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1 Introduction

In the supplemental web appendix of the paper we compare the small sample properties of inverse
probability tilting (IPT) with six leading missing data estimators:

1. Parametric imputation (PI) as in, for example, Rubin (1977)

2. Parametric inverse probability weighting (IPW) as in, for example, Wooldridge (2007)

3. The parametric augmented inverse probability weighting (AIPW) estimator of Robins, Rot-
nitzky and Zhao (1994)

4. The nonparametric IPW estimator of Hirano, Imbens and Ridder (2003) (HIR)

5. The nonparametric imputation estimator of Imbens, Newey and Ridder (2005) (INR)

6. The conditional expectation projection estimator of Chen, Hong and Tarozzi (2008) (CHT)

This document describes our implementation of each of these estimators and serves as an informal
guide to the replication code we have placed online. The code used for the empirical application and
the second set of �higher-order�Monte Carlos is described in a separate documents.
For each estimator we outline the following:

1. Computation of the estimator (including procedure for estimating standard errors)

2. Calculation of the probability limit of the estimator

3. Calculation of the asymptotic �standard error� of the estimator (i.e., the square root of its
asymptotic variance divided by the square root of the sample size)

For the �rst goal we attempted to be as faithful as possible to the cited published sources for
each estimator.
For the last two goals we followed the general recipe of treating each estimator as a (possibly

sequential) GMM estimator. That is we solved its population estimating equations under the data
generating process (DGP) corresponding to each design. This often involved analyzing an estimator
under misspeci�cation. We used standard GMM results to characterize the asymptotic variance of
each estimator, again with each term in the standard formula evaluated under the design-speci�c
DGP. The results of these calculations, which are of the (computer assisted) �pencil and paper�type,
appear in Columns 1 and 3 in Tables 5 to 8 in the supplemental web appendix. Here we provide the
population estimating equations that were solved for the probability limits of each estimator and the
form of the asymptotic sampling variances. These last two calculations were only performed for the
�rst three parametric estimators (as well as IPT) since the remaining estimators are asymptotically
unbiased with variances equal to the variance bound of Robins, Rotnitzky and Zhao (1994) and
Hahn (1998).
Unless noted otherwise, all notation is as de�ned in the main text. In all cases we describe

estimation for the case where the goal is to estimate the mean of a scalar �outcome�variable that is
missing at random (MAR). All references cited below are included in the bibliography of either the
main paper or the supplemental web appendix.
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2 Parametric imputation (PI)

Let
Y = t(X)0�� + U; E [UX] = 0;

where t(X) =
�
1; h (X)

0�0 and � = (&;�0)0 :
In step one we compute

b� = � 1
N

XN

i=1
Dit(Xi)t(Xi)

0
��1

�
�
1

N

XN

i=1
Dit(Xi)Yi

�
;

while in a second step we calculate

bPI = 1

N

XN

i=1
t(Xi)

0b�:
This estimator is a sequential GMM estimator based on the pair of moment restrictions

E [m (Z;��; �)] = E
��

m1 (Z;��)
m2 (Z;��; �)

��
= E

��
Dt(X) (Y � t(X)0��)

t(X)0�� � �

��
= 0;

where a �*� subscript denotes the population solution and is used instead of a �0� subscript to
emphasize the possibility of misspeci�cation (i.e, that t(X)0�� may not be the conditional mean of
Y given X).
The Jacobian matrix is

M =

�
M1� 0
M2� M2

�
;

where, recalling that � = E [h (X)] ;

M1� = E [p (X) t(X)t(X)0] ; M2� = (1; �
0)
0
; M2 = �1:

The covariance of the moment function is given by


 =

�

11 
12

012 
22

�
;

where


11 = E
h
p (X) (Y � t(X)0��)2 t(X)t(X)0

i

12 = E [p (X) t(X) (Y � t(X)0��) (t(X)0�� � �)] ; 
22 = �

0
�V(t (X))��:

Note that under correct speci�cation we have 
12 = 0. The asymptotic variance VPI is given by the
bottom right element of (M 0
�1M)�1.
Estimated standard errors are computed using the above GMM formulation, replacing population

quantities with the usual analog estimates (e.g., Newey and McFadden, 1994).
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3 Inverse probability weighting (IPW)

Let p(x; b�) be a, possible misspeci�ed (pseudo) maximum likelihood estimate of the propensity score.
The IPW estimator solves

1

N

NX
i=1

2Di
p(Xi; b�) (Yi � bIPW ) = 0:

We estimate the sampling variance of bIPW using the procedure suggested by Wooldridge (2008).
De�ne K = (k1; : : : ; kN )

0 and L = (l1; : : : ; lN )
0 where

ki = �
2Di

p(Xi; b�) (Yi � bIPW )
li =

@p (Xi; b�)
@�

�
Di

p (Xi; b�) � 1�Di
1�p (Xi; b�)

�
:

The estimated sampling variance of bIPW is given by

bVIPW = bA�1 bB bA�1
where

bA = 1

N

NX
i=1

2Di
p(Xi; b�)

bB = 1

N
(K 0K)� 1

N
(K 0L)(L0L)�1 (L0K) :

To solve for the probability limit of bIPW we �nd the solution to

E
�

D

p(X;��)
(Y � �)

�
= 0;

where �� are the pseudo-true propensity score coe¢ cients.
To calculate the IPW asymptotic sampling variance we again treat the estimator as a sequential

GMM estimator. We start with the �rst order representation,

p
N (b�� ��) = 1p

N

NX
i=1

	(Zi; ��) + op (1)

where

	(Zi; ��) = �E
�
@2 log [f (DjZ;��)]

@�@�0

��1
� @ log [f (DijZi; ��)]

@�
;

with ln f (DijZi; ��) the ith unit�s contribution to the pseudo propensity score log-likelihood.
Notice that bIPW solves

1

N

NX
i=1

Di
p(Xi; b�) (Yi � bIPW ) = 0;
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so that if we use the mean value theorem to expand the left hand side around � and ��, we can
show that

p
N (bIPW � �) = E

�
D

p (X;��)

��1
� 1p

N

NX
i=1

� (Zi; ��; �) + op (1) ;

where

� (Zi; ��; �) =
Di

p (X;��)
(Yi � �) + E

"
D

p (X;��)
2

@p(X;��)

@�
(Y � �)

#
�	(Zi; ��) :

Using this �rst order representation of bIPW we have

p
N (bIPW � 0)

D! N (0; VIPW ) ;

where

VIPW = E
�

D

p (X;��)

��1
� E

�
� (Z;��; �) � (Z;��; �)

0�� E � D

p (X;��)

��1
:

4 Augmented Inverse Probability Weighting (AIPW)

Our implementation of the AIPW estimator of Robins, Rotnitzky and Zhao (1994) consists of three
steps:
Step 1: Calculate p (X; b�) by (pseudo) maximum likelihood

Step 2: Estimate .q(X; b�; ) = eq(X; b�)�  by least squares where
eq(X; b�) = t(Xi)0b�; b� = � 1

N

XN

i=1
Dit(Xi)t(Xi)

0
��1

�
�
1

N

XN

i=1
Dit(Xi)Yi

�
:

Step 3: Find ̂AIPW satisfying

1

N

NX
i=1

�
Di

p (Xi; b�) (Yi � bAIPW )� Di � p (Xi; b�)p (Xi; b�)
�eq(Xi; b�)� bAIPW�� = 0;

which is equivalent to

bAIPW =
1

N

NX
i=1

DiYi � eq(Xi; b�) (Di � p (Xi; b�))
p (Xi; b�) :

We estimate the sampling variance of bAIPW in each of two ways in the paper. The �rst estimator,
which assumes that both the propensity score and CEF model are correct, is given by

bVAIPW;1 = 1

N

NX
i=1

(
DiYi � eq(Xi; b�) (Di � p (Xi; b�))

p (Xi; b�) � bAIPW)2 :
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The second estimator follows from standard results on sequential GMM. Note that each estimation
step corresponds to solving the following three sample moment conditions

1

N

NX
i=1

m1(Zi; b�) = 1

N

NX
i=1

�
Di � p (Xi; b�)

[1� p (Xi; b�)] p (Xi; b�)
�
@p(Xi; b�)
@�

= 0

1

N

NX
i=1

m2(Zi; b�; b�) = 1

N

NX
i=1

Dit(Xi)
�
Yi � t(Xi)0b�� = 0

1

N

NX
i=1

m3(Zi; b�; b�; b) = 1

N

NX
i=1

Di(Yi � b)
p (Xi; b�) �

heq(Xi; b�)� bi0
p (Xi; b�) (Di � p (Xi; b�)) = 0:

De�ning � = (�; �; ) and

m(Z; �) =

24 m1(Z;�)
m2(Z;�; �)
m3(Z;�; �; )

35
then the GMM variance estimator, bVAIPW;2; is equal to the lower-right-hand element of

= cM�1b�cM�10

where cM =
1

N

NX
i=1

@m(Zi; b�)
@�

�����
�=b�

and b� = 1

N

NX
i=1

m(Zi; b�)m(Zi; b�)0:
We use the GMM sequential representation to calculate the probability limit of bAIPW for each
design as well as its asymptotic standard error.

4.1 Hirano, Imbens and Ridder (2003)

For computation of the Hirano, Imbens and Ridder (2003) point estimates and standard errors we
used our IPW program (see above). However we let the propensity score take the series logit form
discussed by Hirano, Imbens and Ridder (2003) with the number of series terms, K, less than

K < N1=9;

where N is the sample size.
In the case of N = 1; 000, which is the sample size that we used in our Monte Carlo experiments,

this restriction would imply the use of less than 2.15 parameters including a constant. However, we
rounded this number up so that estimation was done using three terms: a constant, X and X2.
The HIR estimator is asymptotically (�rst order) unbiased with a sampling variance equal to the

bound.
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4.2 Imbens, Newey and Ridder (2005)

Following the notation of Imbens, Newey and Ridder (2005) as much as possible we let rt(X) = Xt�1

and construct the 1�K vector for each observation

RK(Xi) = (r1(Xi); : : : ; rK(Xi));

so that RK(Xi) is a power series of degree K for observation i. Using only the N1 observations with
Di = 1 we now de�ne the N1 �K matrix RK;N1

as

RK;N1
=

0B@ RK(X1)
...

RK(XN1
)

1CA :
and similarly de�ne YN1 as the N1 � 1 vector of the values of Y for these N1 observations. We
estimate �̂K according to1

�̂K =
�
R0K;N1

RK;N1

��1
R0K;N1

YN1
:

�̂K is then used to impute the counterfactual ATE over the complete set of observations:

̂K =
1

N

NX
i=1

RK(Xi)�̂K :

We choose K to minimize estimated mean squared error (MSE):

MSE =
1

N

h
�21a

0
N1
MK;N1

aN1
+
�
a0N1

eN1

�2 � �21a0N1
AN1

aN1

i
;

where
�21 =

e0N1eN1
N�1

eN1
= YN1

�XN1

�
X 0
N1
XN1

��1
X 0
N1
YN1

MKN1
= RK;N1

�
R0K;N1

RK;N1

��1
RK;N1

AN1 = I �MKN1

aN1
=

2664
1

p(X1;b�)
...
1

p(XN1
;b�)

3775 ;
with p (Xi; b�) equal to a parametric estimate of the propensity score (speci�cally a logit with an
index linear in X).

1. Speci�cally we calculate ̂K for all possible positive integer values of K such that the minimum
eigenvalue of

�
R0K;N1

RK;N1

�
is greater than 1

2 . The value of K that minimizes the MSE, K�,
is then selected as the optimal value so that

̂INR = ̂K� :

1Note that we are using a slight simpli�cation of the procedure suggested by Imbens, Newey and Ridder (2005).

While we use RK;N1 directly in estimation the authors propose using instead RK(Xi) = 

�1=2
K RK(Xi) where


K = E[RK(X)RK(X)0jD = 1]. While this normalization is useful for demonstrating the asymptotic properties of
this estimator, it does not a¤ect the point estimates.
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An asymptotic variance estimator for ̂INR is not provided in the most recent draft of the
Imbens, Newey and Ridder (2005) paper. Accordingly we estimate the variance of ̂INR by the
sample variance of an estimate of the e¢ cient in�uence function

bVINR = 1

N

NX
i=1

(
[b�(Xi)]2 + � Di

p (Xi; b�) (Yi � b�(Xi))
�2)

;

where b�(Xi) = RK(Xi)(R0K;N1
RK;N1)R

0
K;NY;

and we use the fact that the two parts of the in�uence function are asymptotically uncorrelated and
also that 0 = 0:
The INR estimator is asymptotically (�rst order) unbiased with a sampling variance equal to the

bound.

4.3 Chen, Hong and Tarozzi (2004, 2008)

Following the notation of Chen, Hong and Tarozzi (2004, 2008) as much as possible we, for some K;
de�ne the K � 1 vector qK(X) as

qK(X) = (q1(X); : : : ; qK(X))
0
;

where fql(X); l = 1; 2; : : : g denotes a sequence of basis functions (with K the degree of the se-
quence).2 Using this vector we now de�ne a N1 �K matrix, QN1

, using all N1 observations where
D = 1

QN1
=
�
qK(X1); : : : ; q

K(XN1
)
�0
:

The �rst step of the estimation procedure involves computing

bE(X; ) = NX
j=1

Dj � (Yj � ) qK(Xj) � (Q0N1
QN1

)�1 � qK(X):

In the second step ̂CHT is chosen to minimize

̂CHT = min
2G

 
1

N

NX
i=1

E(Xi; �)
!0 

1

N

NX
i=1

E(Xi; �)
!
:

We estimate the variance of ̂CHT by

bVCHT = 1

N

NX
i=1

�bE(Xi; ̂CHT ) + Di
p (Xi; b�)

n
(Yi � ̂CHT )� bE(Xi; ̂CHT )o�2 ;

with p (Xi; b�) equal to a parametric estimate of the propensity score (speci�cally a logit with an
index linear in X).
The CHT estimator is asymptotically (�rst order) unbiased with a sampling variance equal to

the bound.
2Typically this includes a constant as one of the terms.
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5 Matlab Code

Accompanying this document are several Matlab programs that implement each of these estimators.
The code is organized so that each of the above estimators, and our IPT estimator, are in a

separate folder. The folder �DGP�contains �les that implement the data generating process that we
use for the Monte Carlo experiments. Finally, in the root directory there is a �le called �main.m�
that implements the Monte Carlo experiment.3

Although we do not provide a description of each program in this document, it should be clear
from the headers within each program what they do and how they are related to other programs.

3Note that the random number kernel has been set so that the results from the paper will be obtained if the
program is run without any changes.
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