xi)=0
Nz(l G(L(Xi) %t )t( )

1 N
= t(Xi)=0
N E(G(t(x)élm) )
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Note that this involves computing two propensity score parameter estimates. One which bal-
ances the mean df(X) in the D = 1 subsample with its full-sample meaﬁlp(r) and one
which balances the mean 0fX) in the D = 0 subsample with its full-sample meaﬁﬁ:(r)
Each of these propensity score estimates may be computed using the algorithm described in
Appendix A. The second step of estimation involves solving a just-identified moment condition
problem.

It is straightforward to extend the arguments given above to show that the above estimator is
locally efficient and doubly robust. As before€X) should be rich enough to adequately model
the propensity score. Local efficiency requires Bpto(Yo, X, )| X] andE[w1(Y1, X, )| X]
be linear int (X) (this is also the condition for double robustness). As in the examples outlined
above, the form of (X) is often suggested by the structure of the problem. Consider efficient
estimation of the ATE by IPT. This requires choostrii) such that the true propensity score is
contained in the parametric fami(t (X)) and the true potential outcome CEFs are linear in
t(X). Consistency requires only one of these two restrictions to be true.

6.2. E[y(Z, y0)|X] non-linear

If there is not (X) such thatE[y (Z, yo)| X] is linear int(X), then neither our local efficiency

nor double robustness result can exactly hold (although our procedure, like IPW, will still be
consistent if the propensity score is correctly specified). Although, in pradfee,Z, yo)|X]

may be well approximated by a function lineat (iX), it is of interest to allowE[w (Z, y0)| X] tO

be intrinsically non-linear. As a concrete example, assume that we seek to estimate the marginal
mean of the binary-value¥;. We posit the working model Pr{ = 1|X) = F(X’#) and choose

7 to maximize the log-likelihood

N

> Di{Yai logF (X{7) + (1 Y1) log(L— F (X n))}.
i=1

Note that we use only the complete cases 1 units) for this computation.

Observe that it (X) includedF (X’50) as an element, then Assumpti8rl would hold by
construction. We approximate this ideal by including the estirkd®€'7) as an element df( X)
(along with the elements af(X) and possibly other known functions &f). Denotet (X), so
defined, byt (X; #mL). Using this vector of balancing functions, we estimate the propensity
score parameter by solving

— —1)t(Xi; 7 =0
Z(G('[(Xu,'7ML)’5|PT) ) (%3 )

The IPT estimate ofg is solved for as before. The main difference between the IPT procedure
introduced in Sectio® and the one sketched above is the inclusion of a generated regressor in
the propensity score model. It is possible that sampling errgssn could affect the asymp-

totic properties ofyjpt. We conjecture that, appropriately restated, Theorérhand3.2would
remain valid but that our higher-order bias calculations would be affected.

6.3. Data dependent choice ofX) whenE[y (Z, yo)| X] is hon-parametric

Assume that the propensity score is known but that prior knowledge on the form of
Elw(Z,y0)|X] is unavailable ite. it is non-parametric). If the first element df(X) is
G~ 1(po(X)), thenjpt will be consistent. The choice of what other functionsXofo include
in t(X) has implications for efficiency alone (and perhaps finite-sample bias). In this special
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case, the problem of choosingX) is closely related to that of moment selection in conditional
moment problemsg(g.Donald, Imbens and Newg2008).Hirano, Imbens and Ridd¢R003)

also suggest incorporating a known propensity score in a similar fashion but do not make the
connection between overparameterization of the propensity score and moment selection. This
connection is made, by construction, explicit in the IPT setting. When the propensity score is
also non-parametric, choosingX) is no longer analogous to a pure moment selection prob-
lem sincet (X) also determines the quality with which the propensity score is approximated. It
would be interesting to explore automated, data-dependent procedures for choosing the compo-
nents and dimension ofX) in the above settings.

6.4. Estimation of overidentified moment condition models

If dim(w(Z,y)) > dim(y), the procedure outlined above is not directly applicable. One ap-
proach to overidentification would be to estimate the inverse probability tilt as described above.
In Step 2, the analyst could then apply two-step GMM (or GEL) using the IPT re-weighted
data. We conjecture that this procedure would be locally efficient and doubly robust. It would be
interesting to construct a one-step estimator for overidentified models.

APPENDIX A

This appendix outlines the proofs of the results given in the main text. Throughout the Appendix we assti@ that

t*(X) =r(X) so thatllp = I1g anddp = dy. This is done only to simplify the notation and is without loss of generality.

We also drop “0” subscripts, used to denote (true) population values, when doing so causes no confusion. A Supplemental
Web Appendix, available dittp://elsa.berkeley.edttbgraham/, contains additional proofs, Monte Carlo results, and
empirical application details.

Local efficiency and double robustnesggfr (Theorems.2and3.1)

Consistency and double robustness. When Assumption®.1-2.5hold, consistency follows from arguments
analogous to those afooldridge (2007) for IPW. If Assumption®.1-2.4and 3.1 hold, but not2.5 (we do assume
that theG(-) function satisfies the stated regularity conditions; in particular &@tx)’s) > 0 for all x € X andd
D), we haved L dx, Whered, is the pseudo-true value which solVBR D/G(t(X)'6x) — 1)t(X)] = 0. This gives
E[po(X)t(X)/G(t(X) d«)] = E[t (X)] so that under Assumptiors3and3.1, we have equatiori8) of the main text.
Thereforey = yg is a solution to the IPW population momentyfZ, y) is linear iny , then this solution is also unique.
Otherwise uniqueness follows by hypothesis.

Asymptotic normality. Asymptotic normality ofy|pt follows from Theorem 6.1 oNewey and McFadden
(1994). Letg = (y',¢)’. TheK + 1+ M x 1 moment vector and derivative matrix equal

D . Dj ayi(y) D Gi() /
" _[| Go¥i @) ) _ | GO "oy’ EAONSIORA )
m, = ) , M = ) ! . A.l

| w) <(G||ID(|§) _ 1)t| | (ﬁ) O _ GDI Gll (5) tl tl/ ( )

i@ Gi(®
First consider the case where Assumptichd-2.5 hold. Let M = E[M; (Bp)] and Q = E[m; (Bo)m; (Bo)’],
thenv/N (7 — 70) 3 (0, W) for ¥o = {(MQ™IM) 1)1k 1.k (WhereAqk 1k is the upper left-hané x K block
of A). The covariance aih; = m; (8p) equals
l//l///
Q:(IE[ <1 Eo)’ (A.2)

E(/) Fo
with 1-G 1-G
Eg=E|——yt'|, Fp=E|—=tt'|. A3
0 [ c Vv ] 0 [ G ] (A3)
Then the population mean &; = M; (fg) equals
G
r —-E[&yt
M = [g vty (A.4)
0 -E[Ztt]
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Using equations (A.2) andi\(4), we get a limiting sampling variance fm‘ﬁ(ﬁ — fo) equal to

r—L(E[2L ) - EoF o tEN) TV 4+ T 1E[ SLtt'| AL FoAE[ S2tt] TV
M-lam-1/— (B[] o Eo) [Gt'] A [Ett'] A5)
—E[ &ttt Ro{EoFy t —E[ Syt JE[ St Y Y

T EoRy - B[ % ]| St ] Fos[ ]

VMm (9)

where 1 1
D _1 G B Gy -
A0:]E|:6(l/l— EoFy t)S:)j| , VMM((SO):]E|:EH/] FolE [Ett/:| . (A.6)

Now consider the case where Assumptiéh$—2.4and 3.1 hold, but not2.5. Let . = (yq,d,)’, with 6, the
pseudo-true propensity score parameter.Get= G(t(X)'d,), etc. Under this set of assumptions, we have

B[] B[P (Rg2e)vt]
= X) 1 1-G, X X ’
IEI[ po(* ) (l (*3 )th] IE[( pcc)a(i) _2 po(* ) +1)tt/]
and
X) o X) Gy,
B[ 20 22 B B0 Qe
M, = s
0 ~E[ 20 Steyy)

so that¥o = (ML Q7 M) Yo 1k
Local efficiency. If Assumption3.1also holds, we havE[y | X] = gt = q so thatEg FO_1 = Ilg and hence

1-G 1-G
-1 / /
EoFg EO:E[THOWHO] :E[qu}, (A.7)
which gives the equalit)d"_l(]E[“’T"’/] — EgFg *EQ)T Y = Z(y0)~%. In that case, we also havag = 0 since
E[w|D, X] = Eg Fo_lt. Under these conditions, equatioh.$) simplifies to

M~taM~Y = diag@(y0) L, Vmm (90)). (A.8)

Local efficiency at Assumptio.1 follows if we can show that IPT is regular under Assumpti@b-2.5. The
score function for a parametric submodel of the semiparametric missing data moelg. hen, Hong and Tarozzi
2008)

Sy (Y, X, d; i) = ds(y1lX; )
d—G(t(x)s)

, 25 .
+ ST = GGy SLL D0 % (%) +1y06 7).

Under Assumptior2.1, we have, differentiating under the integral and using iterated expectations,

olog f (Y1, X;
g [W(Z, yO)W]

= T YE[y (Z, y0)s, (Y11X; 70)] + E[A(X; 7)1y OX; 70)]).

0y (o) _
on

Under Assumption&.1-2.5, standard calculations yield an asymptotically linear representatjoadgfal to

N
s 1 1| Biy(Zi,yo) _ -1 Di _ _ —12
Py 2T | oarsg ~MizMa (g =) (00| +onN ),
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where—I"~1 times the term ir{-} is the influence function anhfl;, and M, denote the upper right-haril x 1+ M
and lower right-hand + M x 1+ M blocks ofM as given in equationX.4) above. Let) denote this influence function;
by Theorem 2.2 oNewey(1990), regularity of; follows if

200) _ g8, (Y, Xino)] =~ YELy (Z. 70)8, (Y21X: 10)] + ELGOK: 70015 (X: 1)1,

We have, using the conditional mean zero property of scores, the MAR assumption, and the fagthat G(t (X)'dg)
Diw(Z,79) -1 Di _ .
Bl (Y. Xing)] = —r—1& | {60030 ~M12Mz2 (g — 11 0%)
x {8y (Y] X; 70) + 1 (X; 70)}

— _r-1g[ BivZ.0 . . }

— e | QT 5, V1 10) + 14X 1)

= —T [y (Z,70){s;(Y1IX; 10) + 1 (X; 10)}]

= —T"HE[y(Z, 70)3, (Y11X; 10)] + E[A(X; 70)1 1 (X; 70)]},

as required.

Consistent variance—covariance matrix estimation

If Assumptions2.1-2.4and eithe2.50r 3.10r both hold (as well as additional regularity conditions), then the asymptotic
variance ofj may be consistently estimated by

b= (MO Y1k 1k (A.9)

with M = Z| -1 |(ﬁ)/NandQ Z| 1M )ml(ﬂ)/N

Derivation of the higher-order bias of IPT (Theorem4.1). Here we outline the derivation of tf@(N 1) bias
expressions fof|pT (i.e. equation (24) in the main text). The derivation of the corresponding bias expression for the
class of AIPW estimators discussed in the main text can be found in the supplé&feemrty and Smitl{2004, Lemma
A.4, pp. 241-242) provide a general formula for tDeN‘l) bias of M-estimators. As IPT and AIPW have M-estimator
representations, we use their general result in our calculations. We maintain Assuaptlmoughout in what follows
(in addition to Assumption2.1-2.5).

Letd be the solution to th& = dim(¢) equations

N
b(@) = b (@) =0. (A.10)
i=1

Under regularity conditions (see belowyewey and Smiti{2004, Lemma A.4) show that the asymptotic biag)d§
given by

. -p1 1 | <
Bias(0) = — E[Ai¢i]+§IE > ¢q.iBqdi | | (A.11)
q:l

whereeg is aT x 1 column vector with a one in thepth row and zeros elsewhere and

B=E[ab‘(9)], 4 =—B"0), A= (A12)

ab; (6) [ o%h©
T -B, Bq_JE[ }

a0’ 00400’

The IPT estimator of = (y’, ")’ is given by the solution to equation (A.10) with

o)
bi (0) — ) i
I ((Gb(a) =1

To apply equationA.11) to IPT, we require that the parameter spac isfcompact withfg in its interior, continuity of
bj (9) in 6 and continuous differentiability in a neighbourhoodgf and rankB) = dim(0). These conditions are implied
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by Assumption®.1and2.5. Additionally, we require a Lipschitz continuity condition on the third derivative; )
and the existence of certain higher-order moments. Specifically, we assume that (i) fat(@meéth E[d (Z)] < oo,

30 (0) 93 (6) _
00]00k00 0} 06kd0) = d(Z)1l6 — ol
and (i) [ by 00)1®], E[1 2202 |°], B[ 20 18] andE[ | 520 2400 7] are finite forj. k| = 1....K +1+ M

(seeNewey, 2002). These conditions will ho'd ®(-) and y/(z 7) are both three times continuously differentiable with
bounded derivatives and enough moments(f) exist (e.gif a component of (X) is a Cauchy random variable, then
(A.11) will not holdg.

Objects , B, andA; of equation A.12) above specialize to

D dyi D G
oy oSt -ardut] L [T-E@e]
o6’ 0o —2Suyy 0 —E[$tt]

’ 56/

Gi G
Dj o D G G
a_| B o T e e v HEG ]
- 0 Di Cug 4 E[St] |
—g o it +E[Gh]
Using the partitioned inverse formula, we have
r-1-r-1g[& Sie] ™t
— [yl gu™] 13
0 ]E[ Ltt']

Combining the above expressions then gives

1 oy 4 1-G oy r-1t Gl t ﬂ /_l
E[A ¢i] = |:]E|:6y’ Gl//i| E|:G oy E GV E Gtt t

1-G G, Gy, 1t 1-GGy,, [Gy. ]t
E| =22 yE| Z2t/| t|E| —=—=2ewE| Z2tt/| t]]. A.14
+ |:G 4 [G ] G G G (A14)
Let IT, d_efIE[ ]E[%tt/]_l; using equation4.14), we have the firsk rows of—B~1E[ A, ¢;] equal to
1
_1]E|: | g Ht}]—i—l"_lE[ _1H*t] (A.15)
oy’ G oy’
+r-ig| 1288, e[S _lt
G 6\~ G '

Assumption3.1givesq = IIgt so thatll. = I1g; therefore, applying the law of iterated expectations gives the last term
in the expression above identically equal to zero.
Now consider the second component of the bias expression (A.11). EvaIIE{xﬂnﬁ{] yields

-1
Elgi 4] = [I(yg) Vi ,?A ( 5)} : (A.16)

Forg=1,...,K, using the expression faw; (fg)/00’, we have

2y _Gyowy
Bq=E| arqdy’ G 91q (A.17)
0 0
for Bq as defined in equatior\(12) above. Fog = K +1,...,K +14+M (=T), we have instead
2
G1 oy (261 _ G ’
—2tq_ L - 22)tg_kyt
clo-k 57 (52 — F)lg-k v
Bq=FE o SGZ . (A.18)

0 (G~ @ta—ktt
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Using equations (A.16)A.17), and A.18), the firstk rows of%N_lE[ZCT]:lqsq,i Bg¢i | can be shown to equal

Bl | < S .
oN E : 1¢>q,i By =—mzf E[aykay,}f(yo) €. (A.19)
= 1K,

k=1
Combining equations (A.15) ané&(19) yieldsCq as given in the statement of the theorem.

Computation

Computation ofjjpT consists of two steps. In the first step, which is non-standard and detailed lecemputed as the
solution to equationd). Here we outline an approach to solving equati®nhich we have found to be computationally
convenient and very reliable in practice. This involves defiring be the solution to a globally concave programming
problem with unrestricted domain. In the secofids computed as the solution to equatidl)."fl

Consider the following function:

v a -1 1
= G ~)d A.20
"= 50 +./1/G(D> (t) ' #20

with G(-) as defined in AssumptioB.5. When the propensity score takes the I@@jiv) = (14 exp(—v))~1 form,
equation (A.20) exists in closed form (see below). We implement the logit specification in the empirical application and
expect that most users will do likewise. If a different propensity score model is assumed, then equatiyrcgn be
evaluated numerically.

The first and second derivatives@fv) are

G1(v)
G@)?’

p2(0) =— (A21)

1
p1(0) = S0
so that equation gA.ZO) is strictly concave.

We compute by solving the following optimization problem:

N N
1 1
m(?XlN(é), INO) = > Dip(t(Xi)'s) - N > t(Xi)o. (A.22)
i—1 i=1

Differentiatingl \ (6) with respect t@ gives an 1 M x 1 gradient vector of

N N
1 1
Vsl b‘:—ED- t(Xj) o)t (X ——Etx-, A.23
lil\'>ll>(<l) Ni:1 I(ﬂl(( i) O)t(Xi) Ni:1( i) ( )

which coincides with equation (8) as required. The M x 1+ M Hessian matrix is

N
VssIn(©) = %Z Dj p2(t(Xi) )L (Xi (X (A.24)
1+Mx1+M -1

This is a negative definite function of the problem A.22) is consequently concave with a unique solution (if one
exists). Existence of a solution requires t@f‘:lt(xi )/N lie within the convex hull of the complete case subsample
(this will be true in large samples under Assumptibd but should nevertheless be checked prior to computa%i%n).

In practice, equation/.23) will have an “exploding denominator” wheiiX;)'s is a large negative number. This
can lead to numerical instabilities by causing the Hessian to be ill-conditioned. We address this problem by noting that
at a valid squtionziN:1 Di /G(t(X;)'8)/N = 1. Since Assumptio.5 implies thatG(v) is bounded below by zero,
this means thab; /G(t(X;)'d) < Nforalli =1,...,N. Lettingo; =t(X;)’d, this inequality corresponds to requiring
that

G YDj/N)y <vi, i=1,...,N, (A.25)

21. The second step is identical to that associated with standard IPW. As the second step is both application specific
and typically straightforward to compute using standard software (that accepts user-specified weights), we do not detail
it here.

22. Convex hull conditions also arise in research on EL @wgen,2001, pp. 85-87).
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ats=3. Leto, = G~1(1/N); note thaby, — —oco asN — oo suggesting that equatioA £5) will be satisfied for most
values ofd in large enough samples. In small samples, equafio?5) may be violated for someat some iterations of
the maximization procedure (although not at a valid solution). Our approach to estimation involves replarinigh a
quadratic function when < vy, ; this ensures that the denominator in equati:28) is bounded. This will improve the
condition of the Hessian with respectdavithout changing the solutio®wen (2001, Chapter 12) proposes a similar
procedure in the context of EL estimation of moment condition models.

Specifically, we replace(v) in equations (A.22),A.23), and (A.24) with

*
o), 0> oy,

(A.26)
an +bnoy + CTN(U’,’(I)Z, v <of,

on@) =
whereay, by, andcy are the solutions to
eN = p200)),
bn +conopy = 01(oy),
CN
an +bnoy + 7(1)?{‘)2 =gpo(R)-

This choice of coefficients ensures thdf (v) equalsp(v), as well as equality of first and second derivatis, = oy .
When G(v) is logit, our algorithm is particularly simple to implement. F&(v) = exp(v)/[1 + exp(v)],
we have
0 (v) x v —exp(—v).

Differentiating with respect to then givespq(v) = 1+ exp(—v) andep2(v) = —exp(—v).
We also have, = G 1@/N)=In (%) =In (ﬁ) so that solving foay, by, andcy yields

ay=—(N-1) |:1+In(N1—1) +%[ln (Nl_l)ﬂ

1
by =N+ (N —1)In (m) ey =—(N—1).
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